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Resonant Spectrum Method to Characterize
Piezoelectric Films in Composite Resonators

Yuxing Zhang, Zuoqing Wang, and J. David N. Cheeke, Senior Member, IEEE

Abstract—In this paper, we present a direct method to
characterize a piezoelectric film that is sandwiched with
two electrodes and deposited on a substrate to form a four-
layer thickness extension mode composite resonator (also
known as over-moded resonator). Based on the parallel and
series resonant frequency spectra of a composite resonator,
the electromechanical coupling factor, the density and the
elastic constant of the piezoelectric film can be evaluated
directly. Experimental results on samples consisting of ZnO
films on fused quartz substrates with different thickness
are presented. They show good agreement with theoreti-
cal prediction. The mechanical effect of the electrode on

the method is investigated, and numerical simulation shows
that the effect of the electrodes can be properly corrected
by the modified formulae presented in this paper. The ef-
fect of mechanical loss in piezoelectric film and in substrate
on this method also has been investigated. It is proven that
the method is insensitive to the losses.

I. Introduction

Piezoelectric thin films have been widely used in
high frequency bulk acoustic wave (BAW) and surface

acoustic wave (SAW) devices, such as filters, resonators,
actuators, and sensors. For self-supported, single piezoelec-
tric films, various measurement techniques have been de-
veloped to evaluate the acoustic properties of these films.
However, for some piezoelectric ceramic films (e.g., sol-
gel PZT films on metal substrate [1]) and for very high
frequency acoustic wave devices (e.g., zinc oxide films on
fused quartz [2], [3] and AlN films on silicon [4]), the films
are not self-supported and the film properties depend on
the substrates. Therefore, the methods recommended by
the IEEE standard [5] are not available.

In the case of thin films deposited on very thick sub-
strates, which are used as high frequency transducers,
Bahr and Court [6] developed a method to determine the
coupling coefficient from measuring the transducer input
admittance. By pulse measurements, an infinite long delay
line is imitated, and thus the propagation characteristics of
the acoustic wave in the substrate does not affect the mea-
sured values of the input admittance. The electromechan-
ical coupling coefficient k2

t was determined by data-fitting
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the input admittance curve (versus frequency). Meitzler
and Sittig [7] improved the method by taking the effects of
the electrode and the interconnection layers into account.
Because the value of k2

t is evaluated from the magnitude
of the input admittance, which depends on all the electri-
cal factors, a complicated measurement system and very
accurate calibration of the system are necessary.

In the case of a piezoelectric film deposited on a thin
substrate to form a thickness extension mode composite
(over-moded) resonator, Hickernell [3] and Naik et al. [4]
introduced methods to extract the k2

t value by fitting the
electric input impedance and admittance data with the
equivalent circuit analysis results on multimode resonance
of a composite resonator.

We previously reported a direct method to character-
ize a piezoelectric film coated on an isotropic substrate to
form a two-layer composite resonator [8], [9]. By know-
ing the resonant spectra of a composite resonator, three
parameters of the piezoelectric film (i.e., the electrome-
chanical coupling coefficient, the elastic constant, and the
density) could be determined. The validity of this method
was demonstrated with simulations when electrodes were
ignored. For the high frequency devices, however, the elec-
trode effect cannot necessarily be ignored.

In this paper, the resonant spectrum method is ex-
tended to the case in which the electrodes are taken into
account. A set of explicit formulae that forms the foun-
dation of the method are first presented, followed by the
experimental results on high frequency ZnO/fused quartz
composite resonators. The validation and the accuracy of
the method are proven by numerical simulation in Sec-
tion IV. The impact of the mechanical effect of electrodes is
discussed and the improvement of the method for the elec-
trode effect is demonstrated in Section V. Because the me-
chanical losses of the materials play an important role on
the electric impedance of high-frequency resonators, from
which the resonant frequencies are determined, the effect
of the mechanical losses on the resonant spectrum method
is investigated by numerical simulation in Section VI. In
all the simulations, the experimentally measured data for
the ZnO thin film (obtained from Section III) are taken as
the standard parameters; other parameters are taken from
literature. A detailed derivation of the related formulae is
presented in the Appendix.

II. The Resonant Spectrum Method

The resonant spectrum method is based on two groups
of approximate formulae, which are derived from the elec-

0885–3010/$10.00 c© 2003 IEEE



322 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 50, no. 3, march 2003

Fig. 1. A typical four-layer composite resonator, with the definitions
of the material parameters and dimensions.

tric input impedance expression of a four-layer composite
resonator. A composite resonator has multiple resonances,
determined mainly by the acoustic properties of the mate-
rials and the thickness of the four layers. Three parameters
(i.e., longitudinal velocity V , density ρ, and electrome-
chanical coupling coefficient k2

t ) of the piezoelectric film
can be determined directly from the parallel and series
resonant spectra of a composite resonator. The detailed
derivation of the formulae will be given in the Appendix.
In this section only the results are presented.

The electric input impedance of a four-layer thickness
extension mode composite resonator, as shown in Fig. 1, is:

Zin =

1

jωC0

[

1 −
k2

t

γ

(z1 + z2) sin γ + j2(1 − cos γ)

(z1 + z2) cos γ + j(1 + z1z2) sin γ

]

, (1)

where C0 = εS
33S/l is the static capacitance of the res-

onator, S is the area of the electrodes, εS
33 and l are the

permittivity and thickness of the piezoelectric layer; k2
t is

the electromechanical coupling coefficient of the piezoelec-
tric layer; γ = ωl/V is the phase delay of the longitu-
dinal acoustic wave with velocity V in the piezoelectric
layer, ω is the angular frequency; z1 and z2 are the acous-
tic loading impedances on both sides of the piezoelectric
layer normalized to Z0 = SρV , the acoustic impedance of
the piezoelectric layer, ρ is the density of the piezoelectric
layer.

Fig. 2 shows the electric input impedance of a resonator
consisting of a PZT film deposited on a stainless steel
plate. The parameters used are listed as sample III in Ta-
ble I. In the calculation, an arbitrary small imaginary part
(0.1%) is added to the velocities for both the film and the
substrate to avoid singularities.

It is shown in Fig. 2 that the impedance response has
a global hyperbolic decrease, which is determined by the
static capacitance C0; and, in the frequency region cor-
responding to the fundamental mode of the piezoelectric
film, there is a series of resonant peaks, each peak corre-
sponds to a resonant mode of the composite resonator. The
static capacitance C0 is only related with the hyperbolic
decrease of the impedance response, not with the resonant
frequencies. Contrarily, k2

t should be related only with the
resonant frequencies as it is in the single piezoelectric plate

Fig. 2. The simulated electric impedance of a PZT/stainless steel
composite resonator as a function of frequency. The curve clearly
shows the hyperbolic decrease due to the static capacitance and the
peaks due to multiple resonances in the substrate.

case. In the derivation of the method, we followed a similar
procedure as in the single piezoelectric plate case to derive
the parallel and series resonance frequency equations from
(1). From the resonant frequency equations, we derived the
formulae that are the principles of the proposed resonant
spectrum method.

By definition in the IEEE standard [5], the parallel res-
onant frequency corresponds to the maximum resistance,
which is the real part of Zin. It can be derived from (1) by
setting the denominator to zero and is given by:

(z1 + z2) cos γ + j(1 + z1z2) sin γ = 0. (2)

The series resonant frequency, which corresponds to the
maximum of the conductance, can be derived from (1) by
setting the numerator to zero and is given by:

(z1 + z2) cos γ + j(1 + z1z2) sin γ

−
k2

t

γ
(z1 + z2) sin γ + j2(1 − cos γ) = 0. (3)

It will be seen in the Appendix that z1 and z2 are purely
imaginary functions if the material parameters are real, so
(2) and (3) are not complex equations.

For a multimode composite resonator, by defining the
spacing of the parallel resonant frequencies (SPRF)

∆fp(m) = fp(m + 1) − fp(m), (4)

we derived two approximate formulae that relate the lon-
gitudinal velocity V and the density ρ of the piezoelectric
layer with two characteristic values of the SPRF, ∆fN and
∆fT , which can be obtained from the SPRF distribution
versus the resonant mode order m.

The normal regions are the areas in which γ is close to
an integer multiplication of π. At the center of the first
normal region (i.e., γ ≈ π), the SPRF is given by:

∆fN = ∆f0

(

1 +
ρe1le1 + ρe2le2 + ρl

ρsblsb

)

−1

, (5)
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TABLE I

The Parameters of Composite Resonators Used in Simulation.

Piezoelectric film Substrate Electrodes
ρ V k2

t
l ρsb Vsb lsb ρe Ve le

Sample Material (kg/m3) (m/s) (%) (µm) (kg/m3) (m/s) (µm) zsb (kg/m3) (m/s) (µm) R

I ZnO/fused quartz 5665.8 6063.1 7.27 4.8 2200 5973.4 1536.5 0.38 2695 6418 0.4 306.7
II ZnO/fused quartz 5525.3 6135.9 8.02 5.3 2200 5973.4 2370.3 0.39 2695 6418 0.4 435.4
III PZT/stainless steel 7000.0 2400 4.0 50 7800 5900 2400 2.74 0 19.5

where ∆f0 = Vsb/2lsb is the SPRF of the bare substrate
plate so it is a constant; ρsb, ρe1, and ρe2 are the densities
of the substrate, the top and the middle electrodes, respec-
tively; lsb, le1, and le2 are the thicknesses of the substrate,
the top and the middle electrodes, respectively.

For the case in which the acoustic impedance of the
piezoelectric layer is greater than that of the substrate
referred as soft substrate (e.g., ZnO film on quartz sub-
strate), ∆fN corresponds to the first minimum of the
SPRF. In the case in which the acoustic impedance of
the piezoelectric layer is less than that of the substrate,
referred to as hard substrate (e.g., PZT on stainless steel
substrate), ∆fN corresponds to the first maximum of the
SPRF.

The transition regions are the areas in which γ is close
to a half integer multiplication of π. At the center of the
first transition region (i.e., γ ≈ π/2), the SPRF is given by:

∆fT =

∆f0

(

1 +
ρsbV

2
sb

ρV 2

l

lsb
+

ρsbV
2
sb

ρe2V 2
e2

le2
lsb

+
ρsbρe1V

2
sb

ρ2V 2

le1
lsb

)

−1

,
(6)

where V , Vsb, Ve1, and Ve2 are the velocities of the piezo-
electric layer, substrate, and top and middle electrodes,
respectively.

When the acoustic impedance of the piezoelectric layer
is greater than that of the substrate, ∆fT corresponds to
the first maximum of the SPRF. In the other case ∆fT

corresponds to the first minimum of the SPRF.
It is shown in (5) and (6) that the density ρ and the

longitudinal velocity V of the piezoelectric layer can be
evaluated by obtaining the two characteristic values, ∆fN

and ∆fT , from the SPRF distribution and by knowing the
thickness of the piezoelectric film and other parameters of
the electrodes and the substrate. The elastic constant cD

33

then is given by the formula cD
33 = ρV 2. Of course, these

two formulae can be used to evaluate other parameters if
ρ and/or V are known.

In analogy to the formula for the coupling coefficient
of a single-layer piezoelectric resonator when the coupling
coefficient is small [5]:

k2
t,single ≈

π2

4

fs

fp

(

1 −
fs

fp

)

, (7)

we introduce an effective coupling coefficient k2
eff(m),

which indicates the electromechanical coupling intensity

of a specific resonant mode of a composite resonator:

k2
eff(m) =

π2

4

fs(m)

fp(m)

(

1 −
fs(m)

fp(m)

)

, (8)

where fp(m), fs(m) are the m-order parallel and series
resonant frequencies, respectively. From the series resonant
frequency determination (3), we derived the relationship
between k2

t and k2
eff(m) as follows.

At the first normal region k2
t is given by:

k2
t =

(1 + mNzsb)
2

(

1 + ρe1le1+ρe2le2+ρsblsb

ρl

)k2
eff(mN + 1), (9)

where zsb = Zsb/Z0 is the normalized acoustic impedance
of the substrate, Zsb = SρsbVsb, (mN + 1) is the resonant
mode order at the center of the first normal region.

At the first transition region, k2
t is given by:

k2
t =

[(2mT + 1) /zsb + 1]
2

1 + ρV 2/l
ρsbV 2

sb
/lsb

+ ρV 2/l
ρe2V 2

e2
/le2

+ ρe1le1
ρl

k2
eff (mT + 1)

Γ
,

(10)

where (mT +1) is the resonant mode order at the center of
the first transition region. Γ is a correction factor, which is
caused by the difference between the (mT +1) order series
resonant frequency and the center of the first transition
region. Γ is given by:

Γ = 1 − 2ρV

(

1 +
2πfsl

V
−

π

2

)

(

2πfsl

ρsbV 2
sb

−
(mT + 1/2)π

ρsbVsb
+

2πfsle2
ρe2Ve2

)

. (11)

where fs is the series resonant frequency at the center of
the first transition region.

By knowing the thicknesses, the densities, and the ve-
locities of four layers and by evaluating the k2

eff(m) value
from the experiment/simulation data, k2

t can be obtained
from (9) or (10). Usually, the maximum value of k2

eff(m)
should be used in the evaluation for the best accuracy.
When Z0 > Zsb, the maximum k2

eff(m) is located in the
first normal region and when Z0 < Zsb, the maximum
k2
eff(m) is located in the first transition region.

By introducing the ratio of the half wavelength resonant
frequency of the top resonator fc to the half wavelength
resonant frequency of the substrate fsb:

R =
fc

fsb
=

V
(

lsb + 1
2
ρe2le2

/

ρsb

)

Vsb

(

l + ρe1le1
/

ρ + 1
2
ρe2le2

/

ρ
) ,

(12)
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we can get approximate expressions of the mode order at
the first normal region and the first transient region:

mN = the nearest integer of R, (13)

mT = the nearest integer of

(

R − 1

2

)

. (14)

When R is close to an integer or R is so large that the
fractional part can be ignored, (9) can be simplified to:

k2
t =

ρl (ρl + ρsblsb + ρe1le1 + ρe2le2)
(

ρl + ρe1le1 + 1
2
ρe2le2

)2
k2
eff(mN + 1).

(15)

When R is close to an odd integer, or say (R − 1)/2 is
close to an integer, or R is very large, (10) can be simpli-
fied to:

k2
t =

ρl
(

1 + ρe1le1
ρl + ρV 2

ρsbV 2

sb

lsb

l +
(

ρ2V 2

ρ2

sb
V 2

sb

+ 1
)

1

2
ρe2le2
ρl

)

ρl + ρe1le1 + 1
2
ρe2le2

k2
eff(mT + 1)

Γ
. (16)

These simplified equations also have a clear physical
interpretation. Eq. (15) shows when the electrodes can be
ignored, k2

t of the piezoelectric film is the effective coupling
factor at the center of the first normal region multiplied by
the mass ratio of the whole resonator to the piezoelectric
film.

III. Measurement of ZnO/SiO2 Composite
Resonators

In order to demonstrate the feasibility of the resonant
spectrum method, some composite resonator samples have
been measured. The resonators are composed of ZnO films
deposited on fused quartz substrates [10]. The thickness
of the ZnO films is about 5 µm and the thicknesses of
the quartz substrates are about 62 mil (Sample I) and
92 mil (Sample II). There is a circular ground electrode of
aluminum approximately 0.4-µm thick underlying the ZnO
film, and there are four small circular electrodes of 0.4 µm
aluminum on the top of ZnO film, forming 4 composite
resonators (Fig. 3).

The reflection coefficients s11 of the resonators were
measured with an HP8753D network analyzer (Agilent,
Palo Alto, CA) from 100 MHz to 800 MHz. Because the
maximum number of measurement points of an HP8753D
is only 1601 and we need an ultrahigh resolution resonant
spectrum, the whole frequency span of 700 MHz was di-
vided into tens of narrow spans, 10 MHz each for 62-mil
thickness samples and 8 MHz each for 92-mil thickness
samples. The network analyzer was calibrated only once
for 700 MHz span, and an interpolated calibration was
used for each measurement. A LabWindow program (Na-
tional Instruments Corp., Austin, TX) running in a com-
puter was used to control the network analyzer for set-
ting the central frequency and span, running the measure-
ment, and downloading the measured data to the com-
puter. Thus, high-resolution frequency responses for the
whole span were acquired.

Fig. 3. ZnO/SiO2 composite resonators used in the experiment. The
bottom electrode is common to all four resonators.

After further interpolating the measured data near each
resonant peak and then converting s11 into impedance
Zin and admittance Yin, the parallel and series resonate
frequencies of these samples were calculated. Distribu-
tions of the SPRF and the k2

eff(m) of the samples are
shown in Figs. 4 and 5, from which the two characteris-
tic values ∆fN , ∆fT and the effective coupling coefficient
k2
eff(mN + 1) are measured. They are listed in Table II.

Here the SPRF and k2
eff are plotted against frequency, not

the mode order as in their definitions. In fact, both are
almost identical in the distribution shape and only differ
in the horizontal axis by a factor of ∆f0, the SPRF of the
bare substrate. It is shown that the data of the SPRF are
a little dispersive, and the characteristic values of ∆fN ,
∆fT are determined by averaging the measurement data.
Even so, the periodic shape of the SPRF distribution is
very regular and the results are fairly sure. It is interest-
ing to notice that the data of k2

eff(m) are very smoothly
distributed over a wide frequency range and almost no dis-
persion. As a result, no data fitting is necessary, and the
characteristic value of k2

eff(mN + 1) can be evaluated ac-
curately. These experiment results clearly show the prac-
ticality of this method.

The density ρ, the longitudinal velocity V (then the
elastic constant cD

33), and the electromechanical coupling
coefficients k2

t of the ZnO film were then calculated by us-
ing the resonant spectrum method (5), (6), and (9). They
are listed in Table II. The data of the thickness and the
parameters of the fused quartz substrate and aluminum
electrodes [10], [11] are given in Table I.

IV. Validity and Accuracy of the Resonant
Spectrum Method

Since the ZnO film parameters are process related, there
are no standard values to compare with the results we
got from the experiment. We will investigate the valid-
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TABLE II

Characteristic Values and Parameters Determined by Experiment on ZnO/fused Quartz Composite Resonators.

Experiment Parameters deduced from experiment
∆fN ∆fT k2

eff
(mN + 1) ρ cD

33
V k2

t

Sample (MHz) (MHz) (%) mN + 1 (kg/m3) (1010N/m2) (m/s) (%)

1 1.9271 1.9411 0.065 309 5665.8 20.83 6063.1 7.27
2 1.2525 1.2588 0.050 437 5525.3 20.80 6135.9 8.02

Fig. 4. SPRF (top) and k2

eff
(bottom) distribution of Sample I (62 mil

ZnO/fused quartz resonator).

ity and accuracy of the method by numerical simulation.
Three examples are simulated. The first two are the sam-
ples discussed in last section (i.e., ZnO film on fused quartz
substrate), which represent the case in which the acoustic
impedance of the piezoelectric layer is greater than that of
the substrate. The values of the velocity, the density, and
the coupling coefficient of the ZnO films are the data deter-
mined by experiment in the last section. In the simulation
they are used as the input parameters. The third sample
is a porous PZT film on a stainless steel plate [1], which
represents the case in which the acoustic impedance of the

Fig. 5. SPRF (top) and k2

eff
(bottom) distribution of Sample II

(92 mil ZnO/fused quartz resonator).

piezoelectric layer is less than that of the substrate. The
parameters used in the simulation are listed in Table I.

The parallel and series resonant frequencies of these
composite resonators are calculated by solving the max-
imums and minimums of the resistance from (1). The dis-
tribution of the SPRF and k2

eff(m) of Sample I and Sample
II are shown in Figs. 4 and 5 by solid dots. For Sample
III, they are shown in Fig. 6. The simulated characteristic
values of ∆fN , ∆fT , and k2

eff(mN + 1) are obtained from
these figures. Using the equations of the resonant spec-



326 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 50, no. 3, march 2003

TABLE III

Simulation Results on the Samples in Table I.

ρ cD

33
V k2

t

Sample (kg/m3) error (1010N/m2) error (m/s) error (%) error

I 5544.2 −2.1% 20.67 −0.8% 6106.1 0.7% 7.05 −3.0%
II 5422.5 −1.9% 20.63 −0.8% 6167.9 0.5% 7.75 −3.4%
III 7011.8 0.2% 4.10 1.6% 2419.2 0.8% 3.98 −0.4%

Fig. 6. SPRF (top) and k2

eff
(bottom) distribution of Sample III

(PZT/stainless steel resonator).

trum method in Section II and the material parameters
in Table I, we obtained the simulation output of three pa-
rameters of the piezoelectric films. The results are listed in
Table III. The errors listed are with reference to the input
data shown in Table I. Small imaginary parts are intro-
duced into the velocities of both the piezoelectric film and
the substrate to avoid singularities. The imaginary parts
of the velocities have little effect on the distribution of the
SPRF and the effective coupling coefficients. This will be
discussed in Section V.

It is shown in Table III and the input data given in
Table I that the difference between the output values and

input values are within 3.5% for all three parameters (and
cD
33 as well). Assuming the data evaluated from the exper-

iment (given in Table II and listed in Table I as the input
parameters) are the “true” values for Sample I and Sample
II, the determined values by this method are accurate to
3.5% for the samples used here. For such high frequency
devices, a few percent errors are quite acceptable.

V. Effect of the Electrodes

In our previous work [8], the mechanical effect of elec-
trode was ignored. In other words, the thickness of the
electrodes was taken to be zero. In this paper, we have
taken the electrodes into account. But in the derivation
of the resonant spectrum method formulae given in the
Appendix, a thin electrode approximation is used. The er-
rors caused by this approximation may be significant for
high frequency resonators in which the thickness of the
electrodes is comparable with the thickness of the piezo-
electric film. Therefore, it is necessary to investigate the
available range of the electrode thickness limitation and
the errors caused by the electrodes. Fig. 7 shows the SPRF
and k2

eff(m) distributions for various electrode thicknesses
in a ZnO/fused quartz composite resonator as Sample I.
It can be seen that the thicker the electrode, the greater
the k2

eff(m). These results are qualitatively coincident with
(15). Table IV lists the simulation results for ρ, V , and k2

t

for various electrode thicknesses. It is shown that the er-
rors of the three parameters increase with the increase of
the electrode thickness. When the thickness of the alu-
minum electrodes is within 10% of the ZnO film, the error
is less than 5%, which is quite acceptable. The result has
a clear mathematical interpretation. As given in the Ap-
pendix (A7), an approximation:

tan γe ≈ γe, (17)

is used in deriving the resonant spectrum method, which
means the electrodes can be considered as a mass load-
ing. For ZnO/quartz composite resonator with aluminum
electrodes as simulated here, Ve is close to V . When the
electrode thickness is a tenth of the piezoelectric film thick-
ness:

γe ∼ γ/10 ≈ π/10, (18)

at the first normal region. The use of approximation of
(17) gives an error of 3.4%. With contributions from other
approximations, the overall error is about 5%. The condi-
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Fig. 7. SPRF (top) and k2

eff
(bottom) distribution for various elec-

trode thicknesses in a four-layer ZnO/fused quartz composite res-
onator.

tion for the electrode thickness being a tenth of the piezo-
electric film thickness can be used as a rough criterion to
achieve good accuracy.

As a further comparison, we use the resonant spectrum
method formulae with the electrode effect ignored [8]. Let
le1 = le2 = 0, (15) becomes:

k2
t =

(

1 +
ρsblsb

ρl

)

k2
eff(mN + 1). (19)

For the 0.4-µm electrode case in Table IV, k2
t will be 7.83%,

and the error will be 7.74% when other parameters use
the input value in Table I. If the velocity and density use
the simulation results in Table III, the error of k2

t will be
10%. When taking the electrode effect into account and
using (15), we find that the error of k2

t is only 2.1%. The
result shows clearly that effects of the electrode have to be
compensated and our modified formulae are effective.

The data given in Table IV shows that the results ob-
tained from (15) seem better than those from (9). This
may be caused from the approximation of mN introduc-

ing an opposite error that cancels out part of the error
from (9).

VI. Effect of Mechanical Loss

In deriving the parallel and series resonant frequencies
determination (2) and (3), from which the formulae for
evaluating k2

t are derived, all the material parameters are
assumed to be real. This means all materials are assumed
lossless. For high frequency devices or porous piezoelectric
ceramics, however, the losses are significant in determina-
tion of the electric input impedance of a resonator, from
which the resonant frequencies are calculated. Therefore,
it is necessary to investigate the validity of the resonant
spectrum method when the materials are lossy, in another
word, whether (9) and (10) are available when the resonant
frequencies are directly calculated from impedance (1).

The effect of the mechanical losses on evaluating k2
t

is investigated with numerical simulation by taking the
velocity as a complex value. The ratio of the real part
to imaginary part of the velocity is referred to as mate-
rial Q value. Taking different Q values for the piezoelec-
tric film and the substrate, and directly calculating the
resonant frequency spectra from the electric impedance
of the composite resonator, we evaluated the correspond-
ing k2

eff(mN + 1). Because k2
t is definitely determined by

k2
eff(mN + 1) or k2

eff(mT + 1) when other material param-
eters are taken as constants, only the k2

eff(m) distribution
is necessary to be simulated for different loss.

Fig. 8 shows the electric input impedance of the
ZnO/SiO2 composite resonators with different material Q
values. In Fig. 8(b) the Q values of the two materials
are chosen such that the impedance is close to the ex-
perimental result [Fig. 8(a)]. Figs. 8(c) and 8(d) are the
cases in which the material Q values are much higher and
much lower, respectively. In the high Q case, the imaginary
parts of the velocities of the piezoelectric film and the sub-
strate decrease to 1/10 and 1/2 from the nominal values
in Fig. 8(b), respectively. In the low Q case, the imaginary
parts increase by five times and twice, respectively. It is
shown that the resonant amplitude changes significantly.
The smaller the propagation losses, the higher the resonant
peaks, and vice versa.

The distribution curves of k2
eff(m) versus the frequency

are shown in Fig. 9 for high Q and low Q cases. It is noticed
that, although the mechanical losses in the piezoelectric
film and substrate have been changed by 50 and 4 times,
the distributions of k2

eff(m) have no significant difference.
The value at the first normal region k2

eff(mN + 1) changes
only 1.6%. Thus, k2

t of the piezoelectric film calculated
from k2

eff(mN + 1) with the resonant spectrum method is
insensitive to the mechanical loss for moderate loss piezo-
electric films. This behavior is in accordance with Naik et

al. [4] and the IEEE standard [5].
Other simulations show that, when the loss in the sub-

strate is taken as the nominal value, the 50 times vari-
ation of the loss in the piezoelectric film brings a trivial
difference to the k2

eff(m). This is in accordance with the
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TABLE IV

Method Errors for Various Aluminum Electrode Thicknesses in ZnO/fused Quartz Composite Resonator.

Electrode ρ V cD

33
k2

t
(9) k2

t
(15)

thickness (kg/m3) error (m/s) error (1010N/m2) error (%) error (%) error

0 5654.5 −0.2% 6072.6 0.2% 20.85 0.1% 7.19 −1.1% 7.21 −0.8%
0.2 µm 5625.1 0.7% 6080.6 0.3% 20.80 −0.1% 7.15 −1.7% 7.17 −1.4%
0.4 µm 5544.2 −2.1% 6106.1 0.7% 20.67 −0.8% 7.05 −3.0% 7.12 −2.1%
0.6 µm 5430.2 −4.2% 6154.7 1.5% 20.57 −1.2% 6.88 −5.4% 7.05 −3.0%
0.8 µm 5290.4 −6.6% 6212.2 2.5% 20.42 −2.0% 6.64 −8.7% 6.89 −5.2%

Fig. 8. Imaginary part electric impedances of ZnO/fused quartz resonators with different material mechanical losses showing a significant
effect of the loss on the resonant amplitude. Horizontal axes, frequency in MHz; Vertical axes, imaginary part impedance in Ω.

physical nature of a composite resonator that the acoustic
wave travels most of the time in the substrate, and the
loss of the piezoelectric film has little effect. Because the
substrate is usually high quality materials such as fused
quartz or silicon, their acoustic losses are fairly constant
and will not exceed the variation range in the simulation of
Fig. 9. Therefore, the effect of mechanical loss in both the
piezoelectric film and the substrate for practical materials
may be much less than what have been shown in the simu-
lation Fig. 9. This feature gives further advantages to the
resonant spectrum method for keeping good accuracy for a

wide range of practical piezoelectric films up to moderate
high mechanical loss.

VII. Conclusions

The principles of a direct measurement method for
piezoelectric film, named as the resonant spectrum
method, are presented briefly. After knowing the resonant
spectrum of a composite resonator, three major parame-
ters of piezoelectric films (i.e., the electromechanical cou-
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Fig. 9. k2

eff
distribution of ZnO/fused quartz resonators for different

material mechanical losses showing the small effect of the loss on the
k2

eff
.

pling coefficient), the elastic constant and the density can
be evaluated by a set of explicit formulae. It has been found
that the acoustic impedance ratio of the piezoelectric film
and the substrate dominates the SPRF and k2

eff distribu-
tions. For the soft substrate case where zsb < 1, ∆fN of
the SPRF is the minimum and ∆fT is the maximum. The
k2
eff has maximum at the first normal region and (9) or

(15) should be used to calculate the k2
t . Contrarily, for the

hard substrate case where zsb > 1, ∆fN of the SPRF is
the maximum and ∆fT is the minimum. The k2

eff has max-
imum at the first transition region and (10) or (16) should
be used to calculate the k2

t .
Measurement on two samples of ZnO/fused quartz res-

onators was carried out, and the results are reasonable.
Simulation results show that, for thin electrode in which
the electrode can be considered as mass loading, the ef-
fects introduced by the electrode can be compensated by
the modified formulae derived in this paper. As a result,
the errors are less than 5% if the thickness of the elec-
trode is not more than 10% of that of the piezoelectric
film. The effect of the mechanical losses in the substrate
and piezoelectric film on the accuracy of this method has
been investigated by numerical simulation, and it is shown
that the effect is small for practical composite resonators.

This method can find wide application in piezoelectric
film characterization. An obvious advantage of the reso-
nant spectrum method is the “directness”. Usually, the pa-
rameters of the piezoelectric films are determined by fitting
the data from their electric characteristic measurements,
for example, the electric input impedance. This method,
also based on the electric impedance measurement, can
calculate three parameters directly. Another advantage of
the method is that only the distributions of resonant fre-
quencies are of interest. Therefore, the calibration of the
measurement system is not critical, even though the ac-
curacy of the calibration makes a considerable difference
in the measurement of electric impedance. This feature is
convenient for some applications in which accurate calibra-

tion is difficult. In addition, the k2
t deduced by this method

is not sensitive to the loss of the piezoelectric film, this im-
plies that this method can apply to moderate high loss, low
Q factor piezoelectric film characterization.

The formulae presented in this paper are also useful for
designing overmoded resonator filter [12], [13]. The band-
width of such filter is mainly determined by the effective
electromechanical coupling coefficient k2

eff. By knowing the
material electromechanical coupling coefficient k2

t , the k2
eff

value of the mode in normal or transition region can be
evaluated directly from the formulae given in Section II.
A suitable k2

eff value can be optimized by choosing proper
material parameters and thickness of the composite res-
onator.

There are some limits on this method. The electrodes of
the resonator have to be very thin compared to the piezo-
electric film. This limits the application of this method to
a frequency range under 1 GHz. In addition, there have
to be enough resonant modes in one period of SPRF to
use the approximation (15) and (16). This requires a large
thickness ratio of the substrate to the piezoelectric film.
As a result, the inaccuracy of the substrate parameters
has more impact on the accuracy of the resonant spectrum
method.

Appendix A
Derivation of the Resonant Spectrum Method

A. The Electric Input Impedance of

a Composite Resonator

The acoustic impedance of each layer in a composite
resonator can be described using Sittig’s matrix presenta-
tion [14]. A schematic of a four-layer composite resonator
is shown in Fig. 10.

The acoustic impedance of the top electrode, presenting
at the left side of the piezoelectric layer, is given by:

Z1 =
F0

u0

= jZe1 tan γe1, (A1)

where F and u represent force and displacement velocity,
respectively, Ze1 = Sρe1Ve1 is the acoustic impedance of
the top electrode, γe1 = ωle1/Ve1 is the phase delay in the
top electrode.

The acoustic impedance of the middle electrode and the
substrate, presenting at the right side of the piezoelectric
layer, is given by:

Z2 =
F1

u1

= j
Zsb tan γsb + Ze2 tan γe2

1 − (Zsb/Ze2) tanγe2 tan γsb
,

(A2)

where γe2 = ωle2/Ve2, γsb = ωlsb/Vsb are the phase de-
lay in the middle electrode and the substrate, respec-
tively; Ze2 = Sρe2Ve2, Zsb = SρsbVsb are the acoustic
impedances, ρe2, ρsb are the densities, Ve2, Vsb are the ve-
locity of this two layers, respectively.
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Fig. 10. The matrix model to derive the electric input impedance of a four-layer composite resonator.

The electric input impedance of such a four-layer com-
posite resonator is given by:

Zin =
U

I

=
1

jωC0

[

1 −
k2

t

γ

(z1 + z2) sin γ + j2(1 − cos γ)

(z1 + z2) cos γ + j(1 + z1z2) sin γ

]

,

(A3)

where z1 = Z1/Z0 and z2 = Z2/Z0 are the normalized
acoustic impedance of the top electrode layer and the mid-
dle electrode/substrate combination.

B. The First Normal Region. ∆fN and k2
t

Parallel resonances correspond to maximums of the re-
sistance of a composite resonator. If we ignore the imagi-
nary parts of material parameters, parallel resonances cor-
respond infinite impedance Zin → ∞, which gives a deter-
minative equation for the parallel resonant frequencies:

(z1 + z2) cos γ + j(1 + z1z2) sin γ = 0. (A4)

At the center of the first normal region, the mN + 1
order resonant mode corresponds to:

γ ≈ π, γsb ≈ mNπ, (A5)

where mN is the mode order of the bare substrate plate
resonator at the center of the first normal region. So we
have approximate expressions as:

tan γ ≈ γ − π, tan γsb ≈ γsb − mNπ.
(A6)

Because the electrodes usually are much thinner than
the piezoelectric film, this means γe1 ≪ 1 and γe2 ≪ 1 at
the first normal region, thus:

tan γe1 ≈ γe1, tan γe2 ≈ γe2. (A7)

Therefore,

z1 ≈ j
Ze1

Z0

γe1 = jze1γe1, (A8)

and

z2 ≈ j
zsb(γ − mNπ) + ze2γe2

1 − (zsb/ze2)(γsb − mNπ)γe2

≈ j [zsb (γ − mNπ) + ze2γe2] .

(A9)

Substitute approximations (A5)–(A9) into (A4), we get
(A10) (see next page).

The (mN + 1)-order parallel resonant frequency of the
composite resonator is:

fP (mN + 1) =
(mNzsb + 1)

2
(

ze1le1
Ve1

+ zsblsb

Vsb

+ ze2le2
Ve2

+ l
V

) .
(A11)

The space between two parallel resonant frequencies at
the first normal region is:

∆fN =
1

2

zsb

ze1le1
Ve1

+ zsblsb

Vsb

+ ze2le2
Ve2

+ l
V

=
1

2

ρsbVsb

ρe1le1 + ρsblsb + ρe2le2 + ρl

= ∆f0

(

1 +
ρe1le1 + ρe2le2 + ρl

ρsblsb

)

−1

,

(A12)

where ∆f0 = Vsb

2lsb

is the parallel resonance frequency spac-
ing of a bare substrate plate.

On the other hand, the series resonant frequencies (3)
give:

k2
t =

γ[(z1 + z2) + j(1 + z1z2) tanγ]

(z1 + z2) tan γ + 2j(sec γ − 1)
,

(A13)

at series resonant frequencies. As proven before, both z1

and z2 are first-order small quantities at a resonance in the
first normal region. Therefore, z1z2 ≪ 1 and (z1 + z2)(γ −

π) ≪ 1. Ignoring these second-order small quantities, we
get an approximate expression for k2

t given in (A14) (see
next page).

Substitute (A11) into the (A14) to get (A15) (see next
page).

If we introduce an effective coupling coefficient k2
eff as:

k2
eff =

π2

4

fs

fp

(

fp − fs

fp

)

, (A16)
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(jze1γe1 + j[zsb(γ − mNπ) + ze2γe2])

+ j(1 + jze1γe1 · j[zsb(γ − mNπ) + ze2γe2])(γ − π) = 0,
[

ze1
2πfle1

Ve1
+ zsb

(

2πflsb

Vsb
− mNπ

)

+ ze2
2πfle2

Ve2

]

+

{

1 − ze1
2πfle1

Ve1

[

zsb

(

2πflsb

Vsb
− mNπ

)

+ ze2
2πfle2

Ve2

]}(

2πfl

V
− π

)

= 0

(A10)

k2
t =

γ

−4j
[(z1 + z2) + j(γ − π)]

=
1

−4

2πfsl

V

[

2πfs

(

ze1
le1
Ve1

+ zsb
lsb

Vsb
+ ze2

le2
Ve2

+
l

V

)

− (zsbmN + 1)π

] (A14)

k2
t =

π2l

V
fs(fp − fs)

(

ze1
le1
Ve1

+ zsb
lsb

Vsb
+ ze2

le2
Ve2

+
l

V

)

=
π2

4

fs

fp

fp − fs

fp

(1 + mNzsb)
2

(

1 + ρe1le1+ρe2le2+ρsblsb

ρl

)

(A15)

the coupling coefficient k2
t can be expressed as:

k2
t =

(1 + mNzsb)
2

(

1 + ρe1le1+ρe2le2+ρsblsb

ρl

)k2
eff. (A17)

In some special cases, the k2
t equation can be further

simplified. As shown in (A5), mN is the resonant mode
order of the substrate plate at the center of the first normal
region. For the case of a four-layer composite resonator, the
composite resonator can be considered as a top resonator
composed of a piezoelectric film, a top electrode, and part
of a middle electrode deposited on a composite substrate
composed of the other part of the middle electrode and a
substrate plate. As an approximation, we split half of the
middle electrode into the top resonator and the other half
into the composite substrate. The center frequency of the
first normal region corresponds to the resonant frequency
of the top resonator:

fc =
V

2
(

l + ρe1le1
/

ρ + 1
2
ρe2le2

/

ρ
) . (A18)

The fundamental resonant frequency of the composite
substrate is:

fsb =
Vsb

(

lsb + 1
2
ρe2le2

/

ρsb

) . (A19)

We define R as the ratio of resonant frequency of the
top resonator to the fundamental resonant frequency of

the composite substrate:

R =
fc

fsb
=

V
(

lsb + 1
2
ρe2le2

/

ρsb

)

Vsb

(

l + ρe1le1
/

ρ + 1
2
ρe2le2

/

ρ
) .

(A20)

mN is the value of R rounded to the nearest integer:

mN = the nearest integer of R. (A21)

It should be noted that the resonant mode order of the
composite resonator at the center of the first normal re-
gion, is mN + 1, rather than mN .

If R is close to an integer, or is large enough that the
fraction part can be ignored, mN ≈ R:

1 + mNzsb =
ρl + ρe1le1 + ρe2le2 + ρsblsb

ρl + ρe1le1 + 1
2
ρe2le2

.
(A22)

Substitute (A22) into (A17), we get a simplified expres-
sion for the electromechanical coupling coefficient:

k2
t =

ρl(ρl + ρe1le1 + ρe2le2 + ρsblsb)

(ρl + ρe1le1 + 1
2
ρe2le2)2

k2
eff(mN + 1).

(A23)

C. The First Transition Region, ∆fT and k2
t

The first transition region occurs where γ = π/2. Be-
cause, in a resonator, the total phase delay has to be an
integer multiplication of π, the phase shift of the substrate
will yield another π/2. We assume that:

γ = π/2 + ∆, γsb = (mT + 1/2)π + δ,
(A24)



332 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 50, no. 3, march 2003

where mT is the mode order of the bare substrate plate
near the center of the first transition region, ∆ and δ are
small quantities. Therefore, we get approximate expres-
sions at the first transition region as:

sin γ ≈ 1, cos γ ≈ −∆, tan γsb ≈ −1/δ.
(A25)

By taking these approximations into the expression of
z2, we get:

z2 =
j

Z0

Zsb tan γsb + Ze2 tan γe2

1 − (Zsb/Ze2) tan γsb tan γe2

≈ j
zsb

1
−δ + ze2γe2

1 + zsb

ze2

γe2

δ

≈ −j

(

δ

zsb
+

γe2

ze2

)

−1

.

(A26)

Take the approximations (A8), (A25), and (A26) into
the parallel resonance frequency (A4), we get:

(

jze1γe1 − j

(

δ

zsb
+

γe2

ze2

)

−1
)

· (−∆)

+ j

(

1 − j(jze1γe1)

(

δ

zsb
+

γe2

ze2

)

−1
)

· 1 = 0.

In the first bracket, the first term is a small quantity, and
the second term is a large quantity. As an approximation,
we ignore the first term and after some simplification, we
may get:

∆ +
δ

zsb
+

γe2

ze2
+ ze1γe1 = 0. (A27)

Therefore, we can get the parallel resonant frequency at
the first transition region:

fp(mT + 1) =

1

2zsb

mT + 1/2 + zsb/2
(

l
V + lsb

zsbVsb

+ le2
ze2Ve2

+ ze1
le1
Ve1

) . (A28)

So the spacing of the parallel resonance frequencies at
the first transition region is:

∆fT =
1

2zsb

1
(

l
V + lsb

zsbVsb

+ le2
ze2Ve2

+ ze1
le1
Ve1

)

= ∆f0

(

1 +
ρsbV

2
sb

ρV 2

l

lsb
+

ρsbV
2
sb

ρe2V 2
e2

le2
lsb

+
ρsbρe1V

2
sb

ρ2V 2

le1
lsb

)

−1

.

(A29)

As at the first normal region, the series resonance fre-
quencies at the first transition region are determined by
(3). Since:

z2 ≈ −j

(

δ

zsb
+

γe2

ze2

)

−1

≫ 1 and z1 = jze1γe1 ≪ 1,
(A30)

(3) at the first transition region can be expressed as:

z2(−∆) + j(1 + z1z2) =
k2

t

γ
[z2 + j2(1 + ∆)] .

(A31)

Therefore, k2
t can be calculated from:

k2
t = γ

z2(−∆) + j(1 + z1z2)

[z2 + j2(1 + ∆)]

= γ
z2(−∆) + j(1 + z1z2)

z2Γ

=
[1 + (2mT + 1)/zsb]

2

1 + V
l

(

lsb

zsbVsb

+ le2
ze2Ve2

+ ze1
le1
Ve1

)

k2
eff

Γ
.

(A32)

Γ is a correction factor, which is in the order of unity:

Γ =1 + 2j
(1 + ∆)

z2

=1 − 2ρ0V

(

1 +
2πfsl

v
−

π

2

)

(

2πfsl

ρsbV 2
sb

−
(mT + 1/2)π

ρsbVsb
+

2πfsle2
ρe2V 2

e2

)

.

(A33)

This correction factor stands for the difference between
the first transition region center and the (mT + 1) mode
series resonance frequency.

Again, as at the first normal region, mT is the value of
(R − 1)/2 rounded to the nearest integer:

MT = the nearest integer of

(

R − 1

2

)

.
(A34)

When R is close to an odd integer or is large enough,
mT ≈

R−1
2

, see (A35) (see next page).
Because the electrodes usually are very thin compared

to the substrate, the electromechanical coupling coefficient
expression at the first transition region can be simplified
by substituting (A35) into (A32) to get (A36) (see next
page).

It has to be noted that, even in the case that R is an
odd integer or large enough, Γ ≈ 1 is not necessarily hold.
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