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Physica B 183 (1993) 1-24 

North-Holland PHYSICA rn 

Resonant ultrasound spectroscopic techniques for measurement 

of the elastic moduli of solids 

A_ Migliori, J.L. Sarrao, William M. Visscher, T.M. Bell, Ming Lei, Z. Fiskl and 

R.G. Leisure
2 

Los Alamos National Laboratory, Los Alamos, NM, USA 

Received 20 October 1992 

The mechanical resonant response of a solid depends on its shape, density, elastic moduli and dissipation. We describe 

here instrumentation and computational methods for acquiring and analyzing the resonant ultrasound spectrum of very 

small (0.001 cm3
) samples as a function of temperature, and provide examples to demonstrate the power of the technique. 

The information acquired is in some cases comparable to that obtained from other more conventional ultrasonic 

measurement techniques, but one unique feature of resonant ultrasound spectroscopy (RUS) is that all moduli are 

determined simultaneously to very high accuracy. Thus in circumstances where high relative or absolute accuracy is 

required for very small crystalline or other anisotropic samples RUS can provide unique information. RUS is also sensitive 

to the fundamental symmetry of the object under test so that certain symmetry breaking effects are uniquely observable, 

and because transducers require neither couplant nor a flat surface, broken fragments of a material can be quickly screened 

for phase transitions and other temperature-dependent responses. 

1. Introduction 

Large single crystals are always highly prized, 
in part because of their appearance, but also 
because usually they are the result of consider
able effort on the part of the grower. Such effort 
is justified because the usual implementation of 
many measurement techniques, for various com
plex and often mundane reasons, requires sam
ples with dimensions in the centimeter range. 
Ultrasound measurements, traditionally of great 
importance because of their connection to 
thermodynamics, transport properties and mi
crostructural effects, are typically subject to this 
size constraint. When only small samples are 
available, it is possible to perform pulse-echo 
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ultrasound measurements at GHz frequencies [1] 
or to use the vibrating reed and related methods 
[2], but the cost to the scientist is either instru
ment complexity or loss of information. There 
are, of course, other nonacoustic techniques for 
obtaining sound velocity and attenuation data 
such as Brillouin scattering [3], inelastic neutron 
scattering [4], X-ray based methods [5] and 
others. Each of these nonacoustic techniques has 
advantages and disadvantages. Among the dis
advantages common to all of them is the lack of 
high precision. Only the acoustic techniques can 
achieve 10-6 or better reproducibility. Because 
the speed of sound may vary only a percent or 
less at a phase transition [6] or a few percent 
from 300 K to 4 K, this lack of precision can be a 
serious failing. On the other hand, neutron scat
tering can provide the entire dispersion curve 
from Brillouin-zone center to edge, but with 
worse than percent accuracy, Brillouin scattering 
can obtain data at frequencies in the tens of GHz 
range with 1 % accuracy on very small samples 
but suffers at cryogenic temperatures or with 

0921-4526/93/$06.00 © 1993 - Elsevier Science Publishers B.Y. All rights reserved 
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opaque samples, and X-ray techniques achieve 

moderate accuracy on very small samples. Thus 

each of these techniques retains an important 
place in elasticity studies (or it would not be 

used, of course). 
Of the acoustic techniques, such methods as 

the vibrating reed and torsion pendulum can 

measure only some of the elastic moduli, while 

pulse-echo ultrasound and most of the nonacous

tic techniques can measure all of them. This is 
not a particularly important constraint for iso

tropic materials such as glasses, polycrystalline 

metals and ceramics. However, for single crys

tals, textured alloys and the like, the value of 

ultrasound measurements is often critically de
pendent on measurement of all moduli with both 
precision and accuracy. 

This requirement for accuracy and precision is 
exemplified by ultrasonic studies of the physics 

surrounding second-order phase transitions. At 
such transitions, there are no microscopic discon

tinuities in the material. No atoms suddenly 

change position, magnetism and ferroelectricity 
do not suddenly appear, and electrical conduc

tivity in a superconductor becomes infinite only 

for infinitesimal currents carried at zero magnetic 
field. However, several thermodynamic second 

derivatives do exhibit discontinuities. For a liq

uid, with only one elastic modulus, it is simple to 

write down the important relations, using pres

sure (P), volume (V) and temperature (T) in

stead of stress (Iij' strain Cij and T. They are 

a
2

11Glap
2 = a I1Vlap = -liB, 

a
2

11GlaT
2 = -a I1SlaT= -CpIT, 

a
2

I1GlapaT=aI1VlaT= a, 

(1) 

(2) 

(3) 

where I1G is the Gibb's free energy difference 

per unit volume across the phase boundary and 
is continuous, 11 V is the fractional volume dis

continuity across the phase boundary, equal to 

zero, I1S the entropy discontinuity, also zero, C
p 

is the specific heat, a is the volume thermal 

expansion coefficient and B the bulk modulus. 

Each of the quantities Cp ' a and B can exhibit 
discontinuities at T s ' the second-order phase 

transition temperature at which the high

temperature (usually the so-called symmetric) 

phase transforms to the low-temperature (usually 

the unsymmetric) phase. 

Discontinuities are of great importance to the 

experimentalist because they are often the most 

unambiguous of measured quantities. Moreover, 
in general Cp is a scalar, a a vector and, if we 

were to write eq. (1) for stress and strain rather 

than pressure and volume, we would find that 

the right side of eq. (1) would be a tensor. That 
the modulus is a tensor and is discontinuous at a 

second-order phase transition is a key motivating 

factor for the development of RUS. To see why, 

consider a simple soft-mode structural phase 

transition such as occurs in La2 Cu0 4 • This tran
sition, described in more detail below, arises 

from a zone-edge double-well [7] potential V for 

one phonon branch. As the material in its tetra
gonal phase is cooled, the thermal excitation 

level drops through the point where the double 

well becomes important. The free energy G ex

hibits a single-well behavior from thermal smear
ing at high temperature and a double-well be

havior cold. At the temperature Ts where the 
behavior just switches over, the phonon's fre

quency decreases to zero resulting in a static 

displacement. This static displacement increases 

from zero as the material is cooled further, 
doubling the unit cell to an orthorhombic struc

ture. What is of most interest here is that the 

zone-edge static displacement, coupled with 
group theoretical considerations including 

phonon and crystal symmetry, Ginsburg-Landau 

theory [8] and fluctuation theory [9], forces very 
specific predictions about which moduli exhibit 

discontinuities and how big, and the temperature 

dependence of the moduli as Ts is approached 

from either direction. Such an analysis can be 

made for any second-order phase transition, and, 

if the full response of the modulus tensor is 
available, one can work backwards to extract 

much of the physics driving the transition. With

out a discontinuous tensor to work from, such an 

analysis would be more subject to interpretation

al errors. 

RUS can determine the full elastic tensor in a 

single measurement with unprecedented absolute 
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and relative accuracy from cryogenic to very high 

temperatures. The basic principle behind this 

simple, inexpensive bench-top measurement 
technique is that the mechanical resonances of a 

solid depend on its shape and moduli in a way 

sufficiently complex such that a measurement of 

the resonant frequencies of a carefully made 
sample can be used to determine the full elastic 

tensor. To illustrate this we show in table 1 the 

results of such a measurement on a Si3N4 ball 
bearing. These data represent our current state

of-the-art for accuracy, primarily because this 

object, a nominal 5/16 inch diameter sphere, is 

spherical to a few parts per million and is made 

from a carefully controlled ceramic with very 

isotropic properties. Thus only two moduli, the 
density and the diameter are required to fully 

characterize its resonances. As can be seen from 

the columns labelled fm and fr, agreement be
tween experiment and computation is of order 
0.01 % after a best fit to the moduli (in this case, 

we use the shear modulus J.L and Poisson's ratio if 

as the independent parameters) is found. Density 

and diameter are measured independently. For a 
larger 112 inch nominal-diameter sphere of the 

same material, we obtain 0.004% agreement, 

primarily because the larger object is less pertur

bed by air and transducer contact and because its 

temperature cannot change as quickly. 

Table 1 

2. Measurement techniques 

Current practices in the design of the hard

ware, data analysis and sample preparation sys

tems required to make and interpret RUS mea
surements have not been described in detail 

anywhere. Because of the novelty of the tech

nique, and because of its utility, it is important 

to understand the measurement system in order 

to appreciate the data produced by it. Because 

an example is often the best focus, a state-of-the

art apparatus for making low-temperature RUS 

measurements on rectangular parallelepiped 

eRP), spherical and cylindrical samples with 
smallest dimension of about 0.05 cm, from 20 K 

to 400 K, will be described schematically. Using 
data on SrTi03 , LaZCu0 4 and Laz_x Sr

x
Cu0

4 

single crystals, we will illustrate what can be 

learned with RUS including certain effects relat
ing to crystal symmetries not accessible by any 
other measurement method. 

2.1. Data analysis 

The key to the successful application of RUS 

is the ability to compute mechanical resonances 
from a body's shape, density and moduli. For 

solids, such as a sphere or RP, having a shape 
sufficiently simple to enable description by a few 

Resonant ultrasound measurement of a 0.63500 cm diameter Si3N4 ceramic sphere with a density of 3.2325 g/cm
3
. fm are measured 

frequencies, f, are fitted, n is the mode number. k is our designator (to be discussed below) for the symmetry of the mode and i is 

in essence the harmonic number of each symmetry type. Multiple entries indicate the mode degeneracy. The fit for 

/J- = 1.2374 X 10
12 

dyne/ cm
2 

and a = 0.2703 has a x2 (%) = 0.0124. This is sufficient to determine /J- to about 0.01% and a to 

about 0.05%. There are no corrections so these values are absolute. 

n f, (MHz) fm (MHz) % error (k, i) 

1 0.775706 0.775707 -0.000138 (6,1), (1, 1), (4, 1), (4, 2), (7, 1) 

6 0.819567 0.819983 -0.050778 (5,1), (3, 1), (5, 2), (8, 1), (2, 1) 

11 1.075664 1.075399 0.024614 (1,2), (7,2),(6,2) 

14 1.198616 1.198505 0.009239 (5,3), (2,2), (3,2), (8,2), (3,3),(8,3), (2,3) 

21 1.217375 1.217850 -0.039042 (1,3), (6, 3), (7,3), (1, 4), (6, 4), (7, 4), (4, 3) 

28 1.440760 1.440750 0.000712 (5,4) 

29 1.527080 1.526474 0.039695 (5,5), (8,4),(3,4), (5,6), (2,4) 

34 1.558358 1.558848 -0.031448 (5,7), (5,8), (5, 9), (3,5), (8,5), (2, 5), (3, 6), (8, 6), (2,6) 
43 1.580067 1.579871 0.012426 (6,5), (7,5), (7,6), (1,5), (4,4), (1,6), (6,6),(4,5), (4,6) 
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mathematical functions, an approach based on 

work by Holland [10], Demarest [11], Anderson 

et al. [12] and Ohno [13] is used. This procedure 

does not use finite-element methods but instead 

seeks stationary points of the Lagrangian for a 
solid with free surfaces [14], and with a nondis

sipative symmetric elastic tensor with no far-field 

effects such as those associated with ferromag

nets or ferroelectrics. Far-field systems [15] and 
the dissipative problem [16] have been analyzed 

successfully, but will not be discussed here. Once 

the mechanical resonances are computed (the 

direct problem), carefully constructed fitting pro
cedures can be used to work backwards to find 

moduli from resonant frequencies (the inverse 
problem). 

The procedure for solving the direct problem 
for an arbitrarily shaped elastic solid with vol

ume V, elastic tensor Cijk /, density p, and with a 

free surface S begins with the Lagrangian 

L= f (KE-PE)dV (4) 

v 

where the kinetic energy, KE, is given by 

KE 
1 2 2 

= 2:PW u i , (5) 

and the potential energy, PE, by 

PE = !ck/u. ,uk / . IJ 1,J , 
(6) 

Here u
i 

is the ith component of the displacement 

vector, the usual summation convention applies, 
indices following a comma denote differentiation 

with . respect to that coordinate and the time 

dependence of the displacements is assumed to 

be e
iwt 

where w is the angular frequency and t is 

time. 

Following Hamilton, we allow u i to vary arbit

rarily in the volume V and on the surface S 

(u i ---!> u i + 8uJ and calculate the variation 8L in 
L. The result is 

8L = f (left side of eq. (8))i8ui dV 

v 

+ f (left side of eq. (9))i8ui dS 

s 

(7) 

plus higher-order terms in 8u i • The elastic wave 
equation is 

(8) 

and the vanishing of the ith component of the 

surface traction vector is expressed by 

(9) 

where {nJ is the unit outer normal to S. 

Because of the arbitrariness of 8u i in V and on 

S, the u;'s which correspond to stationary points 

of L (i.e. 8L = 0) must satisfy eq. (8) in V and 

eq. (9) on S. There are no such u;'s, of course, 
unless w

2 
is one of a discrete set of eigenvalues, 

the normal mode frequencies of free vibration of 

the system. This simple result makes possible the 
following powerful procedure for obtaining the 

free vibrations of an object. 

Following the Rayleigh-Ritz prescription, we 
expand the displacement vector in a complete set 

of functions {CPA}' 

(10) 

and choose as our basis functions powers of 
cartesian coordinates: 

£Ii. /mn 
""A = X Y z , (11) 

where A = (I, m, n) is the function label, a set of 

three nonnegative integers. After substituting 

eq. (10) into eq. (4), we obtain (a becomes a 
column vector) 

(12) 

where E and r are matrices whose order R is 

determined by the truncation condition 

l+m+n~N, (13) 

with R = 3(N + l)(N + 2)(N + 3)/6. We have 
found that N = 10 gives a good compromise be

tween computational accuracy, computing time 

and typical sample preparation errors consistent 

with data spanning the first 50 or so modes. 
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The matrix E has elements 

EAiA'i' = 0U' J cPAPcPA' dV . 

v 

(14) 

If we had chosen cPA to be an orthonormal set 
with respect to the density p (for example, nor
malized Legendre polynomials [13]), E would 
have been the unit matrix, simplifying sub

sequent manipulations. Our choice of cPA' al
though extracting a moderate computational 
penalty, is more easily applied to complex shapes 

than an orthonormal set. 
The matrix r has elements 

rAiA'i' = Ciji'j' J cPA,jcPA',j' dV . 
v 

(15) 

The volume integrals which appear here are 
quite tractable for many shapes if the choice (11) 

is made. 
The expression (12) for the Lagrangian is 

stationary if the displacements u i are solutions of 
the free-vibration problem. These solutions may 
be obtained by setting the derivatives of eq. (12) 
with respect to each of the R amplitudes a iA 

equal to zero. This yields the following eigen

value equation: 

(16) 

The matrix E is symmetric and positive definite 
and r is symmetric, so a standard eigenvalue
eigenvector subroutine package (RSG in EIS

PACK-[17]) can be used to solve (16). 
For our choice of cPA the matrix elements of E 

and r are all of the form 

f(p, q, r) = J xpyqzr dV , (17) 

v 

where p, q and r are nonnegative integers. This 
integral can be evaluated analytically for a varie
ty of shapes [14]. For the RP with sides 2d1 , 2d2 , 

2d3 , it is 

SdP+ldq+ldr+l 
. . 1 2 3 

f(p, q, r) = (p + l)(q + l)(r + 1) . 
(IS) 

To solve the inverse problem, the derivatives of 
the eigenfrequencies f= wl2'IT (where w

2 
is an 

eigenvalue of eq. (16)) with respect to parame
ters of the sample are required. These can be 
obtained easily in the following way. First, dif
ferentiate eq. (16) with respect to one of the 
sample parameters p (an elastic constant, dimen
sion or angle specifying the orientation of the 
crystallographic axes with respect to the paral
lelepipedal axes) to obtain 

aw
2

/ ap Ea + w 2
E aa/ ap + aw

2 
aE/ ap a 

= ar/ap a + r aa/ap . (19) 

Then multiply this from the left with aT and 

compare with the transpose of eq. (16) to get 

Because we have already computed the eigen
vectors a and the volume integrals occurring in 
a r / a p and aE / a p are trivial, the computation of 

the derivatives represents only a minor increase 

in computational time. 
We can speed up the calculation immensely by 

exploiting the symmetries x ---? - x, Y ---? - y, 

Z ---? - z that occur if the crystal is of ortho
rhombic or higher symmetry and the crystallo
graphic axes are aligned with those of the sam
ple. Then by inspection of the PE in eq. (6) we 
see that if U

x 
is characterized by a parity triplet 

(-g, f..t, v) where 

the matrix r only connects this U x with u y and U z 

having the following parities: 

ux:(-g,f..t,v), 

u y : (g, - f..t, v) , 

U z : (g, f..t, - v) . 

(21) 

Thus the matrix r degenerates into a block
diagonal matrix with eight blocks, each charac

terized by one parity triplet, say the parity of ux ' 

We label this parity as follows: 
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k= 1 2 3 4 567 8 

(22) 

The modes for each k-value (22) are uncoupled, 

so that the maximum order for which we need to 

solve the eigenvah.\e problem (16) and the total 

computational time are much reduced even 
though we now have 8 eigenvalue problems to 
solve. 

Each of the 8 k-values represents a different 

symmetry for the displacement of the material in 
the object. For example a uniform translation in 
the x-direction will have U

x 
with (I, m, n) = 

(0,0,0) or k = 1. A translation in the y-direction 

has k = 7, and a translation in the z-direction 

k = 6. Similarly, a rotation about the z-axis will 
have k = 3, one about the y-axis has k = 2, and 

one about the x-axis k = 4. These six special 

eigenvectors all have an eigenvalue of zero. One 
other special case occurs for k = 5 which has 

div u ¥- 0 after averaging over V, so it is the only 
k-value for which the volume oscillates. 

This very fast and accurate solution to the 
direct problem is the key tool for solution of the 

inverse problem. However, the inverse problem 

is not at all straightforward. First note that there 

is no unique solution to the inverse problem 
because all the frequencies scale inversely with 

the linear dimensions of the sample and with the 
square root of the elastic constants. This simple 

scaling problem is easily dealt with, but for real 

data on imperfect objects, other uniqueness 

problems arise that are difficult to circumvent. 

The best procedure we have found is to begin 
with a 'figure of merit': 

F= 2: wi(h - gJ2. (23) 
i 

Here the sum is over a sufficient number of 

measured frequencies, Wi is a weighting factor 
chosen (usually either 0 or II g7, so that F is a 

measure of fractional deviation) to reflect one's 

degree of confidence in the measured frequency 

gi (a function of signal strength and resonance 

width) and h = wJ2TI is the ith calculated fre

quency. Note that the derivatives computed in 

eq. (20) are such that several resonant fre
quencies depend in almost exactly the same way 

on certain weighted sums of the c
ij

. Thus many 

more than M resonances (where M is the number 

of parameters to be fit) must be measured for a 
meaningful fit to be achieved. 

A systematic scheme is used to locate the 
minimum of F in the space of chosen parame

ters. This can be a I-dimensional space if all we 

need to find is the compressibility of a fluid, or a 

24-dimensional space if we need the 21 in

dependent elastic constants of a tridinic crystal 
plus its three dimensions. The method we pres

ent here works in both these cases as well as 
many intermediate ones. In the process of 

searching for a viable minimization recipe we 

have tried several and settled on the Levenberg

Marquardt scheme [18] because it is relatively 
flexible, controllable, stable and reliable. 

First we expand F in a Taylor series 

F(x) = F(xo) + (x - xo)"F,,,(xo) 

+ Hx - x o)"F,"/3(xo)(x - x O)/3 + '" . (24) 

x is the vector whose components {x
a

}, a = 
1, ... ,M, are the parameters we need to esti
mate (elastic constants, dimensions and Euler 

angles relating crystallographic axes to sample 

surfaces in a misaligned sample have all been 

successfully determined). This expansion is valid 
only in a limited domain such that x - Xo is in 

some sense small, thus it is important to use any 

available information to guess accurately Xo at 
the start. 

If F is a minimum at x, then 

F,,,(x) = 0, a = 1, ... ,M . (25) 

Using, eq. (24), 

(26) 

which, when solved iteratively for x, is just New
ton's method in M dimensions. The derivatives 
are 
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F.a = 2W i (h - gJh.a , (27) 

F.af3 = 2W i h.aAf3 + 2wJh - gJh.af3 . (28) 

The first derivatives h,a are given by eq. (20); we 

drop the second-derivative term Aaf3' One may 
make four arguments to justify this. First, the 

second term in eq. (28) is a sum over the mea
sured frequencies; this sum will probably include 

about as many positive terms as negative ones, 

and consequently should be small. Secondly, 
dropping the second term will never affect the 

position of the minimum, only the route and 

speed of getting to it. Third, althoughh,af3 can be 
expressed in terms of already computed eigen

vectors and eigenvalues, actually evaluating it 
requires considerably more computer time than 

the evaluation of h,a' Finally, to implement the 
minimization scheme one must obviously solve 

eq. (26) for x, which may involve finding the 

inverse of F,af3' often a difficult thing to do if F,af3 

is not positive definite (the first term in eq. (28) 
is positive-definite, but not the second). Follow

ing ref. [18], let 

(29) 

(30) 

and the solution of eq. (26) is 

(31) 

This equation is valid whenever eq. (24) is a 

good approximation, i.e. when xa is close to the 
minimum. If not, a best guess is to move in a 

direction opposite to the gradient (downhill), i.e. 

Xa = xOa - constant * Ba , (32) 

where the positive constant has dimensions X2! F. 

Aaa (no summation) has dimensions F!x
2 

and is 
a measure of the aath element of the F-surface 

curvature tensor. It therefore may be reasonably 

used to limit the distance moved in the ath 
direction in parameter space (this is important 

because there are many shallow local minima 

available to trap the solution. Such minima ap-

pear if a mode is too weak to be detected and no 
allowance is made for a missing mode in the 

group of measured frequencies, or if large steps 

are taken in following the gradient 'downhill'). 
Following Marquardt, introduce a dimensionless 

positive quantity n and replace eq. (31) with 

(33) 

where 

(34) 

without a sum in eq. (34). Equation (33) is 
identical to eq. (31) if [l = 0 and is very much 

like (32) for large n, when G becomes nearly 

diagonal. By choosing a large n we can proceed 

as cautiously as we like along the M-dimensional 

surface F, only decreasing n to zero when in the 
neighborhood of the minimum. 

If by iterating eq. (33) a number of times 

convergence is achieved at a point xmin in M

dimensional parameter space where the gra

dients Ba = 0, a = 1, ... ,M, then F may be 
expanded about that point: 

where 8x = x - xmin' 

Because the curvature of F in different direc

tions varies over as much as two orders of mag
nitude at the minimum, the accuracy for de

termining xmin is very different for different pa
rameters. Recognizing that 2A is just the inverse 

of the covariance matrix for this problem, 

diagonalizing it (or equivalently, G) yields M 

eigenvectors yfL and eigenvalues (T~. Specifically, 

(36) 

In terms of these variances and eigenvectors eq. 
(35) becomes 

F(x) = F(xmin ) + (8x, yfL)2!2(T~ . (37) 

Here (8x, yfL) is the inner product of two vec
tors, and because yfL is a unit vector it is just the 

projection of 8x in the yfL direction. So eq. (37) 
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tells us the shape of the surface F near the 
minimum. The surfaces of constant F are ellip
soids in M -dimensional parameter space with 
semi-major axes in the {yIL} directions. The 
lengths of the semi-major axes are given by 

(38) 

where 8F is the amount by which F exceeds the 
minimum. In practice it is often true that one or 
more of the aIL's is quite large, meaning that a 
large uncertainty is attached to the correspond
ing linear combination of the x;'s given by 
(8x, yIL). Thus probable errors cannot be at
tached easily to individual elastic constants (and/ 
or dimensions), but only to these linear combina
tions of them. We estimate the error for a par
ticular parameter Xi by examining several of 
these linear combinations. In this way the sharp
ness of the minimum for a particular parameter 
and thus an error estimate for that parameter 
may be determined. The error estimate is very 
sensitive to sample geometry errors induding 
chipped corners for a RP and inhomogeneities. 
Such errors may make the absolute minimum for 
F shallow and introduce other local minima that 
may trap the solution in the wrong place. The 
effect is compounded if a mode is missed. For a 
measurement with one or two missing modes and 
a 5 fLm parallelism error in 2 mm it is essentially 
impossible to obtain an accurate (20% errors are 
easy to get) value in a cubic material for c11 or 
c12 ; however C44 is always reasonably accurately 

obtained. Typically with a 'good' fit and where 
not more than two modes are missed out of 30, 
the RMS error between fitted and measured 
frequencies is less than 0.1 %, the solution does 
not get trapped in a local minimum, and a 
change in this error of 2% is larger than all 
reproducibility and other error sources occurring 
in the measurement. Thus an M-dimensional 
ellipsoid in parameter space surrounding the 
minimum in F with a surface corresponding to a 
2% increase in X

Z 
provides a realistic error esti

mate for determination of parameters. Using this 
criterion, the compressional moduli (Cii , i = 1, 3) 
are determined to better than 1 %, shear moduli 
(ca, i = 4, 6) to 0.02% and off-diagonal moduli 

to better than 3%. This way of determining 
errors can be tested directly by making the di

mensions of the sample free parameters. To 
circumvent the ambiguity mentioned above, we 
add to eq. (23) a term Ll(d1dzd

J 
- V/8)2, which, 

for large Ll, has the effect of fixing the volume of 
the RP. Using measured values as the initial 
guess, for good data on a sample with good 
geometry, the fitted dimensions are typically 
within 2 fLm (0.1%) of the measured value, the 
limit of our accuracy for length measurement. 

2.2. Sample preparation 

As described above, one can easily fit to a 
local and incorrect minimum in modulus space 
with very large con commit ant errors in parame
ter determination if (1) the sample geometry and 
properties are not consistent with the mechanical 
model used for the computation, (2) some reso
nances are missed (i.e. [; is paired with the wrong 
gi in eq. (23)) or (3) the resonant frequencies are 
incorrectly measured. To achieved an accurate fit 
the faces of a millimeter-sized RP sample must 
be accurate to 2 fLm or better. This is easily 
accomplished using ground steel shims and a 
glass plate as shown in fig. l. The shims, surface
ground to be 10 to 50 fLm thinner than the 
distance between sample faces to be polished, 
and with edges squared up in an ordinary milling 
machine, are arranged as shown on a flat glass 
plate coated with molten wax [19] and held down 
with a large magnet. The X-ray oriented sample 
is trapped by the shims and polished on 15 fLm 
and then 3 fLm optical lapping paper [20] using 
an appropriate lubricant such as kerosene. That 
the shims can force a sample face to be either 
parallel or perpendicular to the glass depending 
on how pressure is applied to the sample as the 
wax cools is crucial. In addition, as the sample 
nears completion, the shims support the sample 
edges, ensuring that sharp edges and corners are 
produced, especially for brittle materials such as 
LaZCu0

4
• This appears to be important both for 

accuracy and to minimize the number of missed 
modes. There is no definite way that we know of 
for the quantifying requisite corner and edge 

sharpness. 
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Sample (to be polished) 

Glass plate / ~/'·~·~'· 

LI I I I 
L-__ ,-________________ -, __ 

~ 

Magnet 

Glass Plate 

Shims 

Sample 

Fig. 1. Shown is the arrangement of ground steel shims on a 

glass plate used for obtaining an accurate rectangular paral

lelipiped from an as-grown oriented single crystal. 

2.3. Hardware 

Even with a well-prepared sample, certain 
modes, especially those having k = 5 (the only 
mode type where the volume oscillates) may 
have nodes near the corners of the sample. 
Computation of the mode shape is a simple 
addition to the codes used to find resonant fre
quencies, and the result for two mode types is 
shown in fig. 2. Because the task is to excite 

resonances, it is important to drive the sample at 
a low-symmetry location to excite as many 
modes as possible. The lowest symmetry point 
on a RP sample is the corner, thus this is the 
most desirable point to drive and detect, an 
important principle discovered by Demarest [11] 

Fig. 2. Eigenvectors (local instantaneous peak displace

ments) for k = 4, a pure shear mode and k = 5, the only 

mode type for which the volume oscillates are displayed. The 

k = 5 . mode illustrates how a node can occur near a corner. 

making it very difficult to observe that mode. 

and Anderson et al. [12], and derived, group
theoretically, by Mochizuki [21]. Moreover, the 
corners have a low mechanical impedance so that 
touching them with a transducer has minimal 
(less than a 10-

5 
fractional frequency shift) effect 

on the free-surface boundary conditions if the 
contact force is low (103 dynes or less). Other 

excitation schemes have also been used, such as 
electromagnetic [22] and polyvinylidene fluoride 
strips [23], with mixed sucess, in the sense that 
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the ultimate accuracy of determination of the 

free-sample resonances is not as good as for 

point contact. 
Surprisingly, the lowest modes, even for an 

RP sample, are usually pure shear modes. Thus 

even if moduli and shape conspire to force a 

node to be near a corner, thereby making it so 
weak that it may be missed, the first several 

modes will generally determine the shear moduli 
to 1 % or so, providing a good guess for them in 

the inversion calculation. The inversion code 

now has somewhat less work to do, making it 

harder to fall into a false minimum. More im
portant, though, is that anything that helps en

sure a good initial guess for the moduli should be 

used, induding published values, because with a 

good starting point and the use of only the first 
five or ten resonances, the first pass of the code 

may help identify places where a mode is miss

ing. Then a more careful scan or a remount of 

the sample may reveal the mode. There are 
other ways of finding missing modes using simple 

modifications to the apparatus described below 
[24], or by simply inserting, measuring and re

moving the sample several times. We cannot 

overstress the importance of finding nearly (95% 

or better) all modes before relying on the analy

sis of the data. 

The hardware and electronics used to obtain 

accurate resonance data include a cryostat or 
furnace, transducers, a preamplifier, amplifier 

and mixer / filter or some equivalent. The elec
tronic components and transducers used in our 

and Anderson's systems [25] are now commer

cially available from Quatro Corp. [26]. We will 

begin the hardware discussion with the transduc

ers and work our way back to the PC-AT com

patible computer used as a controller. Although 

other approaches will work, the one described 

here has been demonstrated to produce suffi

ciently high relative and absolute accuracy that 
overall errors are determined by temperature 

shifts and intrinsic sample preparation problems. 

To measure resonances of the sample it is 
important to eliminate the resonant response of 

the apparatus, or extra modes may be observed. 

Because most samples in the size range of 1 mm 

have resonances above about 0.4 MHz, and 30 or 

more resonances below 3 MHz, the transducers 

used to excite and detect must be either damped 

or nonresonant in this frequency range. Damp
ing does not work well over such a large range of 

frequencies or at 20 K, thus the nonresonant 

approach is best. However, all transducer ma

terials have sound velocities comparable to the 

samples measured. One cannot get around this 

by using electrostatic, magnetic or optical detec

tion schemes. The optical ones are much too 

noisy. Magnetic schemes, occasionally used by 

others [22], suffer from two serious problems. 

The first is that the sample must be either fer

romagnetic or conducting or coated with a fer
romagnetic or thick conducting layer. Even 1 /-Lm 

of ferromagnetic layer can be a 0.2% perturba

tion on small samples, but worse still, the fer

romagnet does not have a symmetric elastic ten
sor. Second, the coil used to drive or detect 

interacts mechanically with the sample via a 

magnetic field. Thus the usually numerous coil 
resonances shift and degrade the sample modes 

as well as perhaps introducing some new ones. 
This is known as 'coil disease' in NMR measure

ments [27]. Electrostatic systems have similar 

problems. The solution, applicable to direct con

tact (and electrostatic and magnetic drive sys
tems as is obvious after a moment's reflection) is 

not to make very small, and therefore very weak 

transducers but to construct the transducer most

ly out of single-crystal diamond. Our system [25] 
uses commercial 30 MHz compressional mode 

LiNb0 3 discs 1.5 mm in diameter and approxi

mately 0.1 mm thick [28]. Such discs have a 

thickness mode of 30 MHz but bending modes 

near 180 kHz. However, using our cylinder code 

we know that a diamond cylinder 1.5 mm in 

diameter and 1.0 mm long has a lowest mode of 

4.47 MHz. Thus if we bond the diamond to the 

transducer, the assembly has a lowest mode near 
4 MHz. The diamond also acts as an inertial 

load, so that the response of the LiNb0 3 in 

direct contact with the sample is enhanced by the 

diamond behind it. We also use a Ag-coated 

polyimide film 25 fLm thick with 1 fLm of evapo

rated Ag as the ground plane, and a strip of this 

material 1.5 mm wide as a low inductance, low 
mechanical Q electrical contact by inserting the 
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strip between diamond and LiNb0 3 . This strip 

also helps damp the 4 MHz and above assembly 
resonances. All joints are made with a noncon

ducting epoxy [29] because at these frequencies 

no direct electrical contact with the transducer is 

required, capacitive coupling is sufficient. The 
transducer assembly is shown in fig. 3. 

In order to minimize transducer loading effects 

on the sample, we mount the transducers in a 

Mg machined 'tone arm' assembly, shown in fig. 

4 schematically. This assembly provides of order 

1 g of unbalanced mass above the transducer to 

provide a low contact force. The tone arm is 

suspended on 1 mm wide strips of Ag-coated 
polyimide film, the same used in the transducer. 

The width of the film provides a low-inductance 

electrical ground with excellent low-temperature 

Lithium Niobate Disc 

Diamond 

Cylinder 

1 

Silvered Kapton Film 

/ 

~ 
Silvered 
Kapton 

Electrical 

-+ 1 1.5 mm 1 •• __ Lead 

Fig. 3. Shown is a schematic of the diamond I polyimide I 

LiNb0 3 composite transducer used for all the measurements. 

il'p~:;~L}JS~I~~riJ'~ION 
LEAD 

Mg TONE ARM 

SAMPLE 

TRANS[)UCER HOUSINGS 

Fig. 4. The sketch here roughly illustrates how mechanical 

contact is made to the sample while preserving electrical 

shielding and maintaining a low contact force. This arrange

ment works well from 2 K, the lowest temperature we are set 

up to reach, up to the temperature at which the epoxy bonds 

in the transducers fail. 

properties. The combination of low contact force 

and small, nonresonant transducers produces sig

nals that are much weaker than those used by 
Ohno, Sumino and colleagues [15,30]. Their 

measurements were always made using a force 

balance that enabled resonant frequencies to be 

measured at successively lower contact forces. 

The frequencies shifted substantially (0.1%-
0.5%) as force decreased, and the extrapolated 

asymptote was used as the zero-force frequency. 
With our system, even at comparable contact 

force, we observe less than 20 ppm frequency 

shifts for changes in loading from 2 g to 0.5 g. 

The shifts observed in refs. [15] and [30] appear 

to be primarily associated with high drive levels, 

and are absent for us. This is important because 

it greatly reduces both the amount of data re

quired and the possibility of shifting the sample 
accidentally during a run, a problem that can 

cause artificial discontinuities in both frequencies 

and Q. Another effect appearing in Anderson's 
system is associated with alumina buffer rods 

[31]. These rods were necessary to isolate the 

transducers from temperatures exceeding an as

tonishing 2000 K, the highest temperatures ever 
used in a conventional ultrasound measurement 

system. Because the rods were long (i.e. several 

orders of magnitude longer than the largest sam
ple dimension) they operated in the reverbera

tion limit. That is, at the frequencies of interest 

for sample resonances, the rods themselves had 

such a higher mode density that the modes over

lap strongly. As frequency is swept, the response 

of the buffer rods is convoluted with the sample 
response producing essentially random am

plitude and phase mechanical motion, but with 

resonances still clearly detectable. The result is 

the observation of non-Lorentzian line shapes 

for the sample resonances, making it difficult to 
determine accurately either the center frequency 

or the Q. However, considering the tempera

tures reached, and with no obvious cure, Ander

son was forced to use such an approach. For 

most other system designs, buffer rods should be 

avoided. A similar effect in our system is associ
ated with the gas surrounding the sample which 

provides an undesirable ultrasound path between 

transducers in the reverberation limit. A disk of 
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ordinary filter paper with a small hole punched 

in the center, and split in half was constructed 
and inserted between transducer assemblies and 

surrounding the sample. This completely elimi

nates the gas path for ultrasound and thus 

minimizes gas resonances. 

To access temperatures from 20 K to 400 K, 
our measurement cell is inserted into a vacuum

insulated cylinder. One end of the cylinder (or 

flow cryostat) is open, the other end is connected 
via vacuum insulated tubing (a conventional 

liquid-He transfer line) to the gas space above a 

liquid-He storage dewar. Inside the dewar, 

below the liquid level is a 1 kfi, 2 W carbon 

resistor. This resistor is heated using an ordinary 

power-line-type variable autotransformer, with 

applied voltages up to about 30 VAC. The cold 
boil-off gas passes through the transfer line into 

the insulated cylinder and around the measure

ment cell. A second 50 fi heater, constructed of 
10 film cotton-insulated resistance wire (the 

wire is simply wadded up into a rough ball) is 

inserted in the gas flow path at the flow cryostat I 
transfer tube joint and is controlled using any 
commercial cryogenic temperature controller. 

Temperature sensing is via a silicon diode ther

mometer mounted inside the RUS cell within a 

few millimeters of the sample. This arrangement 

Boll-off 
R.slstor 

Uquld Helium 

is shown schematically in fig. 5, and is capable of 
20 mK temperature control. 

The weak signals produced by our transducers 
and low contact force require the best possible 

signal/noise ratio (sin) for the receiver elec

tronics to ensure detection of as many modes as 

possible. The electronics design is centered 

around the electrical equivalent circuit for our 

transducer assembly over the frequencies of in

terest, essentially a pure 10 pF capacitor. Signals 

produced are in the tens of microvolt range and 

up. To detect such signals, two basic approaches 
can be taken. The one we reject is to use a 

broadband excitation pulse and Fourier trans

form the result. This is the best approach if large 

signals and overlapping modes are present [32]. 
However, to ensure that we do not miss even the 

weakest modes, and because the most usable 

samples have a mechanical Q in excess of 500, 

mode overlap is not a problem but sin is. The 
broadband approach must have an electronic 

bandwidth exceeding that of the group of reso

nances to be measured, and must also signal 
average a measurement having a low duty cycle. 

That is, to average the signal (and noise over the 

receiver bandwidth) for some amount of mea

surement time, many excitation pulses must be 

generated, digitized time series taken, data 

Fig. 5. Shown is the arrangement of the He storage dewar, transfer line and simple vacuum-insulated chamber that make up the 
flow cryostat that is so convenient for RUS. 
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transferred between pulses etc. Thus most of real 
time is spent with no signal present. Moreover, 
because measurements are made only in regions 
of frequency space where the sample exhibits 
mostly well-separated very sharp modes, any 
broadband system is acquiring much data that 
contains no information. Finally, for sharp, Lor
entzian, well-separated modes, phase informa
tion is unnecessary. We have, therefore, chosen 
to use a swept sine approach based on a 
heterodyne receiver. 

A heterodyne/swept-sine receiver (HSSR) can 
have an arbitrarily narrow bandwidth, has a duty 
cycle of unity, need only measure where reso
nances exist, and can signal average for arbitrari-

ly long times a signal from which most of the 
noise is already eliminated using digital detection 
of the final, high-amplitude information-contain
ing output of the analog section of the receiver. 
As with any receiver, the unavoidable noise is 
controlled primarily by the pre amplification 
stage. The best approach for preamplification is 
to locate a JFET preamp very close to the re
ceive transducer. In this way, the shunt effect of 
the capacitance (easily 100 pF) of cables connect
ing the 10 pF transducer to the preamp is elimi
nated. However, this would require a warm pre
amp to be located inside the flow cryostat, a 

complication we chose to forego. Instead, we use 
an accurately unity gain preamp at the end of a 
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Fig. 6. We show here the schematic diagram of the low-noise unity-gain preamplifier used to bootstrap the cable capacitance of 

the transducer connection. The construction of this device requires very careful layout to prevent instabilities. 
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triaxial cable connecting preamp to transducer. 
By connecting the preamp output to the inner 

shield of the triax, we eliminate cable capaci

tance effects (this is known as a bootstrap or 

guard). This is only important because the pre
amp is voltage sensitive. For a current sensitive 

preamp or an op-amp type preamp, cable shunt 

capacitance has no effect on overall sin. But for 

any type of preamp used with so much cable 

capacitance, much care must be taken to elimi
nate high-frequency phase shifts that could cause 

oscillation. This is why we have used low-induct

ance leads on the transducers and also why we 

find it easier to design a good JFET front end. 

The JFET unity-gain preamp shown schematical
ly in fig. 6, modified from one described in 

Horowitz and Hill [33], is designed to have a 

bandwidth of 50 MHz, ensuring no unwanted 

phase shifts below 4 MHz, and has an input noise 
figure of a few nV/Hz1l2, controlled primarily by 

the dual JFET. Because the triax effectively 

connects the output directly to the input, the 
design and layout of the circuitry is crucial. The 

inherent response of a HSSR is such that it is not 

B1 

CS 

19uFI 

GND 

R1 

C1 

B2 

the full bandwidth of the preamp, but instead the 

noise per unit bandwidth that is important for 

overall sin. 
The preamp is followed by a simple but quiet 

RF amplifier with a bandwidth of about 20 MHz 

based on an application note for the MAR-6 

amplifier made by Mini-Circuits [34]. This stage, 

shown in fig. 7, has a voltage gain of 100. 
Following the preamp is a mixer I filter shown 

in fig. 8 adapted from the data sheets from 

Motorola [35] and National Semiconductor [36]. 
This mixer performs an instantaneous multiplica

tion of the RF transducer signal at frequency f, 
including whatever noise is present, with a (noise 

free) local oscillator (LO) signal at f + ilf, where 

ilf is the intermediate frequency or IF. The 
output of the mixer is, then, the amplifier noise 

upshifted in frequency by f + ilf, and informa

tion-containing signals at 2f + ilf, and ilf. Be
cause the noise is basically white, noise per unit 

bandwidth is unaffected. After the mixer is a 

state-variable analog filter tuned to ilf. Because 
the LO source is of constant amplitude, the 

amplitude of the mixer I filter IF output at ilf is 
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Fig. 7. Shown is the schematic diagram of the low-noise RF amplifier used for our RUS measurements, based on the MAR-6 

integrated circuit. The layout of this circuit is extremely important. 
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Fig. 8. The mixer/filter based on the widely used Motorola 1496 mixer Ie and the National Semiconductor AFlOO state-variable 

active filter is shown schematically. The layout of this circuit is extremely important. 

proportional to the resonance signal at f. We use 
an IF frequency of 1 kHz and a filter bandwidth 
of 100 Hz. This yields a noise bandwidth 100 Hz 
wide at the filter output, but also limits the 
receiver response time to of order 10 ms. This is 
not a real limitation on the data acquisition rate 
because each sample resonance is stepped 
through using steps much narrower than the 
resonance width. Thus the receiver need only 
respond to incremental signal amplitude changes 
at sample resonance (i.e. if n steps are taken 
through one resonance then the receiver re
sponse time required is reduced by a factor of n). 

At this point the resonance information wan
ted appears at a fixed IF frequency of 1 kHz 
combined with a 100 Hz wid~ slice of noise. To 
get the amplitude of the IF signal into a PC-AT 
type computer requires that it be 'detected'. The 
best approach is to use an analog to digital 
converter (ADC) to digitize the filter output 
such as an Analogic LSDAS-16, a 16-bit, 16 
Channel, 50 kHz ADC [37]. By running the con
verter at 32 kHz and taking 320 readings, we 
acquire 10 cycles of the IF signal. We also ac-

quire almost exactly 320 cycles of the most im
portant interference source, the electric field as
sociated with the VGA monitor of the computer. 
The absolute value of the 320 readings is aver
aged with software to generate the resonance 
amplitude at the frequency step chosen. The 
effect of this is (1) to produce a constant back
ground offset arising from VGA interference, 
and (2) to signal average (equivalent to another 
100 Hz bandpass filter) the IF signal over 10 
cycles with no analog time constants to generate 
glitches if the measurement is started with un
controlled phase of the IF signal (which it is). 

A complete sweep through each individual 
mode is made using the above system and a dual 
digital synthesizer card to generate the LO and 
RF signals. The card we use was designed by us, 
is capable of 32 bit frequency and phase control 
and 15 bit amplitude control of two separate 
outputs, and is commercially available [26]. The 
card fits in a standard PC-AT slot, is controllable 

by Microsoft QuickBASIC or other languages and 
has a maximum output of 1 VAC (sufficient to 
drive the transducers directly) up to about 
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Fig. 9. A typical (and definitely not the best) resonance in the La1.86Sr014Cu04 single crystal is shown to illustrate the quality of 
the data obtainable from a RUS measurement. 

8 MHz. Other computer-controlled frequency 

synthesizers can be used successfully. A typical 
resonance is shown in fig. 9. 

The resonance data acquired is processed to 
subtract background and then, using all the data 

acquired, a first moment of the usually Lorent

zian resonances is computed. In this way, further 

noise reduction occurs so that we can determine 
reliably the center frequency of a resonance to 

about 3% or less of the linewidth. A complete 

experimental run would consist of (1) a search 

for all modes at room temperature, (2) acquisi
tion of a data file produced by a narrow sweep 

through each resonance found, (3) a room

temperature fit to the moduli (and iteration of 

(1) and (2) if the fit is inadequate or predicts 

missing modes, and (4) a repeat of (2) for each 

temperature desired using sufficiently small tem

perature steps so as not to lose track of mode 
identifications. 

3. Typical results 

Having described the principles, procedures 

and hardware for making R US measurements 
and analyzing the data, we present here some 

examples of the application of RUS to the study 

of structural phase transitions (SPT). The exam

ples reviewed here are the soft-mode-driven 

SPTs in the perovskite system La2Cu0 4 , which 
includes several high-temperature superconduc

tors, and in SrTi0 3 . 

SrTi0 3 is a perovskite that undergoes a SPT 
from cubic (the high-temperature or 'symmetric' 

phase) to tetragonal (the low-temperature or 

'unsymmetric' phase) crystal symmetry at 105 K. 
This material is particularly interesting because 
its SPT is a canonical example of a soft-mode 

[38] phase transition and has been well studied 

both theoretically [39] and experimentally using 

conventional ultrasonic techniques [40,41,42]. 
Furthermore, the perovskite structure and un

derlying titanium-oxygen octahedra in SrTi0 3 

are very similar to the structure of the high

temperature superconductors La2 CuO 4 and 
La2 _ x Srx Cu0 4 to be discussed below. On a more 

practical level, large high-quality single crystals 

are readily available commercially, and no 
macroscopic fields develop at the SPT to compli

cate data analysis. We obtained a large single 

crystal [43] and prepared several RP samples 

(1.9 mm x 1.5 mm x 1.0 mm) as was described 
above. 

The sample geometry was accurate to about 

2 f.Lm and the intrinsic quality was high so that 
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we were able to measure and fit the first 33 

resonant frequencies at room temperature with 
an rms error of 0.075 percent. The values of the 
elastic moduli determined by the fit, as well as 

several sets of values from measurements by 

others, are shown in table 2. The agreement is 
excellent. 

Our real interest in this material is not so 

much a test of RUS but rather a study of the 
details of the temperature dependence of the 

elastic moduli through the SPT. Because of the 

unique capability of RUS to determine all mod

uli simultaneously, precise comparisons between 

moduli can be made and compared to Ginsburg

Landau (G-L) type predictions. The SP'R in 

SrTi0 3 occurs as a result of the softening of a 
particular zone edge lattice vibration, the tilting 

of the titanium-oxygen octahedra around the 

(100), (010) or (001) axes. As the frequency 

of this phonon decreases to zero, these octahed

ra develop a static displacement, reducing the 
crystal's symmetry to tetragonal and doubling 

the size of the unit cell. Because of the three-fold 

degeneracy of this octahedral tilt (rotation about 

x, y or z) the material also twins as it goes 
through the SPT, making RUS measurements 

difficult in the low-temperature phase. 

Theoretically, this transition is well under

stood. The soft-mode description coupled with a 

G-L free energy enables accurate quantitative 

predictions to be made for the elastic response of 

the material through the transition. Rather than 

work with the complete expression for the free 

energy including all possible strains and the full 
three-component order parameter, discussed in 

detail elsewhere [39], we will focus here on a 

qualitative understanding by considering a 

Table 2 

Room temperature elastic moduli (all values are in units of 

10
12 

dyne/cm2) of SrTi0 3 determined by RUS as well as by 

conventional ultrasonic techniques. The percentages after our 

data are the error estimates for the individual moduli, de

termined as discussed above. 

3.17 

3.31 

3.15 (0.2%) 

1.02 

1.05 

1.02 (0.7%) 

1.23 

1.26 

1.22 (0.01 %) 

Source 

Ref. [40) 
Ref. [41) 

This work 

single-strain and one-component order parame

ter. This is more than casually justified because if 

one knows which way the octahedra tilt, then use 
of a single-component order parameter causes no 

loss of generality. Because in an unstrained sin

gle crystal the order parameter does develop in a 

single direction, one certainly knows its direction 

after the fact. It is only important that one is 
careful with the group theory. That is, the full 

symmetry and number of required components 

of the order parameter are use to determine 

what terms must be included in a single-order

parameter description. Thus an accurate single

component-order-parameter free energy can be 
written 

F 1 2 1 (T T) 2 1 {3 4 1 2 = 2: cas + 2: a - c q + 4 q + 2:'Ys q 
(39) 

where s is the strain, q the order parameter and 

a, {3, 'Y and Co temperature-independent con
stants. The first term in eq. (39) represents the 

usual elastic energy, the second and third an 

expansion in the order parameter, and the last 

term the strain-order parameter coupling. Be
cause the order parameter in this transition is a 

tilt in a mirror plane, only even powers appear 

(positive or negative tilts are equivalent energeti
cally). Given such a free energy, the change in 

elastic moduli can be calculated by minimizing 

eq. (39) with respect to strain [44]. Such a 

minimization gives 

c = co' T> T c ' (40) 

(41) 

Thus, a Ginsburg-Landau analysis of this phase 

transition predicts a step decrease in elastic mod
uli at the transition and, usmg the full crystal 

symmetry, predicts the relative size of the step 

for each individual modulus. Our data for the 

elastic moduli of SrTi03 as a function of tem

perature are shown in fig. 10. Each modulus 

increases with decreasing temperature from ther

mal contraction and then exhibits a sharp (but 

not step-like) decrease in the region near the 
transition, in agreement with the above analysis 



18 A. Migliori et al. On techniques for measurement of the elastic moduli of solids 

330~---------------------------.125 

. .. ~ . ... 

320 f-. 115 

as 
Q.. 

~ 

0-

tiS 
Q.. 

~ c11 

J <) c12 

'" 0- ... c44 
310 f-. 105 

( .... + • • • • 9 • ~ 

-=--.: • 

• 

300+-~~~~~~~~~~~-~,~~-+95 

100 150 200 250 300 

Temperature (I<) 

Fig. 10. The three elastic moduli of a single crystal of SrTi0
3 

near the structural phase transition are shown as a function of 

temperature. These data were obtained using RUS. 

as well as with the experimental work of others. 
Unfortunately, twinning of the crystal at the SPT 
prevents RUS from accessing the moduli in the 
unsymmetric phase so that some quantitative 
predictions of the Ginsburg-Landau theory can
not be tested by us. This has, however, been 
done by other groups using pulse-echo measure
ments and the results are in accord with theory 
[41]. Note that any ultrasound measurements in 
a twinned sample average over some set of mod
uli, and that to obtain useful information, some 
detailed knowledge of the twinning pattern and a 
model for backing out moduli are required. RUS 
is so sensitive to macroscopic twinning that us
able data of any sort often cannot be obtained in 
a twinned sample because of substantial degra
dation of the resonance signals. This is typically 
not the case for pulse-echo, nor for RUS on 
microtwinned or polycrystal materials. 

The departure from true step-like behavior 
can be attributed to both thermal fluctuations 
and to imperfections or defects in the crystal 
[45]. In order to verify this fact and to demon
strate the fundamental difference between this 
rounding and the effects observed in La

2
_

x 

Srx Cu0 4 , discussed below, we vacuum-annealed 
a RP of SrTi0 3 to create oxygen vacancies in an 
attempt to braden the transition. While a sharp 
decrease remains after annealing, the decrease is 
distinctly broader in the annealed sample, in 
agreement with previous work [42]. Having dem
onstrated that there are no surprises in a RUS 
study of SrTi03 , we describe similar measure
ments on a more difficult system with results that 
prove to be not so accommodating. 

Unlike SrTi03 , La2Cu04 and also its high

temperature superconducting relative La2 - x 

Srx Cu0 4 are not readily available as untwinned, 
morphologically perfect single crystals. The only 
such samples extant are in the 1 mm size range 
and require very considerable effort to produce. 
Thus conventional ultrasound techniques must 
be applied to either large, poor-quality twinned 
samples or not at all. In this system, the tetra
gonal to orthorhombic (TO) SPT occurs at 223 K 
for x = 0.14 and about 530 K for x = 0.0 [46]. In 
table 3 are the elastic moduli for an untwinned, 
orthorhombic crystal of La2Cu04 (1.735 mm x 
1.536 mm X 1.108 mm, 7.026 g/cc) and also 

for a tetragonal crystal of La1.86SrO.14Cu04 
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Table 3 

The full elastic moduli of La1.6SrOI4Cu04 and La2 Cu0 4 in units of 10
12 

dyne/cm2 determined using RUS. The first entry for 

La1.86SrO.14Cu04 is for the usual tetragonal basis. The second entry is simply the first one rotated by 45° such that a direct 

comparison to the orthorhombic stoichiometric compound can be made. The errors are about 1.3% for c;i' i = 1, 3, 0.05% for c;;' 

i = 4, 6, and3.1 % -for the off-diagonal moduli for La2Cu04 • The corresponding error estimates for La1.86SrO.14Cu04 are 0.25%, 

0.01 % and 1.0% respectively. 

cll C 22 C 33 

La1.86SrO.14Cu04 2.666 2.571 

La1.86SrO.14Cu04 2.245 2.571 
La2Cu04 1.747 1.730 2.662 

(2.470 mm X 2.267 mm X 2.192 mm, 6.946 g/cc) 

determined using RUS. The La2Cu04 crystal 

was grown by Canfield, Fisk and Kodali from a 

flux [47]. The Sr doped crystal was produced by 
Tanaka and Kojima using a travelling solvent/ 

floating zone system [48]. We note that the axes 

of the La2Cu0 4 sample were not aligned with 

the crystallographic axes. Thus the fitting proce
dure had to determine not only the moduli and 

dimensions but also the crystal orientation. This 

takes far more computer time because the mat

rices to be inverted are no longer block diagonal. 
Nevertheless, the errors for the determination of 

moduli and angles are low because over 35 reso
nances were used in the fit. 

We review here the microscopic deformations 

at the SPT in the La2 CuO 4 compounds, the 
Ginsburg-Landau Hamiltonian, and the expec

ted effects on the sound velocities. Using RUS 
measurements on La

2
_ x Sr

x
Cu0 4 and a com

parison with SrTi0 3 , we present direct evidence 
for breakdown of tetragonal symmetry at the 

Brillouin zone center, show how this can explain 

the very strong temperature dependence of C66 

above the TO SPT, and discuss some implica
tions. 

To understand what drives the TO transition 

in La2Cu0 4 , consider first (fig. 11) the four 

Cu-O bonds that lie in the Cu-O plane and also 
form part of the 0 octahedra. Through the TO 

transition, these Cu-O bond lengths remain 

fixed [49]. What does change is the angle be

tween the two O-Cu-O diagonals of the octa
hedra. In the tetragonal phase, the diagonals are 

perpendicular. In the orthorhombic phase they 

scissor slightly, doubling the unit cell. This J ahn-

C 23 

0.991 

c 13 C
'2 

C 44 C S5 C 66 

0.992 0.649 0.677 0.587 

0.992 1.071 0.677 1.009 

0.928 0.900 0.653 0.669 0.992 

Fig. 11. We illustrate here the arrangement of ions (not to 

scale) of La2 Cu0 4 • Cu is the solid circle, the open circles are 

o and the shaded circles are La. 

Teller-like distortion has the effect of increasing 

the length of either the (110) or the (110) axis. 
This is shown schematically in fig. 12. For the 

crystal to accomodate this, the Cu-O plane also 

buckles in the corresponding direction, taking 

the octahedra with it so that they tilt. This tilt is 

the x-point soft mode. Of course, a given oc

tahedron could tilt in either of four possible 
directions, i.e. in the positive (110) direction, 

the negative (110) direction, the positive (110) 
direction, or the negative (110) direction. Thus 

both kinks (positive-negative tilt phase error) 

and twins (110) versus (110) tilt are possible, 
and the order parameter must have two com

ponents, ql and Q2' 

Because any possible tilt preserves mirror sym

metry, either sign of tilt is equivalent. Therefore 

any coupling of the Brillouin-zane-edge oc
tahedron-tilt phonon mode to any zone-center 
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Fig. 12. Shown is a diagram showing the 0 atoms in the 

Cu-O plane (solid circles) and the 0 atoms at the apices of 

the 0 octahedra (shaded circles) projected onto the Cu-O 

plane. The Cu atoms are directly beneath the undisplaced 0 

atoms and are not shown. Upon transition to the ortho

rhombic state, the apical 0 atoms displace as shown by the 

arrows (a twin would have displacements in the Cu-O plane 

perpendicular to those shown, i.e. turn the figure on its side). 

The tetragonal unit cell is the smaller dashed square, the 

orthorhombic one is the larger dashed square, although it is 

really a rectangle with the longer sides parallel to the arrows. 

acoustic phonons must be quadratic in lowest 

order. Moreover, most of the effects of the 
phase transition are seen in C

66
, the shear mod

ulus for deformations of the Cu-O plane. This is 

1.9 
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~ 
9.& .... 
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also easily seen because when the O-Cu-O 
diagonals scissor, the square base of the tetra

gonal unit cell becomes a rhombus in the ortho

rhombic phase (fig. 12). Deforming the square 

into a rhombus is exactly equivalent to a C66 

shear. We have, as yet, no measurements above 

the TO transition in La2Cu0 4 because our RUS 

cell cannot handle such temperatures. However, 

in La1.86SrO.14Cu04 the TO transition occurs at 
223 K, a very convenient temperature. 

In fig. 13 we show the resonant frequency of 

an eigenmode of the single crystal of La1.86 
SrO.14Cu04 as a function of temperature T and in 

fig. 14 we show 11 Q vs T where Q is the quality 
factor for the resonance. Numerical analysis of 

the motion establishes that the eigenmode of fig. 

13 depends almost purely on C66 • Absent dy

namical effects, we would treat the tempeature 
dependence of C66 with the same Ginsburg

Landau (G-L) Hamiltonian used for SrTi03 . As 

with SrTi03 , simple quadratic coupling and no 
dynamics produces only a step discontinuity in 

C66 at the SPT. This is not what the data show. 

The data fit a Curie-Weiss (C-W) softening of 
the form 

(42) 

zee 219 zze n9 249 Z59 zr.9 279 289 Z'J9 399 
TeaperatureCK) 

Fig. 13. Shown is the normalized resonant frequency squared (proportional to a modulus) for a La1.86SrO.14Cu04 mode that is 

nearly pure C 66 as a function of temperature (circles). The solid line is a Curie-Weiss fit to the data. The gap in the data just below 

230 K is evidence of symmetry-breaking effects. 
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Fig. 14. The scaled inverse quality factor 10001 Q is proportional to the loss or ultrasonic attenuation in the single crystal of 

La1.86SrO.14CuO •. Very near the SPT at 223 K, the attenuation increases dramatically, but at temperatures well above the SPT but 

still in the Curie-Weiss region, no excess attenuation is observed. 

where Tc is 223 K, C 66 is a temperature-indepen
dent constant and the fit, shown as the solid line 
in fig. 13, is accurate to 0.2% over more than a 

decade in To/(T - TJ. 

Gaussian fluctuations of the order parameter 
[9], self-consistent phonons [7] and linear coup
ling between strain and order parameter [44] all 

yield a C-W behavior for C66 • For Gaussian 
fluctuations, the critical exponent for the specific 
heat and for the elastic moduli is A = 2 - dl2 

where d is the dimension of the order parameter. 
In our system, the order parameter is two
dimensional, thus the critical exponent (the 
exponent of 1/(T - Tc» is unity, in agreement 
with the data. However, our C-W fit is over a 

temperature range of about 80 K (To = 1.47 K). 
This is a very large range for fluctuations to be 
important, much larger than the range for the 
similar SPT in SrTi0 3 . An upper-bound estimate 
for the fluctuations regime [9] is found by using a 
few lattice spacings for the coherence length, and 
by using a 1 % (SrTi03 has about a 10% modulus 
discontinuity at its phase transition temperature) 
modulus discontinuity to obtain a fluctuation 
range of about 1 K, comparable to the region in 
fig. 14 where the ultrasonic attenuation increases 
sharply. Thus it appears very unlikely that 2-D 

Gaussian fluctuations can explain what we ob

serve. 
A self-consistent phonon treatment of the 

anharmonic potential associated with the zone

edge soft mode of the ° octahedra can also 
produce C-W modulus softening [7]. For this 
sort of treatment to work, the zone-edge soft 
mode must be linearly coupled to the zone
center acoustic mode. The 1-D treatment in ref. 
[7] deals with this by inserting the anharmonic 
spring, used in the shell-model construct to de
velop the self-consistent phonon dispersion 
curve, in series with the ion cores. Thus this 
spring contributes to the potential energy for any 
value of k, the phonon wave vector. 

Neutron scattering measurements [4] show 
that the soft mode is part of the phonon branch 
corresponding to C44 , not C

66
• Without some 

linear coupling term to the C
66 

dispersion curve, 
it is not easy to see the applicability of self
consistent phonons. Were such a term to be 
added, the model would be forced to become 
explicitly 3-D, and because both the coupling 
and the energies would depend on the anhar
monicity, the C-W exponent would likely be 
lost. 

The third possibility we consider here is the 
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replacement of quadratic coupling with linear 

coupling (for T> T c ' the inclusion of the quad
ratic term has no effect with or without the linear 

term present) between order parameter and 

strain in eq. (39). Using the same justification 

for a single-component order parameter as in 
SrTi0 3 we find 

and 

for T> Tc ' 

(44) 

(45) 

as required to fit the data of fig. 13. To justify a 

linear coupling term, the La1.86SrO.14Cu04 crys
tal must be either nonlinear or non tetragonal. 

In fig. 15 we plot the lowest eigenfrequencies 

of the La1.86SrO.14Cu04 crystal vs T and in fig. 16 
are plotted the lowest two eigenmodes on an 
expanded scale, showing an avoided crossing of 

2%. Note that in fig. 15 avoided crossings are 

observable in several places. The mechanical 
Lagrangian for analysis of the resonances of this 

1Z88.8 

1158.8 

nee.8 

185&.8 
-;:;-

3 .... 
leee.8 

958.8 

998.8 

material is based on a linear tetragonal solid 

[13,14]. The model produces eight orthogonal 

symmetry classes for the modes, therefore none 

of the avoided crossings should occur. Their 
existence can be explained only if the crystal is 

nonlinear, not tetragonal, or has excessive prep
aration errors. 

This sample has a TO transition width of much 

less than 1 K as determined by the RUS vari

ation of both Q and C66 ' it has a superconducting 
Tc of 38 K, its faces have been ground parallel to 
better than 1 micron, some resonances have 

Q > 70 000, it has near theoretical bulk density 

and no visible defects. There are, therefore, no 

sample preparation errors even remotely close to 

the few percent required to produce the ob

served avoided crossings. To test for anhar
monicity, the measurements of fig. 16 were re

peated at resonance amplitudes varying over an 

order of magnitude. All the scans were identical 

to about 0.01%, the limit of our temperature 
control precision. Thus no anharmonic affects 
are present. 

X-ray [46] and elastic neutron scattering [4,49] 
studies of this material all indicate unambiguous

ly that the structure is tetragonal. However, both 

types of probe operate at an effective k = O. That 

ZZ8 Z25 238 235 248 245 Z58 Z55 Z6e 265 219 27'S Z89 Z85 298 

Teapcrllture(K) 

Fig. 15. This is a plot of many of the resonances of the La1.86SrO.l'CuO. single crystal as a function of temperature above the 

SPT. Avoided crossings are numerous. 
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Fig. 16. Plotted are the data of fig. 13 for the C 66 mode and also data for the C 44 mode for the La186SrO.14Cu04 single crystal as a 

function of temperature. These modes have different symmetries so that no avoided crossing is expected. The surprisingly large 

effect may arise from symmetry-breaking at the Brillouin-zane-edge produced by Sr disorder combined with the soft-mode-driven 

SPT. 

is, they average over many unit cells. Because 
RUS is also a k = 0 probe, it too should see a 
tetragonal structure. That it does not might be 
related to the destruction of zone-edge symmetry 
because of the disordered Sr doping. At small k, 

the Sr concentration fluctuations average out, 
and a tetragonal structure is observed. However, 
RUS is sensitive to the strain susceptibility. At 
temperatures well above (150 K or more) the TO 
transition, the x-point soft mode has negligible 
effect on C66 (see fig. 13). At temperatures some
what above 300 K, all the sound velocities begin 
to decrease on cooling as a result of the coupling 
between the soft mode and the strains. This 
coupling might also carry with it a symmetry
breaking term at temperatures near the TO tran
sition related to the total softening of C66 • 

Such a symmetry-breaking effect is only ob
servable if some effect, the SPT for this example, 
makes the moduli vary sufficiently rapidly that 
nominally orthogonal modes cross, and if the 
experimental probe can clearly separate the re
sponses of the modes that cross. We know of no 
other ultrasound probe with this property. Thus 
RUS is capable of extracting new information as 
well as providing an alternative high-precision 
general ultrasound probe. 

Acknowledgements 

The authors wish to acknowledge Orson L. 

Anderson for many wonderful discussions, W. 
Gilbert Clark for his insights into electronics and 
instrumentation, Joe D. Thompson, Paul C. 
Canfield, Stuart E. Brown, Raymond M. Dixon 
and Selmer Wong for assistance with sample 
preparation and characterization, Philip B. 
Allen, Stuart A. Trugman and Lu J. Sham for 
tremendous patience and attention with the 
theoretical analyses and Tom Stocke brand for 
preparation of the printed circuits that make the 
electronics work so well. This work was per
formed under the auspices of the United States 
Department of Energy. 

References 

[1] B. Golding, W.H. Haemmerle, L.F. Schneemeyer and 

J.Y. Waszczak, in: IEEE 1988 Ultrasonics Symposium 

(IEEE, Piscataway, 1988) p. 1079. 

[2] T. Laegreid, Wu Ting, O.-M. Nes, M. Slaski, E. Eidem, 

E.J. Samuelsen, K. Fossheim and Y. Hidaka, in: Ad

vances in Superconductivity II: Proceedings from the 

2nd International Symposium on Superconductivity, 

November 14-17, 1989, Tsukaba, Ibaraki, Japan. 



24 A. Migliori et al. I On techniques for measurement of the elastic moduli of solids 

[3] P. Baumgart, S. Blumenroder, A. Erle, B. Hillebrands, 

G. Guntherodt and H. Schmidt, Solid State Commun. 

69 (1989) 1135. 
[4] P. Boni, J.D. Axe, G. Shirane, R.J. Birgeneau, D.R. 

Gabbe, H.P. Jenssen, M.A. Kastner, CJ. Peters, P.J. 

Picone and TR. Thurston, Phys. Rev. B 38 (1988) 185. 

[5] LV. Aleksandrov, A.R. Goncharov and S.M. Stishov, 

JETP Lett. 47 (1988) 428. 

[6] K. Kawasaki and A. Ikushima, Phys. Rev. B 1 (1970) 

3143. 
[7] A. Bussmann-Holder, A. Migliori, Z. Fisk, J.L. Sarrao, 

R.G. Leisure and S.-W. Cheong, Phys. Rev. Lett. 67 

(1991) 512. 

[8] L.D. Landau and E.M. Lifshitz, Statistical Physics, Part 

I (Pergamon Press, Oxford, 1980; 3rd ed.). 

[9] S.K. Ma, Modern Theory of Critical Phenomena (Ben-

jamin-Cummings, Reading, MA, 1976). 

[10] R. Holland, J. Acoust. Soc. Am. 43 (1968) 988. 

[11] H.H. Demarest, J. Acoust. Soc. Am. 49 (1971) 768. 

[12] O.L. Anderson, E. Schreiber and N. Soga, Elastic 

Constants and Their Measurements (McGraw-Hill, New 

York, 1973). 

[13] 1. Ohno, J. Phys. Earth 24 (1976) 355. 

[14] William M. Visscher, A. Migliori, TM. Bell and R.A. 

Reinert, J. Acoust. Soc. Am. 90 (1991) 2154. 

[15] 1. Ohno, Phys. Chern. Minerals 17 (1990) 371. 

[16] H. Oda, O.L. Anderson and Isao Suzuki, in: Proceed

ings of the 28th Annual Technical Meeting of the Socie

ty of Engineering Sciences, November 6-8, 1991, 

Gainesville, FL. 

[17] B.T. Smith, J.M. Boyle, J.J. Dongarra, B.S. Garbow, 

Y. Ikebe, VC Klema and CB. Moler, in: Matrix 

Eigensystem Routines - EISPACK Guide, Lecture 

Notes in Computer Science No.6, eds. G. Goos and J. 

Hartmanis (Springer, New York, 1976); B.S. Garbow, 

J.M. Boyle, J.J. Dongarra and C.B. Moler, in: Matrix 

Eigensystem F-outines - EISPACK Guide Extension, 

Lecture Notes in Computer Science No. 51, eds. G. 

Goos and J. Hartmanis (Springer, New York, 1977). 

[18] W.H. Press, B.P. Lannery, S.A. Teukolsky and WT 

Vetterling, Numerical Recipes (Cambridge University 

Press, 1986). 

[19] Crystal Bond; Aremco Products Inc., P.O. Box 429, 

Ossining, NY 10562. 

[20] Optical Fiber Technologies, 2 Lyberty Way, Westford, 

MA 01886. 

[21] E. Mochizuki, J. Phys. Earth 35 (1987) 159. 

[22] W.L. Johnson, S.J. Norton, F. Benedec and R. Pless, J. 

Acoust. Soc. Am. 91 (1992) 2637. 

[23] J.D. Maynard, J. Acoust. Soc. Am. 91 (1992) 1754. 

[24] A. Stekel, J.L. Sarrao, TM. Bell, Ming Lei, R.G. 

Leisure, William M. Visscher and A. Migliori, J. 
Acoust. Soc. Am. 92 (1992) 663. 

[25] US patent # 4976148 Resonant Ultrasound Spectrome

ter, A. Migliori, William M. Visscher and Z. Fisk; US 

patent # 5062296 Resonant Ultrasound Spectroscopy, 

A. Migliori. 

[26] Quatro Corp., 4300 San Mateo NE, Suite B-2890, Al

buquerque, NM 87110. 

[27] WG. Clark, Rev. Sci. Instr. 35 (1964) 316. 

[28] Valpey-Fisher, Ultrasound Division, 75-T South St., 

Hopkington, MA 01748. 

[29] Any low-viscosity, clear epoxy, e.g. Stycast 1266; Emer

son and Cuming Inc., 77 Dragon Ct., Woburn, MA 

01888. 

[30] y. Sumino, 1. Ohno, T Goto and M. Kumazawa, J. 

Phys. Earth 24 (1976) 263. 

[31] O. L. Anderson and T. Goto, Physics of the Earth and 

Planetary Interiors 55 (1989) 24l. 

[32] W.G. Clark, private communication. 

[33] P. Horowitz and W. Hill, The Art of Electronics (Cam

bridge University Press, Cambridge, 1980; 1st ed.) p. 
236. 

[34] Mini-Circuits, P.O. Box 350166, Brooklyn, NY 11235-

0003. 

[35] MC1496 balanced Modulator-Demodulator, Motorola 

Semiconductor Products Inc., Box 20912, Phoenix, AZ 

85036. 

[36] AF100 Universal Active Filter, National Semiconductor 

Corp., 2900 Semiconductor Dr., P.O. Box 58090, Santa 

Clara, CA 95052-8090. 

[37] Analogic Corp., 360 Audobon Rd., Wakefield, MA 

01880. 

[38] W Cochran, Adv. Phys. 9 (1960) 387; P.W Anderson, 

in: Fizika Dielektrov, ed. G.L Sknavi (AN SSSR, Mos

cow, 1960) p. 290. 

[39] J.C Slonczewski and H. Thomas, Phys. Rev. B 1 (1970) 

3599. 

[40] R.O. Bell and G. Rupprecht, Phys. Rev. 129 (1963) 90. 

[41] B. Luthi and TJ. Moran, Phys. Rev. B 2 (1970) 121l. 

[42] D. Bauerle and W. Rehwald, Solid State Commun. 27 

(1978) 1343. 

[43] Sample supplied by LD. Raistrick, Los Alamos National 

Laboratory. 

[44] W Rehwald, Adv. Phys. 22 (1973) 72l. 

[45] A.P. Levanyuk and A.S. Sigov, Defects and Structural 

Phase Transitions (Gordon and Breach, New York, 

1989). 

[46] R.M. Fleming, B. Batiogg, R.J. Cava and E.A. Riet

man, Phys. Rev. B 35 (1987) 719l. 

[47] S.-W Cheong, J.D. Thompson and Z. Fisk, Physica C 

158 (1989) 109. 

[48] 1. Tanaka and H. Kojima, Nature 337 (1989) 2l. 

[49] R.J. Cava, A. Santoro, D.W. Johnson Jr. and WW 

Rhodes, Phys. Rev. B 35 (1987) 6716. 


