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Abstract 
 

Infrared spectra of single biological cells often exhibit the “dispersion artefact” observed 

as a sharp decrease in intensity on the high wavenumber side of absorption bands, in particular 

the Amide I band at ~1655 cm-1, causing a downward shift of the true peak position. The 

presence of this effect makes any biochemical interpretation of the spectra unreliable. Recent 

theory has shed light on the origins of the ‘dispersion artefact’ which has been attributed to 

resonant Mie scattering (RMieS). In this paper a preliminary algorithm for correcting RMieS is 

presented and evaluated using simulated data. Results show that the ‘dispersion artefact’ appears 

to be removed, however, the correction is not perfect. An iterative approach was subsequently 

implemented whereby the reference spectrum is improved after each iteration, resulting in a 

more accurate correction. Consequently the corrected spectra become increasingly more 

representative of the pure absorbance spectra. Using this correction method reliable peak 

positions can be obtained. 

 
 



1. Introduction 

Cytological examination for disease diagnosis is being used more extensively since analysis of a 

few cells to diagnose a disease state can obviate the need for more invasive intervention, for 

example, taking a biopsy. It is still the case, however, that the analysis of cells by eye under an 

optical microscope, even by a highly trained cytopathologist is both a time consuming and 

subjective process. Specific disease recognition tools such as immunohistochemical stains offer 

some assistance in the diagnosis procedure but these too are not without problems [1], thus there 

is a real need to develop more objective methods of analysis. In recent years, there has been 

increasing interest in using infrared microspectroscopy to study single biological cells [2–13]. 

Infrared spectroscopy could, in principle, improve the sensitivity and specificity of such analysis 

since it is completely objective, based upon biochemical changes rather than cellular 

architecture. Several studies have already shown that FTIR can be used to detect spectral 

changes in malignant and pre-malignant cells [14–15] and have shown results that compare very 

favourably with visual cytology [16]. Measuring an infrared absorbance spectrum from a single 

biological cell, however, is an inherently flawed process. Given that the diameter of typical 

human cells are in the region ~8–30 m and the size of nuclei and other organelles range from 1 

– 10 m, it is clear that mid-infrared radiation with wavelengths of 3-10 m will scatter strongly 

from such samples. This scattering, dominated by Mie scattering, will significantly distort the 

measured spectrum such that it appears significantly different from the pure absorbance 

spectrum [13, 17–24]. Under such circumstances, in the absence of some form of correction, 

band shape, spectral positioning and intensity of signature features are unreliable and cannot be 

used with any certainty to evaluate cellular biochemistry [13, 22]. This problem is compounded 

in comparative studies of drug-cell interaction where the action of a drug induces a change in 



cell morphology that alters the scattering profile of the cell compared with a control [12]. An 

increase in scattering is often observed as cells become more rounded, for example, due to the 

action of a cytotoxic agent. This causes the so-called Amide I band, usually the strongest band 

in the spectrum, to exhibit an apparent loss of intensity and a downward shift of the band centre. 

This can be misinterpreted as a change in protein structure induced by the drug. It is essential 

therefore that such distortions in IR spectra, arising from scattering effects, should be removed 

to facilitate recovery of the pure absorbance spectrum. Only then can spectra be reliably 

compared from one cell to another and the influence of anticancer agents and other cytotoxins 

be evaluated. To date, the most successful method for removing spectral distortions, including 

the effects of Mie scattering, has been the application of the Extended Multiplicative Signal 

Correction (EMSC) algorithm [20], which works well in most cases particularly where the Mie 

scattering is weak and where the spectra do not show strong distortion (dispersion artefact) of 

the Amide I band [26]. Where the dispersion artefact is strong, however, conventional EMSC 

struggles to correct this important region of the spectrum.  

 

Bassan et al have recently shown that the principal origin of the dispersion artefact is a process 

termed resonant Mie scattering (RMieS) [22] in both FTIR transmission and transflection mode 

measurements. Briefly, this relates to the fact that the Mie scattering efficiency is dependent 

upon the refractive index of the sample and this changes on passing through an absorption 

resonance [22]. Measurements in transflection mode are subject to further distortion when the 

cellular reflection is comparable to the (doubly) transmitted intensity [23]. In Part A of this 

paper we illustrate the problem of spectral distortions with infrared data collected from prostate 

cancer cells, known to give rise to strong Mie scattering/dispersion artefact and show that the 

spectral distortions can be corrected for using a modified version of EMSC (RMieS-EMSC). 



However, as with all correction algorithms it is important to know “how well has the distorted 

spectrum been corrected”? To this end, in Part B of the paper, simulated data is artificially 

distorted and then corrected using the new correction algorithm. Since the simulated pure 

absorption spectrum is known, the effectiveness of the correction procedure can be evaluated. 

 

 

Part A 

2. Experimental 

2.1 Cell culture 

Cultures of PC-3 cells, a human prostate cancer cell line, were grown on 70% v/v ethanol-

sterilised, CaF2 plates (Crystran Pool, UK) using standard protocols [7, 27]. The cells were 

cultured in Ham’s F12 with 7% FCS and 2 mM L-glutamine at 37 ˚C in a humidified atmosphere 

of 5% CO2. Reagents were purchased from Sigma-Aldrich, Poole, UK, and tissue culture media 

were obtained from Invitrogen, Paisley, UK. Once the cells were 70% confluent the CaF2 plates 

were removed from the growth medium and fixed in 4% formalin in phosphate-buffered saline 

(PBS) for 20 min at room temperature, washed in distilled water to remove residual PBS from 

their surface, dried under ambient conditions and stored in a desiccator prior to analysis.  

 

2.2 Infrared Microscopy 

The synchrotron FTIR micro-spectroscopy data were recorded at the synchrotron SOLEIL on the 

SMIS beamline, details of which can be found elsewhere [27]. The spectra were obtained using a 

Nicolet Continuum XL microscope equipped with a 50 m MCT detector. Spectra were recorded 



at 4 cm–1 resolution. The size of the aperture was adjusted to match the diameter of the cell such 

that it was fully illuminated. 

 

3. Infrared results and data analysis 

3.1 Raw infrared spectrum 

Fig. 1a(i), shows an optical image of two PC-3 cells. The cell on the right is typical of this cell 

line, being slightly flattened and having a diameter of ~ 26 µm. The cell on the left is smaller, 

~13 µm, more rounded with very little cytoplasm and is optically denser. Although very much in 

the minority these morphologically smaller cells are often observed in PC-3 cultures and are 

believed to be cells that have divided just prior to fixation. PC-3 cells are unusual in that they 

often divide perpendicularly to the substrate and the unattached daughter cell is often washed 

away during the fixation process. The infrared spectrum of the small rounded cell is shown in 

Fig. 1a(ii). The spectrum looks highly distorted compared to a pure absorbance† spectrum, 

showing a broad hump in the baseline between 2000 cm-1 and 4000 cm-1, part of the broad 

oscillation of the baseline, associated with classic (non-resonant) Mie scattering, as well as the 

dispersion artefact; the pronounced dip in absorbance at 1750 cm-1 predominantly due to RMieS. 

This profile is typical of many small single-cell infrared spectra and supports the assumption that 

scattering in cells is primarily from the cell nucleus [22, 23].  In Fig. 1a(ii) we observe that the 

position of the Amide I band is at 1641 cm-1 which if interpreted as a signal with no scattering 

artefact, would be indicative of a predominance of β-sheet and random coil secondary protein 

structure within the cell [28]. 

 

  

                                                 
† All absorbances quoted in this paper are decadic i.e. –log10(I/I0)   



 

 

3.2 EMSC Correction 

An explanation of the EMSC will be given fully in Part B of this paper. However, the Mie 

scattering EMSC [20, 29] has been applied to the raw spectrum in Fig. 1a, to produce the 

corrected spectrum shown in Fig. 1b. As can be seen, the large baseline oscillation has been 

removed but the dispersion artefact indicated by the reduced intensity on the higher wavenumber 

side of the Amide I band is still present. The peak of the Amide I band has up-shifted by 9 cm-1 

to 1650 cm-1. This is significant since, again taken at face value; it would imply predominance of 

random coil plus turns and bends and rather less β-sheet protein secondary structure. However, 

from our previous work on PMMA microspheres the presence of the dispersion artefact is likely 

to significantly influence both the shape and position of the Amide I band [22].  

 

3.3 Resonant Mie scattering (RMieS) / EMSC correction  

In order to correct for the dispersion artefact caused by RMieS we have developed a new 

modified version of EMSC which is also discussed in further detail in Part B. This correction 

algorithm has been applied to the data in Fig. 1a. to produce the spectrum in Fig. 1c. As can be 

seen, the spectrum now resembles a conventional FTIR absorbance spectrum with a relatively 

flat baseline and no apparent dispersion artefact. In addition, the Amide I band has shifted further 

to 1654 cm-1, which suggests the secondary structure present is largely α-helix.  

 

At this point it is reasonable to assume that the RMieS corrected spectrum closely represents the 

pure absorbance spectrum that would have been measured in the absence of any scattering. Thus 

for the first time it would appear that the band positions can be interpreted in terms of the real 



biochemistry present in the cell. However, since we can never know for sure the “correct” 

absorbance spectrum of an inherently strong scattering sample, we cannot test the above 

assumption using real biological cells. We have, therefore attempted to evaluate the accuracy of 

the correction algorithm using simulated data. 

 

 

Part B 

 

4. Evaluating the algorithm 

It is important for the understanding of this paper to briefly outline the various processes 

performed by the correction algorithms. Since the RMieS-EMSC algorithm builds on the 

standard EMSC algorithm it is useful to start our discussion at this point. 

 

4.1. Extended Multiplicative Signal Correction (EMSC) 

The EMSC is a model-based multivariate data pre-processing method and based on linear 

statistical regression modelling [25, 29]. However, it can also be extended to handle non-linear 

effects, e.g. physical effects such as Mie scattering, that otherwise require non-linear 

mathematical modelling.  This is done by representing the non-linear mathematical modelling by 

a low-rank multivariate bilinear model [20]. Offsets and baseline slopes are removed effectively, 

whilst the multiplicative part of the algorithm compensates for optical path length differences, 

essentially normalising the spectra. This is done by taking a reference spectrum which can be the 

mean spectrum of the sample data set or a spectrum with similar spectral features, hereafter 

referred to as ZRef. The algorithm takes the reference spectrum and attempts to recreate the raw 



spectrum to be corrected (ZRaw) by adding an offset, a slope and amplifying the reference by 

multiplication. This can be summarised algebraically, symbols with arrows above represent 

vectors i.e. a column of spectral intensity values 

 

 Raw RefZ c m hZ E   
 




        (1) 

 

Where, ZRaw = the raw spectrum, ZRef = reference spectrum, c = constant value for spectrum 

offset, m = gradient of the sloping baseline, h = multiplicative scaling factor, and E


 = un-

modelled residual information.  

  

By finding the values of c, m and h using a least squares linear regression method, the spectrum 

can be corrected. An extension to this was published by Kohler et al [20] where oscillating 

baseline variations due to Mie scattering, obtained by a linear subspace model of Mie scattering 

effects as described in the following section, were corrected for by adding an additional term to 

eqn. (1).  

 

4.2 Non-resonant Mie scattering EMSC 

In 1957, H.C. van de Hulst [30] published an approximation equation for the Mie scattering 

efficiency, Q, which is a simpler and less computationally intensive version of the original theory 

published in 1908 by G. Mie [31]. The Mie approximation eqn. (2), explained further in eqn. (3–

5) is given as 

 

  2

4 4
2 sin 1 cosQ  

 
   

   
(2) 



where 

 

 
 2 1d n





      (3) 

 

where, n and d denote the ratio of the real refractive indices of particle and surrounding medium, 

and diameter of the scattering particle respectively. In this case, the medium is air for which the 

real refractive index is essentially 1, hence n simplifies to the real refractive index of the 

scattering particle. For convenience, the ρ term was simplified to 

 

 



          (4) 

        (5) 2 d n  1

 

The introduction of this alpha parameter enabled a single variable to describe the product of the 

refractive index and particle diameter. The model of the expected Mie contribution in eqn. (2) is 

a non-linear function of   which in turn is a non-linear function of   and in eqn. (4). If these 

non-linear functions were to be implemented directly into the pre-processing, a non-linear and 

complicated parameter estimation problem would have to be solved. Instead, the non-linear 

function can be approximated by a multivariate bi-linear model and incorporated into the linear 

EMSC model [20]; thereby, the parameter estimation is done by a simple one-step multivariate 

linear regression. To this purpose 200 different values were chosen to cover the range of 

parameter values for d and n considered relevant for the present application: 

 d: 2 to 20 µm 



 n: 1.1 to 1.5 

This resulted in 200 output spectra as function of  . The 200 “Q curves” are decomposed using 

a non mean-centred principal component analysis (PCA) to find the principal components of the 

data matrix. The first six loadings, p1,…, p6  summarised 99.99% percent of the sum-of-squares 

in the 200 simulated spectra. They were thus considered to be an adequate bi-linear 

approximation of the non-linear Mie model under the present conditions. These loadings are used 

to produce a new correction algorithm, summarised algebraically below: 
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Raw Ref
1
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(6) 

 

The fourth term in the equation, (containing the summation) is where the variations from Mie 

scattering are covered. A precise weighting for each of the six loadings is added, controlled by 

the parameters 'gi' which are calculated during the least squares linear regression. Since the 

loading vectors are orthogonal, the parameter estimation by least squares regression is very 

stable. The vector E


 represents the un-modelled residual variance which could not be described 

by the EMSC model. Ideally, the residual should be zero indicating the model described all 

features; however this is rarely the case in practice; in fact all the interesting chemical variations 

remain in the residual spectra, unless they have been modelled explicitly by including e.g. 

analyte spectra in the EMSC model (not used in this paper). The described algorithm is 

successful at removing the smooth oscillations due to Mie scattering, however the dispersion 

artefact often remains.  

 

 



4.3 Resonant Mie scattering (RMieS) / EMSC correction algorithm 

Recently, the origins of the so-called dispersion artefact have been understood and linked to 

resonant Mie scattering (RMieS), connecting the broad oscillations and the sharp decrease in 

apparent absorbance on the higher wavenumber side of absorption bands [22]. Knowledge of the 

origin of the phenomenon enables a new correction algorithm to be constructed, presented in this 

paper that removes both broad oscillations in the baseline and the dispersion artefact, both of 

which derive from resonant Mie scattering (RMieS). 

 

Bassan et al documented that the dispersion artefact is predominantly due to resonant Mie 

scattering (RMieS) caused by a changing real refractive index near an absorption band [22]. This 

causes some degree of index matching meaning that the efficiency with which the photons are 

scattered at this wavenumber is reduced to almost zero, visually interpreted as a sharp decrease 

in absorbance. 

 

The algorithm by Kohler et al [20] therefore needs modification to correct for resonant Mie 

scattering. The spectrum of the real refractive index of a material can be calculated from its 

absorbance spectrum, which is proportional to the imaginary refractive index (k). 

 

 

2 2
0

2 ( )
( ) P

s k
n n

s


 

 
 







ds
      

(7) 

 



Where n  is the average refractive index, and P denotes the Cauchy principal of improper 

integrals, needed in this case when s =   as a division by zero occurs creating a singularity. The 

solution to this is to perform two integrations either side of the singularity. 

 

 

The output from the Kramers-Kronig transform [32, 33] is the refractive index spectrum minus 

the average refractive index, here after referred to as nKK. 
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s
     

(8) 

 

The k term can be replaced by the reference spectrum as they are nearly proportional.  

 RefRef ( ) ( )ZZ k  
       

(9) 

The 2/π factor can also been omitted as we are only interested in the proportional relationship of 

nKK and the Kramers-Kronig transform of ZRef. 
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s k
n d

s




 








s
      

(10) 

The average refractive index of each sample is again unknown, as is the imaginary refractive 

index. The nKK spectrum is arbitrarily normalised so that its minimum value is -1, the reason for 

this is explained later. To construct a refractive index for insertion into eqn. (11), two terms a 

and b need to be defined as the average refractive index and an amplification factor for nKK 

respectively.  



 

         (11) . KKn a b n 

 

The parameter b is required as the ZRef used is not the correct input for the Kramers-Kronig 

transform. It is however directly proportional and so a scaling parameter can be used to 

compensate. The refractive index cannot go below a value of 1, and this is ensured by carefully 

controlling the value of b. If an average refractive index, a = 1.3 is used (typical for a biological 

sample), then b can range from 0 to 0.3 resulting in the minimum value being 1. The particle 

diameter d is the last parameter which needs to be varied to cover many scattering possibilities 

giving a total of three parameters: a, b and d. 

 

For each parameter, 10 equidistant values were used between the ranges: 

 a: 1.1 to 1.5 

 b: 0 to (a  - 1) 

 d: 4 µm to 40 µm 

 

This results in 1000 permutations.  This equivalence data set is compressed by PCA and 

approximated by a small number of loadings (seven in this case, explaining 99.9% of the total 

sum-of-squares in the 103 simulated spectra). The total number of 'descriptive vectors' in the 

linear EMSC model is now ten, consisting of seven loadings, the reference spectrum, plus the 

constant and sloping baselines. All the model parameters are estimated simultaneously by 

multiple linear regression solved by least squares estimation. As in the Mie scattering EMSC 

[22], the parameter estimation is stable due to the orthogonality of the loadings. 



 

The remainder of the algorithm is exactly the same as the previously published Mie scattering 

EMSC [20], except that seven loadings are now used from the data matrix of 103 RMieS Q 

curves. 
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(12) 

 

5. Evaluating the RMieS algorithm  

5.1 Evaluation methodology 

The new algorithm subtracts a curve which is the sum of a constant value offset, c, a sloping 

baseline, m   and the RMieS curve, Q which is described by the summation term in eqn. (12). If 

the pure absorbance spectra of some of the major and most strongly varying chemical 

constituents in the samples correlates (overlaps) with some of the spectra in the EMSC model, 

the EMSC algorithm potentially can remove chemical information from the pure absorbance 

spectrum of the sample which is undesirable as results may be distorted and unreliable. This 

problem can be alleviated by including important constituent spectra in the EMSC model. 

However for single cell spectra these are presently considered unknown. Hence, to validate the 

algorithm, a simulated data set where all constituent effects are known was created. The set was 

simulated to form two groups (clusters) of data, each with 25 spectra. These spectra were created 

by adding together a number of Gaussian curves with various peak positions heights and widths. 

The spectra were created so that they visually appeared to be similar to the fingerprint region of 

typical biomedical IR spectra, however no two spectra were identical. A spectrum of a thin layer 

of Matrigel (an artificial basement membrane consisting mainly of protein [34]) was used as a 



'template' to acquire peak parameters. A random number generator was used to vary the positions 

(± 1 cm-1), heights (± 20%) and widths (± 2.5%) of peaks within each spectrum. The second data 

set was subject to the same random variation as the first but was intentionally given higher 

absorbance by 0.1 at the 1300 cm-1 and 1740 cm-1 peaks so that the two groups of data would 

appear different when analysed using PCA. These simulated data and the corresponding score 

plot for the first two PCA components are shown in Fig. 2. As expected, two distinct clusters of 

spectra can be observed. This 2-component model accounted for 81.9% of the variance in these 

“ideal” data. 

 

To create a data set affected by RMieS from multiple scattering particles, each spectrum from the 

pure absorbance spectra data set was taken and 10 unique scattering curves, Q, were added to 

each one. The refractive index used was the correct one corresponding to each spectrum, and a 

random number generator was used to create different scattering particle diameters ranging from 

4 m to 10 m and average refractive index varying between 1.3 and 1.4.  

 

The resultant spectra are shown in Fig. 3a. and closely resemble the type of data typically 

observed for single cells. Fig. 3b. shows that, despite the fact that the original pure spectra 

consist of two distinct groups, the spectra no longer separate using PCA even when the 2nd 

derivate of the data is used. This is because the spectral distortions induced by scattering are 

generally significantly larger than real spectral differences associated with subtle differences in 

biochemistry. This data set of scattered spectra and the corresponding pure absorbance are 

subsequently used to test the algorithm. 

 



5.2 Correction Results: 

5.2.1 Correction results using existing Mie scattering EMSC  

Fig. 4a. shows the resulting spectra after the Mie scattering EMSC correction algorithm is 

applied. As can be seen the baseline oscillations have been removed but the dispersion artefact is 

still very prominent in many of the spectra. The two data sets still cannot be distinguished using 

PCA, Fig. 4b, because the variation associated with the dispersion artefact that still remains is 

still larger than the known true spectral differences.  

 

5.2.2 Correction using RMieS model: 

5.2.2.1 Ideal correction 

The reference spectrum used to correct each scattered spectrum was the pure absorbance 

spectrum of each sample giving the algorithm the most ideal conditions. The resulting corrected 

spectra look almost identical to those in Fig. 2a, as expected, and hence they are not shown.  The 

PCA scores plot for these corrected spectra is also practically identical to that of the pure 

absorbance spectra in Fig. 2b. By subtracting the corrected spectra from the pure absorbance 

spectra it was observed that the differences were four orders of magnitude smaller than the pure 

absorbance spectra, hence negligibly different.  

 

This result is non-trivial as it demonstrates that a scattered spectrum can be corrected using our 

method if the reference spectrum used is a perfect match, even though 10 scattering curves of 

unknown scattering particle diameter were added. The mathematics of the algorithm have been 

verified and the concept of using PCA to describe the majority of variance within 1000 Q curves 

into 7 loading spectra has proved a success.  

 



 

5.2.2.2 Using an imperfect reference spectrum. 

Although the previous section shows that correcting a spectrum with an ideal reference spectrum 

will give the correct result, it is clear that the perfect reference spectrum will almost never be 

available in practice. Thus a compromise has to be made. One option is to use the mean spectrum 

of the whole data set under investigation. The mean spectrum was used for the correction of each 

spectrum meaning that none of the spectra has the perfect conditions for correction.  

 

The resultant PCA scores plot shown in Fig. 5a. is independent of the pure absorbance scores 

plot in Fig. 2b. making a direct comparison difficult, however projecting the corrected spectra 

onto the loadings from the pure absorbance spectra produces a directly comparable scores plot. 

 

Such a plot is shown in Fig. 5b. where the scores of the corrected spectra are shown in the same 

'subspace' as those of the pure absorbance spectra, achieved by projecting the corrected spectra 

on the loadings from the pure absorbance spectra. This essentially means that they are being 

viewed from the same point of view, mathematically speaking, making a direct comparison of 

positions possible. Fig. 5c. shows the scores plot on the same scale with the arrows indicating the 

movement of each point from its ideally corrected position. The main observation here is that the 

corrected spectra separate into two separate groups, so from a pragmatic classification point of 

view, the pre-processing has been successful.  However, since we also want to interpret the 

spectral details of the pre-processed spectra, it is a problem that the pre-processed spectra are not 

in their expected positions. Firstly, they have moved somewhat towards the reference spectrum, 

which is the mean spectrum located at the origin. 

 



Secondly, this result shows that using a non-ideal reference spectrum to some extent does affect 

the quality of the corrected spectra; they exhibit greater similarity to the reference spectrum. 

Although the spectra have not been corrected perfectly the results do still show that there are two 

clear groups of data which may be sufficient for certain applications.   

 

 

5.2.2.3 Iterative correction method: 

In order to improve the spectral correction process even further, the model spectra going into the 

EMSC model may be optimized for the given purpose. This is achieved here by iteratively 

improving the reference spectrum, by letting the original, non-ideal reference spectrum (the 

mean of the input spectra) be replaced by the corrected spectrum from the previous iteration for 

each corresponding spectrum.  The algorithm is run once more correcting the raw spectrum again 

using the new reference. This iterative approach is depicted schematically in Fig. 6. 

 

Fig. 7. shows the effect of increasing iterations on the accuracy of the correction, calculated by 

projecting the corrected spectra onto the loadings from the pure absorbance spectra. Using this 

iterative approach, the corrected spectra move towards their pure absorbance spectra in score 

space with increasing number of iterations, indicating an improvement in the quality of the 

correction. For this particular data set, convergence of the algorithm is reached after 8 iterations 

before the corrected spectra have moved to their pure absorbance positions, however there is a 

significant improvement upon the first iteration. This is illustrated further in Fig. 8 which shows 

the sum of Pythagorean distances of the PCA scores plot of the corrected spectra, projected onto 

the original pure absorbance spectra sub-space, as a function of iteration.  For comparison, the 

data point for the previous Mie Scattering EMSC is also shown. As can be seen, using the 



RMieS-EMSC algorithm produced a significant improvement which continues with each 

iteration, in this case up to 8 iterations. The number of iterations required will of course depend 

on the data set but further work, to be published elsewhere, suggests that 10 iterations should be 

sufficient in most cases [35].  

 

Although the sum of the Pythagorean distances give a measure of how well the correction 

algorithm works, it is useful to consider other qualitative measures. Fig. 9a. shows the Amide I 

band for the original uncorrected simulated data. The original position of the peak was set to 

1655 ± 1cm-1 indicated by the left most vertical line. The actual peak positions of the simulated 

scattering data range from 1635.9 to 1647.0 cm-1 with a mean of 1642.3 cm-1. Thus it is clear that 

the significant shift in peak wavenumber is induced by the RMieS. The hitherto existing Mie 

scattering EMSC correction significantly improves the overall data and brings down the sum of 

the Pythagorean distances (from the pure absorbance spectra) from a value of 95 to 22 but has 

little impact on the Amide I peak position  Fig. 9b. The peak position of the EMSC corrected 

spectra range from 1636.8 to 1647.1 cm-1 with a mean of 1642.7 cm-1. It is only when the 

RMieS-EMSC correction is performed that a band position close to the correct wavenumber 

value is obtained. Fig. 9c. shows that the Amide I bands are now closely aligned ranging from 

1653.0 to 1656.4 cm-1 with a mean of 1654.5 cm-1.  This is a potent illustration of the fact that 

although the Mie Scattering EMSC may successfully enable data to be separated into groups 

(which is often the aim of the experiment), any biological interpretation of the data particularly 

with respect to the Amide I band and associated protein structure cannot be made unless the 

RMieS-EMSC correction is applied. 

 

 



6. Conclusion 

In this work we have presented a model for the dynamics of Mie scattering in single cell spectra, 

and a correction method based on those dynamics. We have shown that using the true absorbance 

spectrum as the reference spectrum for each correction, every scattered spectrum can be 

corrected essentially perfectly. This result is non-trivial as it illustrates the concept of 

compressing 1000 scattering Mie curves into a small number of principal component loading 

spectra and using these in a least squares fitting algorithm to estimate the scattering 

contributions. 

 

The second and more interesting test was the correction of the spectra using a non-ideal 

reference spectrum which was non-ideally suited to any spectrum as would be the case in real 

life as the true spectrum is unknown. This method yielded corrected spectra that still separated 

the test data set into two groups as they should when analysed with PCA.  

 

Using an iterative correction process whereby the corrected spectrum becomes the new reference 

spectrum it has been shown that the new corrected spectrum resembles its true pure absorbance 

spectrum even further. The limitation of this method is that convergence is reached before each 

spectrum is corrected perfectly, however each corrected spectrum is a significantly better 

representation of its true spectrum compared with that before the correction.  

 

Most importantly, we have shown that the true position of the biologically significant Amide I 

band can only be obtained with the RMieS-EMSC algorithm. It follows therefore that 

interpretation of previously uncorrected single cell infrared spectra, in terms of protein secondary 

structure, must be viewed with extreme caution. 



 

 

Further work is underway to improve on the incorporation of the theory of the scattering process 

into the algorithm, and new ways to provoke a stronger convergence during the iterative 

correction procedure. This will be the subject of a paper in the near future. 
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Figure captions 
 
Fig. 1. (a) Optical image of a PC3 cells (i) and an IR spectrum of the smaller cell (ii). (b). 

Corrected IR spectrum using an existing Mie scattering EMSC algorithm. (c). Corrected 

spectrum using new RMieS-EMSC algorithm. 

 
Fig. 2. (a) All 50 simulated “pure absorbance” spectra shown on 1 plot. (b) the corresponding 

PCA scores plot of the data. 

 
Fig. 3. (a) The 50 simulated “pure absorbance” spectra from Fig. 2a, after the superposition of 10 

unique artificial Mie scattering curves. (b) PCA scores plot for the total data set of 2nd derivative 

of raw spectra and EMSC normalisation. 

 
Fig. 4. (a) The artificial spectra corrected using original Mie scattering EMSC algorithm. (b) The 

corresponding PCA scores plot of the corrected spectra. 

 
Fig. 5. (a) PCA scores plot of the corrected spectra. (b) Score plot of the non-ideal corrected data 

projected onto the loadings from the pure absorbance spectra PCA. (c) A plot showing the shift 

of the non-ideal reference corrected spectra from their correct pure absorbance positions. 

 

Fig. 6. Flow chart illustrating the iterative procedure implemented to use the corrected spectrum 

as the new reference spectrum and running the algorithm once more. 

 

Fig. 7. Scores plot showing the scores shift of the iteratively corrected spectra from iteration 1 to 

2, 2 to 3 and 4 to 10. Arrows show that each spectrum is moving towards its true absorbance 



spectrum position. All spectra were projected onto the loadings from the pure absorbance 

spectra. 

 

Fig. 8.  A plot of sum of the Pythagorean distance of PCA scores away from the score positions 

for the pure absorbance spectra (measured on a common sub-space) vs iteration. The first point 

on the plot is for the Mie Scattering EMSC algorithm. 

 

Fig. 9. The Amide I band shown for (a) the uncorrected, (b) Mie Scattering EMSC corrected and 

(c) RMieS-EMSC corrected spectra. 
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