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We analyze resonant radiation emitted by dispersive shock waves owing to higher-order dispersive corrections

of the leading term in the defocusing nonlinear Schrödinger equation. We give criteria for calculating the radiated

frequency based on an analytical estimate of the shock velocity and reveal a diversity of scenarios controllable

via the corrections, ranging from the radiation-induced transition of the dispersive shock into a classical-type

shock to the qualitative modification of the underlying gradient catastrophe or the competition between different

breaking mechanisms.

DOI: 10.1103/PhysRevA.89.013807 PACS number(s): 42.65.Sf, 42.65.Re, 47.40.Nm, 52.35.Tc

I. INTRODUCTION

Dispersive shock waves (DSWs) are expanding regions

filled with fast oscillations that stem from the dispersive

regularization of classical shock waves (SWs). Originally

introduced in collisionless plasmas [1] and water waves [2],

it is only recently that they have been the focus of intense

multidisciplinary efforts that have established their universal

role in atom condensates [3,4], light pulse (temporal) [5] and

beam (spatial) [6] propagation, oceanography [7], quantum

liquids [8], electron beams [9], magma flow [10], granular

materials [11], and wave or material disorder [12]. The dy-

namics of DSWs is understood in terms of a weakly dispersive
formulation of integrable models (and their deformations) such

as the Korteweg–De Vries [1,9], the Benjamin–Ono [8,12,13],

or the defocusing nonlinear Schrödinger equation (dNLSE)

[4–6,12,14]. However, since the leading-order dispersion of

such models must be extremely weak for the phenomenon to

take place, one is naturally led to wonder about the effects of

higher-order dispersion (HOD), which must be accounted for

to describe the actual dispersion in many physical situations.

The aim of this work is to show that HOD corrections lead

DSWs to emit resonant radiation (RR) due to a specific phase

matching with linear waves, which can ultimately alter the

shock dynamics itself.

The emission of RR is usually thought to be a prerogative

of solitons [15–25]. The spectacular phenomenon of optical

supercontinuum generation has offered the possibility to high-

light the role of RR for perturbed solitons of the focusing NLSE

(fNLSE) [19–21]. While soliton-driven RR is generally under-

stood also thanks to recent studies of new regimes (tapered [22]

and noble-gas-filled fibers [23], frequency combs [24], slow-

light waveguides [25], and quadratic media [26]) or new

paradigms (negative-frequency RR [27]), the problem of RR

from SWs was overlooked. Here we show that perturbed

DSWs emit RR, owing to the strong spectral broadening that

accompanies wave breaking, which seeds linear waves that

are resonantly amplified thanks to the well-defined velocity of

the shock front. While we expect the mechanism of RR from

perturbed dispersive shocks to be universal and observable

in different physical contexts, we specifically formulate our

approach with reference to temporal pulse propagation ruled

by the dNLSE [28], which has immediate application to

optical fibers pumped in the normal group-velocity-dispersion

regime [5,29–31]. In this regime recent experiments have

pointed out the occurrence of RR phenomena [30], which can

also have direct impact over the broadband spectral feature

related to the type of supercontinuum developing in the normal

dispersion regime [29]. In particular, as recently shown by

some of us [31], the results of Ref. [30] can be correctly

interpreted in terms of RR from pulse wave breaking, further

enhanced by the Raman response of the fiber. However, neither

does the zero-pulse background considered in Refs. [30,31]

give the most favorable condition for the full development of

the dispersive shock, nor are the dynamics of the radiative

process limited to the scenario discussed therein. This calls

for an exhaustive analysis of the radiative phenomenon, which

is the main aim of this paper. In particular, our purpose here is

to investigate, in the framework of a model of general interest

(namely, the dNLSE with HOD corrections), the qualitatively

different radiative processes that can take place depending

on the order and magnitude of HOD terms. We point out,

in particular, at possible cross-over scenarios induced by

increasing the leading-order HOD (with special attention to

the calculation of the relevant shock velocity), the modification

of the breaking process itself, and the role of the competing

instability processes.

The paper is organized as follows: In Sec. II we recall

the origin of the semiclassical generalized dNLSE model and

analyze the phase-matching condition for resonance between

linear waves and a nonlinear pump. In Sec. III, we derive the

generalized dispersionless (hydrodynamic) limit of the starting

model and discuss the notion of shock velocity. Section IV is

devoted to discuss all the possible RR scenario determined by

the leading terms (third-order and fourth-order dispersion) in

the perturbation. The details of the calculations regarding the

dispersionless model and the calculation of the shock leading

edge velocity in the framework of Whitham equations are

reported in Appendixes A and B, respectively.

II. RESONANT RADIATION RULED BY NONLINEAR

SCHRÖDINGER EQUATION IN SEMICLASSICAL REGIME

We consider the dNLSE obeyed in the laboratory frame by

a slowly varying envelope A(Z,T ) with central frequency ω0

and wave number k0 = k(ω0). The dNLSE which arises from

the standard expansion of the wave number k(ω) around ω0,

once expressed in terms of the real-world all-order dispersion

1050-2947/2014/89(1)/013807(8) 013807-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.89.013807


MATTEO CONFORTI, FABIO BARONIO, AND STEFANO TRILLO PHYSICAL REVIEW A 89, 013807 (2014)

operator dT (∂T ) =
∑

n�1 ∂n
ωk(i∂T )n/n! (all the derivatives

being implicitly evaluated at ω0), reads as

i∂ZA + dT (∂T )A + γ |A|2A = 0. (1)

Note that the defocusing feature arises from the assumption

∂2
ωk > 0 (normal dispersion), assuming also γ > 0. In order to

make it clear that we operate in the weakly dispersive regime,

it is convenient to cast Eq. (1) in semiclassical form. To this

end we introduce the retarded time T ′ = T − Z/Vg in the

frame traveling at the natural group velocity Vg = (∂ωk)−1

and scale T ′ to the input pulse width T0 and the distance

Z to the geometric mean Z0 =
√

LnlLd , introducing z =
Z/Z0 and t = T ′/T0. Here Ld = T 2

0 /∂2
ωk is the characteristic

dispersive length associated with second-order dispersion

∂2
ωk, and Lnl = (γP )−1 is the characteristic nonlinear length

associated with the input peak power P and nonlinear

coefficient γ . Defining also the field ψ = A/
√

P [accordingly,

in the numerics, we have max[ψ(z = 0,t)] = 1], the smallness

parameter ε =
√

Lnl/Ld , and the dispersion coefficients βn =
∂n
ωk/[(Lnl)

n−2(∂2
ωk)n]1/2 (note that, by definition, β2 = 1), we

recover the dNLSE in the weakly dispersive form (henceforth

sum over n implicitly assumes n � 2):

iε∂zψ + d(∂t )ψ + |ψ |2ψ = 0,

d(∂t ) =
∑

n

βn

n!
εn(i∂t )

n = −
ε2

2
∂2
t − i

β3ε
3

6
∂3
t (2)

+
β4ε

4

24
∂4
t + · · · .

Note that the normalized dispersive operator d(∂t ) has pro-

gressively smaller terms, weighted by powers of the parameter

ε ≪ 1 and coefficients βn.

We assume an input pump ψ0 = ψ(t,z = 0) with central

frequency ωp = 0 [i.e., in real-world units ωp coincides with

ω0, around which d(∂t ) in Eq. (2) is expanded]. Let us denote

as Vs the “velocity” of the SW near a wave-breaking point

(note that, here, Vs = dt/dz is the reciprocal of the velocity as

usually defined for soliton RR [16]) and denote as d̃(iω) the

Fourier transform of d(∂t ). Linear waves exp[ik(ω)z − iωt]

are resonantly amplified when their wave number in the shock-

moving frame, which reads as k(ω) = 1
ε
[d̃(iω) − Vs(εω)]

equals the pump wave number kp = k(ωp = 0) = 0. Denoting

also as knl the difference between the nonlinear contributions to

the pump and RR wave number [32], respectively, the radiation

is resonantly amplified at frequency detuning ω = ωRR that

solves the explicit equation

∑

n

βn

n!
(εω)n − Vs(εω) = εknl . (3)

We show below that Eq. (3) correctly describes the RR emitted

by a DSW. At variance with solitons of the fNLSE where

Vs(ωp = 0) = 0 [16,20], DSWs possess nonzero velocity Vs ,

which must be carefully evaluated, having great impact on the

determination of ωRR .

III. DISPERSIVE SHOCKS IN DEFOCUSING NONLINEAR

SCHRÖDINGER EQUATION

The process of wave breaking ruled by Eq. (2) can be

described by applying the Madelung transformation ψ =√
ρ exp (iS/ε). At leading order in ε, we obtain a quasilinear

hydrodynamic reduction, with ρ = |ψ |2 and u = −St being

equivalent density and velocity of the flow, respectively, which

can be further cast in the form

∂zρ + ∂t

[

∑

n

βn

(n − 1)!
(ρun−1)

]

= 0, (4)

∂z(ρu) + ∂t

[

∑

n

βn

(n − 1)!
ρun +

1

2
ρ2

]

= 0, (5)

of a conservation law ∂zq + ∂t f(q) = 0 for mass and momen-

tum (see Appendix A), with q = (ρ,ρu). This system can be

also conveniently diagonalized to yield

∂zr
± + V ±∂tr

± = 0 (6)

by introducing the eigenvelocities V ± =
∑

n βnu
n−1/

(n − 1)! ± [ρ
∑

n βnu
n−2/(n − 2)!]1/2 and the Riemann in-

variants r± = u ± 2
√

ρ[
∑

n βnu
n−2/(n − 2)!]−1/2.

Equations (4) and (5), as far as HOD is such that they remain

hyperbolic, admit weak solutions in the form of classical

SWs, i.e., traveling discontinuity from left (ρl,ul) to right

(ρr ,ur ) values, whose velocity Vc can be found from the

so-called Rankine-Hugoniot (RH) condition Vc(ql − qr ) =
[f(ql) − f(qr )] [33]. In the 2 × 2 case, the RH equations fix

both Vc and the admissible value of one of the parameters of

the jump, e.g., ur given ρr ,ρl,ul . For instance, when no HOD is

effective (take β2 = 1), an admissible right-going shock which

satisfies the entropy condition ρl > ρr , can be obtained with

ur = ul − (ρl − ρr )

√

ρr + ρl

2ρlρr

,

(7)

Vc = ul + ρr

√

ρr + ρl

2ρlρr

.

This result can be generalized for HOD, thanks to Eqs. (4)

and (5). For instance, if β3 �= 0, the SW velocity becomes

Vc =
β2(ρlul − ρrur ) + β3

(

ρlu
2
l − ρru

2
r

)/

2

(ρl − ρr )
, (8)

where ur is obtained as the real root of the cubic equation

β3(ul − ur )2(ul + ur ) + 2β2(ul − ur )2 = g(ρl,ρr ), where

g(ρl,ρr ) ≡ (ρl − ρr )2(ρr + ρl)/(ρlρr ) (see Appendix A).

Second-order dispersion, however, is known to regularize

classical SWs by replacing the jump with an expanding fan

filled with oscillations described in terms of a modulated

nonlinear periodic wave. In this case the SW velocity Vc is

replaced by the velocities of the leading Vl and trailing Vt

edges (with Vl < Vc < Vt ), where the periodic wave locally

tends to a soliton and a linear wave, respectively. HOD

induces this structure to radiate, also altering the dynamics

of SW formation. In the following we specifically focus on the

effect of two leading HOD, namely third-order (3-HOD) and

fourth-order (4-HOD) dispersion, showing how RR is shed

013807-2
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with different features depending on the specific dispersive

correction.

IV. RESONANT RADIATION EMITTED

BY DISPERSIVE SHOCKS

A. Third-order dispersion

When 3-HOD is effective we find a crossover from a

perturbative regime (|β3| � 0.5) where the DSW leading

edge turns out to be responsible for the RR, to a regime

where the 3-HOD is strong enough (|β3| ∼ 1) to modify

the shock formation, leading to enhanced RR produced by

a traveling front which is approximated with a classical SW.

To show this and verify that Eq. (3) is able to predict the

RR frequency in both regimes, we consider first a step initial

value that allows us to calculate analytically the velocity.

Without loss of generality, we take β3 < 0. Specifically, we

consider the evolution of an initial jump from the “left”

state ρl,ul = 0 for t < 0 to the “right” state ρr (<ρl),ur =
2(

√
ρr − √

ρl) for t > 0, which is such to maintain constant

r−(z = 0,t) while r+(z = 0,t) has step-like variation. In this

case, the modulated wave train produced upon evolution [see

Figs. 1(a) and 1(c)] in the limit β3 = 0, is described by a

rarefaction wave of the Whitham modulation equations for the

unperturbed dNLSE [4]. Following the approach of Ref. [4]

and exploiting the fact that only one Riemann variable of

such Whitham equations changes, one can calculate the edge

velocities of the fan (see Appendix B). What is relevant for

the RR is the leading-edge velocity, which we find to be

Vl = √
ρl + ur = 2

√
ρr − √

ρl (note that this differs from the

result of Ref. [4] because we choose a different step-like

initial value with ul = 0 and ρr �= 1). Given a gray soli-

ton on an unchirped background A, ψ = A[w tanh(θ ) + iv]

0 1 2 3
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0.5
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0 1 2 3
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e
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S
p
e
c
tr

u
m

 (
d
B

)

−10 0 10
−50

0

50

100

DSW

(d)

ω
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FIG. 1. (Color online) Radiating DSW from dNLSE (2) with

ε = 0.03, input step ρl,ρr = 1,0.5, and 3-HOD β3 = −0.35:

(a) Color-level plot of density ρ(t,z) (the dashed line gives the

DSW leading edge velocity Vl); (b) corresponding spectral evolution;

(c) snapshots at z = 2 of ρ,u of unperturbed case β3 = 0 (in dashed

red is the corresponding classical SW); (d) comparison of output

spectra with (thick solid blue line) and without (dashed red) 3-HOD

(input thin dashed line). Inset shows graphical solution of Eq. (3).

exp(iA2z/ε), θ = w
ε

(t − Avz), w2 = 1 − v2, Vl turns out to

coincide with the soliton velocity Vsol = Av = √
ρmin, with

natural position A = √
ρl , v = (2

√
ρr − √

ρl)/
√

ρl , and the

dip density ρmin = (2
√

ρr − √
ρl)

2. We emphasize, however,

that the equivalence of the leading edge with a gray soliton

holds only locally since the DSW is strictly speaking a

modulated nonlinear wave.

In this regime, if we account for knl = ksol
nl − kRR

nl = − 1
ε
ρl

arising from the soliton ksol
nl = ρl/ε and the cross-induced

contribution kRR
nl = 2ρl/ε to the RR, Eq. (3) explicitly reads

β3

6
(εω)3 +

β2

2
(εω)2 − Vs(εω) + ρl = 0. (9)

Real solutions ω = ωRR of Eq. (9), with Vs = Vl ≡ 2
√

ρr −√
ρl correctly predicts the RR as long as |β3| � 0.5, as shown

by the dNLSE simulation in Fig. 1. The DSW displayed in

Fig. 1(a) clearly exhibits a spectral RR peak besides spectral

shoulders due to the oscillating front, as shown by the spectral

evolution in Fig. 1(b) and the output spectrum (compared

with the unperturbed one) in Fig. 1(d). Perfect agreement is

found between the RR peak obtained in the numerics and the

prediction [dashed vertical line in Figs. 1(b) and 1(d)] from

Eq. (9) with velocity Vs = Vl characteristic of the integrable

limit [β3 = 0, snapshots in Fig. 1(c)]. Indeed, in this regime,

the DSW leading edge is nearly unaffected by 3-HOD, whereas

using the velocity Vc [Eq. (7)] of the equivalent classical SW

[reported for comparison in Fig. 1(c)] would miss the correct

estimate of ωRR . We also point out that knl represents a small

correction, so ωRR can be safely approximated by dropping

the last term in Eq. (9) to yield

εωRR =
3

2β3

(

−β2 ±
√

β2
2 + 8Vsβ3/3

)

,

that can be reduced to the simple formula εωRR = −3β2/

β3 [30] only when β3Vs → 0.

When |β3| grows larger, the aperture of the shock fan

reduces (the difference between leading and trailing edge

velocities decreases), until quite unexpectedly the DSW

resembles a single traveling front, i.e., a classical SW [34]. In

this regime, we find that Eq. (9) still gives the correct frequency

ωRR provided that Vs is taken as the Rankine-Hugoniot

velocity Vc of the equivalent classical SW calculated for

β3 �= 0 [Eq. (8)] [35]. An example of this behavior is illustrated

in Fig. 2 for β3 = −1. The RR becomes clearly visible in

the temporal evolution [Fig. 2(a) and snapshots in Fig. 2(c)]

and is sufficiently strong to generate also −ωRR via four-wave

mixing, as is clear from the spectrum [Figs. 2(b)–2(d)]. Perfect

agreement between the numerics and the value predicted from

Eq. (9), once we set Vs = Vc, is found also in this case.

A physical interpretation of this remarkable transition from

dispersive to classical shock is that the emitted radiation

behaves as a local loss for the shock front.

The behaviors of step initial data are basically recovered

for pulse waveforms that are more manageable in experiments.

Figure 3 shows the transition from the perturbative [Fig. 3(a)]

to the nonperturbative [Fig. 3(b)] regime, for an input gaussian

pulse ψ0 = ν + (1 − ν) exp(−t2) with background-to-peak-

density ratio ν2 = 0.09. As shown in Fig. 3(a), for relatively

small β3, two asymmetric DSWs emerge from wave-breaking
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FIG. 2. (Color online) As in Fig. 1 with larger 3-HOD β3 = −1.

The dashed vertical line in panels (b) and (d) gives ωRR from Eq. (9)

with velocity Vs = Vc [corresponding to dashed line in panel (a)].

Here Vc = 0.69 and ur = −0.543 are the parameters of the classical

SW [shown by dashed red line in panel (c)] from Eq. (8), see also

Fig. 6 in Appendix A. Solid line in panel (a) indicates the velocity

VRR of the RR.

points on the two pulse edges, which occur at different

distances due to broken symmetry in time caused by 3-HOD.

Phase matching is achieved only for the DSW traveling with

Vs > 0. The corresponding ωRR can be obtained from Eq. (9)

provided we set Vs = Vl , with the DSW leading-edge velocity

being (following the discussion of Fig. 1) Vl = √
ρmin + ul ,

where the minimum density and the correction ul due to

the local nonzero chirp are evaluated numerically after wave

breaking as shown in Fig. 3(c). Indeed, these parameters cannot
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FIG. 3. (Color online) Radiating DSW from Gaussian pulses

with small background ν2 = 0.09: (a) β3 = −0.35. (b) β3 = −0.6.

(c) Parameters determining the leading-edge velocity Vs = √
ρmin +

ul =
√

10−4 + 0.76 = 0.77 [dashed line in panel (a)]; snapshot at

z = 3. (d) Output spectra (thick blue line, β3 = −0.35; thin red line,

β3 = −0.6). The dashed lines give εωRR calculated from Eq. (9).

Here ε = 0.03 and blue curves in panels (a) and (b) depict output

snapshots.
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FIG. 4. (Color online) (a), (b) Temporal and spectral evolution of

a Gaussian pulse without background emitting RR, for β3 = −0.35.

(c), (d) Mixed hyperbolic-elliptic type of wave breaking for large

3-HOD β3 = −2, ν2 = 0.01. Panel (d) reports a snapshot of ρ and u

near the gradient catastrophe occurring at z ≈ 0.9. Here ε = 0.03.

be obtained analytically for a generic initial value problem, nor

they are strictly constant upon evolution. Also in this case, a

larger |β3| results in a narrower fan (and larger shock distance),

until eventually a simple front is left which strongly radiates, as

shown in Fig. 3(b). In this regime, a good approximation of the

front velocity is obtained by the approximating classical SW in

Eq. (8). In both the regimes shown in Figs. 3(a) and 3(b), Eq. (9)

provides an accurate estimate of the RR frequency, as shown

by the dashed lines reported in the output spectra in Fig. 3(d).

Notice also that, for symmetry reasons, sign reversal of 3-HOD

(i.e., β3 > 0) simply results in RR with opposite frequency,

generated by the DSW with opposite velocity (Vs < 0,

left DSW).

We also emphasize two important points:

(i) As shown in Figs. 4(a) and 4(b), RR occurs also in the

limit of vanishing background ν = 0, allowing us to conclude

that a bright pulse does not need to be a soliton (as in the

fNLSE, β2 = −1) to radiate. In fact, resonant amplification of

linear waves occurs via SWs also in the opposite regime where

the nonlinearity strongly enforces the effect of leading-order

dispersion; the only key ingredients being a well-defined

velocity of the front and the spectral broadening that seeds

the RR at phase matching. Importantly, experimental evidence

for such a RR scenario was reported very recently in fiber

optics [30], without explaining the underlying mechanism,

which our theory individuates in the shock formation. Indeed,

the physical parameters used in Fig. 1 of Ref. [30], i.e.,

power P = 600 W, pulse duration T0 = 1 ps, nonlinear

coefficient γ = 2.5 W−1 km−1, dispersion ∂2
ωk = 7.5 ps2/km,

∂3
ωk = 0.2 ps3/km, gives normalized parameters ε ≃ 0.07 and

β3 ≃ 0.37, typical of the wave-breaking regime (ε ≪ 1) with

perturbative 3-HOD. Since β3 > 0, the radiating shock turns

out to be the one on the leading edge (t < 0), and its velocity

Vs = −0.75, inserted into Eq. (3), gives a negative [opposite

of Fig. 4(a)] frequency detuning �fRR = ωRRT −1
0 /(2π ) ≃

13 THz, in excellent agreement with the value reported in
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Ref. [30]. A detailed numerical study of this particular case,

including Raman effects is reported in Ref. [31].

(ii) A limitation exists (regardless of ν) on the value of |β3|
to observe RR. Indeed, a large 3-HOD features a qualitatively

different wave-breaking mechanism, as shown in Figs. 4(c)

and 4(d) for β3 = −2. While the nonradiating (left) DSW

simply develops at shorter z without qualitative changes, on

the right (t > 0) the pulse undergoes a different catastrophe,

reminiscent of the fNLSE. Indeed, in this case the eigenve-

locities V ± = β2u + β3u
2/2 ±

√
ρ(β2 + β3u) become locally

complex conjugate where u > 0, implying that Eqs. (4) and (5)

loose the hyperbolic character and are becoming elliptic (as

in the fNLSE). This mixed-type behavior is reminiscent of a

transonic flow (see, e.g., Ref. [36]) and leads to a different

dynamics where RR plays no longer any role (this case will be

studied in more detail elsewhere).

B. Fourth-order dispersion

A completely different scenario occurs when the dispersive

correction is due to 4-HOD. In this case, the shock formation

can compete with a different breaking mechanism [37];

namely, modulational instability (MI) which extends to the

defocusing regime β2 = 1, whenever β4 < 0, as proven

experimentally [38]. Although the MI analysis is known

for this case [38], we report, for the convenience of the

reader, the outcome of such analysis in our dimensionless

units [Eq. (2)]. The continuous wave (cw) solution reads

ψ(z,t) =
√

P0 exp[izP0/ε]. MI arises when periodic pertur-

bations in the form p(z,t) = a(z) exp[iωt] + b(z) exp[−iωt]

grow exponentially like exp[Gz] at the expense of the cw

pump. We find that the gain is G(εω) = |Im[λ]|/ε, where

λ = �o ±
√

�2
e + 2P0�e, (10)

and �e =
∑

n�1 β2n(εω)2n/(2n)! and �o =
∑

n�1 β2n+1

(εω)2n+1/(2n + 1)! are the even and odd parts of dispersion,

respectively. It is clear that only even dispersive terms

determine the stability properties.

Considering 4-HOD β4 < 0 (β2 = 1), we have

max G(εω) = P0/ε for

εωpeak =

√

√

√

√

6
β2 +

√

β2
2 + 2/3|β4|P0

|β4|
.

The gain band is εω ∈ [εωmin,εωmax] (and symmetric for

ω → −ω), where

εωmin =

√

12
β2

|β4|
, εωmax =

√

√

√

√

6
β2 +

√

β2
2 + 4/3|β4|P0

|β4|
.

Moreover, the phase-matching curve in Eq. (3), involving

in this case a fourth-order polynomial, leads for the shock

with Vs > 0 to two possible phase-matching frequencies:

ωRR1 and −ωRR2 (ωRR1,2 > 0), which become four (two

symmetric pairs) since opposite frequencies are phase matched

by the shock with opposite velocity Vs < 0 according to

Eq. (3), as illustrated in Fig. 5(a). Our analysis shows that

the two frequencies ωRR1 and ωRR2 (arising from shock on

opposite edges) lie on the opposite sides of the MI gain curve
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FIG. 5. (Color online) RR ruled by 4-HOD (β3 = 0, β4 = −0.5).

(a) Dispersion curves from Eq. (3) for positive (V +
s , solid blue line)

and negative (V −
s , dashed green line) velocity crossing knl (horizontal

red line) in ±ωRR1,RR2; vertical stripes indicate MI gain bands. (b)

Spectral evolution. (c) Temporal dynamics (blue curve depicts output

snapshot). (d) Output spectrum [central red dashed line is peak MI

gain, blue and green dashed lines correspond to RR frequencies

obtained from panel (a)]. Here ε = 0.05, input Gaussian pulse with

background ν2 = 0.09.

(calculated for continuous waves), which has cutoff frequency

εωc =
√

12/|β4| and is narrow bandwidth. For an input pulse,

MI amplifies frequencies in a larger bandwidth which serve as

a seed for the RR. Indeed, as clear from the dNLSE simulation

in Fig. 5(b), the twin-band RR starts to grow, triggered by MI,

even during the process of pulse steepening [see evolution in

Fig. 5(c)], while becoming prominent as the DSWs start to

develop, traveling with definite velocities (here Vs = ±0.77).

The RR frequencies from Fig. 5(a) fit well those reported in

the numerical output spectrum in Fig. 5(d). The coexistence of

the two wave-breaking phenomena (MI and DSW) is clearly

visible in the output snapshot in Fig. 5(c).

V. CONCLUSIONS

We have demonstrated that dispersive shock waves result-

ing from the nonlinearity overbalancing a weak leading-order

dispersion can emit resonant radiation owing to higher-order

dispersive contributions. We have analyzed such phenomenon

for the defocusing nonlinear Schrödinger equation, giving

criteria for calculating the radiated frequency based on the

estimate of the shock velocity and revealing also a diversity of

possible scenarios depending on the order and magnitude of

the dispersive corrections.
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APPENDIX A

Using the Madelung transformation ψ = √
ρ exp (iS/ε) in

Eq. (2), setting u ≡ −∂tS, we obtain at leading order the
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following system of quasilinear equations:

∂z

(

ρ

u

)

+ A∂t

(

ρ

u

)

, A =
(

a11 a12

1 a11

)

, (A1)

where the matrix elements are

a11 = β2u +
β3

2
u2 +

β4

6
u3 +

β5

24
u4 + · · ·

=
∑

n�2

βn

(n − 1)!
un−1,

a12 = ρ

(

β2 + β3u +
β4

2
u2 +

β5

6
u3 + · · ·

)

= ρ

⎛

⎝

∑

n�2

βn

(n − 2)!
un−2

⎞

⎠ .

The eigenvalues of A give the eigenvelocities

V ± = a11 ±√
a12 of the diagonal form of Eqs. (A1)

∂zr
± + V ±∂tr

± = 0, whereas the Riemann invariants r± can

be easily found by standard techniques. By multiplying the

first and the second of Eq. (A1), respectively, by u and ρ

and summing up, we easily recover the equivalent form of

a 2 × 2 conservation law ∂zq + ∂t f(q) = 0 for q = (ρ,ρu)

[equivalent, in compact form, to Eqs. (4) and (5)]:

∂zρ + ∂t

[

β2ρu +
β3

2
ρu2 +

β4

6
ρu3 + · · ·

]

= 0, (A2)

∂z(ρu) + ∂t

[

β2ρu2 +
β3

2
ρu3 +

β4

6
ρu4 + · · · +

1

2
ρ2

]

= 0.

(A3)

The velocity Vc of a classical shock wave of Eqs. (A2) and

(A3), can be obtained from Rankine-Hugoniot (RH) conditions

Vc[[q]] = [[f(q)]], (A4)

where [[y]] = yl − yr indicates the “jump” of y between left

and right values. For instance, when we account for second-

and third-order dispersion (the procedure can be iterated for

higher-order dispersion), Eq. (A4) become explicitly

Vc (ρl − ρr ) = β2(ρlul − ρrur ) +
β3

2

(

ρlu
2
l − ρru

2
r

)

,

Vc (ρlul − ρrur ) = β2

(

ρlu
2
l − ρru

2
r

)

+
β3

2

(

ρlu
3
l − ρru

3
r

)

+
1

2

(

ρ2
l − ρ2

r

)

.

By eliminating Vc between these two equations, we arrive at

the following equation:

β3(ul − ur )2(ul + ur ) + 2β2(ul − ur )2 = g(ρl,ρr ), (A5)

where g(ρl,ρr ) ≡ (ρl − ρr )2 (1/ρr + 1/ρl), which can be

solved, for example, for ur , once ρl,ρr ,ul are assigned, while

Vc can be obtained by substituting back into one of the two

RH equations, obtaining Eq. (8), which we repeat here for

convenience:

Vc =
β2(ρlul − ρrur ) + β3

(

ρlu
2
l − ρru

2
r

)/

2

(ρl − ρr )
. (A6)
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FIG. 6. (Color online) Right velocity ur and velocity Vc of a weak

SW solution for fixed left values ρl = 1, ul = 0 and variable right

density ρr (i.e., variable amplitude of the jump), obtained from the

RH conditions. We compare the case β3 = 0 (solid curves) with β3 =
−1 (open circles). Vc satisfies the entropy criterion V +

l > Vc > V +
r ,

where V +
l and V +

r (dashed curves) stand for the eigenvelocity V +

calculated on the left and on the right of the jump for β3 �= 0.

For β3 = 0 we can easily solve Eqs. (A5) and (A6),

obtaining

ur = ul ∓ (ρl − ρr )

√

ρr + ρl

2ρlρr

,

(A7)

Vc = ul ± ρr

√

ρr + ρl

2ρlρr

.

We have thus two solutions, but only the one with upper

sign satisfies the Lax entropy condition [39] for the right-going

shock, i.e., the shock associated with the larger eigenvelocity

V +. The entropy condition states explicitly that the eigenve-

locity must decrease across the discontinuity: V +
l > Vc > V +

r ,

where V +
l,r = V +(ρl,r ,ul,r ). This constraint along with the

RH condition gives the well-known result that the physically

admissible right-going shock wave requires ρl > ρr .

For β3 �= 0 the formula becomes too cumbersome, so it

turns out to be more practical to solve Eq. (A5) numerically.

In this case we can again select the only physically admissible

root by exploiting the entropy criterion. Figure 6 shows how

β3 modifies the velocity parameters ur and Vc.

APPENDIX B

In this appendix we outline the calculation of the leading-

edge velocity of the DSW. Our approach closely follows that

of Ref. [4], to which the reader is referred to for further details.

Our aim here is to report only the essential formulas that lead

to the expression of the leading-edge velocity of the DSW in

our formulation of the initial step-like data.

Let us start by considering a traveling-wave periodic

solution of the NLSE in the absence of HOD perturbations

[i.e., Eq. (2) with βn = 0, n � 3] of the form ψ(t,z) =√
ρ(t − V z) exp [iφ(θ )], where θ ≡ t−V z

ε
is a fast variable

since ε ≪ 1. By means of direct substitution into the NLSE,

one can easily obtain the dn-oidal solution

ρ(t,z) = λ3 − (λ3 − λ1)dn2(
√

λ3 − λ1θ |m),
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which depends on the parameters λ1,λ2,λ3,V , with the

additional constraint V =
√

λ1 + λ2 + λ3. Here the wave

period L = 2K(m)/
√

λ3 − λ1 is given in terms of the elliptic

integral of the first kind K(m), with m = (λ2 − λ1)/(λ3 − λ1).

A modulation of such dn-oidal solution describes the DSW.

The slow (compared to L) evolution of the parameters of such

modulation is ruled by the Whitham equations, obtained by

means of Whitham averaging [40] of conservation laws of

the NLSE over the period L. These equations are known to be

expressible in the following diagonal form (due to integrability

of NLSE), by introducing four Riemann invariants ri = ri(t,z),

i = 1,2,3,4, r1 < r2 < r3 < r4, which are a suitable combina-

tion of the original four parameters V,λi :

∂ri

∂z
+ vi(r1,r2,r3,r4)

∂ri

∂t
= 0, i = 1,2,3,4. (B1)

Here the velocities vi = vi(r1,r2,r3,r4) constitute a deforma-

tion of the velocity V that depends on combinations of {ri}
and elliptic integrals of the first [i.e., K(m)] and second

[i.e., E(m)] kind. For instance the velocity v3 = v3(r1,r2,r3,r4)

that will be relevant in the following reads as

v3 = V −
1

2
(r4 − r3)

[

1 −
(r4 − r2)E(m)

(r3 − r2)K(m)

]−1

, (B2)

where all quantities are recast as functions of ri ,

viz. V = 1
4
(r1 + r2 + r3 + r4) and m = (r4 − r3)(r2 − r1)/

[(r4 − r2)(r3 − r1)].

Let us now recall that we are interested in describing the

DSW ruled by the NLSE with initial (denoted by subscript 0)

step-like data corresponding to (ρl > ρr )

ρ0 =
{

ρl, t < 0

ρr , t > 0,

u0 =
{

0, t < 0

2(
√

ρr − √
ρl), t > 0.

(B3)

The corresponding initial value in terms of Riemann invariants

r± = u ± 2
√

ρ of the unperturbed case is characterized by a

constant value for r− and a decreasing step-like variation

for r+

r−
0 = −2

√
ρl, r+

0 =
{

2
√

ρl, t < 0

4
√

ρr − 2
√

ρl, t > 0,
(B4)

which lead, according to the dispersionless model [Eqs. (6)],

in particular to a traveling (right-going) SW that connects con-

stant states [4,39]. The corresponding DSW can be described

in terms of a self-similar simple rarefaction wave of Whitham

equations (B1) generated by the following four-dimensional

initial value that arises from initial data regularization [4,41]:

r10 = −2
√

ρl, r20 = 4
√

ρr − 2
√

ρl, r40 = 2
√

ρl,

r30 =
{

4
√

ρr − 2
√

ρl, t < 0

2
√

ρl, t > 0.
(B5)

In particular, the initial value (B5) evolves in such a way

that the Riemann variables r1,r2,r4 remain constant and only

r3 = r3(ζ ) varies, forming a pure rarefaction wave (owing

to the fact that r30 is nondecreasing) that depends on the

self-similar variable ζ = t/z. Indeed, all Whitham equations

are formally satisfied when r1,2,4(t,z) = r10,20,40 and r3(t,z) =
r3(ζ ), provided the equation (ζ − v3) r ′

3 = 0 is fulfilled. For

r3(ζ ) �= constant, this implies ζ = v3. The latter relation, once

v3 is expressed as v3(r10,r20,r3,r40) according to Eq. (B2),

becomes a nonlinear equation in the only unknown r3(ζ ),

which can be solved to find the rarefaction wave. The velocity

Vl and Vt of the leading and trailing edges of the DSW

correspond to the edges of this rarefaction wave and can

be calculated as the limits of v3(r10,r20,r3,r40) for r3 → r20

(m → 1, soliton edge) and r3 → r40 (m → 0, linear edge),

respectively. In particular for the leading edge, recalling that

r20 = 4
√

ρr − 2
√

ρl , such a limit yields the result employed

in Sec. IV A:

Vl = lim
r3→4

√
ρr−2

√
ρl

v3(r10,r20,r3,r40)

= 2
√

ρr −
√

ρl =
√

ρl + ur . (B6)

[1] R. Z. Sagdeev, Sov. Phys. Tech. Phys. 6, 867 (1962); R. J. Taylor,

D. R. Baker, and H. Ikezi, Phys. Rev. Lett. 24, 206 (1970);

A. V. Gurevich and L. P. Pitaevskii, Sov. Phys. JETP 38, 291

(1974).

[2] T. B. Benjamin and M. J. Lighthill, Proc. R. Soc. London A 224,

448 (1954); D. H. Peregrine, J. Fluid Mech. 25, 321 (1966).

[3] Z. Dutton, M. Budde, C. Slowe, and L. V. Hau, Science 293, 663

(2001); A. M. Kamchatnov, A. Gammal, and R. A. Kraenkel,

Phys. Rev. A 69, 063605 (2004); R. Meppelink, S. B. Koller,

J. M. Vogels, P. van der Straten, E. D. van Ooijen, N. R.

Heckenberg, H. Rubinsztein-Dunlop, S. A. Haine, and M. J.

Davis, ibid. 80, 043606 (2009).

[4] M. A. Hoefer, M. J. Ablowitz, I. Coddington, E. A. Cornell,

P. Engels, and V. Schweikhard, Phys. Rev. A 74, 023623 (2006);

J. J. Chang, P. Engels, and M. A. Hoefer, Phys. Rev. Lett. 101,

170404 (2008).

[5] J. E. Rothenberg and D. Grischkowsky, Phys. Rev. Lett. 62,

531 (1989); Y. Kodama, S. Wabnitz, and K. Tanaka, Opt.

Lett. 21, 719 (1996); C. Conti, S. Stark, P. St. J. Russell, and

F. Biancalana, Phys. Rev. A 82, 013838 (2010); M. Conforti,

F. Baronio, and S. Trillo, Opt. Lett. 37, 1082 (2012).

[6] W. Wan, S. Jia, and J. W. Fleischer, Nat. Phys. 3, 46

(2007); N. Ghofraniha, C. Conti, G. Ruocco, and S. Trillo,

Phys. Rev. Lett. 99, 043903 (2007); S. Jia, W. Wan, and

J. W. Fleischer, ibid. 99, 223901 (2007); C. Barsi, W. Wan,

C. Sun, and J. W. Fleischer, Opt. Lett. 32, 2930 (2007); C. Conti,

A. Fratalocchi, M. Peccianti, G. Ruocco, and S. Trillo, Phys. Rev.

Lett. 102, 083902 (2009); N. Ghofraniha, L. Santamaria Amato,

V. Folli, E. DelRe, S. Trillo, and C. Conti, Opt. Lett. 37, 2325

(2012).

[7] N. F. Smyth and P. E. Holloway, J. Phys. Oceanogr. 18, 947

(1988); G. A. El, H. J. Grimshaw, and A. M. Kamchatnov, Stud.

Appl. Math. 114, 395 (2005); J. R. Apel, J. Phys. Oceanogr. 33,

2247 (2003).

[8] E. Bettelheim, A. G. Abanov, and P. Wiegmann, Phys. Rev. Lett.

97, 246401 (2006).

013807-7

http://dx.doi.org/10.1103/PhysRevLett.24.206
http://dx.doi.org/10.1103/PhysRevLett.24.206
http://dx.doi.org/10.1103/PhysRevLett.24.206
http://dx.doi.org/10.1103/PhysRevLett.24.206
http://dx.doi.org/10.1098/rspa.1954.0172
http://dx.doi.org/10.1098/rspa.1954.0172
http://dx.doi.org/10.1098/rspa.1954.0172
http://dx.doi.org/10.1098/rspa.1954.0172
http://dx.doi.org/10.1017/S0022112066001678
http://dx.doi.org/10.1017/S0022112066001678
http://dx.doi.org/10.1017/S0022112066001678
http://dx.doi.org/10.1017/S0022112066001678
http://dx.doi.org/10.1126/science.1062527
http://dx.doi.org/10.1126/science.1062527
http://dx.doi.org/10.1126/science.1062527
http://dx.doi.org/10.1126/science.1062527
http://dx.doi.org/10.1103/PhysRevA.69.063605
http://dx.doi.org/10.1103/PhysRevA.69.063605
http://dx.doi.org/10.1103/PhysRevA.69.063605
http://dx.doi.org/10.1103/PhysRevA.69.063605
http://dx.doi.org/10.1103/PhysRevA.80.043606
http://dx.doi.org/10.1103/PhysRevA.80.043606
http://dx.doi.org/10.1103/PhysRevA.80.043606
http://dx.doi.org/10.1103/PhysRevA.80.043606
http://dx.doi.org/10.1103/PhysRevA.74.023623
http://dx.doi.org/10.1103/PhysRevA.74.023623
http://dx.doi.org/10.1103/PhysRevA.74.023623
http://dx.doi.org/10.1103/PhysRevA.74.023623
http://dx.doi.org/10.1103/PhysRevLett.101.170404
http://dx.doi.org/10.1103/PhysRevLett.101.170404
http://dx.doi.org/10.1103/PhysRevLett.101.170404
http://dx.doi.org/10.1103/PhysRevLett.101.170404
http://dx.doi.org/10.1103/PhysRevLett.62.531
http://dx.doi.org/10.1103/PhysRevLett.62.531
http://dx.doi.org/10.1103/PhysRevLett.62.531
http://dx.doi.org/10.1103/PhysRevLett.62.531
http://dx.doi.org/10.1364/OL.21.000719
http://dx.doi.org/10.1364/OL.21.000719
http://dx.doi.org/10.1364/OL.21.000719
http://dx.doi.org/10.1364/OL.21.000719
http://dx.doi.org/10.1103/PhysRevA.82.013838
http://dx.doi.org/10.1103/PhysRevA.82.013838
http://dx.doi.org/10.1103/PhysRevA.82.013838
http://dx.doi.org/10.1103/PhysRevA.82.013838
http://dx.doi.org/10.1364/OL.37.001082
http://dx.doi.org/10.1364/OL.37.001082
http://dx.doi.org/10.1364/OL.37.001082
http://dx.doi.org/10.1364/OL.37.001082
http://dx.doi.org/10.1038/nphys486
http://dx.doi.org/10.1038/nphys486
http://dx.doi.org/10.1038/nphys486
http://dx.doi.org/10.1038/nphys486
http://dx.doi.org/10.1103/PhysRevLett.99.043903
http://dx.doi.org/10.1103/PhysRevLett.99.043903
http://dx.doi.org/10.1103/PhysRevLett.99.043903
http://dx.doi.org/10.1103/PhysRevLett.99.043903
http://dx.doi.org/10.1103/PhysRevLett.99.223901
http://dx.doi.org/10.1103/PhysRevLett.99.223901
http://dx.doi.org/10.1103/PhysRevLett.99.223901
http://dx.doi.org/10.1103/PhysRevLett.99.223901
http://dx.doi.org/10.1364/OL.32.002930
http://dx.doi.org/10.1364/OL.32.002930
http://dx.doi.org/10.1364/OL.32.002930
http://dx.doi.org/10.1364/OL.32.002930
http://dx.doi.org/10.1103/PhysRevLett.102.083902
http://dx.doi.org/10.1103/PhysRevLett.102.083902
http://dx.doi.org/10.1103/PhysRevLett.102.083902
http://dx.doi.org/10.1103/PhysRevLett.102.083902
http://dx.doi.org/10.1364/OL.37.002325
http://dx.doi.org/10.1364/OL.37.002325
http://dx.doi.org/10.1364/OL.37.002325
http://dx.doi.org/10.1364/OL.37.002325
http://dx.doi.org/10.1175/1520-0485(1988)018<0947:HJAUBF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1988)018<0947:HJAUBF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1988)018<0947:HJAUBF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1988)018<0947:HJAUBF>2.0.CO;2
http://dx.doi.org/10.1111/j.0022-2526.2005.01560.x
http://dx.doi.org/10.1111/j.0022-2526.2005.01560.x
http://dx.doi.org/10.1111/j.0022-2526.2005.01560.x
http://dx.doi.org/10.1111/j.0022-2526.2005.01560.x
http://dx.doi.org/10.1175/1520-0485(2003)033<2247:ANAMFI>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(2003)033<2247:ANAMFI>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(2003)033<2247:ANAMFI>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(2003)033<2247:ANAMFI>2.0.CO;2
http://dx.doi.org/10.1103/PhysRevLett.97.246401
http://dx.doi.org/10.1103/PhysRevLett.97.246401
http://dx.doi.org/10.1103/PhysRevLett.97.246401
http://dx.doi.org/10.1103/PhysRevLett.97.246401


MATTEO CONFORTI, FABIO BARONIO, AND STEFANO TRILLO PHYSICAL REVIEW A 89, 013807 (2014)

[9] Y. C. Mo, R. A. Kishek, D. Feldman, I. Haber, B. Beaudoin,

P. G. O’Shea, and J. C. T. Thangaraj, Phys. Rev. Lett. 110,

084802 (2013).

[10] N. K. Lowman and M. A. Hoefer, J. Fluid Mech. 718, 524

(2013).

[11] P. Lorenzoni and S. Paleari, Phys. D 221, 110 (2006);

A. Molinari and C. Daraio, Phys. Rev. E 80, 056602 (2009).

[12] N. Ghofraniha, S. Gentilini, V. Folli, E. Del Re, and C. Conti,

Phys. Rev. Lett. 109, 243902 (2012); J. Garnier, G. Xu, S.

Trillo, and A. Picozzi, ibid. 111, 113902 (2013); A. Fratalocchi,

A. Armaroli, and S. Trillo, Phys. Rev. A 83, 053846 (2011).

[13] P. D. Miller and Z. Xu, Commun. Pure Appl. Math. 64, 205

(2010).

[14] A. V. Gurevich and A. L. Krylov, Sov. Phys. JETP 65, 944

(1987); A. V. Gurevich, A. L. Krylov, and G. A. El, ibid. 74,

957 (1992).

[15] P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, Opt.

Lett. 11, 464 (1986); ,12, 628 (1987); P. K. A. Wai, H. H. Chen,

and Y. C. Lee, Phys. Rev. A 41, 426 (1990).

[16] N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).

[17] H. H. Kuehl and C. Y. Zhang, Phys. Fluids B 2, 889 (1990);

V. I. Karpman and H. Schamel, Phys. Plasmas 4, 120 (1997);

V. I. Karpman, Phys. Rev. E 58, 5070 (1998).

[18] V. V. Afanasjev, Y. S. Kivshar, and C. R. Menyuk, Opt. Lett. 21,

1975 (1996); C. Milian, D. V. Skryabin, and A. Ferrando, ibid.

34, 2096 (2009).

[19] I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, Opt. Exp.

12, 124 (2004); J. M. Dudley, G. Genty, and S. Coen, Rev. Mod.

Phys. 78, 1135 (2006).

[20] D. V. Skryabin and A. V. Gorbach, Rev. Mod. Phys. 82, 1287

(2010); B. H. Chapman, J. C. Travers, S. V. Popov, A. Mussot,

and A. Kudlinski, Opt. Exp. 18, 24729 (2010).

[21] A. Chabchoub, N. Hoffmann, M. Onorato, G. Genty, J. M.

Dudley, and N. Akhmediev, Phys. Rev. Lett. 111, 054104 (2013).

[22] S. P. Stark, A. Podlipensky, and P. St. J. Russell, Phys. Rev. Lett.

106, 083903 (2011).

[23] N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L.

Wong, F. Biancalana, and P. St. J. Russell, Phys. Rev. Lett. 106,

203901 (2011); M. F. Saleh, W. Chang, P. Hölzer, A. Nazarkin,

J. C. Travers, N. Y. Joly, P. St. J. Russell, and F. Biancalana,

ibid. 107, 203902 (2011).

[24] M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, and

G. Genty, Phys. Rev. Lett. 109, 223904 (2012).
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