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We propose that the observed spin relaxation in bilayer graphene is due to resonant scattering by
magnetic impurities. We analyze a resonant scattering model due to adatoms on both dimer and nondimer
sites, finding that only the former give narrow resonances at the charge neutrality point. Opposite to single-
layer graphene, the measured spin-relaxation rate in the graphene bilayer increases with carrier density.
Although it has been commonly argued that a different mechanism must be at play for the two structures,
our model explains this behavior rather naturally in terms of different broadening scales for the same
underlying resonant processes. Not only do our results—using robust and first-principles inspired
parameters—agree with experiment, they also predict an experimentally testable sharp decrease of the
spin-relaxation rate at high carrier densities.

DOI: 10.1103/PhysRevLett.115.196601 PACS numbers: 72.80.Vp, 72.25.Rb

Understanding spin relaxation is essential for designing
spintronics devices [1,2]. Unfortunately, spin relaxation in
graphene structures has been a baffling problem [3]. While
experiments in both single layer graphene (SLG) [4–11]
and bilayer graphene (BLG) [7,8] yield spin lifetimes on
the 100–1000 ps time scale (the highest values achieved
in graphene/h-BN structures [12,13]), theories based on
realistic spin-orbit coupling and transport parameters pre-
dict lifetimes on the order of microseconds [14–24].
While the magnitudes of the spin-relaxation rates of SLG

and BLG are similar, the dependence of the rates on the
electron density is opposite in the two systems. In SLG the
spin-relaxation rate decreases with increasing the carrier
density [5–8], inBLG the spin-relaxation rate increases [7,8].
Since the diffusivity in the investigated samples decreases
with increasing the electron density, it has been a common
practice to assign two different mechanisms to both struc-
tures: the Elliott-Yafet mechanism [25,26] to SLG [5,6,9,10]
and Dyakonov-Perel mechanism [27] to BLG [7–9].
The main problem with that assignment is quantitative.

Spin-orbit coupling in graphene [28] is too weak to yield
such a small spin-relaxation time.An explicit first-principles
calculation [23] predicts that one would need 0.1% of
adatoms to give a 100 ps spin lifetime. Recently a new
mechanism for SLG was proposed [29] (see also Ref. [30]),
based on resonant scattering off local magnetic moments.
It gives the observed spin-relaxation times with as little as
1 ppm of local magnetic moments and also agrees with the
experimental behavior for SLG of decreasing the spin-
relaxation rate with increasing electron density. Where do
these local moments come from? It was theoretically
predicted that adatoms such as hydrogen [31,32], but also
chemisorbed organic molecules [33] can be responsible.
Experimentally it was demonstrated that hydrogen adatoms
indeed induce local moments [34,35], but even untreated

graphene flakes were shown to exhibit 20 ppm spin 1=2
paramagnetic moments [36]. The most natural candidates
for resonant magnetic scatterers appear to be polymer
residues from different fabrication steps of graphene devi-
ces. Ourmechanism is also in linewithmesoscopic transport
experiments [37,38] which found strong evidence for the
local magnetic moments in the dephasing rates. Our theory
does not work for high adatom concentrations (say, above
0.1%), at which the induced magnetic moments seem to
form a fluctuating magnetic-field network [34].
In this Letter we propose that the spin relaxation in BLG

is caused by the same mechanism of resonant magnetic
scatterers. We show that (i) adatoms (we model specifically
hydrogen) on dimer and nondimer sites of BLG give
different resonance energies and resonance widths, (ii) the
calculated spin-relaxation times are in quantitative agree-
ment with experiment, (iii) the opposite trends of the spin-
relaxation rate in SLG and BLG are due to different scales
of the energy fluctuations (caused by electron-hole pud-
dles) in the two structures, reflecting their different density
of states (DOS), (iv) the spin-relaxation rate in BLG should
reverse its trend and decrease with increasing electron
density at high densities, making an experimentally veri-
fiable prediction. As in SLG, also in BLG resonant
magnetic scatterers are spin hot spots [39]: affecting spin
but not momentum relaxation.
Model Hamiltonian.—We consider a single adatom on

AB stacked bilayer graphene sitting on either a dimer or a
nondimer position. The full model Hamiltonian is H0þH0,
where

H0 ¼ −t0
X

hm;niσ
λ∈ft;bg

jaλmσihbλnσj þ t1
X

mσ

jatmσihbbmσj þ H:c: ð1Þ

is the unperturbed BLG Hamiltonian with intralayer
nearest-neighbor hopping t0 ¼ 2.6 eV, and direct
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interlayer hopping t1 ¼ 0.34 eV [40]. We neglect indirect
interlayer parameters which yield fine features of the
energy bands (such as warping and electron-hole asym-
metry) as unimportant for our purposes. The first sum runs
over hm; ni nearest neighbors in the top (λ ¼ t) and bottom
(λ ¼ b) layers. The second sum runs over the a sites of the
A sublattice of the top layer and b sites of the B sublattice of
the bottom layer. State jcλmσi represents the spin σ carbon
2pz orbital on sublattice c ¼ fa; bg and site m in layer λ.
The eigenvalues of H0 are [41,42]

ε
μ
αðkÞ ¼

α

2

�

μt1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2
1
þ 4t2

0
jfðkÞj2

q

�

; ð2Þ

where the index α labels the conduction (α ¼ þ) and
valence (α ¼ −) bands, and μ stands for the high (μ ¼ þ)
and low (μ ¼ −) energy bands with respect to the charge
neutrality point, for fðkÞ see Supplemental Material [43].
We place the adatom on the top layer either on a dimer

siteCd, which is an a
t site, or on a nondimer siteCnd, which

is a bt site. The adatom also carries a local magnetic
moment coupled with the electron spins via the exchange
interaction J. The Hamiltonian H0 is [29],

H0¼
X

σ

εjhσihhσjþωðjhσihcσjþjcσihhσjÞ−Jŝ·Ŝ; ð3Þ

where jhσi is the adatom orbital with spin σ. This orbital
has on-site energy ε and is connected to the site C on the

bilayer with hopping energy ω. The spin operators ŝ and Ŝ,
which are the Pauli matrices in the corresponding spinor
spaces, are for itinerant electrons and local magnetic
moments, respectively.
To obtain realistic parameters for the adatom

Hamiltonian H0, we performed first-principles calculations
with QUANTUM ESPRESSO [48] using a 7 × 7 graphene

supercell with a single hydrogen adatom. In agreement with
previous studies [49] we found that hydrogen on both
dimer and nondimer sites induces local magnetic moments
of 1 Bohr magneton per unit cell. However, for fitting the
orbital parameters ofH0, namely ε and ω, we used the spin-
unpolarized first-principles band structure and set J ¼ 0 in
the tight-binding calculation. For the dimer site we select
ε ¼ 0.25 eV and ω ¼ 6.5 eV, while for the nondimer one
ε ¼ 0.35 eV and ω ¼ 5.5 eV. Figures 1(a) and 1(c) show
that the fits are very good. However, these fitted parameters
are not unique, as a larger neighborhood of values offers a
comfortable agreement with first-principles data. We have
selected the values which are close to the uniquely fitted
SLG orbital parameters. For the exchange coupling we take
the same (unbiased) value as for SLG [29], J ¼ −0.4 eV.
Resonant scattering.—We transform the adatom

Hamiltonian H0 into the singlet (l¼0) and triplet (l¼1)
basis jcl;ml

i ¼ jci ⊗ jl; mli [label ml ¼ −l;…;l is the
total spin projection] and eliminate the adatom orbital
jhi by downfolding. This gives the energy dependent
perturbation H0ðEÞ ¼

P

l;ml
VlðEÞjcl;ml

ihcl;ml
j, allow-

ing us to analytically calculate the T matrix, TðEÞ ¼
P

l;ml
TlðEÞjcl;ml

ihcl;ml
j, where

VlðEÞ ¼
ω2

E − εþ ð4l − 3ÞJ ; ð4aÞ

TlðEÞ ¼
VlðEÞ

1 − VlðEÞGCðEÞ
: ð4bÞ

Here GCðEÞ≡ ΛCðEÞ − iπνCðEÞ is the C-site projected
Green’s function per atom and spin of the unperturbed
BLG with

ΛCðEÞ ¼
E

2D2
ln

�

�

�

�

E2ðE2 − t2
1
Þ

ðD2 − E2Þ2
�

�

�

�

þ t1ΔC

2D2
ln

�

�

�

�

Eþ t1

E − t1

�

�

�

�

; ð5Þ
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FIG. 1 (color online). Calculated electronic structure of bilayer graphene with hydrogen adatoms. Panels (a) and (b) are for dimer
adatoms, (c) and (d) for nondimer ones. In (a) and (c) we plot the electronic band structures: dotted lines are spin-unpolarized first-
principles calculations using a 7 × 7 supercell, while solid lines are tight-binding fits as described in text. Panels (b) and (d) show
unperturbed, ϱþ

0
ðEÞ þ ϱ−

0
ðEÞ, and perturbed, RCðEÞ (with adatom concentration of η ¼ 0.05%), DOS per atom and spin. Dimer

adatoms (b) show a narrow resonant peak near the charge neutrality point at Eres ≃ 22.5 meV with the full width at half maximum
Γ≃ 8.4 meV. Nondimer adatoms (d) induce a broad resonance at Eres ≃ 26.1 meV with Γ≃ 165.2 meV. For plotting DOS we perform
running averages of 20 meV. Insets: schemes of the tight-binding model Hamiltonian, H0 þH0, Eqs. (1) and (3).
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νCðEÞ ¼
X

μ¼�

jEj − μΔCt1

2D2
ΘðD − jEjÞΘðjEj − μt1Þ; ð6Þ

where D ¼
ffiffiffiffiffiffiffiffiffi

ffiffiffi

3
p

π
p

t0 ≃ 6 eV is the effective BLG band-
width andΔC equals zero for the Cd site and one for the Cnd

site, respectively.
We first analyze orbital resonances of H0 (set J ¼ 0) by

plotting inFigs. 1(b) and1(d) theperturbedDOSper atomand
spin, RCðEÞ¼

P

μ¼�ϱ
μ
0
ðEÞ−ðη=πÞImf½−ðd=dEÞGCðEÞ�×

TlðE;J¼0Þg, where η is the adatom concentration per
carbon atom and ϱμ

0
ðEÞ ¼ ð2jEj − μt1Þ=ð4D2ÞΘðD − jEjÞΘ

ðjEj − μt1Þ is the unperturbed bilayer DOS per atom and spin
for the high (μ ¼ þ) and low (μ ¼ −) energy band, for details
see Ref. [43]. As seen from Fig. 1(b), the dimer site hydrogen
chemisorption induces a pronounced narrow resonance near
thechargeneutrality point. In contrast, nondimer adatoms, see
Fig. 1(d), give a broad and shallow resonance. This striking
difference is explained by considering the character of the
resonance states. In a monolayer graphene an adatom on the
A site induces a resonance state which is localized mainly on
the B sublattice. Thus, an adatom on a dimer site induces a
resonance state which is spread mainly on the nondimer
sublattice and hybridizes only little with the other layer,
keeping the resonance narrow. If the adatom is on a nondimer
site, the resonance state is mainly on the dimer sublattice
which couples to the other layer, causing a leakage of the state
and broadening of the resonance. The same behavior is seen
in vacancy models [50].
Spin-flip scattering and spin-relaxation rate.—The T

matrix allows us to compute the spin-flip rate for a single
scattering event by the adatom at siteC (dimer or nondimer)
jkμðEÞ;↑i→ jqνðE0Þ;↓i between bands μ and ν [51],

WC
kμ↑;qν↓ ¼ 2π

ℏ
η2fC↑;↓ðEÞP

μ
CðEÞPν

CðE0ÞδðE − E0Þ; ð7Þ

where the site and band dependent projections P
μ
CðEÞ ¼

2ðjEj − μΔCt1Þ=ð2jEj − μt1ÞΘðD − jEjÞΘðjEj − μt1Þ, see
also Ref. [43]. The exchange-induced spin-flip function is

fC↑;↓ðEÞ ¼
�

�

�

�

X

l¼0;1

ðl − 1

2
ÞVlðEÞ

1 − VlðEÞGCðEÞ

�

�

�

�

2

: ð8Þ

The spin-flip rate does not depend on the relative orientation
of k and q, since the energy dispersion in our model
has rotational symmetry. However, the spin-flip rate is very
different for dimer and nondimer adatoms.
To obtain the spin-relaxation rate 1=τCs we sum over

different partial rates and obtain

1

τCs
¼ η

2π

ℏ
fC↑;↓ðEÞ

½Pþ
CðEÞϱþ0 ðEÞ þ P−

CðEÞϱ−0 ðEÞ�2
ϱþ
0
ðEÞ þ ϱ−

0
ðEÞ ; ð9Þ

where the labels þ and − denote BLG high and low energy
bands entering the definitions of Pμ

C and ϱ
μ
0
given in the

text. To get the final spin-relaxation rate we take an
unbiased average over the dimer and nondimer sites,

1=τs ≡ 1=ð2τCd
s Þ þ 1=ð2τCnd

s Þ. This is plotted in Fig. 2(a)
and compared with SLG. Two pronounced shoulders—we

call them spin-relaxation edges—in 1=τ
Cd
s emerge from the

exchange splitting of the orbital resonance seen in DOS at
Fig. 1(b), just like for SLG, although the peaks in BLG are
more separated due to the energy renormalization by the
interlayer coupling. In contrast, nondimer adatoms show a
rather flat behavior with respect to the energy, reflecting the
broad resonance of the perturbed DOS, Fig. 1(d). Nondimer
adatoms still induce a large 1=τs since they strongly perturb
the low-energy states which are localized on the nondimer
sites. This behavior is encoded in the low-energy site
projection P−

CðEÞ, in Eq. (9), which is at low energies much
larger for nondimer than for dimer adatoms.
Comparison with experiments and contrasting single

and bilayer graphene.—Comparison with experiments
requires temperature and electron-hole puddles broadening
of 1=τs. Temperature broadening is due to population
smearing, (−∂f0=∂E), where f0 is the Fermi-Dirac distri-
bution. The puddle broadening is modeled as a convolution
with a Gaussian kernel of standard deviation σbr. For the
bilayer we use σbr ≃ 23 meV, which corresponds to density
fluctuations Δn of 8.5×1011=cm2, following experimental
estimates [52]. In Figs. 2(b)–2(d) we present the main results
of this Letter, the fully broadened relaxation rates compared
with Aachen-Singapore (AS) [7] and Riverside (R) [8]
experiments. Clearly the two experiments are somewhat at
odds, but they display consistent behavior at low temper-
atures. We adjust the local moment concentration to describe
the AS data, obtaining η ¼ 0.17 ppm. All other parameters
are as obtained from the orbital fits. The agreement at low
temperatures is especially good. At high temperatures the
overall shapes differ, but the two experiments differ as well.
This experimental discrepancy further underlines the extrin-
sic character of the spin relaxation in BLG. It is likely that
the relative population of dimer and nondimer adatoms
changes with temperature, differently in different samples,
reflecting the idiosyncrasy of the experimental data.
However, our calculation gives a rather robust prediction
at low temperatures: at high carrier densities, above the spin-
relaxation edge at about 5 × 1012=cm2, the spin-relaxation
rates should start to decrease.
Perhaps the most pressing remaining question is: Given

the same resonant spin-relaxation mechanism for single and
bilayer graphene, why do their spin-relaxation rates have the
opposite trends as functions of charge density [7,8]? Our
mechanism offers a natural, and perhaps mundane answer:
electron-hole puddles. At low temperatures and in the
absence of density fluctuations the two structures should
exhibit the same trend, namely, an increase of the spin-
relaxation rate going away from the charge neutrality point.
In SLG the behavior is exactly opposite. The reason is
offered in Fig. 3. In SLG the carrier density fluctuations lead
to a large Fermi energy smearing (σbr ¼ 91 meV versus
σbr ¼ 23 meV in BLG for the same carrier density fluc-
tuation Δn of 8.5 × 1011=cm2). Averaging over the Fermi
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energy of the singlet-triplet split spin-relaxation peaks then
inverts the shape of the spin-relaxation rate around the Dirac
point. In the bilayer, due to its greater density of states, the
energy broadening is much more modest, and the

experiments (unless their samples would exhibit large
variations of the electronic densities) find the behavior as
expected for an unbroadened system. Figure 3 also
shows the origin of the spin-relaxation edge and the robust-
ness of our prediction of the decrease of the spin-relaxation
rate at greater electron densities. At high temperatures
(above 100 K), it is enough to invoke thermal broadening
to see the trend reversal even in ultraclean SLG, as its
resonance peaks are closer than those in BLG [43]. The
picture given in Fig. 3 could be used to analyze experimental
trends in spin relaxation in both SLG and BLG.
In conclusion, we showed that resonant scattering by

local magnetic moments quantitatively accounts for the
experimental data. This spin-relaxation mechanism also
explains the apparently striking opposite behavior of the
measured spin relaxation of SLG and BLG, offering a
real alternative to quantitatively unsubstantiated but
often made assignment of the two distinct trends as
Elliott-Yafet and Dyakonov-Perel. Finally, our model
makes a specific prediction of reversing the increase
of the spin-relaxation rate in graphene bilayer with
increasing carrier density, at high densities, accessible
experimentally.

We thank B. Beschoten and R. Kawakami for providing
us with their experimental data. This work was supported
by DFG SFB 689 and GRK 1570, and by the EU Seventh
Framework Programme under Grant Agreement
No. 604391 Graphene Flagship.

FIG. 3 (color online). The effect of electron-hole puddles on
spin relaxation in SLG and BLG. From top to bottom: The spin-
relaxation rate exhibits two resonance peaks due to singlet-triplet
splitting ΔEST. The splitting of the peaks is greater in BLG. The
peaks are broadened by temperature and carrier density fluc-
tuation Δn which is very different for SLG and BLG, due to their
different DOS. For a given temperature and density fluctuation
Δn the energy smearing in SLG σbr ≃ ΔEST, while in BLG
σbr ≪ ΔEST. After broadening, the spin-relaxation rate around
the charge neutrality point in SLG has the opposite trend as the
unbroadened rate. In BLG the original trend is preserved.
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FIG. 2 (color online). Calculated spin-relaxation rates 1=τs as a function of energy (carrier density) for impurity concentration
η ¼ 0.17 ppm. (a) Zero temperature, unbroadened, rates for dimer (red solid) and nondimer (black solid) adatoms, as well as the
resulting average 1=τs (blue dotted line). For reference the SLG calculation is also shown (gray dashed-dotted line). (b)–(d) Spin-
relaxation rates for three representative temperatures. Theoretical data (blue solid) are broadened, simulating the presence of electron-
hole puddles, with a Fermi level smearing of 23 meV. Circles and diamonds represent data points from Aachen-Singapore (AS) [7] and
Riverside (R) [8] experiments, respectively. The two shoulders (spin-relaxation edges) at �100 meV are exchange-split resonances. At
high carrier densities the model predicts a decrease of the spin-relaxation rate.
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