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Approximations of the resonant non-linear normal modes of a general class of weakly non-linear one-dimensional continuous

systems with quadratic and cubic geometric non-linearities are constructed for the cases of two-to-one, one-to-one, and

three-to-one internal resonances. Two analytical approaches are employed: the full-basis Galerkin discretization approach

and the direct treatment, both based on use of the method of multiple scales as reduction technique. The procedures yield the

uniform expansions of the displacement �eld and the normal forms governing the slow modulations of the amplitudes and

phases of the modes. The non-linear interaction coe�cients appearing in the normal forms are obtained in the form of in�nite

series with the discretization approach or as modal projections of second-order spatial functions with the direct approach. A

systematic discussion on the existence and stability of coupled=uncoupled non-linear normal modes is presented. Closed-form

conditions for non-linear orthogonality of the modes, in a global and local sense, are discussed. A mechanical interpretation

of these conditions in terms of virtual works is also provided. 

Keywords: Non-linear normal mode; Internal resonance; Non-linear orthogonality; Method of multiple scales; Virtual work

1. Introduction

Non-linear modal couplings due to internal reso-

nances are possible in distributed-parameter systems

depending on some geometrical and=or mechanical

control parameters. Non-linear interactions between

the modes are often also responsible for complex

dynamical behaviors [1,2].

On one hand, there is a theoretical interest in

exploring the bifurcation behavior of the non-linear

normal modes of continuous systems per se because

this leads to a deeper understanding of the forced

resonant dynamics when these modal interactions are

activated. On the other hand, there is a practical inter-

est in identifying a priori necessary and su�cient con-

ditions for the actual activation (or non-activation) of

non-linear modal interactions in continuous systems.

In fact, when a system is designed to operate under

dynamic loadings, often one of the designer’s goals

is to ascertain that the system will operate away from

internal resonances leading to undesirable resonant

multimode vibrations.

Starting with Rosenberg [3], the topic of non-

linear normal modes of conservative as well as
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non-conservative vibratory �nite-degree-of-freedom

and spatially continuous systems, with either weak

or strong non-linearities, has been investigated quite

extensively. Since then a variety of approximate an-

alytical techniques has been proposed to construct

the non-linear normal modes of discrete as well as

continuous systems.

When treating spatially continuous systems, the

approximate techniques include treatments of a dis-

cretized version with perturbation methods and direct

reduction methods. With discretization methods, one

assumes the solution as an expansion in terms of basis

functions forming a complete set and then uses one

of the variants of the method of weighted residuals

(e.g., the Galerkin method) to obtain an in�nite set of

ordinary-di�erential equations usually truncated to a

�nite number of equations. Thereafter, the real-valued

or complex-valued form of the invariant-manifold

approach, the energy approach of King and Vakakis

[4], or a perturbation method are used to treat the

discretized equations.

On the other hand, direct analytical techniques

[4–11] are available to construct the non-linear nor-

mal modes of continuous systems without a priori as-

sumptions of the form of the solution. An exhaustive

review of these techniques can be found in [2].

In a few previous works, while exploring internal

resonances in some continuous systems, it was occa-

sionally found that certain modes, although possess-

ing frequencies in proper integer ratios with the poten-

tial for modal interaction activation, were not actually

coupled. For example, investigating non-linear nor-

mal modes in clamped–clamped buckled beams [10],

it was found that some modes could not interact at

all, in spite of proper integer ratios between the asso-

ciated frequencies, due to vanishing of the non-linear

interaction coe�cients in the normal forms.

Inspired by these results, we attempt to develop

a general and systematic approach to determine a

priori conditions for activation=non-activation of the

modes under speci�c internal resonance conditions.

The outcomes of these investigations are presented

and discussed in this paper which is organized in two

parts. The objective of Part I is twofold: (i) to study

the existence and stability of coupled=uncoupled

non-linear normal modes over variation of the inter-

nal resonance detuning in a general and systematic

fashion using a set of partial-di�erential equations

of motion and boundary conditions with general lin-

ear, quadratic, and cubic geometric operators; (ii) to

determine closed-form conditions for the non-linear

global and local orthogonality of the modes thereby

extending the linear orthogonality concept applicable

to self-adjoint systems entering the �nite-amplitude

vibration regime. In Part II [11], the general condi-

tions are used for an in-depth analysis of non-linear

orthogonality of the modes in various structural sys-

tems possessing symmetric and antisymmetric modes

including buckled beams, shallow arches, and sus-

pended cables.

The stated objectives are pursued, in the present

paper, by constructing second-order uniform approx-

imations of the coupled=uncoupled non-linear nor-

mal modes in the cases of two-to-one, three-to-one,

and one-to-one internal resonances. The method

of multiple scales [2] is applied to the in�nite set

of ordinary-di�erential equations obtained via the

Galerkin method or directly to the partial-di�erential

equations of motion and boundary conditions. In the

�rst case, the full basis of the eigenfunctions of the

associated linearized system is used as trial func-

tions. The normal modes obtained with the full-basis

Galerkin approach are the same as those obtained with

direct application of the method of multiple scales to

the equations of motion and boundary conditions as

already shown in similar contexts [12–14]. However,

the full-basis approach yields interesting modal rep-

resentations of the coupled=uncoupled normal modes.

These spectral representations, besides shedding light

onto the structure of the non-linear modes, can be

useful for modal convergence investigations (and

reduced-order models selection). For a two-to-one

internal resonance, we also discuss the e�ects of a

higher-order approximation on the non-linear orthog-

onality and, in the case of activation, on the relative

phase and amplitudes of the interacting modes.

Necessary and su�cient conditions for the local and

global non-linear orthogonality of the modes are ob-

tained in closed form. Two forms of non-linear or-

thogonality are illustrated: a local form and a global

form. In the �rst case, uncoupling occurs in certain

regions of the detuning-amplitude space. Therein, the

modes cannot interact with periodic exchange of en-

ergy. In the second case, the orthogonality is global in

the sense that it is independent on the detuning, the am-

plitudes, and the relative phases. We show that these
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global conditions can be interpreted as an extension

of the linear orthogonality concept applicable to the

modes of self-adjoint systems to their weak non-linear

regime. Clearly, the obtained closed-form non-linear

orthogonality conditions can save an enormous com-

putational e�ort when it is needed to ascertain a pri-

ori whether orthogonality=non-orthogonality occurs in

self-adjoint systems, the latter leading to modal inter-

actions.

2. A class of one-dimensional continuous systems

Non-linear undamped unforced vibrations of a fairly

general class of one-dimensional elastic continuous

systems around their initially curved static non-linear

con�gurations are governed, in non-dimensional form,

by

�u + Lu =G2(u; u) +G3(u; u; u) (1)

subject to the linear homogeneous boundary condi-

tions

Bi(u) = 0; i = 1; 2 (2)

at both ends of the system. In (1), the overdot indi-

cates di�erentiation with respect to the dimensionless

time t; u(x; t) denotes the dynamic displacements

measured from the initially curved con�guration

and x indicates the coordinate along the horizontal

projection of the centerline of the system; L is a

linear, homogeneous, self-adjoint, positive-de�nite

integral-di�erential operator; G2 and G3 are quadratic

and cubic geometric operators. The non-linear oper-

ators are non-commutative; i.e., G2(v;w) �=G2(w; v).

The operator notation here used is suitable to deal

with general system-independent dynamics [14–17].

The eigenvalue problem governing the frequencies

and associated mode shapes is

LM− !2M= 0; Bi(M) = 0: (3)

By virtue of the self-adjoint nature of the lin-

ear unforced undamped problem, the mode shapes

Mm(x)—having in general in-plane and out-of-plane

components—are mutually orthogonal and we

assume they have been normalized such that
∫ 1

0
Mm(x)

TMn(x) dx = 〈MmMn〉 = �mn and 〈MT
mLMn〉=

!2
n�mn, where �mn is the Kronecker delta and T in-

dicates the transpose. It is worth observing that in

many practical three-dimensional applications (e.g.,

suspended cables), the in-plane and out-of-plane

eigenvalue problems are uncoupled. Therefore, there

are two sets of eigenvalues and eigenfunctions, one

associated with the in-plane problem and the other

associated with the out-of-plane problem. In this case,

it is easier to treat scalar di�erential equations rather

than their vectorial counterparts. However, when

we deal with coupled longitudinal and transverse

vibrations of arches and suspended cables or with

bending–torsional vibrations of beams, the kinematic

con�guration variables are coupled in the eigenvalue

problem. In this case, the vector notation is an e�ec-

tive compact representation of the overally coupled

system dynamics.

We use two approaches to the analytical construc-

tion of the non-linear normal modes: the discretiza-

tion approach and the direct treatment, both based on

the method of multiple scales as reduction technique.

To avoid some drawbacks of the method of multi-

ple scales applied to the equations of motion cast in

second-order di�erential form (in time), we use the

state–space formulation and cast the equations of mo-

tion in �rst-order di�erential form [2,18] as follows:

u̇ − v = 0;

v̇ + Lu =G2(u; u) +G3(u; u; u): (4)

In view of the analysis of the transverse dynamics

of shallow systems which is tackled in Part II, lon-

gitudinal inertia can be neglected because the longi-

tudinal modes are widely spaced from the transverse

modes of vibration. This allows to use the classical

condensation procedure for eliminating the longitudi-

nal displacement component as a kinematic unknown.

Consequently, to investigate modal interactions in

the planar dynamics described by the transverse dis-

placement component u(x; t) only, we perform a

full-basis discretization of (4) by letting u(x; t) =
∑∞

k=1 qk(t)�k(x) and v(x; t)=
∑∞

k=1 zk(t)�k(x). Sub-

sequently, we employ the Galerkin method leading

to the following in�nite set of non-linearly coupled
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ordinary-di�erential equations for planar interactions:

q̇k − zk = 0;

żk + !2
kqk

=

∞
∑

i=1

∞
∑

j=1

�kijqiqj +

∞
∑

i=1

∞
∑

j=1

∞
∑

h=1

�kijhqiqjqh;

k = 1; 2; : : : ;∞ (5)

where

�kij = 〈�kG2(�i ; �j)〉 and

�kijh = 〈�kG3(�i ; �j ; �h)〉: (6)

On the other hand, when studying modal inter-

actions in the non-planar dynamics of cables de-

scribed by two displacement components (in-plane

and out-of-plane), the full-basis Galerkin dis-

cretization leads to two sets of coupled non-linear

ordinary-di�erential equations, as documented in [11].

3. Discretization approach

In the present and following sections, we use the

method of multiple scales [2] to construct uniform

asymptotic expansions of the solutions of (4) and the

associated boundary conditions in the case of small but

�nite (moderately large) dynamic displacements, and

the expansions of the solutions of (5), when bimodal

two-to-one, three-to-one, and one-to-one internal res-

onances may be activated. We use the discretization

approach, �rst, and, successively, the direct treatment.

We assume that the generalized coordinates for the

displacement and the velocity qk(t; �) and zk(t; �) can

be expanded, respectively, as

qk(t; �) = �qk1(T0; T1; T2) + �2qk2(T0; T1; T2)

+�3qk3(T0; T1; T2) + · · · ; (7)

zk(t; �) = �zk1(T0; T1; T2) + �2zk2(T0; T1; T2)

+�3zk3(T0; T1; T2) + · · · ; (8)

where qk and zk are O(�) and qki and zki are O(1), with

� denoting a small non-dimensional parameter of the

order of the amplitude of the solution and the symbol

O standing, as typical in asymptotic analyses, for “of

the asymptotic order of” [19].

The time scales Tk are de�ned as T0 = t; T1 = �t,

and T2 = �2t and the �rst derivative with respect to

time is de�ned as @=@t=D0+�D1+�2D2+ · · · ; where
Dn = @=@Tn.

Substituting (7), (8) and the time-derivative ex-

pansion into (5), and equating coe�cients of equal

powers of � yields

Order �:

D0qk1 − zk1 = 0; (9)

D0zk1 + !2
kqk1 = 0: (10)

Order �2:

D0qk2 − zk2 =−D1qk1; (11)

D0zk2 + !2
kqk2 =−D1zk1 +

∞
∑

j=1

∞
∑

h=1

�kjhqj1qh1: (12)

Order �3:

D0qk3 − zk3 =−D1qk2 − D2qk1; (13)

D0zk3 + !2
kqk3

=− D1zk2 − D2zk1 +

∞
∑

j=1

∞
∑

h=1

�kjh(qj1qh2 + qj2qh1)

+

∞
∑

j=1

∞
∑

h=1

∞
∑

l=1

�kjhlqj1qh1ql1: (14)

For bimodal interactions between the mth and nth

modes, the preliminary steps of the analysis are com-

mon to all of the internal resonances being investi-

gated. Because the mth and nth modes are the only

modes involved in the internal resonance, we express

the solutions of (9) and (10) as

qk1 = Ak(T1; T2)e
i!kT0(�km + �kn) + cc; (15)

zk1 = i!kAk(T1; T2)e
i!kT0(�km + �kn) + cc; (16)

where Ak denotes the complex-valued amplitude of

the kth mode and cc indicates the complex conjugate

of the preceding terms.

Substituting (15) and (16) into (11) and (12) yields

D0qk2 − zk2 =−(D1Ak)e
i!kT0(�km + �kn) + cc; (17)

D0zk2 + !2
kqk2

=− i!k(D1Ak)e
i!kT0(�km + �kn)

+�kmm[A
2
me

2i!mT0 + Am
�Am]

4



+�knn[A
2
ne

2i!nT0 + An
�An]

+ (�kmn + �knm)AmAne
i(!m+!n)T0

+(�kmn + �knm)An
�Ame

i(!n−!m)T0 + cc: (18)

In the next sections, we treat separately the cases

of two-to-one, three-to-one, and one-to-one inter-

nal resonances and we construct systematically their

second-order expansions.

3.1. Two-to-one internal resonances !n ≈ 2!m

Non-linear resonant terms due to a two-to-one in-

ternal resonance are associated with the quadratic

non-linearities. They appear at second order. Hence, a

second-order expansion corresponds to a higher-order

approximation of the investigated interaction. Our

interest in seeking a higher-order approximation of

the non-linear normal modes due to a two-to-one

internal resonance is twofold. First, we aim at a pre-

liminary estimation of the in
uence of higher-order

e�ects, in general, on the expansion and, more specif-

ically, on the non-linear modal orthogonality in such

a relatively simple case. Furthermore, by doing so,

we attempt to establish a systematic approach to

construct second-order expansions of the non-linear

normal modes under various internal resonance

conditions.

The nearness of the internal resonance is expressed

as !n = 2!m + ��, where � is a detuning parameter

of order O(1). We note that, in force of the internal

resonance condition, resonant terms appear in (17)

and (18) when k = m or n. That is,

D0qm2 − zm2 =−(D1Am)e
i!mT0 + cc; (19)

D0zm2 + !2
mqm2 =−i!m(D1Am)e

i!mT0

+(�mmn + �mnm)An
�Ame

i!mT0ei�T1

+cc + NST (20)

and

D0qn2 − zn2 =−(D1An)e
i!nT0 + cc (21)

D0zn2 + !2
nqn2 =−i!n(D1An)e

i!nT0

+�nmmA
2
me

i!nT0e−i�T1

+cc + NST; (22)

where NST denotes non-resonant terms.

Therefore, to render the problems solvable, we im-

pose the orthogonality of the right-hand sides of the

inhomogeneous equations (19) and (20) and those

of (21) and (22) to every solution of the associated

adjoint homogeneous problem. The solutions of the

adjoint problems are [i!k ; 1] exp(−i!kT0); k = m; n.

Imposing the orthogonality yields

2i!mD1Am = (�mmn + �mnm)An
�Ame

i�T1 ; (23)

2i!nD1An = �nmmA
2
me

−i�T1 : (24)

Solving (23) and (24) for D1Am and D1An and substi-

tuting the results into the second-order equations (17)

and (18), we obtain

D0qk2 − zk2

=
i

2!m

(�mmn + �mnm)An
�Ame

i!mT0ei�T1�km

+
i

2!n

�nmmA
2
me

i!nT0e−i�T1�kn + cc; (25)

D0zk2 + !2
kqk2

=− 1
2
(�mmn + �mnm)An

�Ame
i!mT0ei�T1�km

− 1
2
�nmmA

2
me

i!nT0e−i�T1�kn

+�kmm[A
2
me

2i!mT0 + Am
�Am]

+�knn[A
2
ne

2i!nT0 + An
�An]

+ (�kmn + �knm)AmAne
i(!m+!n)T0

+(�kmn + �knm)An
�Ame

i(!n−!m)T0 + cc: (26)

The solution of the inhomogeneous equations (25)

and (26) is unique and straightforward when k �=m

and n; on the contrary, when k = m or n, the cou-

pled ordinary-di�erential equations (25) and (26)

exhibit resonant terms in their right-hand sides as

5



already pointed out. However, because these equations

have been rendered solvable, their solutions can be

determined within an arbitrary constant. To determine

the solutions of (25) and (26) when k =m and n, we

let

q
(R)
m2 = Qm2An

�Ame
i!mT0ei�T1 ;

z
(R)
m2 = Zm2An

�Ame
i!mT0ei�T1 ; (27)

q
(R)
n2 = Qn2A

2
me

i!nT0e−i�T1 ;

z
(R)
n2 = Zn2A

2
me

i!nT0e−i�T1 ; (28)

where the superscript R indicates the resonant part

of the second-order solution associated with the mth

and nth coordinates, respectively, and Qj2 and Zj2 are

constants. Substituting the assumed forms of the so-

lutions, (27) and (28), into (25) or (26) when k = m

and n, we obtain linear relationships between Qj2 and

Zj2 in the form

Zm2 = i!mQm2 −
i

2!m

(�mmn + �mnm);

Zn2 = i!nQn2 −
i

2!n

�nmm: (29)

To remove the indeterminacy, we require that the so-

lutions [Qj2; Zj2] be orthogonal to the adjoints [i!j ; 1],

for j=m and n. That is, [Qj2; Zj2] · [i!j ; 1]
T=0 where

(:) indicates the dot product. The result is

Qm2 =
�mmn + �mnm

4!2
m

and Qn2 =
�nmm

4!2
n

; (30)

Zj2 =−i!jQj2; for j = m; n: (31)

Then, we can express the second-order solutions as 1

qk2 =
�mmn + �mnm

4!2
m

An
�Ame

i(!n−!m)T0�km

+
�nmm

4!2
n

A2
me

2i!mT0�kn

1 When the term (1 − �kj) is zero in these expressions, it is

tacitly intended that the corresponding multiplicative function must

be removed (in spite of its vanishing denominator).

+
�kmm

!2
k − 4!2

m

A2
me

2i!mT0(1− �kn)

+
�kmn + �knm

!2
k − (!n − !m)2

An
�Am

×ei(!n−!m)T0(1− �km) +
�kmm

!2
k

Am
�Am

+
�knn

!2
k − 4!2

n

A2
ne

2i!nT0

+
�knn

!2
k

An
�An +

�kmn + �knm

!2
k − (!m + !n)2

×AmAne
i(!m+!n)T0 + cc; (32)

zk2 =−i
�mmn + �mnm

4!m

An
�Ame

i(!n−!m)T0�km

−i
�nmm

4!n

A2
me

2i!mT0�kn

+2i!m

�kmm

!2
k − 4!2

m

A2
me

2i!mT0(1− �kn)

+2i!n

�knn

!2
k − 4!2

n

A2
ne

2i!nT0

+i(!n − !m)
�kmn + �knm

!2
k − (!n − !m)2

×An
�Ame

i(!n−!m)T0(1− �km)

+i(!m + !n)
�kmn + �knm

!2
k − (!m + !n)2

×AmAne
i(!m+!n)T0 + cc: (33)

Substituting the second-order solutions, (32) and

(33), into the third-order problem, (13) and (14), and

imposing again solvability conditions yields the mod-

ulation equations governing the dependence of the

complex-valued amplitudes Am and An on the scale T2

in the form

2i!mD2Am = KmmA
2
m
�Am + KmnAmAn

�An; (34)

2i!nD2An = KnnA
2
n
�An + KnmAnAm

�Am; (35)
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where the coe�cients Khh and Kmn are given by the

following in�nite series:

Kmm =

∞
∑

j=1; j �=n

[

(�mmj + �mjm)

×
(

2�jmm

!2
j

+
�jmm

!2
j − 4!2

m

)]

+
9

4!2
n

�nmm(�mmn + �mnm) + 3�mmmm; (36)

Knn =

∞
∑

j=1

[

(�nnj + �njn)

(

2�jnn

!2
j

+
�jnn

!2
j − 4!2

n

)]

+3�nnnn; (37)

Kmn =

∞
∑

j=1; j �=m

[

(�mjn + �mnj)(�jmn + �jnm)

×
(

1

!2
j − 9!2

m

+
1

!2
j − !2

m

)

+
2�jnn

!2
j

(�mmj + �mjm)

]

+
(�mmn + �mnm)

2

8!2
m

+
4

!2
m

(�mnn�mmm)

+2(�mnnm + �mnmn + �mmnn): (38)

Using the method of reconstitution [2], we can ex-

press the derivative of A with respect to time t as

Ȧ= �D1A+ �2D2A+ · · · : Therefore, substituting (23),

(24), (34), and (35) into this equation, we obtain the

modulation equations up to third order as

2i!mȦm = (�mmn + �mnm)An
�Ame

i�t + KmmA
2
m
�Am

+KmnAmAn
�An; (39)

2i!nȦn =�nmmA
2
me

−i�t + KnnA
2
n
�An

+KnmAnAm
�Am; (40)

where � was, for convenience, set equal to unity (this

is admissible for the bookkeeping function of �).

By virtue of the conservative nature of the problem,

(39) and (40) must be derivable from the Lagrangian

L= T − (V (N ) + V (�)); (41)

where

T = i!n(An
�̇An − �AnȦn) + i!m(Am

�̇Am − �AmȦm) (42)

is the system kinetic energy associated with the inter-

action;

V (N ) =− 1
2
(KnnA

2
n
�A
2

n + KmmA
2
m
�A
2

m

+2KmnAn
�AnAm

�Am) (43)

is part of the Lagrangian associated with the

resonance-independent non-linear elastic potential

energy (the superscript N indicates the non-resonant

part of the Lagrangian); and

V (�) =− 1
2
(SAn

�A
2

me
i�t + cc) (44)

is part of the Lagrangian associated with the resonance

detuning-dependent elastic potential energy.

Consequently, imposing that (39) and (40) sat-

isfy the Euler–Lagrange equations [20] based on the

Lagrangian (41) yields

S = Sm = 2Sn; (45)

Kmn = Knm; (46)

where Sm = �mmn + �mnm and Sn = �nmm.

Letting Ak(t) = (1=2)ak(t) exp(i�(t)), we can ex-

press the �rst- and second-order generalized coordi-

nates as

qk1 = ak cos(!k t + �k)(�km + �kn); (47)

qk2 =
1

2
a2m

�nmm

4!2
n

cos 2(!mt + �m)�kn

+
1

2

(�mmn + �mnm)

4!2
m

aman

×cos((!n − !m)t + �n − �m)�km

+
1

2
a2m

�kmm

!2
k

+
1

2
a2n

×
[

�knn

!2
k − 4!2

n

cos 2(!nt + �n) +
�knn

!2
k

]

7



+
1

2
aman

(�kmn + �knm)

!2
k − (!m + !n)2

×cos((!m + !n)t + �m + �n)

+
1

2
a2m

�kmm

!2
k − 4!2

m

cos 2(!mt + �m)(1− �kn)

+
1

2
aman

(�kmn + �knm)

!2
k − (!n − !m)2

×cos((!n − !m)t + �n − �m)(1− �km): (48)

Using the assumed full-basis modal expansion for

the displacement u(x; t)=
∑∞

k=1 qk(t)�k(x), the latter

can be expressed, up to second order, as

u(x; t) = an cos(!nt + �n)�n(x)

+am cos(!mt + �m)�m(x)

+ 1
2
{a2n[cos 2(!nt + �n) nn(x) + �nn(x)]

+a2m[cos 2(!mt + �m) mm(x) + �mm(x)]

+anam[cos((!n + !m)t + �n + �m) mn(x)

+cos((!n − !m)t + �n − �m)�mn(x)]}; (49)

where � was reabsorbed in the amplitude expres-

sions and the second-order shape functions are given

by

 mm(x) =

∞
∑

k=1; k �=n

�kmm

!2
k − 4!2

m

�k(x)

+
�nmm

4!2
n

�n(x); (50)

�mn(x) =

∞
∑

k=1; k �=m

�kmn + �knm

!2
k − (!n − !m)2

�k(x)

+
�mmn + �mnm

4!2
m

�m(x); (51)

 nn(x) =

∞
∑

k=1

�knn

!2
k − 4!2

n

�k(x);

 mn(x) =

∞
∑

k=1

�kmn + �knm

!2
k − (!m + !n)2

�k(x); (52)

�mm(x) =

∞
∑

k=1

�kmm

!2
k

�k(x);

�nn(x) =

∞
∑

k=1

�knn

!2
k

�k(x): (53)

In (49), the amplitudes and phases are governed

by (39) and (40). We also observe that the func-

tions �mm and �nn are associated with zero frequency;

hence, they govern the new equilibrium con�gura-

tion produced by the quadratic non-linearities around

which the system periodically oscillates. Clearly,

the displacement �eld (49) depends, in principle,

on all of the eigenmodes, directly, through (50)–

(53) denoting second-order spatial corrections and,

indirectly, through the amplitudes and phases which

are solutions of the modulation equations gov-

erned by the coe�cients Kij and S. In these coe�-

cients, the quadratic non-linearities produce contri-

butions from all of the modes as also documented

in [14]. On the contrary, the e�ects of the cubic

non-linearities, for second-order expansions, are ac-

counted for solely by the mode shapes involved in the

resonance.

It is also clear that high-frequency modal contribu-

tions are less signi�cant either in the spatial functions

or in the amplitudes and phases through the interaction

coe�cients, because the associated frequencies appear

(in the denominators of the shape functions  ij (�ij)

or in those of the coe�cients) squared or as the dif-

ference of the square of the frequency and the square

of the dominant frequencies. The modal convergence

of the non-linear normal modes depends on the rate

of convergence of the series expressing the interaction

coe�cients.

3.2. Three-to-one internal resonances !n ≈ 3!m

The analysis up to (18) holds for a three-to-one as

well as a one-to-one internal resonance. The di�erence

is that these internal resonances are associated with

third-order e�ects; hence, the solutions do not depend

on the time scale T1. Consequently, the solutions of

(5) are assumed in the form of (7) and (8) neglecting

the dependence on T1.
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We can express the solutions of (17) and (18) with

D1 ≡ 0 as

qk2(T0; T2)

=
�kmm

!2
k − 4!2

m

A2
me

2i!mT0 +
�kmm

!2
k

Am
�Am

+
�knn

!2
k − 4!2

n

A2
ne

2i!nT0 +
�knn

!2
k

An
�An

+
�kmn + �knm

!2
k − (!m + !n)2

AmAne
i(!m+!n)T0

+
�kmn + �knm

!2
k − (!n − !m)2

An
�Ame

i(!n−!m)T0 + cc;

(54)

zk2 = D0qk2: (55)

Substituting (54) and (55) into (13) and (14) yields

resonant terms in themth and nth third-order equations

depending on the type of internal resonance. Express-

ing the nearness of the three-to-one internal resonance

as !n = 3!m + �2� and imposing the solvability con-

ditions yields the following modulation equations:

2i!mD2Am =KmmA
2
m
�Am + KmnAmAn

�An

+�mAn
�A
2

me
i�T2 ; (56)

2i!nD2An =KnnA
2
n
�An + KnmAnAm

�Am

+�nA
3
me

−i�T2 : (57)

The coe�cients Khh; Kmn, and �n are obtained as

Khh =

∞
∑

j=1

[

(�hhj + �hjh)

(

2�jhh

!2
j

+
�jhh

!2
j − 4!2

h

)]

+3�hhhh; h= m; n; (58)

Kmn =

∞
∑

j=1

[

(�mmj + �mjm)
2�jnn

!2
j

+(�mnj + �mjn)(�jmn + �jnm)

×
(

1

!2
j − (!n + !m)2

+
1

!2
j − (!n − !m)2

)]

+2(�mnnm + �mnmn + �mmnn); (59)

�n =

∞
∑

j=1

[

(�nmj + �njm)
�jmm

!2
j − 4!2

m

]

+ �nmmm: (60)

Again, exploiting the conservative nature of the

problem, we impose that (56) and (57) be derivable

from the Lagrangian expressed by (41)–(43) with the

coe�cients given by (58) and (59)

V (�) =−�

3
(An

�A
3

me
i�t + cc): (61)

In addition to the resonance-independent symmetry

condition (46) (i.e., Kmn = Knm), we obtain the fol-

lowing resonance-dependent condition:

�= �m = 3�n: (62)

The displacement �eld is expressed again by (49)

with  nn;  mn; �mm, and �nn given by (52) and (53),

whereas  mm and �mn are replaced, respectively, with

 mm(x) =

∞
∑

k=1

�kmm

!2
k − 4!2

m

�k(x); (63)

�mn(x) =

∞
∑

k=1

�kmn + �knm

!2
k − (!n − !m)2

�k(x): (64)

3.3. One-to-one internal resonances !n ≈ !m

One-to-one internal resonances may occur in two

cases: at crossover points (where the frequencies of

two or more modes coalesce by transversal intersec-

tion over variation of a system parameter [21] or at

veering points (where the frequencies of two or more

modes coalesce by tangential intersection [22]). For

example, in the case of suspended cables with sup-

ports at di�erent levels, it was found [23] that the

eigenfunctions are a mixture of symmetric and anti-

symmetric components. In this case, the curve veering

phenomenon occurs between the frequencies of the

lowest two modes upon variation of a modi�ed cable

parameter accounting for its elasto-geometric proper-

ties including the inclined geometry.

For a one-to-one internal resonance, we express

its detuning as !n = !m + �2�. For a one-to-one in-

ternal resonance at a crossover point, the detuning

parameter can be either positive or negative whereas

for a one-to-one internal resonance at a veering

point, the detuning parameter does not change sign.
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Nevertheless, the theoretical analysis performed here

holds also for the veering case.

Substituting (15) and (16), (54), and (55) into (13)

and (14), and imposing that the inhomogeneous equa-

tions be solvable leads to the following modulation

equations:

2i!mD2Am =KmmA
2
m
�Am + KmnAmAn

�An + R5A
2
n
�Ane

i�T2

+R6AnAm
�Ame

i�T2 + R7A
2
m
�Ane

−i�T2

+R8A
2
n
�Ame

2i�T2 (65)

2i!nD2An =KnnA
2
n
�An + KnmAnAm

�Am + R1A
2
m
�Ame

−i�T2

+R2AmAn
�Ane

−i�T2 + R3A
2
m
�Ane

−2i�T2

+R4A
2
n
�Ame

i�T2 : (66)

We exploit the conservative nature of the problem

by imposing that (65) and (66) be derivable from the

Lagrangian expressed by (41)–(43) and

V (�) =−(K1A
2
n
�An

�Ame
i�T2 + K2

�A
2

mAmAne
i�T2

+K3A
2
n
�A
2

me
2i�T2) + cc: (67)

In addition to the resonance-independent symme-

try condition (46) (Kmn = Knm), we obtain the

resonance-dependent conditions

2K1 = R2 = 2R4 = 2R5; 2K2 = R6 = 2R1 = 2R7;

and 2K3 = R3 = R8: (68)

The coe�cients Khh are given by (58), Kmn is given

by (59) and the resonance-dependent interaction co-

e�cients are expressed as

K1 =

∞
∑

j=1

[

(�nmj + �njm)
�jnn

!2
j − 4!2

n

+ (�nnj + �njn)
�jmn + �jnm

!2
j

]

+�nnnm + �nnmn + �nmnn (69)

K2 =

∞
∑

j=1

[

(�nmj + �njm)

(

2

!2
j

+
1

!2
j − 4!2

m

)

�jmm

]

+3�nmmm; (70)

2K3 =

∞
∑

j=1

[

(�nnj + �njn)
�jmm

!2
j − 4!2

m

+ (�nmj + �njm)
�jmn + �jnm

!2
j

]

+�nmmn + �nmnm + �nnmm: (71)

The displacement �eld is given by (49) with the

same second-order functions governing the displace-

ment in the case of a three-to-one internal resonance.

4. Direct approach

In this section, we attack directly the equations of

motion and boundary conditions with the method of

multiple scales. We seek uniform expansions of u and

v in the form

u(x; t) =

3
∑

k=1

�kuk(x; T0; T1; T2) + · · ·

v(x; t) =

3
∑

k=1

�kvk(x; T0; T1; T2) + · · · (72)

with � possessing the samemeaning as in the preceding

sections.

Substituting (72) into the scalar form of the equa-

tions of motion (4) and boundary conditions (2), us-

ing the independence of the time scales, and equating

coe�cients of like powers of � yields

Order �:

D0u1 − v1 = 0; (73)

D0v1 + Lu1 = 0; (74)

Order �2:

D0u2 − v2 =−D1u1; (75)

D0v2 + Lu2 =−D1v1 + G2(u1; u1); (76)

Order �3:

D0u3 − v3 =−D2u1 − D1u2; (77)

D0v3 + Lu3 =−D2v1 − D1v2 + G2(u1; u2)

+G2(u2; u1) + G3(u1; u1; u1): (78)

The boundary conditions are given by (2) at all orders.
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Because the mth and nth modes are the only modes

involved in the internal resonances, we express the

solution of (73) and (74) as

u1 = Am(T1; T2)e
i!mT0�m(x)

+An(T1; T2)e
i!nT0�n(x) + cc (79)

and

v1 = i!mAm(T1; T2)e
i!mT0�m(x)

+i!nAn(T1; T2)e
i!nT0�n(x) + cc: (80)

Substituting (79) and (80) into (75) and (76) yields

D0u2 − v2 =−(D1Am)e
i!mT0�m

−(D1An)e
i!nT0�n + cc; (81)

D0v2 + Lu2

=− i!m(D1Am)e
i!mT0�m

− i!n(D1An)e
i!nT0�n

+[A2
me

2i!mT0 + Am
�Am]G2(�m; �m)

+ [AmAne
i(!m+!n)T0 + An

�Ame
i(!n−!m)T0]

×[G2(�m; �n) + G2(�n; �m)]

+ [A2
ne

2i!nT0 + An
�An]G2(�n; �n) + cc: (82)

The analysis here performed is common to the con-

sidered internal resonances. In the next sections, we

treat separately the cases of two-to-one, three-to-one,

and one-to-one internal resonances.

4.1. Two-to-one internal resonances

Due to the two-to-one ratio between the frequencies

of the mth and nth modes, resonant terms may arise

at second order; namely,

D0u2 − v2

=− (D1Am)e
i!mT0�m − (D1An)e

i!nT0�n + cc;

(83)

D0v2 + Lu2

=− i!m(D1Am)e
i!mT0�m − i!n(D1An)e

i!nT0�n

+A2
me

i!nT0e−i�T1G2(�m; �m) + An
�Ame

i!mT0ei�T1

×[G2(�m; �n) + G2(�n; �m)] + cc + NST:

(84)

Because the associated homogeneous problem ad-

mits non-trivial solutions (i.e., the eigensolutions), the

second-order problem is solvable only if solvability

conditions are satis�ed. To this end, the right-hand

sides of (83) and (84) are required to be orthogonal to

every solution of the homogeneous adjoint problem.

That is, we impose the orthogonality of the resonant

inhomogeneous terms to [i!m; 1] exp(−i!mT0)�m and

to [i!n; 1] exp(−i!nT0)�n.

Imposing these conditions and accounting for the

de�nition of �kij provided in (6), we obtain the same

solvability conditions as those obtained with the dis-

cretization approach; namely (23) and (24). There-

after, solving these equations for D1Am and D1An and

substituting the results into the second-order equations

(81) and (82), we obtain

D0u2 − v2 = i
(�mmn + �mnm)

2!m

An
�Ame

i(!n−!m)T0�m

+i
�nmm

2!n

A2
me

2i!mT0�n + cc; (85)

D0v2 + Lu2

=A2
me

2i!mT0[G2(�m; �m)− 1
2
�nmm�n]

+A2
ne

2i!nT0G2(�n; �n)

+AmAne
i(!m+!n)T0[G2(�m; �n)

+G2(�n; �m)] + An
�Ame

i(!n−!m)T0

×[G2(�m; �n) + G2(�n; �m)

− 1
2
(�mmn + �mnm)�m] + Am

�AmG2(�m; �m)

+An
�AnG2(�n; �n) + cc: (86)

Based on the right-hand sides of (85) and (86), the

second-order solution can be assumed in the form

u2 = A2
me

2i!mT0	mm(x) + Am
�Am�mm(x)

+A2
ne

2i!nT0	nn(x) + An
�An�nn(x)

+AnAme
i(!n+!m)T0	mn(x)

+An
�Ame

i(!n−!m)T0�mn(x) + cc; (87)
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v2 = A2
me

2i!mT0�mm(x) + Am
�Am�mm(x)

+A2
ne

2i!nT0�nn(x) + An
�An�nn(x)

+AnAme
i(!n+!m)T0�mn(x)

+An
�Ame

i(!n−!m)T0�mn(x) + cc: (88)

Substituting (87) and (88) into (85) and (86), we

obtain a set of coupled boundary-value problems in

the unknown functions 	kk (�kk) and �kk (�kk) which,

in turn, can be decoupled yielding

L	mm − !2
n	mm = G2(�m; �m)− �nmm�n; (89)

L�mn − !2
m�mn =G2(�m; �n) + G2(�n; �m)

−(�mmn + �mnm)�m; (90)

L	nn − 4!2
n	nn = G2(�n; �n); (91)

L	mn − (!m + !n)
2	mn

=G2(�m; �n) + G2(�n; �m); (92)

L�mm = G2(�m; �m); L�nn = G2(�n; �n); (93)

with all of the functions satisfying the boundary con-

ditions (2). On the other hand, the functions associ-

ated with the second-order velocity �eld are given by

�mm = 2i!m	mm − i
�nmm

2!n

�n; (94)

�mn = i(!n − !m)�mn − i
�mmn + �mnm

2!m

�m; (95)

�nn = 2i!n	nn; �mn = i(!m + !n)	mn;

�nn = �mm = 0: (96)

The solutions of the boundary-value problems (91)

–(93) are uniquely determined; however, because the

homogeneous problems associated with (89) and (90)

admit non-trivial solutions (�n and �m, respectively),

their solutions are uniquely determined by imposing

the orthogonality of [	mm; �mm] to the adjoint solution

[i!n; 1]�n and that of [�mn; �mn] to the adjoint solution

[i!m; 1]�m, respectively. Using the modal expansion

method, we can express the sought solutions as

	mm =

∞
∑

k=1; k �=n

�kmm

!2
k − !2

n

�k(x) +
�nmm

4!2
n

�n(x); (97)

�mm = i!n

∞
∑

k=1; k �=n

�kmm

!2
k − !2

n

�k(x)

−i!n

[

�nmm

4!2
n

�n(x)

]

; (98)

�mn =

∞
∑

k=1; k �=m

�kmn + �knm

!2
k − !2

m

�k(x)

+
�mmn + �mnm

4!2
m

�m(x); (99)

�mn = i!m

∞
∑

k=1; k �=m

�kmn + �knm

!2
k − !2

m

�k(x)

−i!m

[

�mmn + �mnm

4!2
m

�m(x)

]

: (100)

Comparing (50) with (97) and (51) with (99), we

conclude that the functions 	mm and �mn obtained

with the direct approach are the same as  mm and �mn

obtained with the full-basis discretization approach.

It can also be proved, using a technique similar

to that used in [14], that the remaining functions

	nn; 	mn; �nn, and �mm, obtained with the direct ap-

proach, are, respectively, the same as  nn;  mn; �nn,

and �mm, obtained with the discretization approach,

respectively.

Substituting (79), (80), (87), and (88) into the

third-order problem yields

D0u3 − v3

=− (D2Am)e
i!mT0�m − (D2An)e

i!nT0�n

−D1(A
2
me

−i�T1)ei!nT0	mm

−D1(An
�Ame

i�T1)ei!mT0�mn + cc + NST; (101)

D0v3 + Lu3

=− i!m(D2Am)e
i!mT0�m − i!n(D2An)e

i!nT0�n

−D1(A
2
me

−i�T1)ei!nT0�mm

−D1(An
�Ame

i�T1)ei!mT0�mn
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+A2
m
�Ame

i!mT0 [G2(	mm; �m) + G2(�m; 	mm)

+2G2(�m; �mm) + 2G2(�mm; �m)

+3G3(�m; �m; �m)]

+AmAn
�Ane

i!mT0 [G2(	mn; �n)

+G2(�n; 	mn) + G2(�mn; �n)

+G2(�n; �mn) + 2G2(�nn; �m) + 2G2(�m; �nn)

+2G3(�m; �n; �n) + 2G3(�n; �m; �n)

+2G3(�n; �n; �m)]

+A2
n
�Ane

i!nT0 [G2(	nn; �n) + G2(�n; 	nn)

+2G2(�n; �nn) + 2G2(�nn; �n)

+3G3(�n; �n; �n)]

+AnAm
�Ame

i!nT0 [G2(	mn; �m) + G2(�m; 	mn)

+G2(�mn; �m) + G2(�m; �mn) + 2G2(�mm; �n)

+2G2(�n; �mm) + 2G3(�m; �m; �n)

+2G3(�m; �n; �m) + 2G3(�n; �m; �m)]

+ cc + NST: (102)

Because the associated homogeneous problem ad-

mits non-trivial solutions, the third-order problem is

solvable only if the right-hand sides of (101) and (102)

are orthogonal to every solution of the adjoint homo-

geneous problem. The solvability conditions are for-

mally the same as (34) and (35), obtained with the

discretization approach, except for the fact that the

coe�cients are now expressed as

Khh = 〈�hG2(�h; 	hh)〉+ 〈�hG2(	hh; �h)〉

+2〈�hG2(�h; �hh)〉+ 2〈�hG2(�hh; �h)〉

+3〈�hG3(�h; �h; �h)〉; h= m; n; (103)

Kmn = 〈�mG2(�n; 	mn)〉+ 〈�mG2(	mn; �n)〉

+〈�mG2(�n; �mn)〉+ 〈�mG2(�mn; �n)〉

+2〈�mG2(�m; �nn)〉+ 2〈�mG2(�nn; �m)〉

+2〈�mG3(�n; �n; �m)〉+ 2〈�mG3(�n; �m; �n)〉

+2〈�mG3(�m; �n; �n)〉: (104)

These coe�cients can be shown to be the same as

those obtained with the discretization approach [14].

The displacement �eld can be expressed as in (49)

with all the 	’s and the �’s substituting the  ’s and

the �’s, respectively. Therefore, having established the

equivalence of the functions 	’s and �’s with  ’s and

�’s, respectively; having established the equivalence

of the modulation equations obtained with both ap-

proaches, we conclude that the approximation of the

resonant non-linear normal modes obtained with the

direct approach is the same as that obtained with the

full-basis discretization approach. This result is gen-

eral and holds also for a three-to-one and a one-to-one

internal resonance.

4.2. Three-to-one internal resonances

Because resonant terms do not arise at second order,

the solvability conditions for the second-order prob-

lem, (75) and (76), require thatD1Am=0 andD1An=0.

Therefore, as expected, the amplitudes and phases of

the interacting modes do not depend on the scale T1.

Then, the solutions of (75) and (76) can be expressed

as

u2 = A2
me

2i!mT0	mm(x) + Am
�Am�mm(x)

+A2
ne

2i!nT0	nn(x) + An
�An�nn(x)

+AnAme
i(!n+!m)T0	mn(x)

+An
�Ame

i(!n−!m)T0�mn(x) + cc; (105)

v2 = A2
me

2i!mT0�mm(x) + Am
�Am�mm(x)

+A2
ne

2i!nT0�nn(x) + An
�An�nn(x)

+AnAme
i(!n+!m)T0�mn(x)

+An
�Ame

i(!n−!m)T0�mn(x) + cc: (106)

The second-order shape functions 	nn; 	mn; �mm,

and �nn are solutions of the boundary-value prob-

lems (91)–(93). On the other hand, 	mm and �mn are

now obtained as solutions of the following modi�ed

boundary-value problems:

L	mm − 4!2
m	mm = G2(�m; �m);

L�mn − (!n − !m)
2�mn

=G2(�m; �n) + G2(�n; �m); (107)
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with 	mm and �mn satisfying the boundary conditions

(2).

Substituting (79), (80), (105), and (106) into

(77) and (78), resonant terms arise depending on

the type of internal resonance. Imposing solvability

conditions, we obtain the modulation equations with

the same structure as (56) and (57). The pertinent

resonance-independent coe�cients have the expres-

sions given by (103) and (104) and must be evaluated

using the newly de�ned functions. On the other hand,

the interaction coe�cients �m and �n are given by

�m = 〈�mG2(�n; 	mm)〉+ 〈�mG2(	mm; �n)〉

+〈�mG2(�m; �mn)〉+ 〈�mG2(�mn; �m)〉

+〈�mG3(�n; �m; �m)〉+ 〈�mG3(�m; �n; �m)〉

+〈�mG3(�m; �m; �n)〉; (108)

�n = 〈�nG2(�m; 	mm)〉+ 〈�nG2(	mm; �m)〉

+〈�nG3(�m; �m; �m)〉: (109)

4.3. One-to-one internal resonances

The analysis performed for the three-to-one in-

ternal resonance holds for the one-to-one internal

resonance up to second order. The solvability con-

ditions at third-order yield the modulation equa-

tions with the same structure as (65) and (66).

The resonance-independent coe�cients have the ex-

pressions given by (103) and (104) whereas the

resonance-dependent interaction coe�cients are now

expressed as

K1 = 〈�nG2(�m; 	nn)〉+ 〈�nG2(	nn; �m)〉

+〈�nG2(�n; �mn)〉+ 〈�nG2(�mn; �n)〉

+〈�nG3(�n; �n; �m)〉+ 〈�nG3(�n; �m; �n)〉

+〈�nG3(�m; �n; �n)〉; (110)

K2 = 〈�nG2(�m; 	mm)〉+ 〈�nG2(	mm; �m)〉

+2〈�nG2(�m; �mm)〉+ 2〈�nG2(�mm; �m)〉

+3〈�nG3(�m; �m; �m)〉; (111)

2K3 = 〈�nG2(�n; 	mm)〉+ 〈�nG2(	mm; �n)〉

+〈�nG2(�m; �mn)〉+ 〈�nG2(�mn; �m)〉

+〈�nG3(�m; �m; �n)〉+ 〈�nG3(�m; �n; �m)〉

+〈�nG3(�n; �m; �m)〉: (112)

5. Coupled=uncoupled non-linear normal modes.

Non-linear orthogonality

In the next sections, we discuss conditions for the

existence of coupled=uncoupled non-linear normal

modes and the associated stability for each internal

resonance condition. Moreover, we discuss neces-

sary and su�cient conditions for the occurrence of

non-linear orthogonality between the modes. To this

end, we use the modulation equations governing the

amplitudes and phases of the interacting modes. There

are two forms of non-linear orthogonality: a local

form and a global form. In the local case, there are

regions in the frequency-detuning-amplitude space

where coupled non-linear normal modes (multimodal

periodic motions with a constant relative phase) ei-

ther do not exist or they are unstable. Hence, there

cannot occur periodic exchanges of energy between

the modes. Of course, this circumstance does not

necessarily imply absence of other forms of inter-

action between the modes such as quasiperiodic or

non-periodic interactions. In the global form, the or-

thogonality is independent of the detuning, the ampli-

tudes, and the relative phases. We show that the global

conditions are an extension of the linear orthogonal-

ity concept applicable to the modes of self-adjoint

systems when they enter their weak non-linear

regime.

In addition, we express the displacement �eld of the

coupled or uncoupled non-linear normal modes by in-

corporating the solutions of the modulation equations

for each resonance condition.

5.1. Two-to-one internal resonances

We express Aj in the polar form Aj = (1=2)aj exp

(i�j), separate real and imaginary parts in the
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modulation equations (39) and (40), and obtain their

real-valued form as

ȧm =
S

4!m

aman sin 
; (113)

am�̇m =− S

4!m

aman cos 
−
Kmm

8!m

a3m

− Kmn

8!m

ama
2
n; (114)

ȧn =− S

8!n

a2m sin 
; (115)

an�̇n =− S

8!n

a2m cos 
− Knn

8!n

a3n −
Kmn

8!n

ana
2
m; (116)

where the relative phase between the interacting

modes is given by 
= �t − 2�m + �n.

There are two possible sets of solutions: (i) cou-

pled resonant modes (am �=0 and an �=0) and (ii) the

high-frequency uncoupled mode (am =0 and an �=0).

In the case of coupled resonant modes, because

am �=0 and an �=0, we can solve for �̇m and �̇n and

substitute the result into the equation governing the

relative phase, thereby obtaining


̇= � +
1

16!m

[

S cos 


(

8− a2m
a2n

)

an

+(4Kmn − Knn)a
2
n + (4Kmm − Kmn)a

2
m

]

: (117)

Consequently, (113), (115), and (117) govern the

slow amplitude- and phase-modulations of the coupled

non-linear normal modes. The �xed points of these

equations (i.e., ȧm= ȧn= 
̇=0) correspond to periodic

motions of the original system. These solutions are

given by


= n�; (4Kmm − Kmn)a
2
m + (4Kmn − Knn)a

2
n

+S cos 


(

8− a2m
a2n

)

an + (16!m)� = 0: (118)

We note that, when the approximation of the

two-to-one internally resonant non-linear normal

modes is truncated to second order, (113) and (115)

are the same as in the �rst-order approximation and

yield the same relative phase 
 = n�. Consequently,

the relative phase is not a�ected by the order of the

approximation. On the contrary, (117) is a�ected by

higher-order terms. At the same time, we note that

these higher-order terms are not associated with the ef-

fects of the two-to-one internal resonance. Therefore,

higher-order terms do not in
uence the activation of

the resonance but only the detuning-amplitude rela-

tionship and the stability bounds of the ensuing solu-

tions. Hence, to analyze conditions for the resonance

activation or the dual problem of orthogonality, we

consider the phase equation neglecting higher-order

terms; that is,


̇= � +
S cos 


16!m

(

8− a2m
a2n

)

an (119)

and the associated detuning-amplitude equation

S cos 


(

am

an

)2

−8

[

S cos 
+ 2!m

(

�

an

)]

= 0: (120)

Eq. (120), when S �=0, possesses the following real

solutions:

(a): c =±2
√
2

[

1 +
�̂

�̂s

]1=2

; 
= 2n�; (121)

(b): c =±2
√
2

[

1− �̂

�̂s

]1=2

; 
= (2n+ 1)�; (122)

where c = am=an; �̂ = �=an; �̂s = S=(2!m), and n is

an arbitrary integer number. The coupled mode (a)

exists for �̂? ∓|�̂s| if S ? 0. On the other hand, the

coupled mode (b) exists for �̂7 ±|�̂s| if S ? 0.

We compute the eigenvalues of the Jacobian matrix

of the right-hand sides of (113), (115), and (119). One

of the eigenvalues is zero (the system is undamped)

and the other two eigenvalues are

�=±i
|�̂s|
8

am[c
2 + 16]1=2: (123)

Therefore, the coupled non-linear normal modes are

marginally stable (centers) [24] for any value of the

internal detuning.

The displacement �eld, to second order, on

account of the solutions for �m and �n, can be
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expressed as

u(x; t)

=am cos(!mN t + �m0)�m(x)

+ an cos[2(!mN t + �m0) + 
]�n(x)

+ 1
2
{a2m[cos[2(!mN t + �m0)]	mm(x) + �mm(x)]

+ a2n[cos[4(!mN t + �m0) + 2
]	nn(x) + �nn(x)]

+ anam[cos[3(!mN t + �m0) + 
]	mn(x)

+ cos(!mN t + �m0)�mn(x)]}; (124)

where

!mN =!m −
[

S

4!m

cos 
an

]

−Kmm

8!m

a2m − Kmn

8!m

a2n (125)

is the non-linear frequency expansion of themth mode,

am=an is given (when considering the �rst-order so-

lution) by (121) when 
 = 2n� or by (122) when


=(2n+1)� and �m0 is a constant. Clearly, if the ex-

pansion is truncated to �rst order, we capture neither

the second-order frequency corrections nor the space–

time corrections to the �rst-order displacement �eld.

Furthermore, inspecting the displacement �eld (124)

and the non-linear frequency (125) truncated to �rst

order, and the structure of the solutions, (121) and

(122), we conclude that the branches of the two so-

lutions described by (121) and (122) which are anti-

symmetric with respect to the origin in the c–�̂ plane

(i.e., putting c → −c and 
 → 
 + �) correspond to

the same coupled mode.

In the case of the uncoupled high-frequency mode

(am = 0 and an �=0), putting am = 0 in (116), we

solve for �n and obtain �n=−Knn=(8!n)a
2
nt+�n0. We

compute the eigenvalues of the uncoupled mode us-

ing the low-order expansion. To this end, we express

the complex-valued amplitudes Am and An in di�erent

coordinates [10]; that is, Am=(1=2)(pm− iqm) exp(is)

and An = (1=2)an exp(i�n). We substitute these trans-

formations into (39), determine s such that the re-

sulting equations are autonomous, linearize them, and

substitute for �̇n. The eigenvalues of the resulting

equations are

�=±i
an

2
[�̂2 − �̂2

s ]
1=2: (126)

(i)

(ii)

0

(a)

|ˆ| sσ|ˆ| sσ− σ /anˆ

modenth

modenth

(b)

(a)

(b)

(a)

Fig. 1. Regions of existence and stability of the non-linear normal

modes of type (a) and (b) due to a 2:1 internal resonance when

(i) S ¡ 0 and (ii) S ¿ 0. Dashed lines indicate the unstable region

of the uncoupled mode.

Therefore, the uncoupled mode is marginally stable

(center) when |�̂|¿ |�̂s|; it is unstable (saddle) when
|�̂|¡ |�̂s|; and it is degenerate (center-saddle) when

|�̂|= |�̂s|.
The approximate displacement �eld of the uncou-

pled high-frequency mode is readily expressed as

u(x; t) = an cos(!nN t + �n0)�n(x)

+ 1
2
a2n[cos 2(!nN t + �n0)	nn(x)

+�nn(x)]; (127)

where

!nN = !n −
Knn

8!n

a2n (128)

is the expansion of the non-linear frequency of the nth

mode.

In Fig. 1, we show the ranges of existence and sta-

bility of the normal modes based on the truncated ap-

proximation. Therefore, the system possesses either

three modes (two coupled stable modes and one unsta-

ble uncoupled mode when −|�̂s|¡�̂¡ |�̂s|) or two

modes (one coupled stable mode and one stable un-

coupled mode, outside of the previous range). Hence,

local orthogonality between the modes never occurs

for a two-to-one internal resonance.

Thus far, we have discussed the case S �=0. Next,

we concentrate on the occurrence of the global

non-linear orthogonality condition for the modes.

The non-linear interaction coe�cient governing the

two-to-one interaction is S = 2�nmm. Therefore, it is

easy to prove the following.
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Proposition Ia. A necessary and su�cient condition

for orthogonality of the non-linear normal modes due

to a two-to-one internal resonance is S = 0.

To show the su�cient condition, we note that when

S = 0, the potential energy V (�) resulting from the

postulated interaction, given by (44), is identically

zero; hence, the interaction is not activated. To show

the necessary condition, we note that if the modes

are orthogonal=uncoupled, no potential energy can be

stored into the system as a result of an inactive inter-

action. Therefore, setting V (�) to zero yields S =0. In

conclusion, if the modes are orthogonal, necessarily

S = 0.

Amechanical interpretation of this global non-linear

orthogonality condition can be sought by consid-

ering the mechanical meaning of the coe�cient

�nmm=〈�nG2(�m; �m)〉=S=2. The latter can be inter-

preted as the virtual work performed by the quadratic

elastic forces associated with the low-frequency mode

in the displacement of the high-frequency mode. On

the other hand, the linear orthogonality condition

(〈�mL�n〉 = 0) implies that the elastic forces associ-

ated with one mode do not perform virtual work in the

displacement associated with the other mode. Hence,

Proposition Ib. A necessary and su�cient condition

for orthogonality of the non-linear normal modes due

to a two-to-one internal resonance is that the virtual

work performed by the quadratic elastic forces asso-

ciated with the low-frequency mode in the displace-

ment of the high-frequency mode be zero.

5.2. Three-to-one internal resonances

In this section, we follow the same line of analysis

as that of the two-to-one internal resonance. Express-

ing Aj in polar form, and separating real and imagi-

nary parts in (56) and (57), we obtain

ȧm =
�

8!m

ana
2
m sin 
; (129)

am�̇m =−Kmm

8!m

a3m − Kmn

8!m

ama
2
n

− �

8!m

ana
2
m cos 
; (130)

ȧn =−�

3

1

8!n

a3m sin 
; (131)

an�̇n =− Knn

8!n

a3n −
Kmn

8!n

ana
2
m − �

24!n

a3m cos 
;

(132)

where the relative phase between the modes is given

by 
= �t − 3�m + �n.

There are two possibilities: (i) am = 0 and an �=0

and (ii) am �=0 and an �=0. The �rst case corresponds

to an uncoupled non-linear normal mode whose dis-

placement is in the form of (127). To determine the

stability of this mode, we substitute the polar form for

An and the Cartesian form for Am in (56), determine

s such that the resulting equations are autonomous,

separate the outcome into real and imaginary parts,

linearize the obtained equations inpm and qm, and sub-

stitute �̇n =−Knn=(8!n)a
2
n in it. The eigenvalues are

�1;2 =±1

3
ia2n

(

�

a2n
+

9Kmn − Knn

24!m

)

:

Consequently, the uncoupled mode is always

marginally stable except when �̂= �=a2n =−(9Kmn −
Knn)=(24!m). At this level of detuning-to-squared-

amplitude ratio, the two eigenvalues coalesce to zero

and the uncoupled mode becomes degenerate.

On the other hand, for the coupled modes am �=0

and an �=0, we can solve for �̇m and �̇n and substitute

the result into 
̇= � − 3�̇m + �̇n thereby yielding


̇= � +
1

8!m

(

3Kmm − Kmn

3

)

a2m

+
1

8!m

(

3Kmn −
Knn

3

)

a2n

+
�

8!m

cos 


(

3
am

an

− 1

9

a3m
a3n

)

a2n: (133)

Therefore, (129), (131), and (133) govern the

amplitude- and phase-modulations of the coupled

non-linear normal modes. Letting c = am=an and as-

suming � �=0, the �xed points of these equations are

given by

�3c
3 + �2c

2 + �1c + �0 = 0;


= n�; n= 0; 1; 2; : : : (134)

where

�3 = � cos 
; �2 = 3(Kmn − 9Kmm); �1 =−27�3;

�0 = 3(Knn − 9Kmn)− 72!m�̂: (135)
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(i)

(ii)

modenth

modenth

1 coupled mode 3 coupled modes

1 coupled mode

1σ̂ 2σ̂

σ̂/a
2
n

Fig. 2. Regions of existence of the non-linear normal modes due

to a 3:1 internal resonance when (i) �¿ 0 and (ii) �¡ 0.

Because (134) is a cubic equation with real coe�-

cients, it admits one or three real roots. Changing the

phase by � (i.e., 
 → 
+�) the coe�cients of the odd

powers of c change sign; hence, the solutions experi-

ence a sign change (this property holds for a polyno-

mial equation of arbitrary order). However, the overall

solution—coupled mode—is invariant under the trans-

formation 
 → 
+ � and c → −c. Therefore, we can

consider only the solutions associated with the phase


= 2n�.

Consequently, the system possesses either two

(one uncoupled and one coupled) or four (one un-

coupled and three coupled) non-linear normal modes

(Fig. 2). Clearly, local orthogonality never occurs

also for three-to-one internal resonance.

The multivalued-range (three coupled non-linear

normal modes) is �̂1 ¡�̂¡ �̂2 when �¿ 0, where

�̂1;2 = (g∓ 2
√
�)=(72�2!m);

g=−270�2Kmm − 1458K3
mm + 27�2Kmn

+486K2
mmKmn − 54KmmK

2
mn

+2K3
mn + 3�2Knn;

�= (9�2 + 81K2
mm − 18KmmKmn + K2

mn)
3:

On the other hand, when �¡ 0, there is only one

coupled non-linear normal mode. This holds for 
=n�

with arbitrary integer n.

The stability of these modes can be determined

by investigating the stability of the corresponding

�xed points of (129), (131), and (133). One of the

eigenvalues is zero and the other two are given by

�1;2 =±72
aman

!m

√

��;

where

�� =�2
[

−c4 − 54c2 +
cos 


�

× (432Kmm − 54Kmn + 6Knn)c + 243

]

:

Evidently, the modes are marginally stable (centers)

when �� ¡ 0; are unstable (saddles) when �� ¿ 0;

and are degenerate when �� = 0 as they undergo a

saddle-center bifurcation as documented in [10]. We

note that also �� is invariant under the transformation

c → −c and 
 → 
+ �.

The displacement �eld, to second order, incorporat-

ing the solutions for �m and �n, can be expressed as

u(x; t)

=am cos(!mN t + �m0)�m(x)

+ an cos[3(!mN t + �m0) + 
]�n(x)

+ 1
2
{a2m[cos 2(!mN t + �m0)	mm(x) + �mm(x)]

+ a2n[cos[6(!mN t + �m0)+2
]	nn(x)+�nn(x)]

+ anam[cos[4(!mN t + �m0) + 
]	mn(x)

+ cos[2(!mN t + �m0) + 
]�mn(x)]}; (136)

where

!mN =!m −
[

�

8!m

cos 
aman

]

−Kmm

8!m

a2m − Kmn

8!m

a2n (137)

is the non-linear frequency expansion of themth mode.

Next, we discuss the condition for the global or-

thogonality of the normal modes.

Proposition IIa. A necessary and su�cient condition

for orthogonality of the non-linear normal modes due

to a three-to-one internal resonance is �= 0.

Using the same line of proof employed for the

two-to-one internal resonance, accounting for the ex-

pression (61) of V (�) associated with this interaction,

it can be easily ascertained that the proposition holds

true.
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Also for this interaction, an interesting mechani-

cal interpretation of the obtained non-linear orthog-

onality condition can be pursued. In fact, the terms

G2(�k ; 	kk) and G2(	kk ; �k) are the third-order ef-

fects of the quadratic elastic forces associated with

twice the frequency of the kth mode. On the other

hand, the term G3(�k ; �k ; �k) represents the cubic

elastic force associated with the kth mode. Therefore,

the non-linear interaction coe�cient �n = �=3 (see

(109)) can be interpreted as the virtual work per-

formed by the total third-order elastic forces associ-

ated with the low-frequency mode—G2(�m; 	mm) +

G2(	mm; �m)+G3(�m; �m; �m)—in the displacement

of the high-frequency mode. Therefore,

Proposition IIb. A necessary and su�cient con-

dition for orthogonality of the non-linear normal

modes due to a three-to-one internal resonance is that

the virtual work performed by the total third-order

low-frequency elastic forces in the displacement of

the high-frequency mode be zero.

The non-linear interaction coe�cient obtained with

the discretization approach, (60), is a spectral repre-

sentation of the above-mentioned virtual work in the

eigenmode space. In particular, the part of it associ-

ated with the cubic forces is the same. The component

associated with the third-order e�ect of the quadratic

forces captures, in principle, contributions from all of

the modes of the system. To conclude this section,

it is worth noting the signi�cant computational cost

saved when ascertaining the non-linear orthogonality

as illustrated here in contrast with performing the per-

turbation expansion up to third order. To check for

non-linear orthogonality, it is simply required to com-

pute: (i) the boundary-value problem yielding 	mm

and (ii) the integrals in �n.

5.3. One-to-one internal resonances

Separating real and imaginary parts in the modula-

tion equations (65) and (66) yields their real-valued

form as

ȧm =

(

K1

8!m

a3n +
K2

8!m

a2man

+
K3

2!m

ama
2
n cos 


)

sin 
; (138)

am�̇m =−Kmm

8!m

a3m − Kmn

8!m

ama
2
n −

K1

8!m

a3n cos 


− 3K2

8!m

a2man cos 
−
K3

4!m

a2nam cos 2
; (139)

ȧn =−
(

K2

8!n

a3m +
K1

8!n

ama
2
n

+
K3

2!n

a2man cos 


)

sin 
; (140)

an�̇n =− Knn

8!n

a3n −
Kmn

8!n

ana
2
m − K2

8!n

a3m cos 


−3K1

8!n

ama
2
n cos 
−

K3

4!n

a2man cos 2
; (141)

where 
= �t + �n − �m.

When either both K1 �=0 and K2 �=0 or, simulta-

neously, K1 �=0, K2 �=0, and K3 �=0, the system pos-

sesses only coupled modes; that is, am �=0 and an �=0.

In this case, solving for �̇m and �̇n and substituting

into the phase equation yields


̇= � +
1

8!m

(Kmm − Kmn − 2K3 cos 2
)a
2
m

+
1

8!m

(Kmn − Knn + 2K3 cos 2 
)a
2
n

+
cos 


8!m

[

3(K2 − K1)
am

an

+ K1

an

am

− K2

a3m
a3n

]

a2n:

(142)

Inspecting (138) and (140), we conclude that there are

two possible sets of coupled solutions: (a) sin 
=0 or


=n�; n=0; 1; 2; : : : and (b) sin 
 �=0. In case (a), the

�xed points are solutions of the following equation:

a4c
4 + a3c

3 + a2c
2 + a1c + a0 = 0; (143)

where

a4 = K2 cos 
; a3 = (Kmn − Kmm + 2K3);

a2 = 3(K1 − K2) cos 
;

a1 =−(Kmn − Knn + 2K3)− 8!m�̂; a0 =−K1 cos 
;

where �̂ = �=a2n; cos 
 = ±1 and use of the fact that

cos 2
= 1 has been made.

Because (143) is a quartic equation with real coef-

�cients, it possesses either four real solutions, or two
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real and two complex conjugate, or two pairs of com-

plex conjugate solutions corresponding to cos 
=1 and

cos 
=−1. Also in this case, the roots are subject to a

sign change under the transformation 
 → 
 + � and

they correspond to the same coupled modes. In this

case, the coe�cients of the even powers of c change

sign when the relative phase is shifted by �. Hence,

there may be either four or two coupled non-linear

normal modes corresponding to sin 
= 0 (
= n�).

In case (b) (sin 
 �=0), the coupled modes are solu-

tions of

b2c
2 − b1 + 8!m�̂ = 0; (144)

where

b2 =
(K1K2 − K2

2 )

2K3

+ Kmm − Kmn + 2K3;

b1 =
(K1K2 − K2

1 )

2K3

+ Knn − Kmn + 2K3:

The relative phase is given by


= cos−1

[

−K2c
2 + K1

4K3c

]

+ 2n�: (145)

The quadratic equation (144) admits two real solu-

tions:

c =±
(

b1 − 8!m�̂

b2

)1=2

(146)

provided that b2 �=0 and the argument of the square

root is positive. Therefore, considering the coupled

normal modes corresponding to cases (a) and (b), we

may have either six, four or two coupled non-linear

normal modes. Discussion of the stability of the cou-

pled modes in closed form is not a trivial task for this

resonance condition and is not pursued here.

Instead, we analyze a simple case which often oc-

curs in symmetric structural systems with a symmetric

initial non-linear static con�guration. As it is shown

in Part II, for these systems, one-to-one internal res-

onances often occur due to crossovers between sym-

metric and antisymmetric modes. The result is that K1

and K2 are identically zero (in this case, the system

would possess uncoupled modes as well, herein not

considered); however, K3 �=0. Therefore, the coupled

modes of cases (a) and (b) are given, respectively,

(i)

(ii)

(a)

(b)

(b)

(a)

(a)

(b)

(a)

(b)

1Q 2Q σ̂

(iii)

(iv)

Fig. 3. Regions of existence of the non-linear normal modes of type

(a) and (b) due to a 1:1 internal resonance when K1=K2=0 and

(i) P1; P2 ¿ 0, (ii) P2 ¿ 0 and P1 ¡ 0, (iii) P2 ¡ 0 and P1 ¿ 0,

and (iv) P1; P2 ¡ 0.

by

(a): c =±
(

8!m�̂ + Kmn − Knn + 2K3

Kmn − Kmm + 2K3

)1=2

;


= n�; (147)

(b): c =±
(

8!m�̂ + Kmn − Knn − 2K3

Kmn − Kmm − 2K3

)1=2

;


= (2n+ 1)
�

2
: (148)

In case (a), there are two real solutions when �̂? Q1

if P2 ? 0; in case (b), there are two real solutions

when �̂? Q2 if P1 ? 0, where Q1;2 = (Knn −Kmn ∓
2K3)=(8!m) and P1;2 = (Kmn − Kmm ∓ 2K3). These

ranges of existence of the normal modes are illustrated

in Fig. 3.

For sake of discussion, let us assume that P1 ¿ 0

and P2 ¡ 0; then, the system possesses the coupled

mode (a) when �̂¡Q1 and the coupled mode (b)

when �̂¿Q2 (Fig. 3). Therefore, whenQ1 ¡�̂¡Q2,

there are no solutions; hence, there are no resonant

coupled modes. This is a region of local uncoupling

in the detuning-amplitude plane. In this region, the

modes cannot interact in a periodic fashion. Similar

regions occur in cases (i) and (iv) but not in case (ii)

in Fig. 3.
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Coming back to the general case, the displacement

�eld of the resonant normal modes can be expressed,

to second order, as

u(x; t) = am cos(!mN t + �m0)�m(x)

+an cos[(!mN t + �m0) + 
]�n(x)

+ 1
2
{a2m[cos 2(!mN t+�m0)	mm(x)+�mm(x)]

+a2n[cos 2[(!mN t + �m0)+
]	nn(x)+�nn(x)]

+anam[cos[2(!mN t + �m0) + 
]	mn(x)

+cos 
�mn(x)]}; (149)

where the non-linear frequency expansion of the mth

mode is given by

!mN =!m−
[

K1

8!m

a3n
am

+3
K2

8!m

aman +
K3

2!m

a2n sin 


]

×cos 
− Kmm

8!m

a2m − Kmn

8!m

a2n: (150)

Next, the condition for the global orthogonality of

the normal modes in the presence of a one-to-one in-

ternal resonance is discussed.

Proposition III. Necessary and su�cient conditions

for orthogonality of the non-linear normal modes due

to a one-to-one internal resonance are K1=0; K2=0;

and K3 = 0.

The arguments leading to this proposition are

the same as those provided for two-to-one and

three-to-one interactions. These non-linear orthogo-

nality conditions do not lend themselves to straight-

forward mechanical interpretations as for the cases of

two-to-one and three-to-one internal resonances. Here,

they represent some more complex forms of virtual

works (mixed virtual works). However, we empha-

size the relatively low computational cost required

for ascertaining the non-linear orthogonality. To this

end, it is needed to compute (i) four boundary-value

problems yielding 	mm; 	nn; �mm, and �mn, respec-

tively, and (ii) the integrals expressing K1; K2, and

K3 (see (110)–(112)).

6. Conclusions

Coupled=uncoupled resonant non-linear nor-

mal modes have been constructed in the cases of

two-to-one, three-to-one, and one-to-one internal res-

onances. The method of multiple scales has been

applied to the full-basis Galerkin-reduced model or

directly to the equations of motion and boundary

conditions of a general class of one-dimensional con-

tinuous systems. These systems are non-linear with

weak quadratic and cubic non-linearities. The objec-

tive of this work is twofold: (i) to study the existence

and stability of coupled=uncoupled non-linear normal

modes using a general and systematic approach; (ii)

to determine closed-form conditions for the non-linear

global and local orthogonality of the modes.

Regarding the �rst issue, we determined the num-

ber of coupled=uncoupled non-linear normal modes

and the associated stability in the detuning-amplitude

space. In the case of a two-to-one internal resonance,

it was also established that a higher-order approxi-

mation (i) does not a�ect the activation of the in-

ternal resonance; (ii) does not in
uence the relative

phase of the interacting modes; and (iii) does a�ect

the detuning-amplitude relationship of the modes and

the associated stability bounds.

The normal modes obtained with the full-basis

discretization approach are the same as those ob-

tained with direct application of the method of mul-

tiple scales to the equations of motion and boundary

conditions. Exploiting the equivalence of the re-

sults obtained with the two analytical treatments is

important because the direct approach only yields

closed-form expressions of the interaction coe�-

cients in actual computations. In turn, the full-basis

approach yields interesting modal representations of

the coupled=uncoupled normal modes. These spectral

representations, besides shedding light onto the struc-

ture of these non-linear modes, may be useful for

modal convergence investigations and reduced-order

models selection.

Necessary and su�cient conditions for non-linear

orthogonality of the modes, in a local and global sense,

have been determined and discussed. In the cases of

two-to-one and three-to-one interactions, based on the

results of the direct approach, these conditions can

be interpreted as vanishing of pertinent virtual works

thereby extending the mechanical concept of linear
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orthogonality to the weakly non-linear vibration

regime of self-adjoint systems. The obtained orthogo-

nality conditions may save signi�cant computational

costs. In fact, to ascertain the occurrence of global

non-linear orthogonality between two modes, it is

needed to: (i) compute some integrals involving the

modes and their derivatives for two-to-one interac-

tions; (ii) solve one di�erential boundary-value prob-

lem (yielding 	mm) and perform some integrations to

evaluate the virtual work de�ned for three-to-one in-

teractions; (iii) solve four di�erential boundary-value

problems (yielding 	mm; 	nn; �mm, and �mn) and

evaluate a number of integrals leading to three inde-

pendent interaction coe�cients for one-to-one internal

resonances.

These relatively simple computations (solutions of

boundary-value problems and straightforward integra-

tions) save the e�ort of constructing approximations

to the sought normal modes using an asymptotic tech-

nique up to the resonant non-linear order. The pre-

sented closed-form conditions allow to conclude a

priori on orthogonality or non-orthogonality of the

modes. While the latter leads to non-linear modal in-

teractions, the former, in its global form, prevents the

internal resonance from being activated.
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