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We review the current state of efforts to use resonant soft X-ray scattering (RSXS), which is an elastic,
momentum-resolved, valence band probe of strongly correlated electron systems, to study stripe-like
phenomena in copper-oxide superconductors and related materials. We review the historical progress
including RSXS studies of Wigner crystallization in spin ladder materials, stripe order in 214-phase nicke-
lates, 214-phase cuprates, and other systems.

One of the major outstanding issues in RSXS concerns its relationship to more established valence band
probes, namely angle-resolved photoemission (ARPES) and scanning tunneling microscopy (STM). These
techniques are widely understood as measuring a one-electron spectral function, yet a relationship
between RSXS and a spectral function has so far been unclear. Using physical arguments that apply at
the oxygen K edge, we show that RSXS measures the square modulus of an advanced version of the
Green’s function measured with STM. This indicates that, despite being a momentum space probe, RSXS
is more closely related to STM than to ARPES techniques.

Finally, we close with some discussion of the most promising future directions for RSXS. We will argue
that the most promising area lies in high magnetic field studies, particularly of edge states in strongly
correlated heterostructures, and the vortex state in superconducting cuprates, where RSXS may clarify
the anomalous periodicities observed in recent quantum oscillation experiments.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

One of the central challenges in the field of strongly correlated
electron systems is to understand how highly correlated, Mott-like
insulators such as La2CuO4, YBa2Cu3O6, etc., transform into high
temperature superconductors upon the addition of holes. The so-
called ‘‘underdoped’’ regime intervening the insulator and the
superconductor is marked by frustrated competition between ki-
netic energy effects, i.e., the desire of holes to delocalize, and the de-
sire of the system to retain local, antiferromagnetic order [1–3].
How superconductivity emerges from this highly correlated envi-
ronment is still a mystery.
ll rights reserved.
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bamonte).
There is widespread evidence that these systems can exhibit
another instability – distinct from superconductivity – often re-
ferred to as the static stripe or ‘‘stripe smectic’’ phase [1]. This
phase exhibits spontaneous breaking of both translational and
rotational symmetry in the form of quasi-long-ranged, coexisting
spin and charge order. From a symmetry point of view, there is
no distinction between this phase and a conventional density wave
instability, such as the Peierls charge density wave (CDW) in NbSe3

or the spin density wave (SDW) in elemental Cr, both of which are
driven by a divergence in the static susceptibility arising from
Fermi surface nesting. An important distinction, however, is that
a stripe is an instability in a strongly correlated system, and-like
the Wigner crystal instability in an electron gas [4]–need not arise
from a nesting instability. Hence, the word ‘‘stripe’’ can be consid-
ered a moniker for a charge/spin density wave in the strong cou-
pling limit of a doped Mott insulator.

The original experimental evidence for a stripe smectic in the
copper-oxides comes from neutron scattering, dating back to the
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original work on La1.6�xNd0.4SrxCuO4 by Tranquada [5]. This study
established the existence of coexisting static spin and charge order
whose wave vectors differed by a factor of two, implying a real
space structure in which charges act as domain walls between
antiferromagnetic regions [1]. In this phase the superconducting
Tc is suppressed, suggesting that stripe order is incompatible with
superconductivity [6,7]. However, subsequent inelastic neutron
experiments established that, even in the superconducting state,
stripe correlations may be observed at finite frequency, leading
to speculation that dynamic stripes may enhance or even mediate
superconductivity [1]. Regardless of whether stripes and supercon-
ductivity are directly related, it is important to understand this
density wave phenomenon for the insights it gives into the cuprate
phase diagram.

There are two important, outstanding questions left open by
neutron experiments. The first is whether the density wave ob-
served is in fact a strong coupling effect and not a conventional
SDW. Because a neutron does not couple to charge, the so-called
‘‘charge’’ peaks actually arise from a distortion in the structural
lattice, and do not necessarily imply the existence of charge order.
In fact, such a ‘‘2q’’ structural modulation is always observed in con-
ventional SDW materials, including Cr, because of magnetoelastic
coupling between the spins and the lattice [8,9]. Second, neutrons
do not necessarily establish this phase to be a strong coupling
effect, since the wave vector of the charge order is enticingly close
to the q1 nesting vector connecting the antinodal regions of the
Fermi surface [10]. Differentiating this phase from a simple SDW
requires an experimental probe that is directly sensitive to charge
order, as well as aspects of the electron spectral function that might
provide insight into the strength of the interactions that drive it.

In this article we review efforts to use resonant soft X-ray scat-
tering (RSXS) to study the electronic structure of density wave
instabilities in cuprate and related materials. RSXS is an elastic,
X-ray diffraction technique in which the photon energy is tuned
to resonantly excite electrons into the valence band, providing
(through the intermediate states) momentum-resolved informa-
tion about the electronic structure. In particular we will describe
how RSXS has not only established the existence of charge order,
but has provided the most explicit evidence yet that the density
wave state in cuprates is a strong correlation effect, and hence is
not (purely) a consequence of Fermi surface nesting.

A key concept that has been missing from this field is a quanti-
tative way to relate RSXS experiments to more established probes
of valence band physics, namely angle-resolved photoemission
spectroscopy (ARPES) and scanning tunneling spectroscopy
(STM). ARPES and STM are usually understood as measuring the
electron spectral function, i.e., the imaginary part of the one-elec-
tron Green’s function. By contrast, most authors have up to now
interpreted RSXS in terms of concepts borrowed from traditional
X-ray diffraction, i.e., atomic form factors and structure factors,
whose definitions are based on the assumption of optical locality
in scattering [11]. While this assumption can be used to under-
stand elementary phenomena like charge order, it ignores the
propagation of the photoexcited, valence band electron, so pro-
vides no understanding of the relationship of RSXS to the spectral
function of more established electronic structure probes.

To rectify this situation, in Sections 3–6 we take a different per-
spective and evaluate the RSXS cross section in a limit that empha-
sizes the nonlocality of the intermediate states. We show that, in
cases where the excitonic interaction between the valence band
electron and the core hole may be neglected (such as at the oxygen
K edge), RSXS measures a spectral function very similar to those
measured by other valence band probes. We argue that RSXS, as
a momentum-space probe that detects real space inhomogeneity
in the spectral function, forms a natural bridge between ARPES
and STM techniques.
Finally, in Section 7, we outline what we view as the medium-
term future of the RSXS technique, at least as it applies to high Tc

superconductivity. In particular, we will argue that high magnetic
field studies, which may be used to study the electronic structure
of the vortex lattice, might be used to clarify the nature of the high
field state, potentially explaining the anomalous periodicities
observed in quantum oscillation experiments [12,13].
2. RSXS studies of the smectic stripe state

Resonant soft X-ray scattering is an elastic [14] X-ray diffraction
technique in which the photon energy is tuned to resonantly excite
core electrons into the valence band. RSXS can be thought of as a
two-step optical process involving a dipole absorption event fol-
lowed by an emission event, mediated by a set of virtual, interme-
diate states. In this sense, RSXS is similar to resonant Raman
scattering (which if carried out in the X-ray regime is called
‘‘RIXS’’), except that the process is entirely elastic, i.e., in the final
state the system is left in its ground state. Through the intermedi-
ate states, RSXS accesses the physics of the valence band.

While requiring very different technology, RSXS is a simple con-
ceptual evolution of the resonant hard X-ray magnetic scattering
techniques first used in the 1980’s to study magnetic ordering in
rare earth materials [15,16]. The only distinction between the
two techniques is the energy range: transitions into the valence
band in transition metal oxides lie in the soft X-ray range
(400 eV < ⁄x < 1 keV), which required the development of special,
vacuum scattering techniques [17].

Compared to the more established valence band probes of
ARPES and STM, RSXS has the disadvantage of poorer energy reso-
lution, which is limited by the radiative lifetime of the intermedi-
ate states (C � 150 meV). However RSXS has several advantages:
as a bulk probe, it can be applied to any material, even those con-
taining buried interfaces, [18,19] or whose surfaces do not cleave.
RSXS can also be applied to very small samples and can be carried
out in a high field environment – a point to which we will return
shortly.

The first use of RSXS in any system appears to be the resonant
reflectivity study of an iron film by Chi-Chang Kao in 1990 [20].
Its first application to strongly correlated oxides was an isolated
study of La2CuO4+d, [17] but its early use was mainly to study man-
ganites, where it had been argued to be only technique capable of
directly probing orbital order [21,22]. Experiments were carried
out on a variety of manganite systems, which were then inter-
preted using concepts borrowed from traditional X-ray diffraction,
namely the atomic ‘‘form factor’’, fij(x), [21,23,24] which can be
related to the integrated intensity of a Bragg reflection via the
‘‘structure factor,’’ [25]

SG ¼
X

n

f ij
n e�iG�rn : ð1Þ

The concept of a form factor is based on the assumption of optical
locality, i.e., that the excitations that propagate the polarization, P,
are local, or in other words that the photoexcited electron does
not propagate [11]. Assuming atomic level locality, most authors
took the approach of using atomic multiplet calculations – which
had been used successfully for many years to analyze X-ray absorp-
tion experiments – to determine these form factors, and comparing
them to the RSXS energy line shapes [23,26,27]. Despite very crea-
tive efforts, however, quantitative agreement with the RSXS line
shapes in manganites was never achieved. The reasons for this are
not completely understood, but may be related to this very issue
of nonlocality; If nonlocal effects are important, an atomic descrip-
tion may not be valid. In extreme cases, the concept of a form factor
itself may be ill-defined. We will return to this point in Section 3.
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The first application of RSXS to a phenomenon directly related
to stripes were studies of the so-called ‘‘spin ladder’’ material,
Sr14�xCaxCu24O41 (SCCO) [28]. The two-leg ladder was originally
introduced by theorists as a computationally more tractable ver-
sion of the two-dimensional t–J model, which is still believed by
many authors to contain some of the essential physics of high tem-
perature superconductivity [29]. Depending upon the parameters
(e.g., the hole density), a doped ladder can exhibit either ex-
change-driven superconductivity [29,30] or an insulating Wigner
crystal ground state, in which the holes crystallize into a static lat-
tice [29,31]. The competition between these two phases is reminis-
cent of the competition, mentioned in Section 1, between the
ordered stripe smectic phase and superconductivity in two dimen-
sions [7].

The SCCO system contains both doped CuO2 ladders and chains,
and at various points in its phase diagram exhibits the transport
characteristics of both of the above predicted ground states. At
x = 11, SCCO exhibits (under hydrostatic pressure) superconductiv-
ity with Tc = 12.5 K [32]. At x = 0, on the other hand, it clearly
exhibits the transport signatures of a charge density wave
(CDW), for example a screening mode in impedance measure-
ments, a nonlinear current–voltage (I–V) curve, etc. [33,34]. Stran-
gely, conventional X-ray scattering experiments, which are the
standard way to study Peierls CDW materials such as NbSe3 or
K0.3MoO3 (‘‘blue bronze’’), revealed no superstructure in SCCO
apart from the atomic supermodulation innate to this adaptive
misfit material [35,36]. The reason for this absence was a mystery.

RSXS studies revealed that SCCO in fact contains a hole Wigner
crystal [28]. While conventional X-ray scattering is highly effective
for studying Peierls CDWs, it does so by coupling to the lattice dis-
tortion rather than to the charge modulation itself [9]. Because a
Peierls CDW is driven by the lattice distortion, the two always coex-
ist and it is pedantic to debate which is being measured in the
experiment. In the case of a doped spin ladder, however, the charge
modulation is driven by electron–electron interactions rather than
a soft phonon, and a lattice distortion is not (in the first approxima-
tion) expected to occur. For this reason, conventional X-ray tech-
niques failed to detect charge order in materials like SCCO [37].

Exploiting the valence band sensitivity of RSXS, studies of SCCO
explicitly revealed the existence of a Wigner crystal in the ladder
substructure. This modulation was found to be stable only for com-
mensurate hole filling, in agreement with predictions from density
matrix renormalization group (DMRG) calculations [38,31]. Fur-
ther experiments also revealed that the CDW in the chain layer,
for which evidence had been presented by several groups,
[39,40] was in fact due to interplay between hole ordering and
the misfit supermodulation [41]. This last study exploited coherent
interference between structural scattering and valence band scat-
tering and demonstrated that phase-sensitive measurements could
be used to objectively identify the character of a CDW [42].

A step closer to real stripe physics was achieved in a subsequent
study of the nickelate material, La1.8Sr0.2NiO4, which had been
shown to exhibit simultaneous ordering of spins and holes, identify-
ing it as a stripe material [43]. Performing RSXS experiments in res-
onance with the Ni L edge, Schüßler-Langeheine and co-workers
succeeded in measuring both spin and charge reflections, which
both resonated strongly at the Ni L edge, though only weakly at
the La M edge [44]. This established the order as residing in the
NiO2 planes, as expected. In a first effort to account for nonlocal ef-
fects in scattering, the authors made use of the atomic form factors
introduced in Ref. [21], but computed their values using configura-
tion-interaction, multiplet calculations on a cluster comprising not
just a central Ni, but also its nearest neighbor oxygen ligands. Com-
plete charge disproportionation was assumed (i.e., all clusters were
taken to have integer Ni2+ or Ni3+ charge), and reasonably quantita-
tive agreement with experiment was obtained.
A direct connection to stripes and high Tc superconductivity was
finally achieved with a RSXS study of the stripe-ordered cuprate,
La2�xBaxCuO4 (LBCO) [45]. This material has been cited as the pro-
totypical stripe smectic, exhibiting the so-called ‘‘1/8 anomaly’’ [6]
in which Tc is suppressed at x � 1/8 due to the formation of quasi-
long-ranged spin and charge order [46]. As discussed in Section 1,
while the existence of static spin order had clearly been estab-
lished in this material by neutron scattering, the charge order
was on less certain footing, since the observed charge peaks could
also arise from magnetoelastic coupling between the spins and the
lattice.

RSXS studies, carried out at the oxygen K edge, found that the
charge reflections in this material exhibited a giant resonance at
the Fermi energy, similar to that observed earlier in spin ladder
materials, indicating the existence of pronounced, valence band
charge order [45]. The absolute scattering cross section was cali-
brated by scaling the intensity to the integrated weight of the
(002) reflection of a reference crystal of Bi2Sr2CaCu2O8�d, whose
structure factor is known. Again applying the local scattering
approximation, determining the form factors from doping-depen-
dent X-ray absorption (XAS) data, the peak-to-trough oxygen
valence amplitude was estimated to be Dv = 0.063 holes. Assuming
a bond-centered pattern for the stripe order, [47] this implied an
integrated intensity of 0.59 holes under a single stripe, which
was close to the value 1/2 expected for ideal, half-filled stripes.

In addition to the existence of charge order, this study revealed
something unexpected: A second resonance was observed several
eV above the Fermi energy, near the energy of the upper Hubbard
band (UHB) (Fig. 1). This observation implied not only a modula-
tion in the doped hole density, but also a modulation in the amount
of spectral weight in the UHB. This indicates that the less doped,
hole-poor, AF regions in the modulated stripe state are more
Mott-like than the hole rich regions, or in other words that the
degree of ‘‘Mottness’’ of the system is itself modulated, implying
that physics at the energy scale of the Hubbard U plays a crucial
role in the formation of the stripe state [45].

Another significant achievement was the discovery of charge
stripe order in the La1.8�xEu0.2SrxCuO4 (LESCO) system [48,49].
Over much of its phase diagram, LESCO resides in the so-called
low-temperature-tetragonal (LTT) structural phase, which previ-
ous studies had shown correlates with the existence of static stripe
order [5]. Evidence for modulated magnetism existed from lSR
studies, [50] but X-ray and neutron scattering measurements had
failed to detect charge order. Using RSXS, Fink and co-workers
showed that stripe order exists in this system and persists over
much of the phase diagram, demonstrating that this phenomenon
is more pervasive in 214 cuprates than was previously believed.
The high energy resonance observed in Ref. [45] was reproduced
in LESCO, and has also been detected in subsequent RSXS studies
of La1.475Nd0.4Sr0.125CuO4 [51].

In retrospect, the contribution of RSXS to the subject of stripe
physics can be summarized as closing two issues that were left
open by neutron scattering. Specifically, RSXS has (1) established
the existence of real charge order, and (2) provided the most expli-
cit evidence yet that stripe order is – at least in part – a strong cou-
pling effect. This latter point does not prove that Fermi surface
nesting is irrelevant to the formation of the stripe state, which
again has a wave vector close to the nesting vector of the Fermi
surface antinodes. But it does suggest that the energy scale of the
interactions that drive the instability is of order U.

Beyond spin ladders and 214 nickelates and cuprates, in which
the order is static and long ranged, use of RSXS to study stripe
physics has been limited. Despite efforts by several groups, RSXS
has failed to uncover charge order in any other cuprate, including
Bi2Sr2CaCu2O8�d (BSCCO), YBa2Cu3O6+y (YBCO), Ca2�xNaxCuO2Cl2

(NCCOC), [52] etc. This has been particularly disappointing given
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Fig. 1. Comparison between RSXS and Fourier transformed STM data, showing that the two measure essentially the same spectral function. (a) STM spectroscopic map of the
superconducting oxychloride Ca2�xNaxCuO2Cl2 (NCCOC), taken at a fixed 8 mV bias voltage, showing ‘‘checkerboard’’ order. (b–c) Fourier transform of the map in (a), showing
that the density of states modulation has a wave vector of (kx,ky) = (1/4,0) in reciprocal lattice units. (d) RSXS energy scan with the momentum fixed at the same (1/4,0)
location in reciprocal space, this time in stripe-ordered La2�xBaxCuO4, showing a density of states modulation with the same wave vector as in the oxychloride. Note the high
energy peak near the upper hubbard band, which indicates a modulation in the degree of ‘‘Mottness’’ in addition to charge order. (e) General cuprate Brillouin zone, showing
locations of charge reflections (circles) and spin reflections (crosses).
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that STM studies have produced extensive evidence for 4 � 4
checkerboard order, as well as potentially related quasiparticle
interference phenomena, in several of these systems [53,54]. Even
studies of YBCO samples that seemingly exhibit a 1/8 anomaly [55]
showed no sign of charge order. From these failures one is forced to
conclude either that charge order is simply not a universal prop-
erty of doped cuprates, or that it is present but is so disordered that
the scattering is too diffuse to be distinguished from the inelastic
background, which is rather high in RSXS. This latter possibility
has touched off debates over whether cuprates can be said to exhi-
bit charge order when they are in fact disordered, and also whether
a glassy, inhomogeneous background might be more optimal for
superconductivity [56–58].
3. The electron Green’s function

We now return to the issue of nonlocality, i.e., the question of
how one may interpret RSXS data when the photoexcited elec-
tron is not localized. In the limit of extreme nonlocality an
atomic or even cluster picture fails, and the concept of an atomic
form factor, fij, is invalid. The point we will attempt to make in
this section is that, in this limit, RSXS is better understood as
measuring an electron spectral function, similar to those mea-
sured with ARPES or STM (though closer to the latter). Specifi-
cally, the one-electron Green’s function is defined at zero
temperature as
GR;Aðr; r0; t � t0Þ ¼ �ih0jfŵðr; tÞ; ŵyðr0; t0Þgj0ih½�ðt � t0Þ�Þ=�h: ð2Þ

where ‘‘{,}’’ denotes an anticommutator and the superscripts R and
A denote a retarded or advanced Green’s function and refer to the
upper and lower signs, respectively. We will find it convenient to
separate G into electron and hole components, i.e.,

GR;Aðr; r0; t � t0Þ ¼ GR;A
e ðr; r0; t � t0Þ þ GR;A

h ðr; r0; t � t0Þ; ð3Þ

where

GR;A
e ðr; r0; t � t0Þ ¼ �ih0jŵðr; tÞ ŵyðr0; t0Þj0ih½�ðt � t0Þ�Þ=�h; ð4Þ

and

GR;A
h ðr; r0; t � t0Þ ¼ �ih0jŵyðr0; t0Þ ŵðr; tÞj0ih½�ðt � t0Þ�Þ=�h: ð5Þ

Crucially, we allow here for the possibility that the system may be
inhomogeneous, i.e., translational symmetry is broken either explic-
itly by disorder or spontaneously by the formation of a density
wave. In this case, GR,A(r,r0,t � t0) is not a function only of r � r0,
but is an independent function of r and r0, and its Fourier transform,
GR,A(k,k0,x), is an independent function of k and k0. In the ensuing
discussion we will also refer to the mixed representation, GR,A

(r,r0,x).
The beauty of ARPES and STM, which underlies the enormous

impact these probes have had in condensed matter physics, is that
they both measure aspects of the electron Green’s function. Assum-
ing the sudden approximation and neglecting matrix element
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effects, ARPES measures the diagonal components of the hole spec-
tral function in momentum space, [59]

AARPESðk;xÞ ¼ Ahðk;�k;xÞ ¼ � 1
p

Im GR;A
h ðk;�k;xÞ

h i
; ð6Þ

and STM measures the diagonal components of the full spectral
function in real space,

ASTMðr;xÞ ¼ Aðr; r;xÞ ¼ � 1
p

Im½GR;Aðr; r;xÞ�; ð7Þ

which is basically the local density of states. Note that Eqs. (2)–(5)
imply that Ae(x) = h(x)A(x) and Ah(x) = [1 � h(x)]A(x), i.e.,
Ae(x) + Ah(x) = Ae(x). We emphasize that, because ARPES and
STM probe only the imaginary part, it is unimportant whether a
retarded or advanced causality convention is used, since both
give-modulo an overall sign-the same result in Eqs. (6) and (7).

Framed in this manner, it is clear that ARPES and STM data can-
not be directly related to one another by a spatial Fourier trans-
form. While both probes measure a spectral function, their
relationship involves off-diagonal terms that are not measured in
either experiment. Hence, relating the two requires a model of
quasiparticle scattering, [60] perhaps involving an autocorrelation
approach [61].
4. Resonant scattering

We now wish to determine what spectral function would be
measured with RSXS assuming the nonlocal limit of the intermedi-
ate states. We will show that, despite being a momentum-space
probe, RSXS is more closely related to STM measurements than
to ARPES measurements, its spectral function bearing a close
resemblance to Eq. (7). We begin by coupling light to the electrons
by defining the classical canonical momentum,

p! pþ e
c
bA; ð8Þ

where A is the field operator for the photons. This coupling yields
two interaction Hamiltonians between the electrons and photons,
[62]

bH1 ¼
Z

dr ŵy
e2A2

2mc2 ŵ: ð9Þ

and

bH2 ¼
Z

dr ŵy
eA � p
2mc

ŵ; ð10Þ

where we have taken r � A = 0. The amplitude

Sf i ¼ hf jUð1;�1Þjii; ð11Þ

produces scattering through bH1 to first order in perturbation theory.
This term is the origin of Thomson scattering and conventional,
nonresonant inelastic X-ray scattering. [62,63] Resonant scattering
arises through bH2 acting in second order,

Sf i ¼
2p
�h

X
n

hf jbH2ð0ÞjnihnjbH2ð0Þjii
Ei � En � ig

: ð12Þ

where g is the radiative lifetime of the intermediate states. Here the
initial and final states both correspond to the system in its ground
state in the presence of a photon, i.e.,

jii ¼ ayki�i
j0i; ð13Þ

and

jf i ¼ aykf �f
j0i; ð14Þ
where the vacuum j0i represents the ground state of the many-
body electron system, including the core electrons, and the inter-
mediate states jni describe all the many-body excitations. ki and
kf represent the initial and final state of the photon, and �i and �f

are the corresponding polarizations.

5. Lattice model: RSXS amplitude

For illustrative purposes, we consider now the case where our
many-body system resides within a single band on a discrete lat-
tice. While this is a significant simplification, we anticipate that
the conclusions we draw will be valid quite generally. Note that
we do not assume that the interaction among the valence electrons
is weak or that any particular low energy theory necessarily applies.

Within this model, our goal is to rewrite Eq. (12) so that it
resembles a spectral function for the valence electrons. The elec-
tron field operator is

ŵðrÞ ¼ 1ffiffiffi
2
p

N

X
j

djujðrÞ þ cjuc
j ðrÞ; ð15Þ

where /j(r) = /(r � rj) represents the single-particle basis function
for a d orbital residing on site j, and /c

j ðrÞ is the core orbital on
the same site. With this reduced basis set, the interaction in Eq.
(10) has the simplified form

bH2 ¼
X
j;k;�k

Vðk; �kÞ dyj ak�k
cj eik�rj þ c	j ayk�k

dj e�ik�rj

� �
; ð16Þ

where ak�k
annihilates a photon and the potential

Vðk; �kÞ ¼
e

mN

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p�h

2Vxk

s
Fð�kÞ; ð17Þ

depends on the polarization, �k, through the dipole matrix element

Fð�kÞ ¼
Z

dr /	ðrÞ �̂k � p /cðrÞ: ð18Þ

The numerator of Eq. (12) then takes the form

hf jbH1ð0ÞjnihnjbH1ð0Þjii ¼ Vðkf ; �̂kf
ÞVðki; �̂ki

Þ

�
X

j

e�iq�rj h0j c	j dj jnihnjdyj cjk0i; ð19Þ

where

q ¼ kf � ki; ð20Þ

is the momentum transfer.
To manipulate this into a form that resembles a spectral func-

tion for the valence electrons, it is necessary to eliminate the core
operators, cj and cyj . We wish to do this in a way that preserves the
full nonlocality of the intermediate states, jni. To this end, we make
the assumption that the excitonic interaction between the core
hole and the photoexcited valence electron is negligibly small. This
nonlocal limit is the diametric opposite of that usually used to
justify the atomic multiplet approach [64]. In this approximation,
the intermediate states factor into core and valence components,
i.e.,

jni ¼ j�cijnNþ1i: ð21Þ

Here j�ci represents a hole in a core level and jnN+1i represents the
nth excited state of the valence electron system containing N + 1
electrons, one having been promoted from the core.

Is this approximation valid? In most cases, it certainly is not. It
should be expected to fail dramatically, for instance, at transition
metal L edges, where excitonic core hole effects are dominant
and nonlocal effects can sometimes be ignored entirely. This
approximation may be reasonable, however, at some ligand K
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edges, such as the O K edge. Further, as discussed earlier, nonlocal
effects may be important even at certain L edges, such as Mn. So it
is important to consider, as a point of reference, what form the
cross section has in the nonlocal limit.

Assuming Eq. (21) holds, the contractions in Eq. (18) reduce to

hnjdyj cjj0i ¼ hnNþ1jdyj j0ih�cjcjj0i ¼ hnNþ1jdyj j0i: ð22Þ

It is also helpful to rewrite the energy denominator in Eq. (12) in
terms of familiar, microscopic quantities. The initial energy can be
expressed as

Ei ¼ �hxþ EN
0 þ �core; ð23Þ

where ⁄x is the photon energy, EN
0 is the ground state energy of the

N valence electron system, and �core is the energy of the core elec-
tron. Recognizing that the intermediate state energy is just one of
the excitation energies of the N + 1 electron system,

En ¼ ENþ1
n ; ð24Þ

we can rewrite the energy denominator in Eq. (10) as

Ei � En ¼ �hxþ EN
0 � ENþ1

n þ �core: ð25Þ

It is even more convenient to express this difference in terms of the
chemical potential,

l 
 ENþ1
0 � EN

0 ; ð26Þ

and the excitation energy (which might be a quasiparticle energy)
of the N + 1 valence electron system,

�Nþ1
n ¼ ENþ1

n � ENþ1
0 : ð27Þ

In terms of these quantities, the final form for the energy denomi-
nator is

Ei � En ¼ �hx� �Nþ1
n � lþ �core: ð28Þ

The scattering amplitude then has the form

Sf i ¼
2p
�h

Vðkf ; êkf af
ÞVðki; êkiai

Þ
X

n;j

hnNþ1jdyj j0i
��� ���2

�hx� �Nþ1
n � lþ �core � ig

e�iq�rj :

ð29Þ

We will now perform an approximation that is rarely done in X-ray
disciplines, though is done very commonly by ARPES and STM
groups, which is to ignore the matrix elements, i.e.,

Vðkf ; êkf af
ÞVðki; êkiai

Þ � 1: ð30Þ

An approximation of this type is extremely nonstandard in
X-ray disciplines. These matrix elements are strongly dependent
upon the polarization of the photons, and contain a weath of infor-
mation about the symmetry of the intermediate states involved in
the scattering process. Nevertheless, for measurements over a
narrow energy range at approximately constant geometry, in
which one focuses exclusively on the energy lineshape, the matrix
elements simply act as a multiplicative factor and this approxima-
tion is quite reasonable.

Assuming this approximation, the resulting expression for the
RSXS scattering amplitude is

Sf iðq;xÞ ¼
X

n;j

jhnNþ1jdyj j0ij
2

�hx� �n � lþ �core � ig
e�iq�rj ; ð31Þ

which looks encouragingly like a spectral function. The scattered
intensity IRSXS(q,x) = jSf i(q,x)j2. To make a precise statement,
however, an explicit comparison is needed.
6. Lattice model: spectral functions for STM and RSXS

To make this comparison, we evaluate the spectral functions
introduced in Section 3 for this lattice model. We will focus on
the form suitable for STM, which as mentioned earlier will turn
out to be the closer relative of RSXS. In the lattice model, the one
electron Green’s function has the form

GR;Aðj; j0; t � t0Þ ¼ �ih0j djðtÞ;dyj0 ðt
0Þ

n o
j0ih½�ðt � t0Þ�=�h; ð32Þ

where j is a site index. Written out explicitly,

GR;Aðj; j0;xÞ ¼ GR;A
e ðj; j

0
;xÞ þ GR;A

h ðj; j
0
;xÞ; ð33Þ

where

GR;A
e ðj; j

0
;xÞ ¼

X
n

h0jdjjnNþ1ihnNþ1jdyj0 j0i
�hx� �Nþ1

n � ic
; ð34Þ

and

GR;A
h ðj; j

0
;xÞ ¼

X
n

h0jdyj jnN�1ihnN�1jdj0 j0i
�hxþ �N�1

n � ic
; ð35Þ

where c is an infinitesimal parameter that determines the causal-
ity convention for the Green’s function. Neglecting matrix element
effects, the STM spectrum is given by the diagonal spectral
function

ASTMðj;xÞ ¼ �
1
p

Im½GR;Aðj; j;xÞ�; ð36Þ

which, again modulo a sign, should be the same whether a retarded
or advanced causality convention is chosen.

Returning to the subject of RSXS, we now consider the real
space diagonal values of the advanced electron Green’s function,
which have the form

GA
e ðj; j;xÞ ¼

X
n

jhnNþ1jdyj j0ij
2

�hx� �Nþ1
n � ic

: ð37Þ

Taking the real space Fourier transform of this quantity gives

eGA
e ðq;xÞ ¼

X
j

GA
e ðj; j;xÞ e�iq�rj ¼

X
n;j

hnNþ1jdyj j0i
��� ���2

�hx� �Nþ1
n � ic

e�iq�rj : ð38Þ

A tilde has been added to distinguish this quantity from the
momentum space function GR

hðk;�k;xÞ measured with ARPES, de-
fined in Eq. (6).

We now perform a final manipulation on Eq. (31), which is to
write it in terms of an offset energy, ⁄x0 = ⁄x � l + �core, which is
the photon energy measured with respect to the chemical poten-
tial, l. This gives

S0f iðq;x0Þ 
 Sf iðq;xÞ ¼
X

n;j

hnNþ1jdyj j0i
��� ���2

�hx0 � �Nþ1
n � ig

e�iq�rj : ð39Þ

The scattered intensity is then I0RSXSðq;xÞ ¼ S0f iðq;xÞ
��� ���2. By

inspection, one can see that Eq. (39) is identical to the advanced
Green’s function in Eq. (38), except in one respect: the causality
parameter c is infinitesimal, while the radiative lifetime g is
finite.

As mentioned in Section 2, the effect of the finite lifetime, g,
essentially is to lower the energy resolution: The scattering ampli-
tude in Eq. (39) is nothing other than the Green’s function in Eq.
(38), convolved with a Lorentzian with width g. Spectral features
on a scale finer than g will be washed out. Once one accepts reso-
lution limitations, however, the following relationship can be con-
sidered to hold:
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I0RSXSðq;xÞ ¼ GA
e ðq;xÞ

��� ���2: ð40Þ

Hence, we conclude that-in the extreme nonlocal limit-RSXS
measures the square modulus of the Fourier transform of an
advanced version of Green’s function measured in STM experi-
ments. Extrapolating this result beyond our lattice model, we
arrive at a tentative but direct relationship between STM and RSXS
measurements:

I0RSXSðq;xÞ �
Z

dr
Z 1

0
dx0

ASTMðr;xÞ
x�x0 � ig

e�iq�r
���� ����2: ð41Þ

This relationship between RSXS and STM is illustrated in Fig. 1,
which directly compares the Fourier transform of STM measure-
ments to RSXS. The comparison is between two very similar mate-
rials, Ca2�2xNaxCuO2Cl2 (NCCOC) in the case of STM [53] and LBCO
in the case of RSXS [45]. Compellingly, the momentum position of
the peak in RSXS measurements coincides precisely with the loca-
tion of the peak in STM, suggesting that the so-called ‘‘checker-
board’’ order observed in this system has a close relationship to
stripe physics. Efforts to detect checkerboards with RSXS have so
far been unsuccessful, [52] so the precise relationship is still
unknown.

Despite the resolution limitations, Eq. (41) implies a crucial
advantage of RSXS over the more common probes of STM and
ARPES: RSXS is also sensitive to the real part of the Green’s func-
tion, rather than just its imaginary part. This has several implica-
tions. First, RSXS is sensitive to the causality convention chosen,
and in particular requires use of the advanced G if comparison to
a microscopic model is performed. Second, RSXS is capable of cer-
tain classes of phase-sensitive, interference experiments. This has
already been exploited to measure the phase shift between the
charge and strain waves in the CuO2 chain layer in Sr14Cu24O41

[41].
The similarity of RSXS to STM, rather than ARPES, is intuitive if

one considers that the former two techniques probe the static
inhomogeneity of a system. For example, suppose one had a sys-
tem that was perfectly homogeneous. An ARPES measurement
would yield a highly featured spectral function, A(k,x), whose
momentum structure is reflective of the propagation characteris-
tics of the quasiparticles. An STM measurement, however, would
be trivial: The same spectrum would be acquired at every location,
the real space spectral function, A(r,x), being independent of r.
Similarly, there being no real space structure to diffract from, a
RSXS measurement would only observe scattering in the forward
(q = 0) direction. In an inhomogeneous system, however, the real
space spectral function, A(r,x), would acquire a non-trivial depen-
dence on r, and both STM and RSXS measurements would yield
non-trivial results.
7. Outlook for the RSXS technique

We now try to provide some perspective on the future of the
RSXS technique. Because of its pronounced inelastic background,
RSXS has proven to be of rather limited use for studying systems
with short-ranged or glassy order, such as NCCOC [53]. Attempts
to remove this inelastic background with multilayer analyzers
have not been fruitful because of problems controlling geometric
contributions to the energy resolution. Other possible routes to
energy analysis, such as transmission gratings or backscattering
crystals, may be more fruitful but require significant instrumenta-
tion development that has only just begun. Hence, it is useful con-
sider whether there might be a more natural direction for the RSXS
technique.

The core strengths of RSXS as a valence band probe are (1) nat-
urally high momentum resolution, i.e., RSXS can detect structures
�102 nm in size without any special efforts, (2) bulk sensitivity,
and (3) compatibility with a high field environment, where for
example ARPES methods fail. This suggests that RSXS is most nat-
urally suited to large, highly ordered phenomena that have a non-
trivial magnetic field dependence.

These strengths imply two directions. The first is artificially
structured transition metal oxides, for example superlattices cre-
ated with layer-by-layer synthesis techniques such as molecular
beam epitaxy (MBE) or pulsed laser deposition (PLD), or thin films
that have been lithographically patterned. The former are of tre-
mendous current interest in the field of oxide interfaces, in which
new emergent phenomena such as superconductivity and magne-
tism have been observed [65]. RSXS is a natural probe of such
interfaces, and has already been used to detect an emergent Fermi
surface at LaMnO3–SrMnO3 interfaces [18] and charge delocaliza-
tion in heterostructures of La2CuO4 and La1.64Sr0.36CuO4 [19]. Preli-
minary studies of large arrays of La1�xSrxMnO3 quantum wires also
seem promising [66].

The second direction is high magnetic field studies. Several
groundbreaking quantum oscillations experiments [12,13] have,
for the first time, demonstrated the existence of well-defined
quasiparticles in copper-oxide superconductors. These measure-
ments, which are performed in magnetic fields higher than 60 T,
are the first explicit evidence for the validity of the quasiparticle
concept, which places strong constraints on the types of theories
that apply to cuprate materials. Unfortunately, the oscillation peri-
ods observed in these measurements do not seem to correspond to
the volume of any Fermi surface pocket observed with ARPES tech-
niques. The leading explanation of this apparent contradiction is
that the cuprates form an ordered state at high temperature – per-
haps even a stripe smectic which some measurements already
suggest is stabilized at high fields[67–69] – whose correlation
length is long enough to fold the Fermi surface, creating new pock-
ets. Hence, clarifying the validity of the quasiparticle concept in
cuprates seems to boil down to the problem of determining
whether an ordered state exists at high fields, and what it’s origin
might be. This is a natural problem for RSXS, which is kinematically
well matched to the length scales of the vortex lattice, and most
likely whatever valence band instability causes the Fermi surface
folding. Development of high-field instruments, which will be a
first for the RSXS texcnique, is already underway at the SSRL facil-
ity in Menlo Park, CA and the BESSY facility in Berlin.
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