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Resonant proximity effect in the normal metal/insulator/diffusive ferromagnet/insulator/s- wave and d-wave

superconductor �N/I/DF/I/S� junctions is studied for various regimes by solving the Usadel equation with the

generalized boundary conditions. Conductance of the junction and the density of states in the DF layer are

calculated as a function of the insulating barrier heights at the interfaces, the magnitudes of the resistance,

Thouless energy, and the exchange field in DF, and the misorientation angle � of a d-wave superconductor. It

is shown that the resonant proximity effect originating from the exchange field in the DF layer strongly

modifies the tunneling conductance and density of states. We have found that, due to the resonant proximity

effect, for s-wave junctions a sharp zero bias conductance peak �ZBCP� appears for small Thouless energy,

while a broad ZBCP appears for large Thouless energy. The magnitude of this ZBCP can exceed the normal

state conductance in contrast to the case of diffusive normal metal/superconductor junctions. Similar structures

exist in the density of states in the DF layer. For d-wave junctions at �=0, similar structures are predicted in

the conductance and the density of states. With the increase of the angle �, the magnitude of the resonant

ZBCP decreases due to the formation of the midgap Andreev resonant states.
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I. INTRODUCTION

There is a continuously growing interest in the physics of
charge and spin transport in ferromagnet/superconductor
�F/S� junctions. One of the applications of F/S junctions is
determination of the spin polarization of the F layer. Analyz-
ing signatures of Andreev reflection1 in differential conduc-
tance by a modified Blonder, Tinkham, and Klapwijk �BTK�
theory,2 one can estimate the spin polarization of the F
layer.3–8 This method was generalized and applied to
ferromagnet/unconventional superconductor junctions.9 Most
of these works are applicable to ballistic ferromagnets while
understanding of physics in contacts between diffusive fer-
romagnets �DF� and �both conventional and unconventional�
superconductors �S� is not complete yet. The model should
also properly take into account the proximity effect in the
DF/S system.

In DF/S junctions Cooper pairs penetrating into the DF
layer from the S layer have nonzero momentum due to the
exchange field.10–15 This property results in many interesting
phenomena.16–30 One interesting consequence of the oscilla-
tions of the pair amplitude is spatially damped oscillating
behavior of the density of states �DOS� in a ferromagnet
predicted theoretically.31–34 In a strong ferromagnet the ex-
change field breaks the induced Cooper pairs, while for a
weak exchange field the pair amplitude can be enhanced and
the energy dependent DOS can have a zero-energy peak.32–37

Since DOS is a fundamental quantity, this resonant proximity
effect can influence various transport phenomena. In our re-
cent paper38 the DOS peak was studied in two regimes of
weak and strong proximity effect and the conditions for the
appearance of this DOS anomaly were clarified. However, its
consequence for the junction conductance was not systemati-
cally investigated so far.

It is known that in contacts involving unconventional su-
perconductors the so-called zero-bias conductance peak

�ZBCP� takes place due to the formation of the midgap An-
dreev resonant states �MARS�.39–42 An interplay of the reso-
nant proximity effect with MARS in DF/d-wave supercon-
ductor �DF/D� junctions is an interesting subject which
deserves theoretical study.

The purpose of the present paper is to formulate theoret-
ical model for the proximity effect in the normal metal/
DF/s-wave and d-wave superconductor �N/I/DF/I/S� junc-
tions and to study the influence of the resonant proximity
effect due to the exchange field on the tunneling conductance
and the DOS. A number of physical phenomena may coexist
in these structures such as impurity scattering, oscillating
pair amplitude, phase coherence, and MARS. We will em-
ploy the quasiclassical Usadel equations43 with the
Kupriyanov-Lukichev boundary conditions44 generalized by
Nazarov within the circuit theory.45 The generalized bound-
ary conditions are relevant for the actual junctions when the
barrier transparency is not small. Physical phenomena re-
garding zero-bias conductance are properly described within
this approach, e.g., the crossover from a ZBCP to a zero bias
conductance dip �ZBCD�. The generalized boundary condi-
tions were recently applied to the study of contacts of diffu-
sive normal metals �DN� with conventional46 and unconven-
tional superconductors.47–49 Here we consider the case of
N/I/DF/I/S junctions with a weak ferromagnet having small
exchange fields comparable with the superconducting gap.
SF contacts with weak ferromagnets were realized in recent
experiments with, e.g., CuNi alloys,16 Ni doped Pd,37 or
magnetic semiconductors. Therefore, our results are appli-
cable to these materials and may be observed experimentally.

The normalized conductance of the N/I/DF/I/S junctions
�T�eV�=�S�eV� /�N�eV� will be studied as a function of the

bias voltage V, where �S�N��eV� is the tunneling conductance

in the superconducting �normal� state. We will consider the
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influence of various parameters on �T�eV�, such as the height

of the interface insulating barriers, the resistance Rd, the ex-
change field h, and the Thouless energy ETh in the DF layer.
In the case of d-wave superconductor, important parameter is
the angle between the normal to the interface and the crystal
axis of d-wave superconductor �. Throughout the paper we
confine ourselves to zero temperature and put kB= � =1.

The organization of this paper is as follows. In Sec. II, we
will provide the detailed derivation of the expression for the
normalized tunneling conductance. In Sec. III, the results of
calculations are presented for various types of junctions. In
Sec. IV, the summary of the obtained results is given.

II. FORMULATION

In this section we introduce the model and the formalism.
We consider a junction consisting of normal and supercon-
ducting reservoirs connected by a quasi-one-dimensional dif-
fusive ferromagnet conductor �DF� with a length L much
larger than the mean free path. The interface between the DF
conductor and the S electrode has a resistance Rb while the
DF/N interface has a resistance Rb�. The positions of the
DF/N interface and the DF/S interface are denoted as x=0
and x=L, respectively. We model infinitely narrow insulating
barriers by the delta function U�x�=H��x−L�+H���x�. The

resulting transparency of the junctions Tm and Tm� are given
by Tm=4cos2 � / �4cos2 �+Z2� and Tm� =4cos2 � / �4cos2 �

+Z�
2�, where Z=2H /vF and Z�=2H� /vF are dimensionless

constants and � is the injection angle measured from the
interface normal to the junction and vF is Fermi velocity.

We apply the quasiclassical Keldysh formalism in the fol-
lowing calculation of the tunneling conductance. The 4�4

Green’s functions in N, DF, and S are denoted by Ǧ0�x�,
Ǧ1�x�, and Ǧ2�x�, respectively, where the Keldysh compo-

nent K̂0,1,2�x� is given by K̂i�x�= R̂i�x� f̂ i�x�− f̂ i�x�Âi�x� with

retarded component R̂i�x�, advanced component Âi�x�
=−R̂i

*�x� using distribution function f̂ i�x� �i=0,1 ,2�. In the

above, R̂0�x� is expressed by R̂0�x�= �̂3 and f̂0�x�= f l0+ �̂3f t0.

R̂2�x� is expressed by R̂2�x�=g�̂3+ f �̂2 with g=	 /�	2−
2 and

f =
 /�
2−	2, where �̂2 and �̂3 are the Pauli matrices, and �
denotes the quasiparticle energy measured from the Fermi

energy and f̂2�x�=tanh�	 /2T� in thermal equilibrium with

temperature T. We put the electrical potential zero in the S

electrode. In this case the spatial dependence of Ǧ1�x� in DF

is determined by the static Usadel equation43

D
�

�x
�Ǧ1�x�

�Ǧ1�x�

�x
� + i�Ȟ,Ǧ1�x�� = 0 �1�

with the diffusion constant D in DF. Here Ȟ is given by

Ȟ = �Ĥ0
0

0 Ĥ0

	 ,

with Ĥ0= �	− �+�h��̂3 for minority �majority� spin where h

denotes the exchange field. Note that we assume a weak
ferromagnet and neglect the difference of Fermi velocity be-

tween majority spin and minority spin. Nazarov’s general-

ized boundary condition for Ǧ1�x� at the DF/S interface is

given in Refs. 46 and 48. The generalized boundary condi-

tion for Ǧ1�x� at the DF/N interface has the form

L

Rd

�Ǧ1

�Ǧ1

�x
	


x=0+

= − Rb�
−1�B��,

B =
2Tm� �Ǧ0�0−�,Ǧ1�0+��

4 + Tm� �Ǧ0�0−�,Ǧ1�0+��+ − 2�
. �2�

The average over the various angles of injected particles at
the interface is defined as

�B�����
�

� =

�
−�/2

�/2

d� cos �B���

�
−�/2

�/2

d�T�
�

����cos �

with B���=B and T�
�

����=T
m

�
�

�
. The resistance of the inter-

face Rb is given by

Rb
�
�

� = R0
�
�

� 2

�
−�/2

�/2

d�T�
�

����cos �

.

Here R0
�
�

�
is Sharvin resistance given by R0

�
�

�−1

=e2kF
2S

c

�
�

�
/ �4�2� in the three-dimensional case.

The electric current per spin direction is expressed using

Ǧ1�x� as

Iel =
− L

8eRd

�
0



d	Tr��3
ˆ �Ǧ1�x�

�Ǧ1�x�

�x
�K� , �3�

where �G1
ˇ �x��G1

ˇ �x� /�x�K denotes the Keldysh component

of �G1
ˇ �x��G1

ˇ �x� /�x�. In the actual calculation it is conve-

nient to use the standard � parametrization where function

R̂1�x� is expressed as R̂1�x�= �̂3 cos ��x�+ �̂2 sin ��x�. The pa-

rameter ��x� is a measure of the proximity effect in the DF.

The distribution function f̂1�x� is given by f̂1�x�= f l�x�
+ �̂3f t�x� where the component f t�x� determines the conduc-

tance of the junction we are now concentrating on. From the
retarded or advanced component of the Usadel equation, the
spatial dependence of ��x� is determined by the following

equation:

D
�

2

�x2��x� + 2i�	 − �+ �h�sin���x�� = 0 �4�

for minority �majority� spin, while for the Keldysh compo-
nent we obtain
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D
�

�x
� � f t�x�

�x
cosh2 �im�x�� = 0. �5�

Here �im�x� denotes the imaginary part of ��x�. At x=0, since

f t0 is the distribution function in the normal electrode, it is
given by

f t0 =
1

2
tanh��	 + eV�/�2T�� − tanh��	 − eV�/�2T��� .

Next we focus on the boundary condition at the DF/N inter-
face. Taking the retarded part of Eq. �2�, we obtain

� L

Rd

���x�

�x
�

x=0+

=
�F��

Rb
�

, F =
2Tm� sin �0

�2 − Tm� � + Tm� cos �0

, �6�

with �0=��0+�.
On the other hand, from the Keldysh part of Eq. �2�, we

obtain

L

Rd

� � f t

�x
	
cosh2 �im�x�
x=0+

= −
�Ib1���f t0 − f t�0+��

Rb�
, �7�

with

Ib1 =
Tm�

2�1� + 2Tm� �2 − Tm� �Realcos �0�


�2 − Tm� � + Tm� cos �0
2
,

�1� = �1 + 
cos �0
2 + 
sin �0
2� .

Finally, we obtain the following final result for the electric
current through the contact:

Iel =
1

2e
�

0



d	
f t0

Rb

�Ib0�
+

Rd

L
�

0

L
dx

cosh2 �im�x�
+

Rb�

�Ib1��

. �8�

Then the differential resistance R per one spin projection at
zero temperature is given by

R =
2Rb

�Ib0�
+

2Rd

L
�

0

L
dx

cosh2 �im�x�
+

2Rb�

�Ib1��
�9�

with

Ib0 =
Tm

2 �1 + 2Tm�2 − Tm��2

2
�2 − Tm� + Tm�gcos �L + fsin �L�
2
,

�1 = �1 + 
cos �L
2 + 
sin �L
2��
g
2 + 
f 
2 + 1�

+ 4Imag�fg*�Imag�cos �L sin �L
*� , �10�

�2 = Realg�cos �L + cos �L
*� + f�sin �L + sin �L

*�� . �11�

This is an extended version of the Volkov-Zaitsev-
Klapwijk formula.50 For a d-wave junction, the function Ib0

is given by the following expression:48

Ib0 =
Tm

2

C0


�2 − Tm��1 + g+g− + f+f−� + Tm�cos �L�g+ + g−� + sin �L�f+ + f−��
2
,

C0 = Tm�1 + 
cos �L
2 + 
sin �L
2��
g+ + g−
2 + 
f+ + f−
2

+ 
1 + f+f− + g+g−
2 + 
f+g− − g+f−
2�

+ 2�2 − Tm�Real�1 + g+
*g−

* + f+
* f−

*�

���cos �L + cos �L
*��g+ + g−�

+ �sin �L + sin �L
*��f+ + f−���

+ 4TmImag�cos �L sin �L
*�Imag��f+ + f−��g+

* + g−
*�� ,

g±=� /��2−
±
2, f±=
± /�
±

2 −�2, and 
±=
cos2�����. In

the above � and �L denote the angle between the normal to
the interface and the crystal axis of d-wave superconductors
and ��L−�, respectively. Then the total tunneling conductance

in the superconducting state �S�eV� is given by �S�eV�
=�↑,↓1/R. The local normalized DOS N�� ,x� in the DF layer

is given by

N��,x� =
1

2
�
↑,↓

Re cos ��x� .

It is important to note that in the present approach, ac-

cording to the circuit theory, Rd /R
b

�
�

�
can be varied indepen-

dently of T
m

�
�

�
, i.e., independently of Z�

�
�. Based on this fact,

we can choose Rd /R
b

�
�

�
and Z�

�
� as independent parameters.

In the following section, we will discuss the normalized
tunneling conductance �T�eV�=�S�eV� /�N�eV�, where

�N�eV� is the tunneling conductance in the normal state

given by �N�eV�=�N=1/ �Rd+Rb+Rb��.

III. RESULTS

In this section, we study the influence of the resonant
proximity effect on tunneling conductance as well as the
DOS in the DF region. The resonant proximity effect was
discussed in Ref. 38 and can be characterized as follows.
When the proximity effect is weak �Rd /Rb�1�, the resonant

condition is given by Rd /Rb�2h /ETh due to the exchange
splitting of DOS in different spin subbands. When the prox-
imity effect is strong �Rd /Rb�1�, the condition is given by

ETh�h and is realized when the length of a ferromagnet is
equal to the coherence length �F=�D /h. The physical mean-
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ing of two conditions is given as follows. In DN/S junctions
there is a minigap Eg, where Eg�EThRd /Rb for weak prox-
imity effect or Eg�ETh for strong proximity effect.51 In
DF/S junctions this minigap is shifted by h, then the prox-
imity effect at zero energy is strongly enhanced when h

�Eg is satisfied.
We choose Rd /Rb=1 and Rd /Rb=5 as typical values rep-

resenting the weak and strong proximity regime, respec-
tively. We fix Z�=3 because this parameter does not change
the results qualitatively and consider the case of high barrier
at the N/DF interface, Rd /Rb�=0.1, when the proximity effect
is strong.

A. Junctions with s-wave superconductors

We first choose the weak proximity regime and relatively
small Thouless energy, ETh /
=0.01. In this case the resonant
condition is satisfied for h /ETh=0.5. In Fig. 1 the tunneling
conductance is plotted for Rd /Rb=1, ETh /
=0.01 and vari-
ous h /ETh with �a� Z=3 and �b� Z=0. The ZBCD occurs due
to the proximity effect for h=0. For h /ETh=0.5, the resonant
ZBCP appears and splits into two peaks or dips at eV� ±h

with increasing h /ETh. The value of the resonant ZBCP ex-
ceeds unity. Note that ZBCP due to the conventional prox-
imity effect in DN/S junctions is always less than unity46,50,52

and therefore is qualitatively different from the resonant
ZBCP in the DF/S junctions.

The corresponding normalized DOS of the DF is shown
in Fig. 2. Note that in the DN/S junctions, the proximity
effect is almost independent on Z parameter.46 We have
checked numerically that this also holds for the proximity
effect in DF/S junctions. Figure 2 displays the DOS for Z

=3, Rd /Rb=1, and ETh /
=0.01 with �a� h /ETh=0 and �b�
h /ETh=0.5 corresponding to the resonant condition. For h

=0, a sharp dip appears at zero energy over the whole DF

region. For nonzero energy, the DOS is almost unity and
spatially independent. For h /ETh=0.5 a zero energy peak ap-
pears in the region of DF near the DF/N interface. This peak
is responsible for the large ZBCP shown in Fig. 1. Therefore,
ZBCP in DF/S junctions has a different physical origin com-
pared to the one in DN/S junctions.

Next we choose the strong proximity regime and rela-
tively small Thouless energy, ETh /
=0.01. In the present
case, the resonant ZBCP is expected for h /ETh=1. Figure 3
displays the tunneling conductance for Rd /Rb=5 and
ETh /
=0.01 and various h /ETh with �a� Z=3 and �b� Z=0.
In this case we also find resonant ZBCP and splitting of the
peak as in Fig. 1. The corresponding DOS of Fig. 3�a� is
shown in Fig. 4 for �a� h /ETh=0 and �b� h /ETh=1. For h

=0, a sharp dip appears at zero energy. For finite energy
the DOS is almost unity and spatially independent. For

FIG. 1. �Color online� Normalized tunneling conductance for

s-wave superconductors with Rd /Rb=1 and ETh /
=0.01.

FIG. 2. �Color online� Normalized DOS for s-wave supercon-

ductors with Z=3, Rd /Rb=1, and ETh /
=0.01.
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h /ETh=1 a peak occurs at zero energy in the range of x near
the DF/N interface. We can find similar structures in the
corresponding conductance as shown in Fig. 3. The DOS
around zero energy is strongly suppressed at the DF/S inter-
face �x=L� compared to the one in Fig. 2.

Let us study the junctions with relatively large Thouless
energy. In this case, tunneling conductance is insensitive to
the change of Z. In Fig. 5 we show the tunneling conduc-
tance and corresponding DOS for Z=3, Rd /Rb=1, ETh /

=10, and various h /
. We find the broad peak of the con-
ductance by the resonant proximity effect for h /
=5 in Fig.
5�a�. For h /
=0, the DOS has a gap-like structure as shown
in Fig. 5�b� while for h /
=5 it has a zero-energy peak as
shown in Fig. 5�c�. Similar plots are shown in Fig. 6 for Z

=3, Rd /Rb=5, ETh /
=10, and various h /
. We find the
broad ZBCP by the resonant proximity effect for h /
=10 in
Fig. 6�a�. The DOS for h /
=0 has a gap-like structure as
shown in Fig. 6�b�. For h /
=10 a zero-energy peak appears
as shown in Fig. 6�c�.

Before ending this subsection we will look at the spatial
dependence of the proximity parameter, �. Figure 7 displays
the spatial dependence of Re � and Im � for minority spin at
zero energy. We choose the same parameters as those in Figs.
1�a� and 3�a� for �a�, �b�, and �c�, �d� in Fig. 7, respectively.
For the appearance of the DOS peak, large value of Im� is
needed because the normalized DOS is given by Re cos���
=cos�Re����cosh�Im����. When the resonant conditions are

satisfied, Im � has an actually large value as shown in Figs.
7�b� and 7�d�. Otherwise we can see the damped oscillating
behavior of the proximity parameter. In contrast to Im �,
Re � becomes suppressed with increasing h /
 independently
of the resonant proximity effect �Figs. 7�a� and 7�c��.

B. Junctions with d-wave superconductors

In this subsection, we focus on the d-wave junctions both
for weak and strong proximity regimes. In this case, depend-

ing on the orientation angle �, the proximity effect is drasti-
cally changed: as � increases the proximity effect is
suppressed.47,48 For �=0 we can expect similar results to the
s-wave junctions since the proximity effect exists while the
MARS is absent. On the other hand, the tunneling conduc-
tance for large � is almost independent of h. Especially, the
conductance is independent of h for � /�=0.25 due to the
complete absence of the proximity effect. Two different
mechanisms of formation of ZBCP exist in DF/D junctions:
the ZBCP caused by the resonant proximity effect peculiar to
a ferromagnet and the ZBCP caused by the MARS located at
the DF/D interface. When � increases, MARS are formed
and at the same time the proximity effect becomes weak-
ened. Therefore, the MARS provide the dominant contribu-
tion to the ZBCP compared to the resonant proximity effect,
as will be discussed below.

FIG. 3. �Color online� Normalized tunneling conductance for

s-wave superconductors with Rd /Rb=5 and ETh /
=0.01.

FIG. 4. �Color online� Normalized DOS for s-wave supercon-

ductors with Z=3, Rd /Rb=5 and ETh /
=0.01.
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First we choose the weak proximity regime where the
resonant condition is h /ETh=0.5. Figure 8 displays the tun-
neling conductance for Z=3, Rd /Rb=1 and various � with
�a� ETh /
=0.01 and h /ETh=0, �b� ETh /
=0.01 and h /ETh

=0.5, �c� ETh /
=10 and h /
=0, and �d� ETh /
=10 and
h /
=5. For ETh /
=0.01 and h=0 ZBCD appears for � /�
=0 due to the proximity effect as in the case of the s-wave
junctions while ZBCP appears for � /�=0.25 due to the for-

FIG. 5. �Color online� Normal-

ized tunneling conductance and

corresponding DOS for s-wave

superconductors with Z=3,

Rd /Rb=1, and ETh /
=10.

FIG. 6. �Color online� Normalized tunneling

conductance and corresponding DOS for s-wave

superconductors with Z=3, Rd /Rb=5, and

ETh /
=10.
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mation of the MARS �Fig. 8�a��. For ETh /
=0.01 and
h /ETh=0.5, the height of the ZBCP by the resonant proxim-
ity effect exceeds the one by MARS for � /�=0.25 �Fig.
8�b��. Since in the ballistic junctions, the ZBCP for � /�
=0.25 is most strongly enhanced,40–42 this ZBCP by the reso-
nant proximity effect in the DF is a remarkable feature. Such
a feature is also expected for a larger magnitude of ETh. For
ETh /
=10 and h=0, a V-like shape of the conductance ap-
pears for � /�=0 while ZBCP appears for � /�=0.25 �Fig.
8�c��. In this case, by choosing h /
=5, a broad peak by the
resonant proximity effect appears for � /�=0 and its height
exceeds the one for � /�=0.25 �Fig. 8�d��.

We also study the DOS of the DF for the same parameters
as those in Fig. 8�d� with �a� � /�=0 and �b� � /�=0.125 in
Fig. 9. For � /�=0 a zero-energy peak appears as in the case
of s-wave junctions. With increasing � the DOS around zero

energy becomes suppressed due to the reduction of the prox-

imity effect. The extreme case is � /�=0.25, where the DOS

is always unity since the proximity effect is completely ab-

sent.

Next we consider the junctions in the strong proximity

regime. Figure 10 shows the tunneling conductance for

Z=3, Rd /Rb=5 and various � with �a� ETh /
=0.01 and

h /ETh=0, �b� ETh /
=0.01 and h /ETh=1, �c� ETh /
=10 and

h /
=0, and �d� ETh /
=10 and h /
=10. In this case we also

find the ZBCP for �=0 caused by the resonant proximity

effect. This ZBCP becomes suppressed as � increases, as

shown in Figs. 10�b� and 10�d�.
The corresponding DOS of the DF for Fig. 10�d� is shown

in Fig. 11. The line shapes of the local DOS �LDOS� at

x=0 are qualitatively similar to the tunneling conductance.

FIG. 7. �Color online� Spatial

dependence of Re� and Im� for

s-wave superconductors with

Z=3, ETh /
=0.01. Rd /Rb=1 �left

panels� and Rd /Rb=5 �right pan-

els�.

FIG. 8. �Color online� Normal-

ized tunneling conductance for

d-wave superconductors with

Z=3 and Rd /Rb=1.
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FIG. 9. �Color online� Normalized DOS for d-wave supercon-

ductors with Z=3, Rd /Rb=1, ETh /
=10, and h /
=5. �a� � /�=0

and �b� � /�=0.125.

FIG. 10. �Color online� Nor-

malized tunneling conductance

for d-wave superconductors with

Z=3 and Rd /Rb=5.

FIG. 11. �Color online� Normalized DOS for d-wave supercon-

ductors with Z=3, Rd /Rb=5, ETh /
=10, and h /
=10. �a� � /�

=0 and �b� � /�=0.125.
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The DOS at the DF/S interface �x=L� is drastically sup-

pressed as compared to the one in Fig. 9.

IV. CONCLUSIONS

In the present paper, a detailed theoretical study of the
tunneling conductance and the density of states in normal
metal/diffusive ferromagnet/s-wave and d-wave supercon-
ductor junctions is presented. We have clarified that the reso-
nant proximity effect strongly influences the tunneling con-
ductance and the density of states. There are several points
which have been clarified in this paper.

�1� For s-wave junctions, due to the resonant proximity
effect, a sharp ZBCP appears for small ETh while a broad
ZBCP appears for large ETh. We have shown that the mecha-
nism of the ZBCP in the DF/S junctions is essentially differ-
ent from that in the DN/S junctions and is due to the strong
enhancement of DOS at a certain value of the exchange field.
As a result, the magnitude of ZBCP in the DF/S junctions
can exceed its normal state value in contrast to the case of
the DN/S junctions.

�2� For d-wave junctions at �=0, similar to the s-wave
case, the sharp ZBCP is formed when the resonant condition
is satisfied. At finite misorientation angle �, the MARS con-
tribute to the conductance when Rd /Rb�1 and Z�1. With
the increase of � the contribution of the resonant proximity
effect becomes smaller while the MARS dominate the con-

ductance. As a result, for sufficiently large � ZBCP exists
independently of whether the resonant condition is satisfied
or not. In the opposite case of the weak barrier, Rd /Rb�1,
the contribution of MARS is negligible and ZBCP appears
only when the resonant condition is satisfied.

An interesting problem is a calculation of the tunneling
conductance in normal metal/diffusive ferromagnet/p-wave
superconductor junctions because interesting phenomena
were predicted in diffusive normal metal/p-wave supercon-
ductor junctions.49 We will address this problem in a separate
study.
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