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Abstract. µKlaim is a process language that permits programming
distributed systems made up of several mobile components interacting
through multiple distributed tuple spaces. We present the language and
a type system for controlling the activities, e.g. access to resources and
mobility, of the processes in a net. By dealing with privileges acquisi-
tion, the type system enables dynamic variations of security policies. We
exploit a combination of static and dynamic type checking, and of in-
lined reference monitoring, to guarantee absence of run-time errors due
to lack of privileges and state two type soundness results: one involves
whole nets, the other is relative to subnets of larger nets.

1 Introduction

Process mobility is a fundamental aspect of global computing; however it gives
rise to a lot of relevant security problems. Recently, a number of languages for
mobile processes have been designed that come equipped with security mecha-
nisms (at compilation and/or at run-time) based on, e.g., type systems, control
and data flow analysis and proof carrying code.

Our starting point is Klaim [9], an experimental language specifically de-
signed to program distributed systems made up of several mobile components
interacting through multiple distributed tuple spaces, and its capability-based
type system [10] for controlling access to resources and mobility of processes.
Klaim has been implemented [2] by exploiting Java and has proved to be suit-
able for programming a wide range of distributed applications with agents and
code mobility. In Klaim, the network infrastructure is clearly distinguishable
from user processes and explicitly modelled, which we believe gives a proper
description of the computer systems we are interested to. Klaim communica-
tion mechanism rests on an extension of the basic Linda coordination model [13]
with multiple distributed tuple spaces. General evidence of the success gained
by the tuple space paradigm is given by the many tuple space based run-time
systems, both from industries, e.g. SUN JavaSpaces [1] and IBM TSpaces [22],
and from universities, e.g. PageSpace [8], WCL [21], Lime [19] and TuCSoN [18].
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Klaim programming paradigm enjoys a number of properties, such as time un-
coupling, destination uncoupling, space uncoupling, modularity, scalability and
flexibility, that make the language appealing for open distributed systems and
network computing environments (see, e.g., [11,14]), where, in general, connec-
tions are not stable and host machines are heterogenous. In conclusion, we think
it is worthwhile to investigate the Klaim paradigm, also because its peculiar
aspects about interprocess communication and network modelling distinguish it
from the most popular and studied process languages.

The major contribution of this paper is the introduction of a calculus, called
µKlaim, with process distribution and mobility, and of a relative type system for
controlling process activities. µKlaim is at the core of Klaim and has a simpler
syntax (without higher-order communication, with only one kind of addresses,
without allocation environments, and without parameterized process definitions)
and operational semantics. Moreover, it has a cleaner and powerful type system
(types only record local information), that enables dynamic modifications of se-
curity policies and process privileges, and run-time type checking of programs,
or part of them. In fact, static verification is useful in many circumstances since
it avoids the use of dynamic mechanisms, thus improving system performances.
However, it is hardly sufficient in highly dynamic systems, like e.g. open systems
and the Internet, where it could restrict privileges and capabilities more than
needed, thus unnecessarily reducing the expressive power (and the capabilities)
of mobile processes. To deal with open systems, a certain amount of dynamic
checking is needed (e.g. mobile processes should be dynamically checked at run-
time when they migrate), also for taking into account that in these environ-
ments typing information could be partial, inaccurate or missing. Furthermore,
extensive dynamic checking along with mechanisms supporting modifications at
run-time of security polices and process privileges turn out to be essential for
dealing with pervasive network applications, like e.g. those for e-commerce.

The µKlaim type system allows processes to be first partially verified and
then executed in a more efficient and flexible way, rather than to run inefficiently
because of massive run-time checks. Each network node has its own security
policy that affects the evolution of the overall system and, thus, must be taken
into account when defining the operational semantics. Types are used to express
security policies in terms of capabilities (there is one capability for each process
operation), hence they are part of the language for configuring the underlying net
architecture. Moreover, types are used to record processes intended operations,
but programmers are relieved from typing processes because this task is carried
on by a static type inference system.

Because of lack of space, we shall omit from this extended abstract several
details and all proofs, and present a version of the calculus where communications
exchange tuples with only one field; a thorough presentation can be found in [14].
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Table 1. µKlaim Syntax

N ::= l ::δΣ P (single node)∣∣ N1 ‖ N2 (net composition)

a ::= (process actions)
in(T )@�∣∣ read(T )@�∣∣ out(t)@�∣∣ eval(P )@�∣∣ newloc(u : δ)

P ::= nil (null process)∣∣ a.P (action prefixing)∣∣ P1 | P2 (parallel composition)∣∣ A (process invocation)

T ::= t
∣∣ !x

∣∣ !u : π (templates)
t ::= e

∣∣ � : µ (tuples)
e ::= V

∣∣ x
∣∣ . . . (expressions)

2 µKlaim Syntax

The syntax of µKlaim, given in Table 1, is parameterized with respect to the
following syntactic sets, which we assume to be countable and pairwise disjoint:
A, of process identifiers, ranged over by A,B, . . .; L, of localities, ranged over by
l; U , of locality variables, ranged over by u. We use � to range over L∪U , V over
basic values, x over value variables, π over sets of capabilities, δ over types, and
µ over capability specifications.

The exact syntax of expressions, e, is deliberately not specified; we just as-
sume that expressions contain, at least, basic values and variables. Localities, l,
are the addresses (i.e. network references) of nodes. Tuples, t, contain expressions,
localities or locality variables. In particular, � : µ points out a capability speci-
fication µ that permits dynamically determining the set of capabilities granted
along with address �. Templates, T , are used to select tuples. In particular, pa-
rameters !x or !u : π (the set of capabilities π constraints the use of the address
dynamically bound to u) are used to bind variables to values.

Processes are the µKlaim active computational units and can perform a
few basic operations over tuple spaces and nodes: retrieve/place (evaluated)
tuples from/into a tuple space, send processes for execution on (possibly remote)
nodes, and create new nodes. Processes are built up from the stuck process nil
and from the basic operations by using action prefixing, parallel composition
and process definition. It is assumed that each process identifier A has a single
defining equation A

�=P . Of course, process defining equations should migrate
along with invoking processes; however, for the sake of simplicity, we do not
explicitly model migration of defining equations (that could be implemented like
class code migration in [2]) and assume that they are available at any locality of
a net.

Variables occurring in process terms can be bound by action prefixes
in/read/newloc. For example, in(!u : π)@�. and newloc(u : δ). bind u,
while in(!x)@�. binds x. In process a.P , P is the scope of the binding made
by a; we call free the variables in P that are not bound and accordingly define
α-conversion. In the sequel, we shall assume that bound variables in processes
are all distinct and different from the free variables (by possibly applying α-
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conversion, this requirement can always be satisfied). Moreover, we shall consider
only closed processes, i.e. processes without free variables.

Nets are finite collections of nodes where processes and tuple spaces can be
allocated. A node is a quadruple l ::δΣ P , where locality l is the address of the
node, P is the (parallel) process located at l, Σ is the set of process defining
equations {A1

�=P1, . . . , An
�=Pn} (with Ai 	= Aj if i 	= j) that are valid at l, and

δ is the type of the node, i.e. the specification of its access control policy. The
tuple space (TS) located at l is part of P because, as we will see in Section 4,
evaluated tuples are represented as special processes. In the sequel, we shall omit
Σ whenever it plays no role.

We will identify nets which intuitively represent the same net. We there-
fore define structural congruence ≡ to be the smallest congruence relation over
nets equating α-convertible nets, stating that ‘‖’ is commutative and associative
and that nil is the identity for ‘|’. If not differently specified, in the sequel we
shall only consider well-formed nets, i.e. nets where pairwise distinct nodes have
different addresses.

Capabilities are elements of set {r, i, o, e, n}, where each symbol corresponds
to the operation whose name begins with it; e.g. r denotes the capability of
executing a read operation. We use Π, ranged over by π, to denote the set
formed by the subsets of {r, i, o, e, n}.

Types, ranged over by δ, are functions of the form δ : L ∪ U →fin Π, where
→fin means that the function maps only a finite subset of its domain to non-
empty sets. Notation [�i �→ πi]�i∈D stands for the type δ such that δ(�) is πi if
� = �i ∈ D and is ∅ otherwise. The extension of δ1 with δ2, written δ1[δ2], is the
type δ′ such that δ′(�) = δ1(�) ∪ δ2(�) for each � ∈ L ∪ U .

Capability specifications, ranged over by µ, are partial functions with finite
non-empty domain of the form µ : L ∪ U ⇀ Π ∪ Π, where Π �={π : π ∈ Π}.
For capability specifications, we adopt a notation similar to that used for types,
but now [�i �→ pi]�i∈D (where pi ∈ Π ∪Π) stands for the capability specification
µ such that dom(µ) = D and µ(�i) = pi. Capability specifications are used,
mainly in out operations, to identify sets of capabilities depending on the type
at run-time of the node where processes run. In fact, when a process P running,
say, at l wants to output a location l′ along with some privileges, it is important
to guarantee that P cannot grant larger privileges over l′ than those owned by
l. Since, in general, the latters can be determined only at run-time (because
they depend on the privileges acquired by l over l′ during the computation),
capability specifications provide a way to statically express this fact.

3 A Capability-Based Type System

We start introducing a subtyping relation, �. It relies on an ordering over sets
of capabilities stating that, if π1 �

Π
π2, then π1 enables at least the actions

enabled by π2. The type theory we develop is parametric with respect to the used
capability ordering; here, for the sake of simplicity, we let �

Π
to be the reverse

subset inclusion. Now, we define � by letting δ1 � δ2 whenever δ2(�) �
Π
δ1(�)
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for each � ∈ L ∪ U (which is the standard preorder over functions). Thus, if
δ1 � δ2, then δ1 is less permissive than δ2.

Let us now present the static inference system. Informally, for each node,
say l ::δΣ P , of a net, the inference system checks that all process identifiers
occurring in P are defined in Σ and determines whether the actions that P
intends to perform when running at l are enabled by the access policy δ or not.
For example, capability e can be used to control process mobility: P can migrate
to l′ only if [l′ �→ {e}] is a subtype of δ. However, because l can dynamically
acquire privileges when P performs in/read actions, some actions that can be
permissible at run-time could be statically illegal. For this reason, if P intends to
perform an action not allowed by δ, the static inference system cannot reject the
process since the capability necessary to perform the action could in principle be
dynamically acquired by l. In such cases, the inference system simply marks the
action to require its dynamic checking. The marking mechanism never applies
to actions whose targets are locality variables bound by in/read, because such
actions can be statically checked, thus alleviating the burden of dynamic checking
and improving system performance. In fact, according to the syntax, whenever
a locality variable u is bound by an action in/read, u is annotated with a set
of capabilities π that specifies the operations that the continuation process is
allowed to perform by using u as the target address.

We therefore extend the µKlaim syntax to include marked actions, where
a marked action is a normal µKlaim action which is underlined to require a
dynamic checking of the corresponding capability. Formally, we extend the syn-
tactic category of processes as P ::= . . . | a.P . We will write P (N , resp.) to
emphasize that process P (net N , resp.) may contain marked actions.

A type context Γ is a type. To update a type context with the type an-
notations specified within a template, we use the auxiliary function upd that
behaves like the identity function for all templates but for those binding locality
variables. In this case, we have upd(Γ, !u : π) = Γ [u �→ π]. Hence, if T is a tu-
ple, then upd(Γ, T ) = Γ . To have more compact inference rules for judgments,
we found it convenient to extend function upd to encompass the case that the
second argument is a process and let upd(Γ, P ) = Γ .

Type judgments for processes take the form Γ | Σ
l P ! P . In Γ , the bindings

from localities to non-empty sets implement the access policy of the node with
address l, while the bindings from locality variables to non-empty sets record
the type annotations for the variables that are free (i.e. have been freed) in P .
Intuitively, the judgment Γ | Σ

l P ! P states that, within the context Γ , when P
is located at l, the unmarked actions in P are admissible w.r.t. Γ and all process
identifiers occurring in P are defined in Σ.

Type judgments are inferred by using the rules in Table 2. Given an action
a, we use arg(a) to denote its argument, tgt(a) its target location and cap(a)
the capability corresponding to a. Moreover, we mark actions by using function

markΓ (a) =

{
a if Γ (tgt(a)) �

Π
{cap(a)}

a if Γ (tgt(a)) 	�
Π
{cap(a)} and tgt(a) ∈ L
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Table 2. µKlaim Type Inference Rules

(1) Γ | Σ
l

nil � nil (2)
Γ | Σ

l
P � P Γ | Σ

l
Q � Q

Γ | Σ
l
P | Q � P | Q

(3)
Σ = Σ′ ∪ {A�=P}
Γ | Σ

l
A � A

(4)
cap(a) �= n upd(Γ, arg(a))| Σ

l
P � P

Γ | Σ
l
a.P � markΓ (a).P

(5)
Γ (l) �Π {n} Γ [u �→ (Γ (l)− {n})] | Σ

l
P � P

Γ | Σ
l

newloc(u : δ).P � newloc(u : δ).P

where 	�
Π
denotes the negation of �

Π
. Condition tgt(a) ∈ L distinguishes actions

using localities as target from those using variables, marking the formers and
rejecting the latters (as previously explained). The rules in Table 2 should be
quite explicative, we only remark a few points. Rule (3) says that a process
identifier always successfully passes the static type checking provided that it is
defined in Σ. Rule (4) deals with action prefixing. Notice that, in case of action
eval, the argument process is not statically checked because the locality where
the process will be sent for execution, and hence the access policy against which
the process has to be checked, cannot be, in general, statically known. Action
newloc is dealt with differently from the other actions by rule (5) and is always
statically checked (i.e. it is never marked). Indeed, newloc is always performed
locally and the corresponding capability cannot be dynamically acquired. Finally,
notice that the creating node owns over the created one all the privileges it owns
on itself (except, obviously, for the n capability).

Definition 1. A net is well–typed if for each node l ::δΣ P , with Σ =
{A1

�=P1, . . . , An
�=Pn}, there exist P ′, P ′

1, . . . , P
′
n such that δ| Σ

l P ! P ′ and
δ| Σ

l Pi ! P ′
i , for each i ∈ {1, ..., n}.

4 µKlaim Operational Semantics

An important ingredient we need for defining the operational semantics is a way
to represent evaluated tuples and TSs. Like in [9], we model tuples as processes.
To this aim, we extend the µKlaim syntax with processes of the form 〈et〉 (et
stands for evaluated tuple), that similarly to process nil perform no action (and,
thus, need no capability). Well-typedness of these auxiliary processes is stated
by the axiom

($) Γ | Σ
l 〈et〉 ! 〈et〉

that is added to the rules in Table 2.
Only evaluated tuples can be added to a TS and, similarly, templates must be

evaluated before being used to retrieve tuples. Hence we define the tuple/template
evaluation function T [[ · ]]δ as the identity, except for

T [[ e ]]δ = E [[ e ]] T [[ l : µ ]]δ = l : [[ µ ]]δ(l)−{n}
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Table 3. Capability Specifications Evaluation Function

[[ [l′ �→ π′] ]]π = [l′ �→ π ∩ π′]

[[ [l′ �→ π′] ]]π = [l′ �→ (π − π′)]

[[ µ1[µ2] ]]π = ( [[ µ1 ]]π )[ [[ µ2 ]]π ]

where function E [[ · ]] evaluates expressions (thus it depends on the kind of allowed
expressions and, hence, is left unspecified). T [[ · ]]δ takes as a parameter the
type (i.e. access policy specification) of the node where the evaluation will take
place and accordingly evaluates the contained capability specifications by using
function [[ · ]]π (defined by the rules in Table 3). The latter is parameterized with
respect to the set of capabilities owned by the node where the evaluation takes
place over the locality which the capability specification being interpreted is
associated to. Notice that, since actions newloc are always performed locally, the
corresponding capability n is never transmitted. For this reason, the parameter
of the interpretation function for capability specification does never contain n.
The first rule ensures that no more privileges over a given l′ than those owned
by l are passed, while the second rule replaces π′ with the complement of π′

with respect to π, the set of capabilities used as a parameter of the evaluation
function.

The matching function matchδ
l , used to select evaluated tuples from a TS

according to evaluated templates, is defined by the rules in Table 4. Function
matchδ

l is parameterized with the locality l and the security policy δ of the node
where it is invoked. A successful matching returns a type, used to extend the
type of the node executing the matching with the capabilities granted by the
(producer of the) tuple, and a substitution, used to assign values to variables in
the (continuation of the) process invoking the matching. The first two rules say
that two values match only if identical and that a value parameter match any
value. Rule (3) requires that, for a matching to take place, the locality of the node
where the read/in is executing must occur in the type specification associated
to the locality being accessed. Rule (4) ensures that if a read/in executing at l
looks for a locality where to perform the actions enabled by π, then, for selecting
locality l′, it must hold that the union of the privileges over l′ owned by l and
of the privileges over l′ granted to l by the tuple enables the actions enabled by
π. The privileges granted by the tuple are then used to enrich the capabilities
of l over l′. Notice that (4) succeeds only if l ∈ dom(µ); this requirement, like
that in the premise of rule (3), permits controlling immediate access to tuples
(see Section 6).

Finally, the µKlaim operational semantics is given by a net reduction re-
lation, �−→ , which is the least relation induced by the rules in Table 5. Net
reductions are defined over configurations of the form L � N , where L is such
that loc(N) ⊆ L ⊂fin L and function loc(N) returns the set of localities occur-
ring in N . In a configuration L � N , L keeps track of the localities in N and is
needed to ensure global freshness of new addresses and, thus, to guarantee that
well-formedness is preserved along reductions. For the sake of readability, when
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Table 4. Matching Rules

(1) matchδ
l (V, V ) = 〈[ ], ε〉 (2) matchδ

l (!x, V ) = 〈[ ], [V/x]〉

(3)
l ∈ dom(µ2)

matchδ
l (l

′ : µ1, l
′ : µ2) = 〈[ ], ε〉

(4)
δ(l′) ∪ µ(l) �Π π

matchδ
l (!u : π, l

′ : µ) = 〈[l′ �→ π], [l
′
/u]〉

a reduction does not generate any fresh addresses we write N �−→ N ′ instead
of L � N �−→ L � N ′; moreover, we also omit the sets of process defining
equations from the nodes in N when they are irrelevant.

Let us now comment on the most significant rules in Table 5. Rule (Eval)
says that a process is allowed to migrate only if it successfully passes a type
checking against the access policy of the target node. During this preliminary
check, some process actions could be marked to be effectively checked when being
executed. Rules (In) and (Read) say that the process performing the operation
can proceed only if matching succeeds. In this case, the access policy of the
receiving node is enriched with the type returned by the matching mechanism
and the substitution returned along with the type is applied to the continuation
(and the type annotations therein) of the process performing the operation.
In rule (New) the set L of localities already in use is exploited to choose a
fresh address l′ for naming the new node. Notice that, once created, the address
of the new node is not known to any other node in the net. Thus, it can be
used by the creating process as a sort of private resource. In order to enable
the creation, the specified access policy δ′, after modification with substitution
[l′/u], must be in agreement with the access policy δ of the node executing the
operation (δ−n denotes the access policy defined as follows: δ−n (l) = δ(l)−{n}
and δ−n (l′′) = δ(l′′) for every l′′ 	= l) extended with the ability to perform
over l′ all the operations allowed locally (a part for newloc, of course). This
is needed to prevent a malicious node l from forging capabilities by creating a
new node with powerful privileges where sending a malicious process that takes
advantage of capabilities not owned by l. Hereafter, we write Σ to denote the
set Σ of process defining equations where all marks have been removed. Thus,
notation δ′[l′/u]| Σ

l′ Σ ! Σ′ means that the set of process defining equations is
checkable under the access policy of the new node and returns Σ′. Rule (Mark)
says that the in-lined security monitor stops execution whenever the privilege
for performing a is missing. Rule (Split) is used to split the parallel processes
running at a node thus enabling the application of the rules previously mentioned
that, in fact, can only be used when there is only one process running at l.

5 Type Soundness

We start introducing the notion of executable nets that, intuitively, are nets al-
ready containing all necessary marks (as if they have already passed a static type
checking phase). The second clause of the definition accounts for the assumption
that all process defining equations are available everywhere (but, in general, are
differently marked because checked against different access policies).
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Table 5. µKlaim Operational Semantics

(Out)
et = T [[ t ]]δ

l ::δ out(t)@l′.P ‖ l′ ::δ′
P ′ �−→ l ::δ P ‖ l′ ::δ′

P ′|〈et〉

(Eval)
δ′| Σ′

l′ Q � Q′

l ::δΣ eval(Q)@l′.P ‖ l′ ::δ′
Σ′ P ′ �−→ l ::δΣ P ‖ l′ ::δ′

Σ′ P ′|Q′

(In)
matchδ

l (T [[ T ]]δ, et) = 〈δ′′, σ〉
l ::δ in(T )@l′.P ‖ l′ ::δ′ 〈et〉 �−→ l ::δ[δ

′′] Pσ ‖ l′ ::δ′
nil

(Read)
matchδ

l (T [[ T ]]δ, et) = 〈δ′′, σ〉
l ::δ read(T )@l′.P ‖ l′ ::δ′ 〈et〉 �−→ l ::δ[δ

′′] Pσ ‖ l′ ::δ′ 〈et〉

(New)
l′ �∈ L δ′[l

′
/u] � δ−n [l′ �→ δ(l)] δ′[l

′
/u]| Σ

l′ Σ � Σ′

L � l ::δΣ newloc(u : δ′).P �−→ L ∪ {l′} � l ::δ[l
′ �→(δ(l)−{n})]

Σ P [l
′
/u] ‖ l′ ::δ′[l′/u]

Σ′ nil

(Call) l ::δΣ A �−→ l ::δΣ P if Σ = Σ′ ∪ {A�=P}

(Mark)
l′ = tgt(a) δ(l′) �Π{cap(a)} l ::δ a.P ‖ l′ ::δ′

Q �−→ N

l ::δ a.P ‖ l′ ::δ′
Q �−→ N

(Split)
L � l ::δ P ‖ l ::δ Q ‖ N �−→ L′ � l ::δ

′
P ′ ‖ l ::δ′′

Q′ ‖ N ′

L � l ::δ P |Q ‖ N �−→ L′ � l ::δ
′[δ′′] P ′|Q′ ‖ N ′

(Par)
L � N1 �−→ L′ � N ′

1

L � N1 ‖ N2 �−→ L′ � N ′
1 ‖ N2

(Struct)
N ≡ N1 L � N1 �−→ L′ � N2 N2 ≡ N ′

L � N �−→ L′ � N ′

Definition 2. A net is executable if the following conditions hold:

(i) for each node l ::δΣ P , with Σ = {A1
�=P1, . . . , An

�=Pn}, it holds that
δ| Σ

l P ! P and δ| Σ
l Pi ! Pi, for each i ∈ {1, ..., n},

(ii) for any pair of nodes l ::δΣ P and l′ ::δ
′

Σ′ P ′, it holds that Σ = Σ′,

where for inferring the type judgements, in addition to the rules in Table 2 and
to axiom ($) for 〈et〉, one can also use the rule

($$)
upd(Γ, arg(a))| Σ

l P ! P

Γ | Σ
l a.P ! a.P

that allows a process to already contain marked actions.

Notice that executable nets are well-typed. Our main results will be stated in
terms of executable nets; indeed, due to the dynamic acquisition of privileges,
well-formed nets that are statically deemed well-typed can still give rise to run-
time errors. However, by marking those actions that should be checked at run-
time, well-typed (and well-formed) nets can be transformed into executable nets
that, instead, cannot give rise to run-time errors (see Corollary 1).
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It can be easily seen that the property of being executable is preserved by
structural congruence. The following theorem states that it is also preserved by
the reduction relation.

Theorem 1 (Subject Reduction). If N is executable and loc(N) �
N �−→ L′ � N ′ then N ′ is executable and loc(N ′) ⊆ L′.

Now, we introduce the notion of run-time error, defined in terms of predicate
N ↑ l that holds true when, within N , a process P running at node l ::Σδ
attempts to perform an action that is not allowed by δ or invokes a process that
is not in Σ. The key rules are

δ(tgt(a)) 	�
Π

{cap(a)}
l ::δΣ a.P ↑ l

	 ∃Σ′ : Σ = Σ′ ∪ {A�=P}
l ::δΣ A ↑ l

We can now state type safety, i.e. that executable nets do not give rise to run-
time errors.

Theorem 2 (Type Safety). If N is executable then N ↑ l for no l ∈ loc(N).

By combining together Theorem 1 and 2, and by denoting with �−→∗ the
reflexive and transitive closure of �−→ , we obtain the following result.

Corollary 1 (Global Type Soundness). If N is executable and loc(N) �
N �−→∗ L′ � N ′ then N ′ ↑ l for no l ∈ loc(N ′).

Type soundness is one of the main goal of any type system. However, in
our framework it is formulated in terms of a property requiring the typing of
whole nets. While this could be acceptable for LANs, where the number of hosts
usually is relatively small, it is unreasonable for WANs, where in general hosts
are under the control of different authorities. When dealing with larger nets, it
is certainly more realistic to reason in terms of parts of the whole net. Hence,
we put forward a more local formulation of our main result. To this aim, we
define the restriction of a net N to a set of localities S, written NS , as the
subnet obtained from N by deleting all nodes whose addresses are not in S. The
wanted local type soundness result can be formulated as follows.

Theorem 3 (Local Type Soundness). Let N be a net and S ⊆ loc(N). If
NS is executable and loc(N) � N �−→∗ L′ � N ′ then for no l ∈ S it holds that
N ′ ↑ l .

6 Example: Subscribing Online Publications

By means of a simple example, here we show the µKlaim programming style
and illustrate how to exploit its type system. For programming convenience, we
will use the full version of the calculus [14], assume integers and strings to be
basic values of the language, and omit trailing occurrences of process nil and
the process defining equations.
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Suppose that a user U wants to subscribe a ‘licence’ to enable accessing on-
line publications by a given publisher P . To model this scenario we use three
localities, lU , lP and lC , respectively associated to U , P and to the repository
containing P ’s on-line accessible publications. First of all, U sends a subscription
request to P including its address (together with an ‘out’ capability) and credit
card number; then, U waits for a tuple that will grant it the ‘read’ privilege
needed to access P ’s publications and proceeds with the rest of its activity. The
behaviour described so far is implemented by the process

U
�= out(“Subscr”, lU : [lP �→ {o}], CrCard)@lP .in(“Acc”, lC : {r})@lU .R

where process R may contain operations like read(. . .)@lC . P , once it has re-
ceived the subscription request and checked (by possibly using a third party
authority) the validity of the payment information, gives U a ‘read’ capability
over lC . P ’s behaviour is modelled by the following process.

P
�= in(“Subscr”, !x : {o}, !y)@lP . check credit card y of x and require the payment .

out(“Acc”, lC : [x �→ {r}])@x | P

For processes U and P to behave in the expected way, the underlying net
architecture, namely distribution of processes and security policies, must be ap-
propriately configured. A suitable net is:

lU ::[lU �→{o,i,r,e,n}, lP �→{o}] U ‖ lP ::[lP �→{o,i,r,e,n},lC �→{o,i,r}] P ‖
lC ::[ ] 〈paper1〉 | 〈paper2〉 | . . .

where we have intentionally used U to emphasize the fact that the static type
checking might have marked some actions occurring in U , e.g. the read(. . .)@lC
actions in R. Upon completion of the protocol, the net will be

lU ::[lU �→{o,i,r,e,n},lP �→{o},lC �→{r}] R ‖ lP ::[lP �→{o,i,r,e,n},lC �→{o,i,r},lU �→{o}] P ‖
lC ::[ ] 〈paper1〉 | 〈paper2〉 | . . .

Notice that knowledge of address lC is not enough for reading papers: the
‘read’ capability is needed. Indeed, security in the µKlaim framework does not
rely on name knowledge but on security policies. Moreover, once the ‘read’ ca-
pability over lC has been acquired, all processes eventually spawned at lU can
access P ’s on-line publications. In other terms, U obtains a sort of ‘site licence’
valid for all processes running at lU . This is different from [10], where, by using
the same protocol, U would have obtained a sort of ‘individual licence’. No-
tice also that the licence passed by P to U can be used only at lU since the
capability specification associated to lC only grants lU privilege r over lC . Fi-
nally, no denial-of-service attack could be mounted through the access of tuple
〈“Acc”, lC : [lU �→ {r}]〉 located at lU by processes running at sites of the net-
work different from those explicitly mentioned because only processes running
at lU can retrieve the tuple (see rules (3) and (4) in Table 4).
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Variants. We now touch upon a few variants (thoroughly presented in [14]) of
the µKlaim framework and use the example for motivating their introduction.
The variants differ in simple technical details and, mainly, in the burden charged
to the static inference.

In real situations, a (mobile) process could dynamically acquire some privi-
leges and, from time to time, decide whether it wants to keep them for itself or
to share them with other processes running at the same node. In our example,
U might just buy an ‘individual licence’. The µKlaim framework can smoothly
fit for this feature, by associating privileges also to processes and letting them
decide whether an acquisition must enrich their hosting node or themselves.
Moreover, the subscription could have an expiration date, e.g., it could be an
annual subscription. Timing information can easily be accommodated in the
µKlaim framework by simply assigning privileges a validity duration and by
updating these information for taking into account time passing. ‘Acquisition of
privileges’ can be thought of as ‘purchase of services/goods’; hence it is natural
that a process will lose the acquired privilege once it uses the service or passes
the good to another process. In our running example, this corresponds to pur-
chasing the right of accessing P ’s publications a given number of times. A simple
modification of the µKlaim framework, for taking into account multiplicities of
privileges and their consumption (due, e.g., to execution of the corresponding
action or to cession of the privilege to another process), can permit to deal with
this new scenario. Finally, the granter of a privilege could decide to revoke the
privilege previously granted. In our example, P could prohibit U from accessing
its publications because of, e.g., a misbehaviour or expiry of the subscription
time (in fact, this is a way of managing expiration dates without assigning privi-
leges a validity duration). Again, by annotating privileges dynamically acquired
with the granter identity and enabling processes to use a new ‘revoke’ operation,
the µKlaim framework can be extended to also manage privileges revocation.

7 Related Work

By now, there is a lot of work on type systems for security in calculi with process
distribution and mobility; however, to the best of our knowledge, the type system
we have presented in this paper is the first one that permits dynamic modification
of security policies. We conclude by touching upon more strictly related work.

The research line closest to ours is that on the Dπ-calculus [16], a distributed
version of the π–calculus equipped with a type system to control privileges of
mobile processes over located communication channels. [15,20] present two im-
proved type systems for the Dπ-calculus that, by relying on both local type
information and on dynamic checking of incoming processes, permit establish-
ing well-typedness of part of a network (like our local type soundness result).
Like µKlaim, the Dπ-calculus relies on a flat network architecture; however,
differently from µKlaim, the network infrastructure is not independent of the
processes running over it and communication is local and channel-based. More-
over, node types describe permissions to use local channels. This is in sharp
contrast with µKlaim types that aim at controlling the remote operations that
a network node can perform over the other network nodes.
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[23] presents Dπλ, a process calculus resulting from the integration of the
call-by-value λ-calculus and the π–calculus, together with primitives for pro-
cess distribution and remote process creation. Apart from the higher order and
channel-based communication, the main difference with µKlaim is that Dπλ lo-
calities are not explicitly referrable by processes and just used to express process
distribution. In [24], a fine-grained type system for Dπλ is defined that permits
controlling the effect over local channels of transmitted processes parameter-
ized w.r.t. channel names. Processes are assigned fine-grained types that, like
interfaces, record the channels to which processes have access together with the
corresponding capabilities, and parameterized processes are assigned dependent
functional types that abstract from channel names and types. This use of types
is akin to µKlaim one, though the differences between the underlying languages
still remain.

Finally, we want to mention some proposals for the Mobile Ambients calcu-
lus and its variants, albeit their network models and mobility mechanisms are
very different from those of µKlaim. Among the type systems more strictly re-
lated to security we recall those disciplining the types of the values exchanged
in communications [5,4], those for controlling ambients mobility and ability to
be opened [6,17,12,7] and that for controlling resources access via policies for
mandatory access control based on ambients security levels [3].

Acknowledgements. We thank the anonymous referees for their useful com-
ments.
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