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Abstract. We extenddpik’s theory of close encounters of a small body (either an asteroid or a comet) by explicitly introducing

the nodal distance and a time coordinate. Assuming that the heliocentric motion between consecutive close encounters is
Keplerian, or given by an explicit propagator, we can compute the initial conditions for an encounter as functions of the
outcomes of a previous one; in this way it is possible to obtain a completely analytical theory of resonant returns. It is found
that the initial conditions of a close encounter that lead to a resonant return must lie close to easily computable circtes on the
plane of the first encounter. By further assuming that the nodal distance varies uniformly with time, due to secular perturbations,
and considering the derivatives of the coordinates orbtpkane of the second encounter with respect to those ob-filane

of the first encounter, we compute in the latter the location, shape and size of collision keyholes.

Key words. minor planets, asteroids — Solar system: general

1. Introduction

The problem dealt with in this paper has deep roots in the history of astronomy. Since the end of the 18th century the study of
the motion of a newly discovered small solar system body, comeiXell, made it clear that comets can pass very close to the
Earth, and that the gravitational perturbations at close planetary encounters can modify their orbits significantly (Lexell 1778).

Le Verrier (1844, 1848, 1857) re-analyzed the observational record available for this comet with the purpose of studying its
motion, and found that it was not possible to determine a unique set of orbital elements at a given epoch: a region in elements
space of non negligible size was compatible with the observations. Le Verrier found that the six elements could be expressed as
functions of a single free parameter, which he calledhose value could vary between.5. He found also that theftiérence
between his own nominal orbital solution and the one given earlier by Clausen was within the allowed rarayel pin fact,
for his subsequent studies on the motion of the comet adopted Clausen’s orbit. Moreover, Le Verrier determined the range of
possible orbits for comet /Dexell both before the 1767 encounter with Jupiter (lowering the perihelion distpand making
the comet observable from Earth) and after the 1779 encounter (removing the comet from visibility). This second encounter may
have been very deep and as a consequence the comet might even have been ejected from the solar system on a hyperbolic orbit.

The papers by Le Verrier on this subject are remarkable, the more so since they pre-date a very recent line of research (Milani
1999; Milani et al. 2000a), for which even the stated purposes are similar. Much of the current work aims at making the recovery
of poorly observed near-Earth asteroids feasible, and Le Verrier concluded his first paper on the subject stating that if, in the
future, a comet would be discovered whose observations were accountable for by using his elements fofleomabt\iith u
within the prescribed range, then the new comet would just be a new apparitigheell.

For more than a century the work by Le Verrier was forgotten and the astronomers interested in recovering lost asteroids and
comets used a much simpler approach. They assumed that five orbital elements were well known and only the orbital phase, that
is the mean anomaly, was subject to uncertainty. Thus the Line Of Variations (LOV), consisting, in this simple approximation, of
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a segment along the mean anomaly axis in the orbital elements space, replaced the curved line parametrized by Le Verrie
This approximation is actually not bad when the ast¢omichet has been lost by decades, because the uncertainty along the orb
increases with time as a consequence of the uncertainty in mean motion.

Starting from Milani (1999) a precise way to compute the LOV has been developed and adapted to modern computati
techniques, and it is now a standard procedure to compute a large numtndtipfe solutiongor the orbital elements, sampling
the LOV, which is, in general, curved. The motivation for this work, apart from the recovery problem, was the need to det:
possible Earth impact solutions, the so caN&dual Impactors in the near future (Milani & Valsecchi 1999; Milani et al. 1999).
The assessment of the impact risk from an asteroid observed only during a single apparition cannot be accomplished by the
of one “nominal” orbit (the solution of the least squares fit to the observations). The nominal orbit, and its neighborhood (whi
can be studied by linearization techniques), can provide only information on the impacts with probabilities of the gfte@of 1
and given the catastrophic nature of such an impact it is desirable to detect Virtual Impactors with much lower probability. T
method currently being used (Milani et al. 2000b,c) scans hundreds of thousands of possible future close approaches, obt
by propagating all multiple solutions into the future, and applies quasi-linear techniques of target plane analysis to the n
suspicious looking ones. However, it is clear that a qualitative, geometric understanding of the way these huge lists of ¢
approaches are organized is a requirement to ensure the reliability of these automatic scans, for which human intervention
be exceptional.

The way to gain such an understanding is to go back to a simpler mathematical setting. 50 y&pikdgman developing
a theory of planetary encountedfik 1951, 1976) based on a piecewise 2-body approach. That is, the small body (asteroi
comet, meteoroid) is considered to be in a heliocentric ellipse until the time of the encounter with some planet, then the dynati
is switched to a planetocentric 2-body orbit, which is (in this approximation) always hyperbolic. Then the standard formu
of 2-body scattering are applied to obtain the initial conditions of a new post-encounter heliocentri©pikig.theory was
successfully used to study the statistical properties of the orbital changes resulting from close approaches, and to some ex
is still in use (Valsecchi & Manara 1997; Valsecchi et al. 1997). The main limitation isah#t developed the theory only for
the case in which the two orbits, of the small body and of the target planet, are actually touching, that is the Minimum Orb
Intersection Distance (MOID) is zero.

Moreover, the basic theory does not consider that the subsequent encounters of the small body with the same planet (or
with another one) are not independent of the occurrence of the previous ones. The idea, nawszatlaat returnwas implicitly
contained in the work of Lexell and Le Verrier on Lexell's comet, was in fact used in spacecraft navigation since the 70s, but v
first applied to asteroid close approaches only recently (Marsden 1999; Milani et al. 1999). In fact, recent work by our group
shown that the main organizing principle of the huge lists of close approaches obtained by propagating multiple solutions is
of the resonant return (also, to a lesser extent, non-resonant returns play a role).

With this background, it is possible to state the purpose of this paper in a simple way. We &x#sltheory of close
encounters to near misses, which can occur also for a finite value of the MOID. Having developed this mathematical tool, we
it to describe how each encounter changes the condition for the next encounter, thus spawning a complicated (in principle, fre
structure of resonant returns. This we achieve with an analytical theory, whose formulas, although long, can be implemente
a software tool allowing us to explore the geometrical structure of the following encounters in the target plane defining f
circumstances of the first encounter.

Note that the analytical formulas we provide are not a replacement for the accurate numerical integrations. However, nut
ical integrations handle one orbit at a time, and we need to have a global view of everything that could happen as a conseqt
of a given encounter. Each subsequent return that could lead to an impact dédey®kon the target plane of the first en-
counter, such that an orbit through it would indeed collide with the planet. We give an explicit, semi-analytic description of t
keyholes for all possible resonant returns. This allows us to draw the LOV footprint on the target plane, and its intersections \
the resonant (and non-resonant) return keyholes provide information on all the subsequent encounters that are possible f
asteroid given the available observations. In the present paper the notation is somefenestdand the geometrical derivations
somewhat simplified, with respect to those contained in Valsecchi (2001), where an earlier, less complete version of this thi
is presented.

The paper is organized as follows: in Sect. 2 we describe the classical theory of encounters first introdoié dnyd in
Sect. 3 we extend it to finite nodal distances, introducing also a time coordinate, which we use in Sect. 4 to compute the in
conditions of a second encounter as functions of those of the first. This mapping between the target planes of the first and ¢
second encounter, together with its derivatives, allows us to compute the keyholes. In Sect. 5 we give some examples of pra
application of the theory, in particular to the well known cases of the asteroids 199 aXd 1999 ANy. Since the details of
the analytical development may obscure the discussion of the main ideas, we have collected most of them in the appendix.

2. Opik’s theory of encounters

Opik’s theory of close encounter®pik 1976) consists of modeling the motion of a small body approaching a planet as
planetocentric two-body scattering. The relative velocity of the small body with respect to the planet defines the direction
speed of the incoming asymptote of the planetocentric hyperbolic orbit. This direction and speed are simple functions of
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semimajor axis, eccentricity and inclinatiom g, i) of the heliocentric orbit of the small body, in the approximation neglecting
terms of the order of the miss distance. THeet of the encounter is then computed as an instantaneous deflection of the velocity
vector in the direction of the outgoing asymptote of the planetocentric hyperbolic orbit, ignoring the perturbation due to the Sun
and the time it actually takes for the small body to travel along the curved path that “joins” the two asymptotes. Interestingly, the
errors involved in such an approach are smaller for closer approachd3pidsitheory is exact only in the limit of the minimum
approach distance going to zero.

2.1. The components of the planetocentric velocity

Let us consider a small body encountering a planet that moves on a circular orbit around the Sun. To simplify the formulae, we
use a system of units such that the distance of the planet from the Sun is 1, and the period of the ptai@éial2 assume
that both the mass of the Sun and the gravitational constant are equal to 1. We disregard the mass of the planet in the heliocentric
orbit of both the planet and the small body, thus the heliocentric velocity of the planet is also 1.

We use a planetocentric reference fratke¥ Z) such that ther-axis coincides with the direction of motion of the planet,
and the Sun is on the negati¥eaxis. In this system, the components of the unperturbed planetocentric velocity Ueafttine
small body are (Carusi et al. 1990)

Uy +y2-1/a-a(l-e)
U, |=| +al-e)cosi-1
U, ++/a(1l- &) sini

and the planetocentric velocity is

U= \/3— % - 2+/a(1 - €e?) cosi.
This can be rewritten as
U=+V3-T

whereT is the Tisserand parameter with respect to the planet

T= ! +2+/a(l1 - €?) cosi.

T a

The direction of the incoming asymptote is defined by two anglesd¢ (see Fig. 1), such that

[ Uy U singsing
U, | = U cost
| U, U sind cosg

and, conversely

[ coso _ [ u,/U ]

| tang Uy/U2

2.2. The b-plane frame

We define thé-plane as the plane orthogonallocontaining the center of the planet. The vediaxtends from the planet to
the intersection of the incoming asymptote with thplane;b = |b| is the impact parameter.

We use a planetocentric coordinate systém, () such that £, 2) are coordinates on thHeplane and the-axis is directed
alongU. The/-axis is in the direction opposite to the projection on bhplane of the heliocentric velocity of the planet. The
&-axis completes the right-handed reference frame, and is perpendicular to the heliocentric velocity of the planet.

In this way, as will also be seen in more detail later, the shortest segment joining the orbit of the planet and that of the
small body, corresponding to the MOID, turns out to be directed along-thés; this is because this axis is perpendicular, by
definition, to both ther-axis (the direction of motion of the planet), abi the planetocentric velocity of the small body. The
Z-axis, then, can be seen as a “time coordinate”, that is, a shift in the time of arrival of the small bodig-atahe will mean a
change only in itg coordinate, and not i&. In other words, this coordinate system nicely decouples the two factors governing
the possibility of a very close encounter, i.e. distance between orbits and encounter timing, mapping them into, respe¢tively, the
and theZ-axis.
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theta

Fig. 1. Basic geometric setup @pik’s theory. The planet is at the origin, mov-
ing in the direction ofY, with the Sun at unit distance on the negafiraxis.U
X is the planetocentric velocity vector of the small body (see text).

Following Carusi et al. (1990), we define the anglby
bsing | |¢
bcosy | | ¢ |

The transformation from the planetocentric reference fraXn¥ ¢) to theb-plane frame4, , ¢) is accomplished by first rotating
by an angle-¢ aboutY, then rotating by-6 about¢ (which is perpendicular to the oM-axis and tdJ). In matrix notation

¢ ) ) %
n | =Re(-ORy(-¢)| Y |. (1)
1 £ VA
Similarly, the inverse transformation is accomplished by rotating égouts, then byg aboutY. In matrix notation
™ ) ) ¢
Y | =Rv(9)R:0) | 7 |-
| Z ¢

2.3. The rotation of U

As a consequence of the encounter with the pldnés, rotated intdJ’, aligned with the outgoing asymptote, without changing
the lengthlU = U’. The deflection angle between the two vectors is a functiondf the mass of the planet, and the impact
parameteb according to

tanz — i — E
2 bu2 b

cosy — b?U%—m?  b?-c? @
YT Ut T 2

siny = 2mbU? 2bc 3

PUP+ e R+

wherec = m/U?. This quantity plays in the theory the role of a characteristic length; ehere, the deflection angle is 7/2.
ForU = 0.5, a typical value for many near-Earth asteroicls; 1.22 x 10> AU, i.e. about (29 Earth radii; this means that,
unlessU is very low, large deflections at close Earth encounters cannot be obtained.

The angle®’ and¢’, defining the direction of the post-encounter velocity vettgrcan be obtained in terms 6f¢, y, v by
(Carusi et al. 1990)

cosf’ = cosh cosy + sinfdsiny cosy
siny siny
sind cosy — cosd siny cosy

tang — tan(@ — ¢’)
1+ tangtan@ — ¢’)

tan@ - ¢') =

tang’ =
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Fig. 2. The deflection ofJ. The vectord) andU’ lie on, respectively, the incoming and outgoing asymptotes
| of the planetocentric hyperbolb;(the segmenPA) is the impact parametey, is the deflection angle, and
b the length of the segmentsBandBC is c.

Fig. 3. Same as Fig. 1, but with also the post-encounter velagity

1
Nserar

sing’ = cosg’ tang’.

/

cosy’ =

U is an invariant of the problem and, once it is giveris a function of cog only, and does not depend @n In fact, in the
geometric setup just described we have fixed the heliocentric distance of the small body, thus fixing its potential energy; to obtain
its total energy — that means to obt@r we need to compute its kinetic energy, i.e. its heliocentric velocity. The latter is the
vectorial sum of the heliocentric velocity of the planet, whose components drefpand ofU; for fixed U, the magnitude of

the sum depends only on the angle between the two vectors, iée. on

The geometry of the rotation &f is illustrated in Figs. 2 and 3; note thatthat is also an invariant of the problem, due to the
conservation olJ, has a simple geometric meaning.

Opik’s theory of close encounters works as long as the region of space in which the encounter takes place is “small,” so that
the interaction can be thought of as taking place in a point. This assumption breaks down as the Tisserand parameter approaches 3,
i.e., when the encounters take place at low planetocentric velocity, and therefore the assumption of a point-like interaction does
not hold any more. The theory is inapplicable for a Tisserand parameter exceeding 3.

In principle, this theory could be extended to the case of an elliptic orbit of the planet, preserving most of the formulae,
provided the angleg8 and ¢ are defined with respect to the velocity of the planet at the time of the encounter, which would
generally not be orthogonal to the Sun-planet direction.

3. Extension of Opik’s theory to near misses

In its original formulation,Opik’s theory of close encounters does not use a complete set of state variables. In a complete
formulation, the six orbital elements of the small body have to be transformed into a set also containing six coordinates. The six
coordinates used in the extension@pik’s theory presented in this paper attk:6, ¢, £, ¢ and the timey of the crossing of the

ecliptic plane by the small body.

In Appendix A.1 we provide formulae to compute the transformation from the orbital elements to this encounter-related
coordinate set. In this way the theory can be used to compute actual cases of close encounters with non-zero miss distances, and
its results can be compared with those coming from accurate numerical modeling of the motion. However, the formulas we are
providing are linearized in the actual miss distance, and therefore cannot be used for very shallow encounters.
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In the (X, Y, Z) frame, the motion along the incoming asymptote is

X(t) Ux(t —to) + Xo U singsing(t — to) + Xo
Y(t) = Uy(t - to) +Yo | = U COS@(t - to) + Yo s (4)
Z(t) U,(t —to) U sing cosg(t — to)

where the planetocentric coordinates of the node at tinaee X, = X(to), the signed nodal distance, algl = Y(tp), which
measures how early or late the planet is for the encounter.

The simple formulae of uniform rectilinear motion allow one to decompose the search for the minimum encounter distat
into two steps. First, we look for the minimum not constrained by encounter time, to find the MOID. Second, taking into accol
the time, we find the actual minimum encounter distance for a generic initial condition.

3.1. The local Minimum Orbital Intersection Distance

The Minimum Orbital Intersection Distance (MOID) is the minimum distance between the orbit of the small body and that
the planet. In the case of encounters for wHiypik’s theory is applicable (Greenberg et al. 1988) there is the possibility of two
local minima of the distance between the orbits, one close to each node, and we call each of these minima a local MOID.

We can derive an expression for the local MOID assuming that the small body travels on the incoming asymptote. From
first Eq. (4), eliminating — to, we obtain

[X]_[(Ux/uy)(Y_YO)+XO .
Z| [ (U/U)(Y-Yo) |

settingw = Y — Yo, the square of the distance from thieaxis (i.e. from the direction of motion of the planet) is

U2+ U2

D,(w)? = X2+ 2% = B
Y

U

w? + 2= Xow + Xg,
Uy

and its derivative is

2
d(Df) _uz+uz U,
dw uz U,

Xo.

The derivative is zero at

Uy,
TuzeUuz?
and the minimum value is
Uz
Uz + U2

minDj:Xﬁ[l— }:Xécoszqﬁ.

This means that the ratio between the local MOID, close to the node under examinatidg,iand

minD, = |Xo cosg|.

It is possible to define a signed MOID Xg cosg; this expression was the starting point of Bonanno (2000) for his study on the
uncertainty of the MOID.

Thus a small body having an encounter at its local MOID crossels-fiane on th&-axis, withé = Xg cosg and the MOID
is just|&].

3.2. The encounter

In general, the close approach does not take place at the minimum possible distance, i.e. at the MOID. To compute the a
minimum distance as a function of the initial conditions we have to consider that itXtNeZ(-frame, and in the rectilinear
motion approximation, the node of the orbit of the small body moves backwards alo¥igattie with speed-1. Thus, if att = tg

the node is atXo, Yo, 0), we can compute the motion of the small body from the second Eq. (4). The distance from the planet

D* = X*+Y*+Z?
= U2t? + 2U(Xosingsing + Yo cosd — Uto)t + U%t3 — 2U(Xpsindsing + Yo cosd)to + X3 + Y2.
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So, we take the derivative with respectto

d(D? . .
% = 2U%t — 2U (Ut — Xo Sindsing — Yo cosd)
and find its zero
Xosin@sing + Yo cosd
th=1— U :

Then, the minimum approach distance occurs when the small body is at

X Xo — (Xgsin@ sing + Yo cosh) sind sing
Y |= —(Xgcosfsing — Yy sing) sing , (5)
Z —(Xpsingsing + Yo cosh) sinf cosp

where the distance is

D=b= VX2+Y24+72= \/XS co ¢ + (Xo cosdsing — Yo siné)?2,

and the coordinates on tlheplane are computed by (1)
&l Xo COSg
Z| | Xocosdsing — Yosing |

So, giverd andg, the coordinates and/ on theb-plane depend only oKy andYy; we can invert the relationship and obtain
Xo|_ &/ cosgp (6)
Yo | | (£cosftang — ) /sing |

Note that all the computations of this subsection are linearized about the origin bothdnfhpléne and in theXo, Yo)-plane,
that is on the ecliptic. Thus these expressions are applicable neither to very shallow encounters (Wi)miarge encounters
with low U,/U = sin6cos¢ (e.g., for very low inclination asteroids), for whicky and Yo can be large despite the impact
parameter being small.

Let the planetocentric angular momentum of the small bodin be b x U. At the timety, corresponding to the minimum
unperturbed distandg we instantaneously rotate the velocity vector, which is parallel to the incoming asymptotehabouats
to make it parallel to the other asymptote

U sing’ sing’
U cosy’
U sing’ cosy’

U = = Rn(y)U.

We also rotate, again instantaneously, the position vector of the small bodybftorthe one corresponding to the minimum
unperturbed distance on the new asymphjte

[5,
b=]0
é//

Thus,b’ lies in thepost-encounterdplane normal tdJ’. The post-encounter (i.e., rotated) coordinates in X)&, ) frame can
be obtained by applying the appropriate rotations

= Ri()b.

Xt | 3
Y'(to) | = Ry(¢")R:(0)Rn(y) | 77 |-
Z'(ty) 4

The new coordinates of the crossing of the ecliptic can be obtained considering that

X' (tp) Ui(ts — to) + X'(t)
Y'(to) U, (to — 1) + Y'(t5)
Z'(tn) Uz (to — to)

the time of crossing is then

Z'(ty)
u; ’

t(/):tb_
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theY-coordinate of the crossing is

Y'(t) = Yo = Y'(ts) - U (to - 1),

and theX-coordinate of the crossing is

X'(tg) = Xg = X'(to) - Uy (to — tp) -

In the above procedure, we have assumed that the action of the planet on the velocity vector of the small body is instantant
one may wonder whether the error involved is large. In fact, as it is clear from Fig. 2, the time actually taken for the small bo
to go from true planetocentric anomally = —y/2 to f, = +y/2 is about 2/U for large values ob. For small values ob, the
length of the arc of hyperbola goes to zero withThus, the approximation involved in neglecting the time actually taken from
true anomaly-y/2 to+y/2 is good enough for the theory of subsequent encounters discussed in the following sections.

3.3. The post-encounter local MOID

We can apply the appropriate rotationsdbyand¢’ to the post-encounter coordinad&4ty), Y’ (tp), Z’(tp), to obtain the coordi-
nates in the post-encounteiplane as functions of the pre-encourdend/, as in Eq. (1); it can be checked that= 0, as is
clear from the geometry of the rotatiéty(y). The complete formulas are given in Appendix A.2.

Let us discuss here the explicit expression for the new local MOID, i.e. faf tt@ordinate in the post-encounteplane

D, =¢ = Xjcos¢’;
proceeding as described just before, the result is:

(0% + ¢2) ¢ sing

¢ =

\/[(b2 — ) sing — 2c7 cosd)? + 4c¢2

Note that, if sirg # 0, the new local MOID cannot be zero unless the pre-encounter local NDQE¢ is already zero. In other
words, only initial conditions on th&-axis end up on thé-axis of the post-encountbrplane.

Opik’s theory is not applicable for the exactly tangent and coplanar orbits, and its validity becomes questionable for v
low values of sirg (Greenberg et al. 1988). This is unfortunate since a small, but non negligible, number of asteroids undergo
encounters with the Earth has 8inv 0. In these cases the interaction may become extremely complex, possibly includini
temporary satellite captures, as shown by numerical integrations (Carusi et al. 1981): an analytical theory able to handle t
cases would be much more complex than the one presented in this paper.

4. Resonant returns and keyholes

The orbital period of the planet isr2and that of the small body after the encounteria’2?. If the two periods are commensu-
rable, that isa’®? = k/h with h andk integers, then after periods of the asteroikl periods of the planet have elapsed, and both
the planet and the small body will be back again in the same position of the previous encounter. Such a subsequent encoul
called aresonant return

Also if the ratio of the period is not exactk/h, but is close, a subsequent encounter can take place, but the planet will b
earlier or later for the encounter than it was at the previous one. The new encounter conditions can be computed as follows.

4.1. Post-encounter propagation

We are now going to compute the post-encounter propagation by using Keplerian heliocentric motion, in order to be able
derive simple analytical expressions. This approximation turns out tofieisntly accurate to discuss the timing, that is ¢the
coordinate, of the next encounter, but not to determine the MOID, that isdberdinate. This is further discussed in Sect. 4.4.

If the small body follows, after the first encounter, a Keplerian orbit, it will be again at the same node at time

ty =ty +h-2ra®2

In the planetocentricX, Y, Z)-frame the node of the orbit of the small body moves backwards alony-thés with speed-1
(actually, it revolves backwards with period)2 At time t;, the Y-component of its distance from the planet Wgs We now
compute its displacement along tieaxis betweery andty, that is6Yy + 27k = t7 — t;. To avoid a discontinuity neaY, = O,
we use the formula

Yo = = [mod(ty -t + 7, 27) - x|
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The planetocentric distance of the small body when it is at the node of the resonant return is then

D(ty) = ,/x;f + (Y + 6Yo)2

After the propagation, the initial conditions for the new encounter can be computed from:

— the components of the planetocentric velotity = U}, U7 = U, U} = U; (sinceU” = U’, 8" =&, ¢" = ¢');
— the time of passage at the nage

— the nodal distanc¥j = Xj;

— the distance of the node from the plaigt= Y} + 6Yo.

Then, in theX-Y-Z frame, the minimum approach distance is at
X{ sing’ sing’ + Y{' cost’
5 .

For the coordinates corresponding to the minimum approach distance, we have the same expression as E'(5Y;"wiH,
X3, Yy, 0, ¢ instead ofX, Y, Z, Xo, Yo, 6, ¢, so that the coordinates on theplane are

g// B Xél Co&p/
" || Xg cos# sing’ — Y[ sing

"o 1
tb_tO_

4.2. Solving for a given final semimajor axis

In order to exploit the simple geometry in theplane of the solutions of this problem, we discuss it in the framework of classical
Opik’s theory disregarding the corrections due to the fact that the heliocentric distance of the small body at close encounter is
not 1 (see Appendix A.1).

A given resonance corresponds to certain specific valua's ioé. of¢’, that we denote withy andd;. In fact, if we constrain
the post encounter orbit in such a way that the ratio of the periddgfijshen

3 k2
h?

1-U2-1/a,

—
In the formula of Sect. 2.3 for the post-encourster

costy =

COsf = COsH oSy + sindsiny cosy,

the deflection angle is a function ofc andb given by Egs. (2) and (3). Thus, for givéh 6, andé;, this is an equation in the
pre-encounteb-plane giving the locus of points leading to a given resonant return. By solving fgr and using = bcosy
we obtain

) (b2 + c2) cosdy — (b2 - cz) cosh

= _ 7
¢ 2csing (7)
Replacingo? with £ + £2 and rearranging terms we obtain

2csing c?(cosd, + cos
E+i-—— c+ S%% ). 8)
cost) — cost cosf) — cost

This is the equation of a circle centred on thaxis (Valsecchi et al. 2000); R is the radius of such a circle, amthe value of
the-coordinate of its center, its equation is
E+2-2Df+D? =R
thus the circle is centred in (D) with
3 csind
~ cos, — cosf
and has radius
csing;
Costy, — coso
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Note that the radius of the circle is zero fgr= 0 andé;, = =. Foré; — 6 bothD andRtend to infinity:

csiné c
D = ~——
cosp + 66) — cosd 60

csin(@ + 66) ' c ccosd

cos@ +66) —cosd| | 60 sing

and the semimajor axis does not change if the encounter takes place on the straightdioeté. If a > a then cog, > cosd
andD > 0. The half plane > ccotd contains the circles wit > 0, that is the perturbation from the encounter increases the
orbital energy because the planet is pulling from ahead,ahusa.

In general, the circle intersects thiexis at the values

c(sinf + sing;
(=D+xtR= ——,
cos, — cosh

which represent the extremal values thatan take for a givea’; for 6; — 6 one of the two intersections tends to infinity, and
the other taccoté. The circle intersects theaxis at

cosf + COS{%
g =0\
’ cosf — COS{%

and the maximum value df| for which a giveng, is accessible iR The maximum value o accessible for a giveb is for
6, = 0, and is obtained for

_ csinf
" 1-cosy’
and the minimum value o is for 6 = =, and is obtained for
_csinf |
1+ cosd’

in both cases we must hage- 0, that is this happens for zero local MOID.
To take now into account at first order the non zero planetocentric distance of the small body, we compytariththe
pre-encounter heliocentric distance 1 + €:

r2=1+2X+X2+Y?+27%=1+b?+2( cosdsing + £cosp)
r=1+/cosfsing + £Cosg,
and the post-encounter heliocentric distarice 1 + €’:

4b%csind sing + 2(b? — ¢2)(£ cosdsing + & cosyp)

2=1+2X +X?+Y?+Z2?%=1+b%+
b? + 2

’

. 2b%csingsing + (b? — ¢?)(£ cosd sing + & cosy)
b2 + c? '

so thate, ¢ ande’ — € are:

€ =/ cosfsing + £cosg

- 2bcsingsing + (b - ¢2) (£ cosAsing + £ Cosg)

€ b? +c?

_ 2c[b*singsing — ¢ ({ cosdsing + £ cosg)]
- b2 + c2

Note thate’ — € is of orderc.
Givena, g, i, €, we have folU, and co9,, the values ofJ and co® computed for finitee (see Appendix A.1):

6/

2U3cosd + 4U?%cog 6+ U2 + 1
=U- =U — ef
Ue=U-e U2+ 2U cosd + 1 Ue
4U%cog 6 + (U +1)(2U%cost + U2 + 1) Uz-1

U(U2+2U cosf + 1) T€UUZ+2Ucosv+ 1)

Cc0SO. = cosh |1+ €

= C0SH + €g,
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whereU and co9 are the values computed froa e, i ignoring the first-order correction due ¢ggpandf = f(U,cosd), g =
g(U, cosd). We have also

sing. = sind — eg cosh.
For the post-encounter semimajor aagjs= Vk2/h2, the value of co8y,, is:
costy,, = cosfy + €'y,

where cogj is the value computed fro@y, ignoring the first-order correction due ¢g andg’ = g(U, cost).
By replacing in Eq. (7) with 6. andé; with 6,

(b2 + cz) costy,, — (b2 - cz) cosf, — 2¢Z siné, =0
and expanding to first order inande’ we obtain

2c/ sing .\ c?(cost), + cost) .\ [2¢(&£? + £?) sin@sing + (£2 + £? — ¢?)(£ cosdsing + £ cosp)]g’

£+~
cosly— cosl  CcosH — CosO costy — cosd
(£ + % - A)(Lcoshsing + & cosp)g N 2c{(¢ cosfsing + £ cosp)gcost 0
cosy) — cost cosd) — cosd e

Thus, the equation incorporating the first order correctionigessentially Eq. (8), quadratic énZ, c, that defines the-plane
circles, plus terms that are of the third order in the same variables; this essentially follows from the felct thistof the order

of c. Since¢, £, c are small numbers, in practice thfeet of the third order terms is to distort the shape of the circles to some
degree, without altering the overall geometry.

4.3. Mapping to the b-plane of the next encounter

An important advantage of an analytical, albeit approximate, theory of planetary close encounters is that it gives us a key to
understand how a given region on thplane of an encounter is mapped on lthelane of the next encounter.

To this end, let us examine the derivatives of the coordingteg” on the pre-encountdr-plane of the second encounter.
They are functions of the pre-encounter coordingt&son theb-plane of the first encounter (see Appendix A.4).

In particular, let us consider the case in which the encounters are not too close, that is encounters for whih This
is not too much of a limiting choice: e.g., let us consider the well-known encounters with the Earth of 1991 X028
and of 1999 ANy in 2027. For 1997 XF, ¢ ~ 1.4 x 10°°, and the local MOID is 0.00019 AU, so that in the worst case
c/b ~ 0.076,c?/b? ~ 0.006, while for 1999 AN, ¢ ~ 3.9 x 107, and the local MOID is 0.00025 AU, so that in the worst
casec/b ~ 0.016,¢?/b? ~ 0.000 3. Thus, for both encounters the approximation neglecfitiaf is justified, and we can use the
approximate expressions given in Appendix A.5. Also neglecting the terris-r is justified because of the small valueof
for the terrestrial planets, with the exception of unusually slow encounters.

The Jacobian matrig(£”,¢”)/d(¢, ¢) is computed in two steps, as described in the appendix. The first one corresponds to
the change frong, 7 to &, ’, that is to the first encounter. The second one corresponds to the changg,ffom &7, /", the
Keplerian propagation between the encounters; in this step we need to take into account the depegtetieetohe delay at
the second encounter, 6f that is, ona’. On the contrary, the Keplerian propagation does fiecathe MOID, that ig” = ¢&'.

Hence the partial derivatives take the form

aé_-// B 85,
P
agl! 3 aé‘:/
a oL

64‘// 8§// 69/ + 64‘/
0é 00 ¢  O¢
ag// aé/ll agl ag/

oc " oo or " ar

Considering first the partial derivatives&f we have
o8 OX, dcosy’

aif - 6_)2060”' e

The principal parts foc/b — 0 of the derivatives appearing in this expression are easily obtained from the formulas of
Appendix A.5:

09Xy sing +0(c/b) 1

0é ~ singcosp + O(c/b)  cose +0(e/b)
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, 0cosp’
Xo P O(c/b),

and taking into account that ces= cos¢ + O(c/b) (the deflection is small), this implies
¢
3
The other partial derivative is

o¢' 6X() 6cos¢
8§ (4 Cosp’ + X ’

the principal parts of the derivatives are

2 O(c/b) B
8¢~ sinfcosg +O(c/b) olc/b)

X 2o =0l

= 1+ 0(c/b).

so that
o0&
e
For the partial derivatives af a similar argument applies. In the derivatives

= 0(c/b).

o O0X| , ., o 0cos8 ) 6SII’]¢ ,0sing’
5 = a;cose sing’ + X} % sing’ + X, cost’ T 6§ +Yj——— %

’ X / i /
%_i = 6)20 cosd’ sing’ + X C(;?G sing” + X cost 835? 6_(S|n9 Y()asc,;—ge,

proceeding term by term the principal parts épb — 0 are (Appendix A.5)

d;  cosf’ sing’ sing cosd
6_§ = —cos¢ + O(c/b) + O(c/b) + O(c/b) + prvp—— coso

?;; = 0(c/b) + O(c/b) + O(c/b) + ‘Z'Ir:f; +0(c/b) + O(c/b) = 1+ O(c/b).
Thus, as far as the first encounter is concerned, the mitrix’)/0(¢, ¢), has the following structure
£ |-

0 o

sing’ + O(c/b) + O(c/b)

1+0(c/b)  O(c/b) )
o(1) 1+0(c/b) |°

The important consequence of (9) is that, in the approximations used, the encounter is described by a nearly-area-prese
operator (calledE in Appendix A.2).
The partial derivatives of” are (disregarding terms i)

17 52111/ 7 (1 _1172) _ ’ ’ 7 ’
%:h.Zna [U’ cog 6 +_cos<9(1 ur?) 3U].acosa a —h-SU0). 0cosf +c’)§ (10)
o0& sing’ o0¢ c’)§ o0& o0&

17 52111/ 7 V(1 _1172) _ ’ ’ 7
o _ h. 2ra’®/?[U’ cog ¢ +.co,s<9 (1-U?)-3U"] _acosa o7 _ —h. UG- 0cos c’t‘g“ _ (11)
(4 sing (4 14 14 6§

In each of them, the first term comes from the Keplerian propagation, while the second comes from the first encountel
computed above. The terms describing the Keplerian propagation grow linearly with time due to the prebettoe mimber
of heliocentric revolutions made by the planet between the first encounter and the next one, and in general can become
large. The divergence of nearby trajectories is expressed by these terms in the majority of cases, that is, for a dynamical evo
dominated by small deflection encountasd« b?), and excluding tangential encounters @in 0).

The divergence of nearby orbits, havindfdienta’, is linear in time. However, sequences of encounters result in multiplica-
tive accumulation of the divergence from each encounter, and thus lead to exponential divergence and chaos, with the maxil
Lyapounov exponent proportional to encounter frequency.
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As the expressions f@iZ” /0¢ anddl” /d¢ show, the increase of the separation of initially nearby particles ob-fiiane of
the next encounter contains the facsgy’, ¢’), defined in Eqgs. (10) and (11), given by (disregarding terms)in

2na/5/2 [U’ cog ¢ +cost’ (1- U’2) - 3u'] 2 [u' cog ¢ +cosy (1-U"2) - 3u'].

(V. ¢) = ng’
sing (1- U2 -2V’ cos#)”* sing’

it is clear that, fora’ > 0, the sign ofsis determined by the sign o] cog ¢ + cos#’(1 — U’?) — 3U’]/ sin#’. Moreover, unless
sing’ = 0, in which case the use of our theory is questionabite0 (for & > 0) if

U’cog ¢ +cost (1-U?%) -3U" =0,
that happens for
U?2-1+ VU4+10U2+1

cost = 507 . (12)
If the post-encounter orbit fulfills this condition, then

64‘// : 64‘/

of 9

aé«// B aé«/

o o

4.4. Pre-images on the b-plane and keyholes

The termkeyholewas introduced by Chodas (1999) to denote the small regions &f fit@ne of a specific close encounter such

that, if the asteroid passes through one of them, it will hit the planet at a subsequent return. That is, a keyhole is simply one of
the possible pre-images of the Earth’s cross section ob-flane. The term keyhole may also be used to indicate a region on
theb-plane leading not necessarily to collision, but to a very deep encounter. Thus, a keyhole is linked to a specific value of the
post-encounter semimajor axs i.e., to the value allowing the occurrence of the next encounter at the given date.

We have seen in this section how to solve for a given valg,@nd have discussed the structure oflih@ane circles corre-
sponding to a givea’. However, the algorithm we use includes a Keplerian propagation between encounters, thus only concerns
the timing of the next encounter, i.e., the value of theoordinate, but leaves unchanged the MOID of the next encounter, i.e.,
theé-coordinate.

In fact, the MOID is bound to vary between encounters for two main reasons: on a long time scale, secular perturbations
(Gronchi & Milani 2001) make it slowly evolve through the so-called Kozai cyclepaycle, while on a shorter time scale
significant quasi-periodic variations are caused by planetary perturbations and, for planets with massive satellites, by the dis-
placement of the planet with respect to the center of mass of the planet-satellite system. Figure 4 shows the situation for asteroid
1997 Xk, from a precise numerical integration. Large short-period variations superimposed on the secular trend are evident, and
these make an analytical modeling of the variation of the MOID problematic.

For the purpose of obtaining the size and shape of an impact keyhole we can, however, just model the secular variation of the
MOID as a linear termféectingé”

=&+ S5 -1). (19
computing the time derivative @f either from a suitable secular theory for crossing orbits (Gronchi & Milani 2001) or using
a value deduced from a numerical integration. The result could then be corrected to take into account the short periodic terms,
possibly by taking into account the output of a numerical integration such as the one of Fig. 4. Without such correction, the
theory would reliably predict very close encounters (e.g., within a few thousandths of an AU), but not collisions. That is, the
theory may be used to predict keyholes in the looser definition, i.e., the points bipthee leading to very deep encounters but
not necessarily to impacts.

The actual keyhole computation proceeds as follows. We want to compute the pre-image of the point of codftlinates
" = 0, lying on theb-plane of thenextencounter, that takes plabeevolutions of the small body after tloairrentencounter,
on theb-plane of the latter. We start by computing iheagesof two points with coordinates, {1 andé, {2, sayéy, {7 and¢y,
£y, furthermore, we choosf andé; such that, = ¢;. Note that? is in general slightly dferent from¢?, but by a very small
amount, since in the approximation (%3)is a slowly varying function of. We then check whethét’'7’ < 0; if not, we choose
another pair of values faf; and{z, until the condition is verified. In practice, the segment parallel tqQ'thgis needs to straddle
one of the resonant return circles. At this point, we find the pre-image of a point#WithO, by using, for instanceegula falsi
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iterations; let us call the coordinates of this poifi, o), and the coordinates of its imagg(0). If [£]| < be, whereby, is the
radius of the Eartih, augmented by the gravitational focusing

2
b@=l’@ 1+—C

fo

then to a good degree of precision the pre-image of the point of coordiﬁ;a,tegbé —§(’)’2 is the point of coordinate,

NI 56'2 /(0" 19¢). The accuracy of this algorithm can be easily checked and improved, if necessary, by an iterative proced
based again on thregula falsi
The basis of the above procedure is that, while the “horizontal” distance dmglane (i.e., alond) remains essentially

unchanged between the two encounters, the “vertical” one, &lpisgstretched by a large factor that, as seen in the preceding
subsection, comes almost entirely from the propagation between the encounters. Therefore, the “pre-image” of the Eart
the b-plane of the encounter preceding the collision must resemble a thickened arclet closely following the shape of the ci
corresponding to the suitable orbital period; the smallness of the impact keyholes is mainly due to the non-area-preserving n:
of the propagation between encounters, i.e. to the large values that can be reaglfétyandol” /oL’ .

5. Examples and applications
5.1. Resonant returns

To test the theory described in the previous Sections, we apply it to the two already mentioned cases of the encounters wit
Earth of 1997 Xk in 2028 and of 1999 AN, in 2027; let us start from the latter.

The encounters of a rather large number of “virtual” 1999; f\(fictitious asteroids with orbits compatible with the ob-
servational record available in March 1999) were analyzed by Milani et al. (1999), using a realistic gravitational model; arot
the date of closest approach (7 August 2027), the virtual asteroids have spread into a very thin and long wire extending o\
good fraction of an AU. Actually, all the virtual 1999 Abls at that time occupy a very small region @t €, i, w, Q) space, but
the small diferences i have accumulated into a substantial spreading in the mean anomaly, similar to what happens in 1
along-track dispersion of meteoroids in streams.

We model the wire as a very large number of particles all sharing the same valyesiof such that) = 0.884,0 = 1083,
¢ = 41°3 — the same MOID of 0.000246 AU, so tiéat 0.000246, and diering only in the time of closest approach; this means
that the wire, in thé>-plane, is just a segment parallel to theaxis that extends to = +0.21.
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Fig. 5. The outcomes, computed with the extenduik theory, of the August 2027 encounter with the Earth of asteroid 199QAMNft final
states in thea-e plane (a circle marks the pre-encounter orhiight: final states in the planat (difference in time from closest approach;

At = 0 for encounter at the MOID) v& (post-encounter orbital period). The left panel is equivalent to Fig. 2 of Milani et al. (2000c), the right
panel to Fig. 1 of Milani et al. (1999), in order to show how the exterf@dpik theory reproduces the important features of the encounter. For
the meaning of the inclined lines, see text.

Figure 5 shows the post-encounter parameters of the virtual asteroids; its left panel shows the situatia® jplahe, and
has to be compared with Fig. 2 of Milani et al. (2000c), while the right panel shows the/ilddiference in time from closest
approach) vsP (post-encounter orbital period), and has to be compared with Fig. 1 of Milani et al. (1999); in this panel we
have also traced the same inclined lines of the corresponding figure of Milani et al. (1999). These lines show the conditions to
encounter the Earth at = 0 in, from right to left, 2040, 2038, 2036, 2034, 2039 and 20837 (the two leftmost lines, crossing
on theAt = 0 axis). The encounters correspond to resonant returns due to, respectiveLIh&1, 59, 4/7, 7/12 and 35
mean motion resonances; th® 3esonance appears twice, with the two curves on the left crossing each other, corresponding to
returns in 2037 (the less inclined one) and 2032.

The comparison of the two panels of the figure with the corresponding figures of Milani et al. (1999, 2000c) shows that the
basic phenomenology of the behaviour of the virtual asteroids wire is well reproduced. Careful inspection of the figures reveals
that some details areftirent. According to Fig. 5, some virtual asteroids can reach/fhee3onance, but this possibility was
excluded by the computations of Milani et al. This is due, of course, to the inherent approximations taken in the analytic theory,
which complements, but cannot fully replace the much more realistic and detailed numerical computations.

5.2. Keyholes

Figure 6 refers again to the August 2027 encounter of 1999AN it, the dotted lines show the circles corresponding to the
mean motion resonanceAl3, 1017, and 1119, leading to returns in 2040, 2044, and 2046, respectively. Close to each circle,
the full lines show the keyholes leading to encounters within 4 Earth radii at each resonant return.

The reason why there are two keyholes for each resonant circle is that, to have an encounter within a very small distance,
saybmax at a specified date, two conditions must be met, sincedyotimd¢”’, theb-plane coordinates at the next encounter, must
be small. The vicinity to the resonant circle takes car¢”’ofand Eq. (13) gives the condition gt the previous encounter in
order to haveé” small; the latter condition forces the keyholes not to be symmetric with respectdeattis. Then, the keyholes
are near the intersections of a strip, of width approximately equa)4g parallel to the’-axis, with the given resonant circle; in
most cases there are either two intersections or none.

The vertical segment in Fig. 6 represents the wire of virtual asteroids at the encounter. As it can be easily seen, thé ranges in
spanned by the keyholes leading to encounters within 4 Earth radii in 2040, 2044 and 2046 are so large that these encounters could
take place even if the MOID at the epoch of the 2027 encounfiiered by several Earth radii from that of the real 19994N
this is not true only in the case of the 2040 encounter, corresponding to the smallest circle of Fig. 6, since in that case an increase
of the MOID of about 1 Earth radius is alreadyftient to prevent the intersection of the wire with the resonant circle.

Let us now see how the extension@pik’s theory described in this paper allows us to trace the contours of collision keyholes.

To this purpose, let us examine the October 2028 encounter of 1997 f§Fthis asteroidlJ = 0.459,6 = 8420 and¢ = 99:5.
The pre-images of the Earth for a collision at a resonant return in 2040, are shown in Fig. 7; there are again two keyholes, whose
shape has been computed disregardingyifyoé anddl” /0 the smaller terms of first order #, ¢ (see Appendix A.4).
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Fig. 6. The dotted lines show the circles, in
the b-plane of the August 2027 encounter
with the Earth of 1999 AN, correspond-
ing to the mean motion resonance¢s¥ (up-
per circle), 1017 (smaller of the two lower
circles), 1119; these resonances lead to re-
turns in 2040, 2044, 2046. The units for the
b-plane coordinateg and¢ are Earth radii,
and the Earth is shown at the origin with a
circle drawn to scale. Note that the radius
of the Earth on thd-plane is larger than 1,

7| in this case by about 8%, due to gravita-
tional focusing. The lines on, or close to,
each circle, denotbe-plane coordinates re-
sulting in encounters within 4 Earth radii at
the resonant returns, assuming a linear drift
in the MOID by Q35 Earth radii per year. To
guide the eye, a vertical segment is traced at
! ¢ = 5.8, corresponding to the actual MOID
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Fig.7. Keyholes, in theb-plane of the
October 2028 encounter with the Earth of
1997 XR;, for collision at the resonant re-
turn in 2040; units for the coordinates are
Earth radii. Upper left keyhole nearer to
the Earth, with the latter shown to scale
for comparison (the gravitational focusing is
here about 30%)upper right keyhole far-
ther from the Earth; lower left and lower
right: enlargements of, respectively, the near
and far keyholes shown in the correspond-
ing upper panels. The resonant circle cor-

=27

- responding to the exact resonance is drawn
—26 25 € with dots.
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Fig.8. Keyhole, in the b-plane of the

October 2028 encounter with the Earth of
1997 XR;, for collision at the resonant re-
turn in 2040; units for the coordinates are
Earth radii. The initial conditions have been
modified with respect to Fig. 7 in order to
force the two keyholes of that figure to coa-
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Both keyholes span, ig, roughly the diameter of the Earth augmented by the gravitational focusing; itishiat a great
compression is noticeable. This compression, so to speak, is necessary to compensate for the divergence between nearby trajec-
tories due to the Keplerian propagation (see Sect. 4.3). The divergence is by a factor between 2200 and 2 600 for the keyhole
nearer to the Earth, and by a factor of about 120 for the other one, whose total area is thus much larger. As already remarked,
the result of the large compressiondris that the shape of a collision keyhole closely follows the resonant circle to which it is
associated, thus looking like an arclet whose thickness is determined by the defiyéfive.

In Fig. 7 it is easily visible that the keyhole farthest from the Earth is somewhat displaced from the resonant circle. This is
because the exact resonance corresponds to the circle and the return does not take place at the resonance, but d@exstightly di
value ofa to compensate for the non zero valug @t the first encounter.

Note also that this figure has been traced ignoring the correction due to heliocentric distance of the encounter not being
exactly 1 (i.e., due te # 0); however, we have checked that the terms of the first ordemiauld displace the position of the
resonant return with respect to the circle of Eq. (8) by about 1% of the distance to the Earth.

Finally, a numerical integration, done with the software described in Milani et al. (1999, 2000c), shows that nearby trajectories
actually diverge by a factor 134 between 2028 and 2040: as we have just seen, the efteikdgides for the corresponding
derivative ¢¢” /0¢) a value of about 120; this agreement, to within about 10%, is quite satisfactory, given the approximations
involved.

5.3. Interrupted returns

When the MOID (i.e£) of the orbit of a small body encountering a planet is nearly equal the to rRdafighe circle corre-
sponding to a given return, there are interesting consequences if also the valigectifse to the coordinate of the center of
the circle. When this is the case, we must distinguish between two possibHties, andR = &; to discuss them, we will again
make use of the same type of “wire” approximation used to discuss the previous examples.

In the first caseR < &, we have that the portion of the wire for whi€h~ ¢ is close to the resonance that leads to the return
of interest, but remains always on the same side of the resonance itself; as a consequenbeplanef the next encounter
the wire cannot straddle th# -axis, but has to bend and leave the vicinity of the planet from the same side from which it has
approached it. This is the case of interrupted returns discussed by Milani et al. (2000c, Fig. 7).

In the second case, whé&hz &, we have interesting consequences for the portion of the wire for wihieh. In this case,
we can have a keyhole rathefférent from those discussed previously, and Fig. 8 illustrates an example obtained by suitably
modifying the initial conditions leading to the two collision keyholes of 1997 pdiscussed previously.

On one hand, there is just one keyhole, as the wire is not crossing the circle, but nearly tangent to it; on the other hand, in this
keyhole the divergence of orbits alotigs much smaller than in the other cases.

To understand this, let us consider Eq. (11), givég/d¢; in it, the termd cosy’ /0 passes through zero at the tangency of
the resonant circle, implying that also the largest teri#ityd, passes through zero, while the remaining teim/dZ, is close
to 1; this means that, somewhere in the vicinity, the entire derivatiVg¢d/ is null, or very small, with the consequence that the
keyhole can extend substantiallydnThis is clearly visible in Fig. 8, where the keyhole spans almost 40 Earth ragieind is
in contrast with “normal” keyholes, like those of Fig. 7 that, al@gh@re thinner than thb-plane image of the Earth by a large
factor (of the order 06" /d¢ that, as we have seen, in those cases is rather large).

Concerning;, the situation is essentially governed by the valuéf/d¢ that, as is easily visible from Eq. (10), can be rather
large, so that very small changestiproduce large changési.e. in the timing of the next encounter, leading to the very small
thickness visible in Fig. 8.
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In these nearly tangent cases, especially if the condition given by Eq. (12) is fulfilled, we malaigm/ikeyholes, which
represent a new, unsuspected phenomenon. The assessment of their importance for collisions in the solar system goes bey:
scope of the present paper, and is the topic of continuing research.
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Appendix A: Computational details
A.1. Pre-encounter state vector

The pre-encounter state vector has compon&hts,(¢, &, £, tp). To compute these components from the heliocentric elements
(a, &1, w, Q, f) we have to consider where the encounter of interest takes place.

Let us call2, the longitude of the planet at tinig; then, if at that timef = —w, the encounter takes place at the ascending
node, in the post-perihelion branch of the orbitik w < 2, and in the pre-perihelion branch otherwise. If at tieve have
f = 7 — w, the encounter takes place at the descending node, in the post-perihelion branch of the erhit € &, and in the
pre-perihelion branch otherwise.

Thus, taking (6) into account, and neglecting terms of second order in the miss distance at the nocté()(@at\%), at the
ascending node we have

B a(l-¢€)
¢ =08 | T ecosw
_ _si £ _
¢, = £cosftang sm6(1+ cos¢)tan(g Ap),

with
0<¢<%if0<f<mn<w<%

3 .
?ﬂ<¢<2ﬂ'|fﬂ'<f<2ﬂ,0<0)<ﬂ,

whereas at the descending node we have

a(l-¢)
1 - ecosw

& = cosg

¢l =&cosftang — sine(l + %)tan(ﬁ - Ap—7),

with

g<¢<ﬂm<f<m0<w<ﬂ

7T<¢<37ﬂ-if72'<f<2ﬂ,7l'<a)<2ﬂ'.

For the remaining components, let us see first vibik’s theory, which assumes that the position of the small body coincides
with that of the planet, gives; in this case, we haveldo and¢:

U= \/3— g— 2./a(1-e?)cosi
va(l-e?)cosi -1
\/3 -1/a-2+/a(l1-€?)cosi
+2-1/a-a(l-€)
++/a(l- €?)sini

with the quadrant of determined from the previous considerations. The node-crossingdioa be computed by standard
two-body formulas, including Kepler’'s equation.
Since

_ —_112
Ja(l-e)cosi = %,

a simple expression faris in terms ofU, a

6 = arccos

tang =

1-U2-1/a

cosf =
2U
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Finally, a, e, i can be obtained frord, 0, ¢
1

a =
1-U2-2Ucosd
e=U \/(U + 2 cow)? + sirf sir’ ¢(1 - U2 — 2U cosb)
. U sindco
i = arctal .

1+ Ucoso

The non-zero planetocentric distance of the small bdiicts the computation df, 6, ¢ from a, e, i only if the heliocentric
distance of the small body is not 1: if = 1, Opik’s classical expressions are validr £ 1 + €, an explicit computation fod.,
0. andge, i.e. the values o), # and¢ corresponding to such a situation, gives, at the first order in

2U3cosd + 4U2cog0+ U2 + 1

U2 +2Ucost + 1
U3(2co26 + cosh) + U%(4cosS 9+ 2co26+cost + 1)+ U cosd + cosd — 1

U3 +2U2cos8+ U
U3(1 - sin? 6sir? ¢) + 2U2 cost(2 — sir @ sir? ¢) + U(L + 4 cog 6 + sir? 6 sir? ¢) + 2 cosy
U sir?#sing(U2 + 2U cosd + 1)

U=U-e€-

COSf, = COSO + € -

sing. = sing — e -

U2+2U cose—l)

COS¢. = COSp - (1 .
Sbe = COSP ( "€ UZr2Ucosa+ 1

whereU, 6, ¢ are the values computed fe= 0, and
€ =/ cosfsing + £cosp.
On the other hand, if we have a generic vedfioapplied inr = 1 + ¢, we obtaina,, €, i. from the components df with the
following expressions, again at first orderdn
1 1
— ~=-2¢
a a

N a
8~ 1-2ae

1
~a(l+2a) for a<x =
€

e =e+e-UU — Usirfgsir ¢ + 4 cosd)

. . €
tanic =tani-|1- s
€ ( 1+Uy)

wherea, €, i are the values computed fer= 0; as shown by the formulae relatiago a., care must be taken in the case of
comets, where can easily be non negligible with respect talFor ¢ and/ the formulas given above are correct to first order
in € if the angle® and¢ are computed to the same order.

A.2. Post-encounter state vector

The close encounter can be seen as an opeatioat maps the pre-encounter state vebtowith componentsU, 6, ¢, &, £, to),
into the post-encounter on&, with componentsy’, ¢, ¢’,¢’, ", 1)

V' = EV.

The components of the post-encounter state vector, as functions of the pre-encounter state vector componénts (with

U =u
(b? - ¢?) coss + 2¢£ sing \/[(b2 — ?)sinf — 2cz cosd)? + 4c¢?
¢ = arccos = arcsin
b? + ¢2 b? +c?
|(0? - ¢?) siné - 2cZ cosd| cosg + 2c£ sing [ (02 = ) sing - 2c£ cosd] sing — 2c¢ cose
¢’ = arccos = arcsin

[(b2 = ¢?) sind — 2c7 cost]® + 4c2&2 \/[(b2 — ?)sinf — 2cz cosd)? + 4c¢?
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(0% + ¢2) £ sing

¢ -
\/[(b2 — ) sinf — 2c7 cosd)” + 4c2¢?
(? - ¢?) £ sing - 2b%ccosy
=
\/[(b2 — ) sing — 2cz cosd)? + 4c2¢?
. 2¢ ¢ sing(2£ cosd — £ tang) — cosg (¢2sir? 6 + 2]
0

=T+ U sing{[(b2 — c2) sing — 2c/ cosd] cosg + 2c£ sing}

A.3. Propagation to the next encounter

A purely Keplerian propagation can be seen as an opeRthiat maps the post-encounter state ve&tbin the pre-next-
encounter on¥'”’, with componentsy”, ", ¢”, &, ", t;)

V" =PV

The transformation is given by:

U 17 = U ’
9// — 6/
¢// — ¢/
é:ll = é‘:/

" =¢ —(mod|h- 27a’®2 + 1, 21| - ) sing’
ty =tg+h-2ra®?,
where the key parameter is the post-encounter semimajoaaxiote that the only components ¥f that difer from those

of V" are the-component on the post encounbeplane/” and the time of nodal passatje
ClassicalOpik's theory, which assumes that the position of the small body coincides with that of the planet, gives

o - b? +c? .
~ (B2 +¢2)(1-U2) - 2U [(b? - c2) cosh + 2cZ Sind)

For finite miss distances the first order correctio®ik’s expression would be, as we have seen before:

1 1
—==-2¢
a

with

2b%csingsing + (b? - ¢) ({ cosdsing + £ cosg)

’
€ =
b? + 2

A.4. Derivatives

To write the derivatives, let us consider the total evolution from before the first encounter to before the second as the compos
of the first encounter and of the Keplerian heliocentric propagation, as seen in the previous subsections

V" = PEV.

The matrix of derivatives is then

8(U //’ 9//’ ¢II’§//, g//’ t(l)l) B 8(U //, 6“, ¢II’§//’ érll, t/o/) . 6(U I’ 9/, ¢/,§/, g/’ t(l)
6(U» 6» ¢7 §9 g’ tO) 6(U/7 9,7 ¢/» f,» g,? t(/)) 6(U? 6? ¢7 §9 g’ to)

where the propagation derivatives matrix is regarded as a function of the pre-first encounter vaviah)lesd, ¢, to).




oU.0.0.8.0.%) |55 % 9% 9 9 O
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For encounters computed with the extenégik theory,

(1 0 0 0 0 0
A% 0% o

aU,0.6,£,0%) | U @ a6 % o

1 0 0 0 0O
0O 1 0 0 0O
6(U”,9”,¢",§”,§”,t6’) ~ 8 8 é (]? 8 8
N0, 87,87 %) o o w a |
U 90 a¢ 0E o

% o 575 z

¢’ ¢’ ¢’ ¢’ ¢’

6(U/I’ 9//,¢/I’§//’§//’tfol) B g_g[ g—g g—? g_g g_é O
9(U,0,¢,£ ¢, 1) 30 a0 o o ac O

Lau @6 8¢ 9 o

We are interested, in particular, in the submadr{g”, ”")/0(¢, £), giving the derivatives of thb-plane coordinates of the second
encounter with respect to those of the first encounter. The Keplerian propagation do@sattha MOID, i.e.£” = &, so that
the first row of the matrix is

o
0¢
o
oL

o0& _ 9% c’)cos¢
% = O cosg’ + X,
g 0X, c’)cos¢ .

a§a§S¢XO

On the other hand, the Keplerlan propagatifie@s/ only througha’, andU is an invariant of the motion. Thus the derivatives
of £ with respect t& andZ have the following structure

aé«//
0¢

6§//
e

_woe o
o0 ot ot
A 2nars/2 [U cog ¢ +cos# (1-U"?) - 3U'] 9 cost’
sing’ 3
" 107a7/2[U’ cog ¢ + cos’ (1 - U'2) - 3U’| (¢’ cost’ sing’ + ¢ cos¢’) g cosyy
sing’ 0§
278’52 [25’ cos#’ cosg’ + ¢’ sing’ (2 cog ¢ + 3sir’ 0’)] dcosy . o
sing’ 0¢ 3
_aor o
o0 or T ac
A 2na’5/2 [U’ cog ¢ +cos# (1-U"?) - 3U’] 9 cost’
sing’ o
" 107a7/2[U’ cog ¢ + cos (1 - U'2) - 3U’| (¢’ cost’ sing’ + ¢ cos¢’) g cosyt
sing’ o

2nal/2[2¢' costt cosy’ + ' sing’ (2cod @' +3siP )| gcosy o
' sing’ e e
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with the derivatives of” with respect t& and{ given by

o 0X; . dcosy . 8sm¢ asing’
= / ’ ’ / ’ SH YI

o % sing” + X, co % 6§ 0—8§

or 00Xy .., ,0cos¢ 6SII’]¢ ,dsing

% = % cosd’ sing” + X, % sing” + X cosy % 6§ Y°8—§'

Note that the second and the third term in the derivatives of the Keplerian propagation are of the firstgrdér $o that they
are, in many situations of practical interest, much smaller that the first term, and can be ignored.
The individual derivatives entering the above expressions are

K aX()  Z()V, |, (19Z() Z(t)0Y;
*\Uy  oé Uz ¢

P T U, o0&
Xy oX'(t)  Z'(ty) OU; 10Z'(t)  Z'(t) au
U, o Uz

o A U, o

Ny _ Y (ty)  Z'(t) 9Y,

FET U, o¢
Ny aY'(t) Z'(ty) 9Y,

19Z/(t)  Z'(t) 0U; )
U, 0f Uz

10Z(ty) Z (tb) 9

C C C
/\/—\A

o, A U, o U, ac U2
TS smg/as;y’)
8(;2; =U (83"16/ sing’ + sina'asai;(ﬁ,)
o, y 9 cos?
FE &
o, L 9 cos?
a A
3812:2 =U (asai;g/ cosyp’ + sine’acgjﬁ/)
ou;  [dsing , . 0cosy
ac —U( 9 cos¢p +sm6—a§ )
OX'(t,) _ ACPEsing (¢ cosd +csing) + (b* - c*) cosp
o (02 + c2)?
aX(ty) A% (csingsing + £ cosg) + (b* - c* + 4c%?) cosdsing
o - (b2 + c?)?
9Y'(t) _ 4¢?¢ (ccosh — ¢ sind)
¢ (b? + c?)?
aY'(t)  4c% (ccost —¢sind) +(c* — b*)sing
3 (02 + 2)?
07/(t;) 4c%cose (csing + £ cosd) — (b* — c* + 2¢%2) sing
o (02 + c?)?
97'(to) _ A% (csindcoss — £sing) + (b — c* + 46%?) cosh cosg
a (02 + 2
o,  tang

3¢~ Using
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My 1
8¢ Utand

My Ay 10Z(t) | Z(t) 0y

9 " 9F Uy o | U2 of

M _ oy 10Z(t)  Z'(t) 9Y;
o o Uy a Uz o

oa 8Uc£ (ccosh — ¢ sind)

0¢  {(B? + c?) (1 - U?) — 2U [(b? — c?) cost + 2¢Z sind]}?

oa 8Uc/(ccosd — ¢ sind) + 4U (b2 +cz)csin6
0 {(02 + ¢2) (1 - U2) — 2U [(b2 — c?) cosd + 2¢Z sind]
de _ COS¢
P
Oe .
i cosd sing
g Ac%(csingsing + €) + (b* - ¢*) cosp
o (b2 + )2
oe  AC% (csindsing + €) + (b* - ¢*) cosdsing
a (02 + 2
oa, oa O€ oa’
€ _ 2 2, 4 ral .
oe ~oe "7 e TN
oa, oa _ , 0¢ ., od
o —a—§+2a . % +4ea - o
oy o oal,
- _0 h ' G
Py P + 3hr [l o
oy o —5al,
8(: = 8_£: + 3hr aE, 64'
dcosd’  4cé(ccosh — £ sinb)
0é (b2 + c2)2
dcosy  2¢|(b? +¢?)sing + 2 (ccos - ¢ siné)|
o (02 + ¢
dsing’ (b2 - 02) cost + 2¢Z sind 9cosd
%* \/ [(B2 = c2) sind — 2cz cosh]® + 4c2&2 o¢
dsing’ (b2 - Cz) cost + 2¢Z sind 9cosd
9 \/[(b2 — 2)sing — 2cz cosd)? + 4c2¢2 o
dcosy’ 2 (£sinfcosg + csing)
0¢ -

\/[(b2 — ) sing — 2cz cosd)? + 4c2¢2
2¢ |(b? - ¢2) sin? 6 — 2¢ (¢ sind cosd — ©) | {[(b? - ¢?) sin® - 2c¢ cosd| coss + 2c¢ sing)

\/ {[(b2 - c?) sing - 2c¢ cosd] + 4(:252}3
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gcosp’ 2 cosp (¢ sinfd — ccosb)
o

\/ [(b2 — ¢?) sind — 2c cosh]® + 4cé?
2{[(b? — %) sin6 - 2cz cos#(¢ sin6 — ccosh) } {[ (b — c?) siné — 2cz coss| cosy + 2c¢ sing)

\/{[(b2 — ) sind — 2cz cosd)” + 40252}3

asing’ 2 (£sin@sing — ccosg)
P

\/[(b2 — ¢2)sing — 2cZ cosd)? + 4c¢?
2¢ [(b? - ¢2)sin? 6 — 2¢ (¢ sind cosd — ¢) | {[(b? - ¢?) sin® - 2cZ cosd| sing - 2c¢ cose)|

\/ {[(0?2 - ) sing - 2c; coso] + 40252}3
gsing’ _ 2 sing (¢ sind — ccost)
a

\/ [(02 — ¢?) sind — 2c cosd]? + 4cé?
212~ ) sine 202 cost] ¢ sine — ccos) (i - ) sind 26 coss|sing 2 cos)

\/{[(b2 — c?)sing — 2cz coso]? + 40252}3

A.5. Approximate equations for small deflection

When dealing with encounters of NEAs with the terrestrial planets, we have that in many cases of interagt)? is very
small. This happens because for these plamets3 x 1076, and typical values of) are around 0.5. On the other hand, for an
Earth-encountering asteroid with ~ 0.5, a rather typical value, the minimum valuelothat avoids collision is

b= \/r2+2cre ~5x10°,

so that for most encounters the conditioh< b? is verified (the only exceptions are extremely deep encounters with very
low U.)

If we can assume? < b?, most expressions of this paper can be approximated by much simpler formulas ne@éciibg)
terms. We have collected these approximate formulas below.

The post-encounter state vector:

u=u

2cf . - 2
0 = arccos(cose + bif sma) ~ arcsw(sme - b—cf cosa)

' ~ arccogco +2—C§sin ~ arcsinsin —Z—C‘fco
g~ ¢ b2 sing o)~ ¢ b2 sing ¢
, 2_c§cos€
¢ ~§(1+ b2 sina)
o1 200 20
¢ ~§(1+ b2 sin9) tand

2¢ ¢ sing (24 cosy - £tang) — cosg (£2sin? 0 + 2|
i Ub? sin? 6 cos .

t(,)ztO

Note that, in this approximation, unless 8iis very small,£' /¢ = 1 + O(c/b), that is the local MOID is nearly conserved. This
corresponds to the intuitive idea that an encounter can hardly change the MOID, because a significant deflection only occurs
the MOID point, and the post-encounter orbit has to pass from the encounter point. Note also that

€ =~ €+ 2csingdsing.
Post-encounter semimajor axd’s

auc

b2

4 .
a = a(1+ sme).



G. B. Valsecchi et al.: Resonant returns to close approaches: Analytical tiioline Material p 9

Partial derivatives:

oX'(tp) _
e COos¢
0X'(tp) N .
6—§ ~ cosésing
Y'(to)
Sk 0
aYa,?b) ~ —sing
T
T sing
0Z'(to)
T cost cos¢
da  8Uacfl
% Ri— sing
oa  Makc(£-22)
TR — sing
6080;9, ~ —% sing
dcosy’ 20(52 —4“2) .
% ~ ™ sing
asing  Acel
asing 2c(2- &) coss
a b*
dcosp’ 2¢(22 - €) sing
9~ bt sing
dcosy’  4Acgl sing
d¢ ~  b* sing
asing’ 20(52 - §2) COS¢
o b* sing
dsing’  4céf cosp
. ~ b* sing
Xy 1 2cL|(£*-¢*)cosdcosp - 2L sing)|
o¢ ~ cosp b*sind co? ¢
Xy 2 [(£2 - ?) costcosg + 2¢¢ sing)|
o b*sin6co2 ¢
oY, cososing 2¢L[(¢2 - €2)(1+ cog6)sing cose + 27 (cog ¢ — sin? ¢) cosd
— x — +
d¢ ~ sinfcose b*sir? 6 cog ¢

aY; 1 2c£[(%- €2)(1+ coS o) sing cosp + 2 (cog ¢ — sir? ¢) cosd|

¢~ sing b* sir? 6 co? ¢
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A.6. Approximate equations for large deflection

Encounters of interplanetary objects with the giant planets are characterized by vatlasgef than in the cases seen before,
because of the large masses of these planets. As an example, the 1779 encoufitexalf With Jupiter was characterized by
¢ ~ 0.01; considering tha could have been as low as 0.0003 (Le Verrier 1857), we have that for the closest agpreach,
a case in which the following simplified expressions hold.

Post-encounter state vector:

u=u

) 2 . .2
6" ~ arccog— cosd + ?Slné’ =~ alcCsl SII’]9+?COS{9

¢ ~ arccos{— COoS¢p + z—gﬂ) ~ arcsir(— sing — 2—5@)

c sind c sind
s 1 _ % COY
¢ ~§(1 c sine)
< —e1-Ze2)

c sing

/ 2[¢(2¢ cost - £tang) sing — (£2sir? 6 + (%) cosg |
0= Ucsir? 6 cose '

Note that, also in this approximation, unlessé&ia very small ¢’ /¢ = 1 + O(b/c), that is the local MOID is nearly conserved.
Note also that

€ ~ —e.
Post-encounter semimajor axds

4alUl
c

a =~ a(1+ sine).

Partial derivatives:

X () 4

~ —CO — sin@dsin
0¢ S+ c ¢

6);?[)) ~ —Ccosfsing + % singsing

aY'(tv) X
o0& c
aY'(tv)
e
9Z'(tp)
o0&
Z'(t 4 .
aa—gb) ~ — COSH COSg + ?( sind cosg
oa % cosf
¢ € (1-U2+2Ucosh)?

cost

o
~ SIng + ? cosd

4

~ sing + < sind cos¢g

da 44U 2fcosd +csing . 32U% Sirt 6

9 € (1-U2+2Ucosh)® € (1-U2+2Ucosh)’

dcosy 48
o @

dcosy’  2(csinb + 2{ cosh)
a c?

cosd
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asing’ 4 cog o

¢~ 2 sing

asing’  2(ccosh — 2{sinf)
a c?

dcosy’  2(csingsing + 2¢ cosg — 2/ cosdsing)
o c2sinf o

dcosp’ _4§cosesin¢
o, cZsirfe

asing’ _2(csin9 COS¢ + 2£sing — 27 cOSH COSe)
o c2sin e

dsing’  4écosfcose
o,  csirtg

Xy 1 . 2 (£ cosfcosg — 2£ sing)

¢~ cosg csingco? ¢

Xy 26 cosd

¢ ¢ sinfcosg

dYy  cosdsing . 2 [§ (CO§9 + Sin9005¢) sing cosg — & (1 + sind cosep) cosd sir? ¢]
9~ singcosp csirt 6 cod ¢

oY, 1 2[(sing + cosp) costcosp — £(sing + cos 0 cosp) sing|
a¢  sing csirf 6cog ¢




