
P H Y S I C A L R E V I E W L E T T E R S week ending
19 SEPTEMBER 2003VOLUME 91, NUMBER 12
Resonant Tunneling of Interacting Electrons in a One-Dimensional Wire
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We consider the conductance of a one-dimensional wire interrupted by a double-barrier structure
allowing for a resonant level. Using the electron-electron interaction strength as a small parameter, we
are able to build a nonperturbative analytical theory of the conductance valid in a broad region of
temperatures and for a variety of the barrier parameters. We find that the conductance may have a
nonmonotonic crossover dependence on temperature, specific for a resonant tunneling in an interacting
electron system.
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The phenomenon of resonant tunneling is well known
in the context of electron transport physics [1]. The hy-
bridization of a discrete state localized in the barrier with
the extended states outside the barrier may strongly en-
hance the transmission coefficient for electrons incident
on the barrier with energy matching the energy of the
localized state. For a single electron, the transmission
coefficient at energies close to the resonance is given by
the Breit-Wigner formula [1]. However, if the barrier
carrying the resonant level separates conductors which
in equilibrium have a finite density of mobile electrons,
the problem of resonant tunneling becomes more complex
due to the electron-electron interaction. Manifestation of
resonant tunneling in the conductance of a solid-state
device is inevitably sensitive to this interaction.

Some of the effects of electron-electron interaction do
not depend on the dimensionality d of the conductors—
leads separated by the barrier. For instance, the on-site
repulsion together with the hybridization of the localized
state with the states of continua lead to the Kondo effect
in the transmission across the barrier [1] at any d. The
Fermi-edge singularity also strongly affects the resonant
tunneling [2] in any dimension. The electron-electron
interaction within the leads, however, does not have a
strong effect if d > 1, and if the leads are not disordered.
In contrast, tunneling across a barrier interrupting a one-
dimensional (1D) wire is modified drastically by the
interaction within the wire [3–5]. Theory [6] predicts
also a strong interaction-induced modification of the
resonant tunneling in 1D wires. Results of the experi-
ments with nanotubes containing a quantum dot [7] ap-
parently deviate from the corresponding predictions [6] of
the Luttinger liquid theory. These predictions were chal-
lenged recently in Ref. [8], where a somewhat different
theoretical model of a wire was considered.

The electron-electron repulsion enhances the backscat-
tering off the barrier. This enhancement is the strongest
for the states with low energies. Even at weak ‘‘bare’’
backscattering, when the high-temperature conductance
approaches the unitary limit, the zero-temperature con-
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electron tunneling rate becomes energy dependent, even
if the bare scattering amplitude is independent of energy.
The Luttinger liquid theory yields the high- and low-
temperature asymptotes for G�T�, and provides a qualita-
tive description of the corresponding crossover regime
[3]. However, if the bare scattering amplitude strongly
depends on the electron energy, such as in the case of
resonant tunneling, the general theory [3,6] does not
capture the crossover regime. This may cast some doubt
on the low-temperature asymptote for the conductance
[3], as its derivation assumes that the tunneling rate is a
smooth function of energy in the crossover regime.

In this Letter, we find the full crossover behavior of the
resonant tunneling conductance for an arbitrary asym-
metry of the barrier and arbitrary position of the resonant
level with respect to the Fermi level, in the limit of weak
interaction. In general, the temperature dependence of the
conductance G�T� is not monotonic. However, its low-
temperature asymptote agrees with the one found in
Ref. [3]. We perform an analytical calculation of G�T�
by a method similar to the one of Ref. [9]. Within this
method, the complicated picture of many-electron trans-
port is considered within the traditional Landauer-
Büttiker elastic scattering formalism. The role of the
interaction is to renormalize the elastic scattering ampli-
tudes. The renormalization brings about an extra energy
dependence of these amplitudes. In the limit of weak
interaction, the most divergent terms in perturbation
theory indeed correspond to the purely elastic processes
[9], thus justifying the method.

To adapt the method of Ref. [9] to the conditions of
resonant tunneling, we first generalize it onto the case of
arbitrary energy dependence of scattering amplitudes. To
start with, we derive the first-order interaction correction
to scattering amplitudes. This can be readily done along
the lines of Ref. [9]. The correction to transmission am-
plitude reads
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Here the rL�R� are the reflection amplitudes for electrons
incoming from the left (right), and the coefficients �L�R�
represent the interaction within the left (right) part of the
1D wire; energies � and �0 are measured from the Fermi
level. Transmission and reflection amplitudes rL;R satisfy
the unitarity relation: rRt	 � �r	Lt. The coefficients � are
related to the Fourier components V�k� of the correspond-
ing electron-electron interaction potential by � �
�V�0� � V�2kF��=2�vF. In the limit of weak interac-
tion, these coefficients determine the exponents in the
edge density of states [3] for each part of the channel,
���� / ��.

The integration over �0 in the first-order correction
Eq. (1), in general, yields a logarithmic divergence at � !
0. This indicates that the perturbation series in the inter-
action potential can be resummed with the renormaliza-
tion method. To account for the most divergent term in
each order of the perturbation theory in �, we proceed
with the renormalization in a usual way [10]. On each step
of the renormalization, we concentrate on the electron
states in a narrow energy strip around �E, with E > 0
being the running cutoff. We evaluate the interaction
correction due to the electrons in these states to the
scattering amplitudes at energies � close to Fermi level,
j�j<E. These amplitudes are thus functions of both �
and E. We correct those amplitudes according to Eq. (1),
reduce the running cutoff by the width of the energy
strip, and repeat the procedure. This yields the following
renormalization equation:
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provided that j�j<E. We abbreviate here r��� � r��; j�j�
(and similar for t) indicating that the renormalization of
scattering amplitudes stops when the running cutoff ap-
proaches j�j. The initial conditions for this differential
equation are set at upper cutoff energy �. If the � depen-
dence of the transmission amplitude in the absence of
interaction, t��;��, can be disregarded, then all the en-
ergy dependence of renormalized amplitudes comes about
as a result of the renormalization procedure. The corre-
sponding simplification of Eq. (2) then reads

@jt���j2

@ ln�
� ��R 
 �L�jt���j2�1� jt���j2�; (3)

and contains the transmission probabilities only. This
coincides with the results of Ref. [9]. However, the above
simplification is not possible in the more general case we
consider here. One cannot even deal with a single equa-
tion: Eq. (2) shall be supplemented with a similar equa-
tion for one of the reflection amplitudes,
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To describe resonant tunneling, we consider a com-
pound scatterer made of two tunnel barriers with tunnel
amplitudes t1;2 � 1 separated by a distance �vF=�. This
gives rise to a system of equidistant transmission reso-
nances separated by energy �. We assume that one of the
resonances is anomalously close to Fermi energy and
concentrate on this one disregarding the others. The scat-
tering amplitudes in the absence of interaction are then
given by common Breit-Wigner relations:

t��;�� �
i
������������
�L�R

p
��L 
 �R�=2� i�����

;

rL��;�� �
���L 
 �R�=2� i��� ��

��L 
 �R�=2� i�����
;

where �L;R � jt1;2j
2�=2� are the level widths with re-

spect to the electron decay into the left (right) lead and �
is the energy shift of the resonance with respect to the
Fermi Level; we assume here � � �. We disregard pos-
sible energy dependence of t1;2 that could be relevant at
higher energies, which allows us to take the upper cutoff
� to be of the order of �. The corresponding transmission
probability before the renormalizations,

jt��;��j2 �
�L�R

��� ��2 
 ��L 
 �R�
2=4

;

is the usual Lorentzian function of energy. The interaction
corrections to � and �L;R which come from bigger energy
scales, � < E< EF, are assumed to be included in the
definitions of these quantities.

The next step is to solve the renormalization Eqs. (2)
and (4). To stay within the accuracy of the method, in the
solution we need to retain the terms / �n�ln��=���n while
same-order terms with a lower exponent of the logarith-
mic factor should be disregarded. This allows for a sub-
stantial simplification.We proceed by solving Eqs. (2) and
(4) at higher energy (far from the resonance), where the
reflection from the compound scatterer is almost perfect.
In this case, we approximate jrL;R��E�j � 1. It is possible
to see that in this case the renormalization of the tunnel
amplitudes t1;2 of each constituent of our compound scat-
terer occurs separate from each other, d lnt1;2=d ln� �
�L;R=2. This renormalization can be incorporated into
the energy dependence of the effective level widths,
�R;L��� � �R;L��=���R;L . The result for jt���j2 thus reads

jt���j2 �
�L����R���

��� ��2 
 ��L��� 
 �R����2=4
: (5)

The above approximation of the integrand in Eq. (2)
becomes invalid at lower energies, where the transmission
coefficient may become of the order of unity. The energy
scale ~�� at which this occurs can be evaluated from Eq. (5),
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and is given by the solution of equation 2~�� � �L�~��� 

�R�~���. If �L � �R � � � 1, it is 2~�� � ��L 
 �R����L 

�R�=2���. At energies below ~��, the reflection amplitudes
in the integrand can be approximated as r��0� � r���, and
we immediately recover Eq. (3). Its solution at j�j< ~��
yields

jt���j2 �
~��L���~��R���

��� ��2 
 ~��L���~��R��� 
 ��L�~��� � �R�~����
2=4

;

(6)

with ~��L;R��� � �L;R�~���j�=~��j
��R
�L�=2. Relation (6) deter-

mines the full crossover function for the resonant tunnel-
ing, if ~�� * j�j. In the opposite case of a resonance distant
from the Fermi level, j�j * ~��, we shall change the ap-
proximation at � � j�j. The answer is thus given by
Eq. (6) with ~�� being replaced by j�j. The definition of
the crossover energy ~�� and the condition j�j � ~�� of the
crossover between the low energy cutoffs could contain
any other numerical factors of the order of 1. Fixing the
numerical factors with a greater precision would exceed
the accuracy of our renormalization method. In other
words, the energy dependence of � in all above relations
is assumed to be very slow, which is the case in the limit
� � 1.

It is important to notice that the tunneling rate in the
interesting domain of energies, j�j & ~��L 
 ~��R, reflects
the electron dynamics at long time scales. The transient
charge associated with the tunneling process is spread
over a distance �vF=j�j, greatly exceeding the physical
size of the double-barrier system (vF=�). Therefore the
transient charge accumulation in the vicinity of the bar-
riers, which occurs at shorter scales, does not affect
Eq. (6). By the same token, the finite range of interaction
in the model of Ref. [8] should not affect the results either
[11]. As seen from Eq. (6) and from Ref. [3], the resonance
in jt�� ! 0;��j2 becomes infinitely sharp, if the barrier is
symmetric, �L � �R. The result of Ref. [8] is at odds with
our conclusion. This discrepancy, demonstrated here in
the limit of � � 1, may be an artifact of the approach of
Ref. [8]. Apparently, it is this discrepancy that leads to the
disagreement of the main prediction of [8] for G�T� at
resonance with the known result [3] of the Luttinger
liquid theory.

To present quantitative conclusions, we discuss the
linear conductance G�T� at �R � �L � �. Within the
Landauer formalism, the conductance is given by

G�T� � GQ

Z 1

�1

d�

4Tcosh2��=2T�
jt���j2; (7)

where the conductance quantum unit for one fermion
mode is GQ � e2=2� �h. The results strongly depend on
the ratio of �R and �L. We will characterize this ratio by
the asymmetry parameter � � j�L � �Rj=��R 
 �L�
which ranges from 0 to 1 and does not depend on energy,
provided that �R � �L. To emphasize the effect of inter-
action, let us recall that in the case of free electrons one
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finds G�T� / 1=T at temperatures T � �;�; in the limit
T ! 0, the conductance saturates at a finite value, which
reaches �1� �2�GQ if the Fermi level is tuned to the
resonance (� � 0). Interaction changes this picture no-
ticeably. Let us start the discussion with the case � � 0.
At high temperatures, T * ~��, the conductance can be
estimated as G��0�T�=GQ � ���1� �2�=4��T=~�����1 ’
��T�=T. The unusual temperature dependence thus can
be ascribed to the interaction-induced renormalization of
�. The low-temperature behavior differs strikingly for
symmetric (� � 0) and asymmetric (� � 0) resonances.
For symmetric resonance, the conductance saturates at
the ideal value of GQ. For � � 0, the conductance reaches
at T � ~�� its maximum value, which is smaller than �1�
�2�GQ, and drops to zero with the further decrease of
temperature,

G��0�T�=GQ � �1=�2 � 1��T=~���2�; T & ~��: (8)

The temperature exponents at T & ~�� agree with those
obtained in Refs. [3,6] at any �. The exponent at � � 0
is the same as for a single tunnel barrier interrupting the
1D channel. It indicates that at low energies the electrons
get over the compound scatterer in a single quantum
transition.

The increase of � leads to a decrease of the conduc-
tance. For noninteracting electrons, the conductance stays
at a level of the order of its maximal value, G��0 for �
less than �L 
 �R, which determines the width of the
resonance in G��� at T & �L 
 �R. At higher tempera-
tures, the effective resonance width is w ’ T. Let us
discuss now the temperature dependence w�T� and the
shape of the resonance G��� at fixed temperature in the
presence of interaction. For T � ~��, the width w ’ T does
not reveal any anomalous exponent. The shape of the
resonance in this regime is mainly determined by the
thermal-activated exponential contribution G��� ’
exp��j�j=T���T�=T in Eq. (7). However, at large � �
w, the power-law ‘‘cotunneling’’ tail Gtail��� � GQ�1�
�2��T=~���2�~��2=�2, replaces that exponential dependence
[12]. The crossover occurs at � ’ T ln�GQ=G��0� and
corresponds to the conductance Gcross ’ G2

��0=GQ, this
being much smaller than G��0.

At T � ~��, the apparent width of the nonsymmetric
resonance saturates at w ’ ~��. The conductance thus drops
uniformly at any � following the power law (8). The
symmetric resonance presents an exception. In this case,
the width shrinks with the decreasing temperature,
w�T� ’ �T=~����~��, and G�T;�� acquires the scaling
form, G�T;�� � GQ=f1
 ��=w�T��2g, in agreement
with Ref. [6].

We further illustrate our results by a numerical evalu-
ation of Eq. (7) (see Figs. 1 and 2). For this calculation, we
choose � � 0:2. By virtue of our approach, the relative
accuracy of the results is expected to be of the order of �.
The dependence G�T� is not monotonic, and in the limit
T ! 0 the conductance drops to zero at any � � 0,
126804-3



0

0.2

0.4

0.6

0.8

1

G
/G

Q

0 2 4

0 2 4

0.2

0.4

0.6

∆/

G
/G

Q

0

10
-5

10
-4

10
-3

10
-2

10
-1

1 10 10
2

T/

1

10
-1

10
-2

10

100

ε~ ε~

∆/ε~

w
/ε~

FIG. 2. Left: Half width at half maximum w vs temperature
T for the values of asymmetry parameter � � 0, 0.2, 0.4, 0.6,
and 0.8 (bottom to top curve). With the decreasing temperature,
the half width saturates for a nonsymmetric resonance, and
continuously decreases for the symmetric one. Right: The
conductance dependence on the position of the resonant level
with respect to the Fermi level, G���, for symmetric (top) and
nonsymmetric with � � 0:5 (bottom) resonances at three tem-
peratures T=~�� � 0:04, 0.2, and 1.
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FIG. 1. Temperature dependence of resonant (� � 0) tunnel-
ing conductance. The asymmetry parameter � � 0 (top curve),
0.2, 0.4, 0.6, and 0.8 (bottom curve). For symmetric resonance
(� � 0), the conductance saturates at T � 0. Inset: The typical
energy dependence of transmission coefficient consists of a
Lorentz-like contour with a sharp dip at the Fermi level.
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although for small � this is noticeable only at very low
temperatures (Fig. 1). The temperature dependence w�T�
of the width of the resonance G��� is shown in the left
panel of Fig. 2. If � � 0, this dependence saturates at
some value w�0� � 0.

The differences and similarities of symmetric and
nonsymmetric resonances are further illustrated in the
right panels of Fig. 2. The three pairs of line shapes there
correspond to ‘‘high,’’ ‘‘medium,’’ and ‘‘low’’ tempera-
tures, respectively. The two high-temperature curves (the
smallest values of G��0) are hardly distinguishable from
each other, and correspond to the resonance width w ’ T.
Both medium-temperature curves show a more narrow
resonant peak with increased conductivity G��0, and are
still similar to each other, apart from the scale. The real
difference becomes visible for the low-temperature
curves. In the case of nonsymmetric resonance, the low-
temperature curve is just reduced in height with no
noticeable change of the shape. This is in contrast to the
symmetric resonance, where the resonance peak gets
taller and thinner.

In conclusion, we have investigated the transmission
resonances of interacting electrons in 1D wires. For a
weak electron-electron interaction, the transmission can
be considered as an elastic process, which allowed us to
build a comprehensive theory of the resonances, valid in a
broad range of temperature and parameters of the reso-
nant level. The temperature dependence of the maximum
conductance in general is not monotonic, and reveals
important differences between symmetric and nonsym-
metric resonances. The obtained quantitative results
present a comprehensive and consistent picture of the
effect. It assures us in the qualitative validity of the
picture at an arbitrary interaction strength. Although
we are not able to come up with an explicit expression
for the crossover function G�T� in this case, such a
126804-4
function, with known high- and low-temperature asymp-
totes, does exist by virtue of the renormalizability.
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