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We present a precise theoretical explanation and prediction of certain resonant peaks and dips in the elec-
tromagnetic transmission coefficient of periodically structured slabs in the presence of nonrobust guided slab
modes. We also derive the leading asymptotic behavior of the related phenomenon of resonant enhancement
near the guided mode. The theory applies to structures in which losses are negligible and to very general
geometries of the unit cell. It is based on boundary-integral representations of the electromagnetic fields. These
depend on the frequency and on the Bloch wave vector and provide a complex-analytic connection in these
parameters between generalized scattering states and guided slab modes. The perturbation of three coincident
zeros—those of the dispersion relation for slab modes, the reflection constant, and the transmission
constant—is central to calculating transmission anomalies both for lossless dielectric materials and for perfect
metals.
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I. INTRODUCTION

The phenomenon of resonant transmission and reflection
of electromagnetic energy by periodically structured films or
slabs, at wavelengths on the order of or longer than the struc-
tural periodicity, occurs in various types of materials, from
dielectrics to metalsf1–9g. It is known to be intimately con-
nected with the waveguide resonances, or modes, of the pe-
riodic structure and resonant enhancement of incident source
fields in the presence of modes. In metal films, these reso-
nances are surface plasmons; their connection to extraordi-
nary transmission is a relatively recent discoveryf1g and has
sparked renewed interest in controlling these phenomena,
which are recognized to hold promise in the design of pho-
tonic devices involving filters, lasers, and integrated optics
f2–4,10g.

Various explanations have been offered for this connec-
tion. In the case of surface plasmons in periodically struc-
tured metal slabs, as gratings or films with holes, it is ob-
served that the coupling of plasmons on both sides of the
film facilitates the transmission of incident fieldsf3,5g; it is
also argued that the excited plasmons and the transmitted
field are two inherently related aspects of the phenomenon of
resonant scattering by a periodic structuref6g. Seef11g for a
survey of some of the literature. It is long known that trans-
mission peaks are closely associated with high reflectivity
conditions at the interface of a solid dielectric slab with the
surrounding mediumsas aird se.g.,f12gd. Structural periodic-
ity enhances these effects, and particularly pronounced reso-
nant enhancement and sharp transmission peaks and dips oc-
cur in the presence of structural defects in the underlying
periodicity f8,9g.

Our present work is motivated by a transmission anomaly
that we observed numerically in a periodic arrangement of
dielectric rodsf9g near the wave number and frequency of a
bound slab mode, orbound state. sFigs. 2, 3, and 5d. The
bound state occurs at the lowest resonant frequency of the
structure. We characterize it as nonrobust because it disap-
pears under perturbation of the Bloch wave vector. This per-
turbation produces sharp downward and upward spikes in the
transmission coefficient viewed as a function of frequency;
the spikes emanate from the frequency of the bound state,
becoming less sharp as the perturbation grows. This work
sSec. IId provides a simple theoretical formula for the trans-
mission coefficient as a function of the wave number and
frequency near the bound state. The formula makes a sharp
quantitative prediction of the anomaly with only the knowl-
edge of four experimentallysor numericallyd determined val-
uesfEq. s12d and Fig. 3g. These values depend on the spe-
cific geometry and electromagnetic properties of the
structure.

The transmission anomaly is accompanied by significant
resonant enhancement of plane-wave source fields at fre-
quencies in the region of the spikessFig. 5d, where resonant
fields appear in the body of the periodic structure. Our theory
producessSec. IIId formulas for the measure of the field en-
hancement as a function of wave number and frequency near
the bound state and is in good agreement with numerical
resultssFig. 6d. Again, the formulas contain parameters that
depend on the particular nature of the slab structure.

The anomaly occurs because three zeros, namely those of
an eigenvalue describing the dispersion relation for slab
modes, a complex reflection amplitude, and a complex trans-
mission amplitude, that are coincident at the bound state,
split apart continuously upon perturbation of the wave num-
ber. Our analysis relies on the fact that these functions de-
pend analytically on the wave number and frequency.

An advantage of our approach is that it is independent of
the specific geometry of the structure and independent of
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whether the structure is a perfect metalsin which case the
phenomenon is mediated by plasmonsd or a lossless dielec-
tric. Indeed, the theory applies to a general class of periodi-
cally structured slabsse.g., Figs. 1 and 2d which display a
nonrobust bound state. These include lossless dielectrics as
well as metals for which the approximation by a perfect con-
ductor boundary condition is valid.

The resonance behavior we describe isnot related to the
Wood anomaly, which is known to coincide with certain
minima in transmission through metal filmsf7g. The Wood
anomaly occurs at cutoff wave numberssor frequenciesd of
the propagating FouriersBraggd harmonics, where the com-
plex analyticity of the fundamental solution of the Maxwell
equations fails.

In this work, we focus on calculations for two-
dimensional structuressthose that are constant in one space
direction, as in Fig. 2d and compare our theory with numeri-
cal results. In future communication, we will show how the
analysis applies to three-dimensional structures, and we will
extend our present results to include anomalies due to per-
turbations in the geometry of the periodic structure, such as
surface and channel defects, which we investigated numeri-
cally in f9,13g. In principle, the theory is not restricted to

electromagnetics, but extends to similar phenomena in
acoustics and elasticity.

II. TRANSMISSION ANOMALIES

We discuss nonrobust bound slab modes and describe the
asymptotics of the dispersion relation and the scattering
problem near such a mode; then we derive the main result,
which is a theoretical prediction of the behavior of anoma-
lous transmission near a nonrobust modefEq. s12d and Fig.
3g. Details of the supporting mathematical theory are given
in the Appendixes.

We work with the Maxwell equations at constantscom-
plexd frequenciesv. The fields we deal with are time-
independent and become full Maxwell solutions when mul-
tiplied by the exponential time-dependent factore−ivt. The

FIG. 1. A three-dimensional two-phase periodic slab. The struc-
ture continues periodically in thex andy directions.

FIG. 2. A two-dimensional periodic slab. The structure contin-
ues constantly in thex direction and periodically in they direction.

FIG. 3. Upper: Numerical simulation, by boundary integral
equations, of transmission vs reduced frequency for electrically po-
larized plane-wave source fields through a slab of vertical rods in
air sFig. 2d for various values of the wave numberk in the y direc-
tion. The dielectric contrast is 12, and the magnetic permeability is
1. T is the square root of the proportion of the source energy that is
transmitted. Middle: A closer view of the top figure near the region
of anomalous transmission. Lower: Theoretical prediction of
anomalies. In formulas12d, t0<0.739, t<1.6, r <−0.56, andh
<18.69 were estimated from the numerical simulations.
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periodic slab structures are of a homogeneous material con-
trasting from the ambient material exterior to the slab. Our
main analytic tool is a system of integral equations arising
from the Maxwell equations and given in detail in Appendix
B. They are written symbolically as

Ac = f

and given in full form in Eq.sB3d for perfect metals and Eqs.
sB4d for dielectrics. Here,f represents thetrace stangential
componentd of the electric and magnetic source fields on the
interface between the material of the slab and the material
exterior to it within a period cell of the structure, andc
represents the trace of the external electric and magnetic
fields on the same interface. The external field is the sum of
the source field and the scattered field. The bounded linear
integral operator A=Ask ,vd has an analytic dependence on
the Bloch wave vectork and the frequencyv in our sk ,vd
region of interest. Throughout,v andk represent nondimen-
sionalized quantities, and thesnondimensionalizedd period of
the unit cell is taken to be 2p.1

We present our calculations in a two-dimensional reduc-
tion of the problem, that is, we assume that the slab structure
and electromagnetic fields are constant in thex direction
sFig. 2d. In this case, the Bloch wave vector has a component
only in the y direction, which we denote byk. The fields
decouple into the two primary polarizations, and the har-
monic Maxwell equations reduce to the scalar Helmholtz
equation for the field component directed out of theyzplane,
in thex direction. The source and total field tracessf andcd
on the slab interface represent the field value and its normal
derivative. The integral equation Ac=f reduces to Eqs.
sB6d. If the trace of the field is known, the full external field
is calculated directly from Green’s identitysB7d below, in
which the outgoing Helmholtz Green’s functionsB5d corre-
sponds to the periodic structure of our problem. A field sat-
isfies the outgoing condition if, for large values ofuzu, it has
an expansion in Fourier harmonics,

c = o
m=−`

`

cm
± eism+kdye±gmz,

for sufficiently large values ofuzu. The + and − signs refer to
z being large and positive andz being large and negative,
respectively, thecm are constants, andgm=f−e0m0v2+sm
+kd2g1/2Þ0. e0 andm0 are the dielectric and magnetic con-
stants exterior to the slab. We will assume that they are both
equal to 1. In this theory, we are interested in real values of
k, and we assume thatk lies in the first Brillouin zonesuku
,1/2d. When v is real anduvu, uku, which is the region
outside the light cone, all the exponentials decay asuzu→`.
The region of interest for us is the region inside the light

cone where all the exponentials decay except for those cor-
responding tom=0 sone forz.0 and one forz,0d, which
are plane-wave propagating harmonics. This is the region
whereuku,v, uk+mu for all integersmÞ0.

A bound state is a fieldc that decays asuzu→` and has a
tracec on the material interface that satisfies the sourceless
equation

Ac = 0.

By an argument that relies on conservation of energy, one
may prove that bound states occur only at real frequencies
and wave numbers. Typically, arobustbound state occurs at
a sk ,vd pair for which Green’s functionG for the Helmholtz
equation has no Fourier harmonics that propagate inz, so
that G decays asuzu→`. This is the region outside the light
cone for the exterior medium for values ofk in the first
Brillouin zone,uku,1/2. In this case, real perturbations ofk
result in real perturbations of the value ofv for which a
bound state exists; in other words, there is a localreal dis-
persion relationv=Wskd. At values ofsk ,vd that do admit
propagating harmonicssas in our cased, bound slab modes
are generally precluded because these harmonics carry en-
ergy away from the slab. Under certain symmetry conditions
stypically at k=0d, there exist states whose Fourier decom-
position contains none of the propagating harmonicssthe
corresponding constantscm are zerod; the energy is therefore
bound to the slab. Upon a real perturbation ofk in such a
bound state, the symmetry of the field is broken, causing the
bound state to disappear. Frequenciesv=Wskd at which the
sourceless equation Ac=0 is still solvable acquire nonzero
imaginary parts, i.e., the dispersion relation becomes com-
plex. Necessarily, the exponentsgm of the propagating har-
monics also acquire nonzero imaginary parts, and the corre-
sponding exponentials now have growth inuzu. Such a bound
state isnonrobust. Nonrobust bound states correspond to ei-
genvalues embedded in the continuous spectrum of the
Helmholtz operator for the entire structure; they are known
to exist also in acoustic waveguidesf14g.

To summarize, the solutions of the sourceless problem
Ac=0 occur at values ofk andv where the operator A has
a zero eigenvalue,=,sk ,vd=0. The relation,sk ,vd=0 or
v=Wskd when solved forv is the dispersion relation. When
the full field corresponding to the sourceless tracec decays
away from the structuresas uzu→`d, the field defines a strict
guided slab mode, a bound state. When that field fails to
decay, the corresponding pair(k ,v=Wskd) is called areso-
nance.Bound states occur at real pairssk ,vd that satisfy the
dispersion relation; they are nonrobust when real perturba-
tions of k turn them into resonances, that is, whenv
=Wskd acquires a nonzero imaginary part. Resonances cor-
respond to what are often referred to as leaky modesssee,
e.g.,f8,12gd.

We analyze nonrobust bound states that correspond to a
simplezero eigenvalue, sthat is, having multiplicity 1d oc-
curring atk=0 andv=v0.0. The imaginary part ofv for
real values ofk cannot be positivesas the corresponding
time-harmonic Maxwell field would be growing in timed f9g.
Consequently the simplest form for a local solution of

1If L is the physical length of a period cell,X denotes a physical
three-dimensional length vector, andT denotes physical time, then
the nondimensionalized space and time variables aresx,y,zd=x
=s2p /LdX and t=s2pc/LdT, where c is the speed of light in a
vacuum. If f is the frequencyscycles per timed and k is the wave
number scycles per lengthd, then the nondimensionalized wave
number and frequency areuku=kL andv= fL /c.

RESONANT TRANSMISSION NEAR NONROBUST… PHYSICAL REVIEW E 71, 026611s2005d

026611-3



,sk ,vd=0, in whichv is expressible as a power series ink,
is

,sk,vd = 0 ⇔ v = v0 + ck + sk2 + THOskd,

whereTHO stands for higher-order terms.c is real, and the
imaginary part ofs is nonpositive because the imaginary part
of v is not allowed to be positive.Our theory examines the
case c=0. This is forced, for example, by any symmetry that
requires the dispersion relation to be an even function of the
wave number, as is the case of the structure of Fig. 2. Thus,

,sk,vd = 0 ⇔ v = v0 + sk2 + THOskd, s1d

in which we make the nondegeneracy assumption that Im
ssdÞ0. This causes the dispersion relation for realk to enter
the lower halfv plane transversely to the realv axissas seen
in Fig. 4d.

For values ofsk ,vd for which ,sk ,vdÞ0, we introduce a
plane-wave source fieldf and normalize its amplitude by the
eigenvalue,,

,f = ,eisky+gzde−ivt,

where g=Îv2−k2. The integral equation is uniquely solv-
able and the full field corresponding to its solution satisfies
the asymptotic relation

c , s,eigz + ae−igzdeikysz→ − `d,

c , beigzeikysz→ `d.

In this expression,ask ,vd is the reflected complex amplitude
andbsk ,vd is the transmitted amplitude.

The crucial point behind our explanation of the transmis-
sion anomaly is that both coefficientsa and b can be ex-
tended in the complex variablesk and v into the relation
,sk ,vd=0 and areanalytic in a complex neighborhoodof
the points0,v0d. sProof of these statements is given in the
remark and in the analysis preceding it in Sec. IIId. More-
over, since, is zero ats0,v0d, both a and b must be zero
there. Ask is perturbed from 0 taking real values, the coin-
ciding zeros of, ,a, andb separate continuously in the com-
plex v planesFig. 4d. The upward spike seen in Fig. 3 occurs

at the frequency satisfyingask ,vd=0 that corresponds to
100% transmission, while the accompanying deep dip occurs
at the frequency satisfyingbsk ,vd=0, which forces zero
transmission. These statements are, of course, true only up to
numerical resolution.

We have tested our results on the two-dimensional high-
contrast dielectric numerical example in Figs. 2–5. The struc-
ture is an infinite row of rods of radius 1 standing parallel to
thex axis and separated periodically by 2p in they direction,
as in Fig. 2. The interior dielectric coefficient is 12, the ex-
terior 1, and both magnetic coefficients are 1. We find nu-
merically that there exists a bound guided mode atsk=k0

=0, v=v0<0.669d. It is E-polarized, that is, the electric
field points in thex direction in Fig. 2. The eigenvalue, has
multiplicity 1 in the vicinity of s0,v0d, and,s0,v0d=0. The
guided mode is actually a standing wave that is supported by
the slab, ask=0 andv is real; it decays asuzu→` sFig. 5d. In
a complex neighborhood ofs0,v0d, the Green’s function
fEq. sB5dg for the Helmholtz equation possesses only one
propagating harmonicsm=0d at s0,v0d, and therefore the
total field resulting from scattering of the source,f is in fact
characterized far away from the slab by a single reflection
amplitudea and a single transmission amplitudeb, as de-
scribed above. Asu,u2= uau2+ ubu2 for real sk ,vd, it follows
that as0,v0d=bs0,v0d=0.

The techniques discussed are applicable to general peri-
odic slab structuressincluding three-dimensional structuresd
in which energy is conserved. The only additional require-
ments on our structure so far have been a simple nonrobust
bound state atsk ,vd=s0,v0d and the conditionc=0 in the
dispersion relation; both are typically forced by some sym-
metry. We also make the generic assumptions that
]a/]vs0,v0dÞ0 and]b/]vs0,v0dÞ0.

In the ensuing analysis, we letÃ=v−v0 in Eq. s1d. The
Weierstraß preparation theorem for analytic functions of two
variables ssee, for example,f15gd dictates the following
forms for , ,a, andb:

, = eiu1fÃ + sk2 + THOskdgfs0 + THOsk,Ãdg,

FIG. 4. The dispersion relation,=0 and the zero setsa=0 and
b=0 of the reflection and transmission constants for real values of
k. The solid points represent numerically calculated values of fre-
quency, plotted in the complexv plane, for values ofk ranging
from 0.0 to about 0.20, where,sk ,vd=0, ask ,vd=0, andbsk ,vd
=0. The point in common is atk=0, where the bound state occurs.

FIG. 5. Upper: A contour plot of the amplitude of the bound
state atk=0.0 andv<0.669. Lower: A resonant field produced by
an incident plane wave atk=0.12 andv=0.660. A cross section of
one period of the structure of Fig. 2 is shown, with the boundary of
the rod indicated artificially by the black circle. They axis is ver-
tical, thez axis is horizontal, and thex axis is out of the page. White
indicates maximal amplitude, while black indicates zero amplitude.
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a = eiu2fÃ + r1k + rk2 + THOskdgfr0 + THOsk,Ãdg,

b = eiu3fÃ + t1k + tk2 + THOskdgft0 + THOsk,Ãdg,

wheres0,r0, andt0 are positive real numbers. Inserting these
forms into the relationu,u2= uau2+ ubu2 for real sk ,Ãd and
matching like terms yields the relations

r0
2 + t0

2 = s0
2 sÃ2 termd, s2d

ur0r1u2 + ut0t1u2 = 0 sk2 termd, s3d

which implies r1= t1=0, and using this, we obtain Refssd
denotes the real part ofsg

Ressd = r0
2Resrd + t0

2Restd sÃk2 termd, s4d

usu2 = r0
2ur u2 + t0

2utu2 sk4 termd. s5d

We thus arrive at the expressions

, = eiu1fÃ + sk2 + THOskdgfs0 + THOsk,Ãdg, s6d

a = eiu2fÃ + rk2 + THOskdgfr0 + THOsk,Ãdg, s7d

b = eiu3fÃ + tk2 + THOskdgft0 + THOsk,Ãdg, s8d

and the following relations for complex pairs nears0,v0d:

, = 0 ⇔ v = v0 − sk2 + THOskd,

a = 0 ⇔ v = v0 − rk2 + THOskd,

b = 0 ⇔ v = v0 − tk2 + THOskd.

Due to the analyticity ink andv, these expressions are valid
also for sk ,vd in a complex neighborhood ofs0,v0d. Be-
cause of Eqs.s2d ands4d, Ressd lies between Resrd and Restd,
and, as long as these real parts are not equal, we deduce that,
as the curve,=0 for realk emanates from the realv axis,
one of the curvesa=0 or b=0 moves to its left and the other
to its right in the complexv planesFig. 4d. If Imsrd=Imstd
=0, then, to leading order, the curvesa=0 andb=0 travel
along the realv axis, ask2ù0 increases, giving rise to two
nearby values ofv moving apart from one another, one at
which total reflection occurssb=0d and one at which total
transmission occurssa=0d. This is what happens in the nu-
merical example, as we see the formation and spreading of
the sharp dips and peaks in Fig. 3, although we do not have
an analytic proof that Imsrd=Imstd=0 in this specific case.

We show now how the knowledge of the three quantities
r ,t, andt0 in Eqs.s7d ands8d, as well as the slopesin vd of
the transmission graph at the bound state, allow one to obtain
a formula that approximates the transmission anomalies well.
We include the first-order terms in the expressions fora and
b,

a = r0e
iu2sÃ + rk2 + ¯ ds1 + r1Ã + r2k + ¯ d, s9d

b = t0e
iu3sÃ + tk2 + ¯ ds1 + t1Ã + t2k + ¯ d. s10d

In the first factor, the higher-order terms areOsk3d; in the
second, they areOsk2+Ã2d. The transmission coefficientT

sin the physics literature, the transmission coefficient is usu-
ally defined as ourT2d depends on the absolute value of the
ratio b/a,

T =
ubu
u,u

=
ubu

Îuau2 + ubu2
=

ub/au
Î1 + ub/au2

, s11d

andb/a has the form

b

a
= eiu t0sÃ + tk2 + ¯ d

r0sÃ + rk2 + ¯ d
s1 + h1Ã + h2k + ¯ d,

in which u=u3−u2, h1= t1−r1, andh2= t2−r2. h1 and Resh1d
have simple interpretations,

h1 =
r0

t0

]sb/ad
]Ã

s0,0d, Resh1d =
r0

t0

] ub/au
]Ã

s0,0d.

fs0,0d refers to evaluation atk=0 andÃ=0.g To put Resh1d
in terms ofT, we user0

3] ub/au /]Ã=]T/]Ã at k=0 andÃ
=0,

h ª Resh1d =
1

t0r0
2

]T

]Ã
s0,0d.

Whereas Resh1d has a clear meaning as an experimental
value, the constanth2 does not have such a simple interpre-
tation. An accurate expression that captures the full
asymptotic nature of the transmission anomaly depends on
the real parts of bothh1 andh2, as well as thek3 term in the
first factors ofa andb in Eqs.s9d ands10d. Table I presents
a detailed analysis of the asymptotic behavior ofb/a near the
bound state in various asymptotic relations betweenk ,Ã,
and the characteristic ratioÃ /k2, ask and Ã tend to zero.
The column that shows the approximation ofb/a gives the
first two terms in an asymptotic expansion in the various
regimes. Thek3 term in the first factors ofa andb is signifi-
cant only in the final row of the table, where it as well ash2
affect the constanth3.

Despite the complexity of the asymptotics and the diffi-
culty in measuringh2 and h3, we demonstrate numerically
that knowledge ofr ,t ,t0, and h=Resh1d alone sr0 is deter-
mined fromt0 by the relationr0

2+ t0
2=1d delivers a good ap-

proximation of the transmission anomalies. Thus we use the
approximation

Ub

a
U <

t0uÃ + tk2u
r0uÃ + rk2u

s1 + hÃd,

which is then substituted into expressions11d or T to yield
the result

T <
t0uÃ + tk2us1 + hÃd

Îr0
2uÃ + rk2u2 + t0

2uÃ + tk2u2s1 + hÃd2
. s12d

Figure 3 shows a comparison between this approximation
and the numerically calculated values of transmission in the
region of the anomaly.

Table I sthe fifth rowd gives the first two terms of the
asymptotic expansion forb/a or a/b in the sk ,vd region
near whereb=0 or a=0, respectively. However, corrections
for the error in the placement of the roots ofb anda, or the
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placement of the points of 0% and 100% transmission, re-
quire knowledge of thek3 term in the first factors ofa andb.
Indeed, in examining the middle and lower figures in Fig. 3,
one can see an error in the point of zero transmission fork
=0.09 that is roughly equal tok3.

As special asymptotic cases, we compute the limiting val-
ues of the transmission coefficientT= ub/,u along the realk
andv axes,

lim
v→v0

Ts0,vd = t0,

lim
k→0

Tsk,v0d = t0ut/su =
t0utu

Îr0
2ur u2 + t0

2utu2
. s13d

Because of Eqs.s2d and s5d, usu lies betweenur u and utu, and,
as long as these moduli are not equal, we conclude thatutu
Þ usu, so thatT is not continuous ats0,v0d. From Fig. 3, it is
evident that the point of zero transmission moves away from
v0<0.669 faster than the point of 100% transmission, ask
increases from zero. This means thatutu. ur u, so thatutu. usu,
and the first limit in Eq.s13d is greater than the second. This
behavior of the discontinuity inT is observed in Fig. 3,
where the transmission curves for small values ofk, as func-
tions of v, come together nearv0 at a higher value than the
value of the transmission curve fork=0.

III. RESONANT ENHANCEMENT

We present a leading-order asymptotic theory to resonant
field enhancement of plane-wave source fields scattered by
periodic slab structures, a phenomenon that, according to our
observations, accompanies anomalous transmission. The ba-
sic observation is summarized as follows. At normal inci-
dencesk=0d, the scattering problem for frequencies near that
of the bound statesv=v0d exhibits no apparent anomalous
behavior in numerical simulations: neither anomalous trans-
mission nor resonant enhancement of plane-wave sources is
observed. Ask is perturbed from zero and the bound state
disappears, fields of much higher amplitudes than the plane-
wave source fields are observed in the slab structure at fre-
quencies close to the double transmission “spike” that we

discussed in the previous section. Ask increases and the
spike widens, the amount of “amplitude enhancement” de-
creases. The lower image in Fig. 5 shows a field produced by
resonant scattering of a plane wave at a small value ofk and
a frequencyv nearv0.

Not surprisingly, the emerging high fields have a domi-
nant contribution from the eigenfield of the operator A cor-
responding to the eigenvalue,=,sk ,vd. To understand this,
we apply the spectral projection operatorf16g

P1 =
1

2pi
R

G

s,8I − A d−1d,8

sthe resolvent of A is integrated counterclockwise along a
contourG in the complex,8 plane encircling the eigenvalue
,d to project any trace fieldcPC to the one-dimensional
eigenspace corresponding to the eigenvalue,=,sk ,vd. In
particular, applying the projectionsat any value ofk andvd
to a fixed eigenvectorĉ0 corresponding tok=k0=0 andv
=v0 swhere,=0d, we obtain the field

ĉ = P1ĉ0,

which is a basis for the one-dimensional eigenspace of A at
, and depends analytically onk andv.

The operator

P2 = I − P1

is also a projection and is complementary to P1sP1+P2=Id.
The images of these projections, denoted byC1 andC2, are
independent subspaces ofC. C1 is the one-dimensional
eigenspace of A for the eigenvalue,sk ,vd. A acts invari-
antly on C1 and onC2 and is therefore decomposed as A
=A1+A2, where A1=AP1 is multiplication by , and A2
=AP2 is a bounded invertible operator inC2.

Let nowf be the trace of a source fieldf that is analytic
in sk ,vd near a pairsk0,v0d where,sk0,v0d=0. We demon-
strate that our basic equation Ac=,f has a solution that is
analytic nearsk0,v0d: Decompose the source field uniquely

asf=P1f+P2f=aĉ+f2, where the complex scalara and

TABLE I. Asymptotics for the transmission anomaly.

Asymptotic region
in the kÃ plane

Corresponding relation
betweenk ,Ã, andÃ/k2

Asymptotic value
of b/a or a/b

k=0,Ã!1 0=k2/Ã=k!Ã!1 b/a, t0/ r0s1+h1Ãd
0Þk!Ã!1 k2/Ã!k!Ã!1 b/a, t0/ r0s1+h1Ãd

k,Ã!1 k2/Ã!k,Ã!1 b/a, t0/ r0s1+h1Ã+h2kd
k2!Ã!k!1 Ã!k!k2/Ã!1 b/a, t0/ r0s1+st−rdk2/Ãd
k2,Ã!k!1 Ã!k!k2/Ã,1 b/a, t0sÃ+ tk2d/ r0sÃ+rk2ds1+h2kd

a/b, r0sÃ+rk2d/ t0sÃ+ tk2ds1−h2kd
k3!Ã!k2!1 Ã!k!Ã/k2!1 b/a, t0t / r0rs1+st−1−r−1dÃ/k2d
k3,Ã!k2!1 Ã!k,Ã/k2!1 b/a, t0t / r0rs1+st−1−r−1dÃ/k2+h2kd
0ÞÃ!k3!1 Ã!Ã/k2!k!1 b/a, t0t / r0rs1+h2kd

Ã=0,k!1 0=Ã=Ã/k2!k!1 b/a, t0t / r0rs1+h3kd
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f2PC2 are analytic. Then observe thatc=aĉ+,A2
−1f2 is a

solution. This can be seen clearly in matrix form, where one
easily verifies

Ac = F, 0

0 A2
GF aĉ

,A2
−1f2

G = F,aĉ

,f2
G = ,f.

As the projections P1 and P2 are analytic and A2 is bounded
with analytic inverse,c is analytic.

Remark.The analyticity ofc and formulasB7d for the
calculation of the scattered fields imply immediately the ana-
lyticity of the transmission amplitudeb=bsk ,vd and the re-
flection amplitudea=sk ,vd that formed a cornerstone of our
analysis in Sec. II.

Any significant field amplitude enhancement should come
from the first component of the fieldc and should be mea-
sured by the ratioua /,u; the second component is of order
Os,d as is the incident field. Ifa has a nonzero value when
evaluated atk=0 and v=v0, the ratio blows up like the
reciprocal of theu,u assk ,vd→ s0,v0d; there is singular field
enhancement irrespective of how the limit is taken. This is in
disagreement with results in the cases that we have tested
numericallyf13g, including the example we discussed in Sec.
II. Indeed, upon illumination of the structures by a plane
wavewith the value ofk fixed at0 and withv close tov0, no
significant field enhancement in the structure is observed. As
a result, we assume thatas0,vd=0. fThis means that the

source field contains no component ofĉ. The source tracef
is in the image of A atsk0=0,v0d, and the scattering problem
with source tracef has a steady-state solution at this pair
sk0,v0d.g

We adopt as the generic expansion ofa in the vicinity of
s0,v0d srecall thatÃ=v−v0d

a = b1k + b2Ã + ¯ .

Using this form fora and Eq.s6d for ,, we obtain

a

,
=

b1k + b2Ã + ¯

sÃ + s1k2d + is2k2 + ¯

S 1

s0e
iu1

+ ¯D ,

in which s=s1+s2i. At normal incidencesk=0d, the form we
have assumed fora gives us

A , Ua

,
U→ constsÃ → 0,k = 0d,

which agrees with the numerical observation of no resonant
enhancement in this regime.

We now show how the forms ofa and, lead to a predic-
tion of the leading-order behavior of resonant enhancement
within the vicinity of the transmission anomalysthe “spike”
in Fig. 3d, and then we compare this prediction with numeri-
cal data. To this end, letk be a small positive number and
allow v to range overreal values nearv0 sso thatÃ ranges
over real values near zerod, which corresponds to scattering
by harmonic plane-wave sources. The magnitude of the de-
nominator ina /, is smallest whenÃ+s1k2<0; the corre-
sponding value ofvsv<v0−s1k2d lies between the lower
and upper peaks of the spike in the transmission graphsFig.
3d for the given value ofk. This is the real value ofÃ such

that sk ,Ãd lies closestto the pointÃ<−ss1+s2idk2 on the
dispersion relationsignoring terms of orderk3d. To see the
response to an incident plane wave at this optimal frequency,
we put

Ã = − s1k2, or v = v0 − s1k2,

and obtain for the amplitude enhancementA

A = Ua

,
U <

1

k
Ub1 − b2s1k + ¯

is0s2 + ¯

U ,

so thatA has the asymptotic form

A ,
c1

k
+ c2 + ¯ sÃ = − s1k2,k → 0d. s14d

Figure 6 shows a numerical confirmation of this 1/k law
for the field amplitude in the structure. For various values of
k, the scattering experiment is simulatedsusing the
boundary-integral equationsd at the optimal valueÃ=−s1k2,
and the results are plotted against the best fit of the form
s14d, using the first two terms. We use the maximal value of
the total fieldc to estimateA numerically. The lower image
in Fig. 5 shows a contour plot of the amplitude of the total
field produced by a plane-wave source field at the optimal
frequencyv<v0−s1k2 for k=0.12.

The constant in Eq.s14d depends ons2, as well as on

s0, b1, and the choice of eigenvectorĉ for A. The depen-
dence ons2 is particularly significant, ass2 determines the
imaginary part of thecomplex point Ã<−ss1+ is2dk2 on
the dispersion relation. The corresponding complex guided
mode is a “resonance” for the structure. It grows spatially, as
uzu→`, but it decays exponentially in time. It is understood
as a model for “leaky” or “quasiguided” modesssee, for
example,f12,8gd. We see from our analysis how the imagi-
nary part of the complex mode affects scattering enhance-
ment at nearby real values of the frequency, particularly at
the real part −s1k2 of the complex frequency −ss1+s2idk2.
The constant in Eq.s14d is inversely proportional tos2.

FIG. 6. The solid dots represent numerically calculated maximal
values of sthe boundary trace ofd the total field produced by an
incident plane wave of amplitude 1 at various values ofk scorre-
sponding to different angles of incidenced at the frequency of opti-
mal enhancement. The solid curve is the best fit of the numerical
data to the theoretical formc1/k+c2. Here, c1=0.4053 andc2

=2.478.
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APPENDIX A: SCATTERING AND GUIDED MODES

We present the mathematical theory that provides the
foundations for the local analytic connection of the scattering
states to the slab modessby means of the fieldcd, which we
used in the previous section.

We denote the vector of all electric and magnetic field
components with the time-dependent fieldcsx,y,zde−ivt,
where the spatial partc has the Bloch form c

=c̃sx,y,zdeisk1x+k2yd, andc̃ is 2p-periodic inx andy. We use
boundary-integral representations to pose the scattering
problem. The scattered and guided modes are specified in
terms of the tracessvalues of the tangential componentsd of
these fields on the interface between contrasting materials
composing the slab within a unit cell. The trace of a source
field alone is sufficient to determine the trace of the scattered
field, which, in turn, determines the total field in space. De-
tails on the integral equations are given in Appendix B.

The integral representations give rise to an explicit
bounded integral operator AfEqs.sB3d, sB4ad, sB4bd, sB6ad,
andsB6bdg having the following property. If a source fieldf,
scattered off the slab, produces the total fieldc, then the
respective field tracesf of the source field andc of the total
field satisfy the governing integral equation Ac=f. The in-
tegral operator A depends on the geometry, on the frequency
v, and on the Bloch wave vectork=kk1,k2l. It involves
layer potentials using the pseudoperiodic radiating Green’s
function G,

Gsx,y,zd = −
1

8p2 o
m,n=−`

`
egmnuzu

gmn
eism+k1dx+isn+k2dy,

¹2G + emv2G = − d in S,

where S is one period of the structure,S=hsx,y,zd :0øx
ø2p ,0øyø2p ,−`,z,`j, gmn

2 =−emv2+sm+k1d2+sn
+k2d2Þ0, andd is the Dirac delta function centered at the
origin. e is the electric permittivity andm is the magnetic
permeability exterior to the slab. For penetrable objects, the
Green function involving the interior coefficients also enters
the operator A. For real values ofemv2 and k, the sign of
gmn is taken so that the Fourier harmonics are outgoingsgmn
positive imaginaryd or decayingsgmn negative reald. The val-
ues ofgmn are continued analytically as complex functions of
v and k. All but a finite number of harmonics decay asuzu
→`. The generalized outgoing condition on a field is that it
have an expansion in Fourier harmonics of the outgoing fun-
damental solutionG for sufficiently large values ofuzu,

c , o
m,n

cmn
± eism+k1dx+isn+k2dye±gmnzsz→ ± `d,

wherecmn are constant vectors. This condition includes fields
that decay asuzu→`, which are characterized by the condi-
tion cmn

± =0 for all propagating harmonics.

Analytic continuation in the complex variablesk and v
allows a unification of the scattering states with guided slab
modes, which are represented by sourceless nonzero solu-
tions of the integral equationsAc=0d, that is, solutions at
pairssk ,vd for which the operator A has a zero eigenvalue.
When v is real-valued, the slab mode is a physical guided
Bloch mode, or a bound state; otherwise it is a quasimode, or
leaky mode. In the latter case, we have shown that, ifv has
a nonzero imaginary part, the fieldc grows exponentially
away from the slab and decays in timef9g sa fact that is easy
to see for solid slabs with no periodic structuref12gd. The
sk ,vd pairs that support guided modes of any of the two
types satisfy the dispersion relation det(Ask ,vd)=0. The in-
tegral operator A is a Fredholm operator of the second kind;
it is stably invertible except at discrete eigenvalues, itssFred-
holmd determinant is well defined, and it depends analyti-
cally on sk ,vd.

APPENDIX B: BOUNDARY INTEGRAL EQUATIONS

We present here the equations that relate the traces of the
total electromagnetic field to traces of the source fields on
the interface between contrasting materials. Derivations of
these equations can be found in various sources, including
f17–19,9g. We present them here as Fredholm integral equa-
tions of the second kind,

Ac = f, A = sI + Cd

in which c is a vector containing boundary values of the
“unknown” total field andf is a vector containing boundary
values of the “known” source fields. I is the identity operator
and C is a compact integral operator involving layer poten-
tials of periodic fundamental solutionssGreen’s functionsd
for the Helmholtz equation.

Let DPR3 denote one cell of a slab structure that is pe-
riodic in x and y and bounded inz, with boundary]D and
outward pointing normal vectornsrd at r P]D. We suppose
that the medium exterior toD is lossless with dielectric co-
efficient e0 and magnetic coefficientm0. We make use of a
pseudoperiodic radiating fundamental solutionsGreen’s
functiond G0 of the Helmholtz equationwith frequencyv.
Thus,G0 satisfies

s]xx + ]yy + ]zz+ e0m0v2dG0sx,y,zd

= − eisk1x+k2yd o
j ,k=−`

`

dsx − 2jp,y − 2kp,zd, sB1d

whered is the Dirac delta function with unit strength at the
origin, as well as thepseudoperiodic condition

G0sx,y,zd = eisk1x+k2ydG̃0sx,y,zd,

whereG̃0 has period 2p in x and y, and theradiating con-
dition that all nondecaying Fourier harmonics are outgoing
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asz→ ±`. The Fourier form ofG0 is

G0sx,y,zd = −
1

8p
o

n,m=−`

`
egmnuzu

gmn
eism+k1dx+isn+k2dy, sB2d

in which

gmn
2 = − m0e0v2 + sm+ k1d2 + sn + k2d2.

It is assumed thatmmnÞ0 for all pairssm,nd. We takeigmn

,0 for the finite number of propagating Fourier harmonics,
so that they are outgoing asuzu→`, andgmn,0 so that the
rest of the harmonics decay asuzu→`. We denote byG1 the
Green’s function withe0 andm0 replaced bye1 andm1.

Let sE,Hd be the total field resulting from the scattering
of free Maxwell source fields by the structure, and denote the
tangential traces of the total field, forr PD, by

jsrd = − nsrd 3 Hsrd,

msrd = nsrd 3 Esrd.

If the structure is a perfect metal, then the electric field is
zero on]D and we allow an exterior source fieldsEso

ext,Hso
extd.

In this case, we have an equation for the trace of the total
magnetic field forr P]D,

jsrd +E
]D

nsrd 3 f jsr8d 3 ¹ G0gdSsr8d = − nsrd 3 Hsrd.

sB3d

In the case that the structure is a lossless material with
dielectric coefficiente1 and magnetic coefficientm1, we must
make use of the fundamental solutionG1 for the interior,
obtained by replacing the exterior by the interior material
coefficients in the expressions forgmn that appear in Green’s
functionsB2d. We allow an additional sourcesEso

int ,Hso
intd ema-

nating from the interior. Denote the averages of the interior
and exterior coefficients by

ē =
e0 + e1

2
, m̄ =

m0 + m1

2
,

and form the following combinations of tangential traces of
the source fields on]D:

q1 =
m0

m̄
s− n 3 Hso

e d +
m1

m̄
s− n 3 Hso

i d,

q2 =
e0

ē
sn 3 Eso

e d +
e1

ē
sn 3 Eso

i d.

The following integral equations hold, wherer P]D:

jsrd −
1

m̄
E

]D

nsrd 3 f jsr8d 3 ¹ sm1G1 − m0G0dgdSsr8d

+
i

vm̄
E

]D

fnsrd 3 msr8dgsk1
2G1 − k0

2G0ddSsr8d

+
i

vm̄
E

]D

nsrd 3 hfmsr8d · ¹ g ¹ sG1 − G0djdSsr8d

= q1srd, sB4ad

msrd −
1

ē
E

]D

nsrd 3 fmsr8d 3 ¹ se1G1 − e0G0dgdSsr8d

−
i

vē
E

]D

fnsrd 3 jsr8dgsk1
2G1 − k0

2G0ddSsr8d

−
i

vē
E

]D

nsrd 3 hf jsr8d · ¹ g ¹ sG1 − G0djdSsr8d = q2srd,

sB4bd

in which k0
2=e0m0v2 andk1

2=e1m1v2. All of the Green func-
tions and their derivatives are evaluated atsr −r8d.

Having solved for j and m on ]D, one then computes
sE,Hd for r off of ]D by using standard integral representa-
tion formulas.

In the two-dimensional reduction, in which the structure
is invariant in thex direction, the fields can be decomposed
into two polarizations, in which the electric and magnetic
field, respectively, is pointing out of theyz planesEx andHx
fields, respectivelyd. D now denotes the two-dimensional
cross section of the structure in theyzplane. We make use of
the two-dimensional fundamental solutionswe reuse the no-
tation G0d,

G0sy,zd = −
1

4p
o

m=−`

`
1

gm
egmuzueism+k1dy, sB5d

in which

gm
2 = − m0e0v2 + sm+ k1d2.

Let u denote the out-of-plane field component on]D, and
]u/]n the limiting value from the exterior ofD of its normal
derivative on]D. Set n=m1/m0 and s=s2m0d / sm0+m1d in
the Ex case, andn=e1/e0 and s=s2e0d / se0+e1d in the Hx

case. Forr P]D, set

p1 = uso
e srd + uso

i srd,

p2 = sS ]uso
e srd
]n

+
]uso

i srd
]n

D .

The following integral equations hold, wherer P]D:

usrd +E
]D

]sG1 − G0d
]nsr8d

usr8ddssr8d

−E
]D

snG1 − G0d
]u

]nsr8d
sr8ddssr8d = p1srd,

sB6ad
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]usrd
]n

+ sE
]D

]2sG1 − G0d
]nsrd ] nsr8d

usr8ddssr8d

− sE
]D

]snG1 − G0d
]nsrd

]u

]nsr8d
dssr8d = p2srd. sB6bd

In these equations,] /]nsr8d refers to differentiation of
G0,1sr −r8d with respect to the variabler8 in the direction of

nsr8d. Once the field and its normal derivative are determined
on the boundary, one computes the scattered field at a pointr
in the exterior toD by the Green formula

usrd =E
]D
S ]G0sr − r8d

]n
usr8d − G0sr − r8d

]u

]n
sr8dDdssr8d,

sB7d

and in the interior by a similar formula usingG1.
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