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Abstract—In this article, we investigate spectrum allocation in
vehicle-to-everything (V2X) network. We first express the V2X
network into a graph, where each vehicle-to-vehicle (V2V) link
is a node in the graph. We apply a graph neural network (GNN)
to learn the low-dimensional feature of each node based on the
graph information. According to the learned feature, multi-agent
reinforcement learning (RL) is used to make spectrum allocation.
Deep Q-network is utilized to learn to optimize the sum capacity
of the V2X network. Simulation results show that the proposed
allocation scheme can achieve near-optimal performance.

Index Terms—Vehicular Communications, Multi-agent RL,
GNN, Resource Allocation

I. INTRODUCTION

Recently vehicle-to-everything (V2X) networks have at-

tracted numerous studies with the aspiration to make our

experience on wheels safer, greener, and more convenient

[1], [2]. In the V2X networks, vehicles, pedestrians and other

entities on the road are connected and coordinated to provide a

whole new collection of applications, varying from improving

road safety to mitigating traffic congestion. The vehicular

communication is also supported by the 3rd generation part-

nership project (3GPP) in the fifth-generation communication

system (5G) [3], which will further push the development and

deployment of the V2X communication systems. Despite its

potential to exert a significant impact on daily human life,

there exist some significant challenges in V2X networks, such

as lack of quality-of-service (QoS) guarantee and time-varying

channels and network configuration [4]. Judicious spectrum

allocation is thus needed in the vehicular communication

networks to deal with environment dynamics and to guarantee

QoS. The resource management problem is often formulated

as one of combinatorial optimization, which is generally NP-

hard lacking low-complexity and effective universal solutions.

To tackle such issues, some works are focused on obtaining

a sub-optimal solution to reduce the complexity. In [5], the

reliability requirements of vehicle-to-vehicle (V2V) commu-

nications are transformed into optimization constraints, which

use only the slowly-varying channel information to make

it computable. Similarly, a spectrum and power allocation

scheme is proposed in [6] to maximize the ergodic capacity

of the vehicle-to-infrastructure (V2I) links, requiring only

This work was supported in part by the National Science Foundation under
Grants 1815637 and 1731017.

slowly varying large-scale fading information. In [7], graph

partitioning algorithms are exploited to divide highly interfer-

ing V2V links into disjoint spectrum-sharing clusters before

formulating the spectrum sharing problem, which reduces the

computational complexity and network signaling overhead.

In recent years, machine learning, especially reinforcement

learning (RL), has shown its power in addressing various

engineering problems, including resource allocation in com-

munications [8], [9]. The work in [10] shows that the deep RL

framework can address the resource management problems

and is comparable and some-times better than heuristic based

approaches for a multi-resource cluster scheduling problem.

In [11], a deep RL approach is developed to dynamically

manage the networking, caching, and computing resources.

A distributed spectrum sharing scheme based on multi-agent

RL is proposed in [12] to enhance the sum capacity of

V2I links and the payload delivery rate of V2V links. In

[13], each vehicle is considered as an agent and multiple

agents are employed to sequentially make decisions to find

available spectrum based on their local observations in V2V

broadcast communications. In [14], a base station (BS) is used

to aggregate and compress observations of vehicles and the

compressed information is then fed back to each agent to help

improve the distributed decision performance for spectrum

sharing in V2X networks.

Apart from the RL-based optimization methods, several

works propose to formulate the optimization problem within

a graph model framework and to solve them with graph

embedding methods. The critical component is the graph

neural network (GNN) [15], which is developed to capture

the dependence of graphs via message passing between nodes

of graphs. Different from standard neural networks, GNN is

used to extract the feature of a node from its neighbors and

the graph topology. Recent studies have shown that GNN

has attained success in network architectures, optimization

techniques, and parallel computation [16]. GNN has been

combined with the traditional heuristic algorithms in [17]

to solve classic NP-hard optimization problems, such as

Minimum Vertex Cover and Maximal Independent Set, which

are formulated over weighted graphs. In [18], a device-to-

device (D2D) network is expressed as a graph, where D2D

pairs are nodes and interference links are edges. A GNN is

applied to extract the feature for each node, which is used to
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make link scheduling by a multi-layer classifier.

In order to fully take advantage of both RL and GNN, we

develop a distributed GNN-augmented RL spectrum-sharing

scheme for the V2X network. In our proposed approach, the

V2V network is expressed as a graph. Local observations

of the V2V pair and the channel gains of the interference

links are regarded as the information of nodes and edges,

respectively. We apply GNN to learn the low-dimensional

feature of each node corresponding to a V2V pair based on

the graph information. To exploit RL for resource allocation,

each V2V link can be treated as an agent with the extracted

feature as its state. Multi-agent RL is applied to learn to

optimize the sum capacity of the V2V and V2I links. With

GNNs, the updating of the messages is along the edges of

the graph. Different from the algorithm in [14], each vehicle

aggregates network information by communicating with its

neighbors nearby without the help of the BS. Therefore, the

proposed approach is fully distributed.

The rest of the article is arranged as following. In Section

II, we present the system model. Then, the GNN-augmented

RL resource allocation scheme is devised in Section III.

Simulation results are presented in Section IV. Finally, we

draw conclusions in Section V.

II. SYSTEM MODEL

Consider a V2X network with N cellular users (CUEs)

and K pairs of V2V users (VUEs) shown in Fig. 1(a).

Each cellular user communicates with the BS, which forms

a V2I link to support high data rate services, such as video

streaming. The V2V link is formed by neighboring vehicles

and enabled by D2D communication. Each of the V2I links is

assigned an orthogonal spectrum band. Thus, the size of the

channel set is the same as the number of the V2I links. We

assume all devices are equipped with a single antenna. The

sets of CUEs and VUEs are represented by N = {1, 2, ..., N}
and K = {1, 2, ...,K}, respectively. All V2V links share

the spectrum with V2I links to enhance the spectrum utility.

Hence, the channel set for all links can also be denoted by

N .

As shown in Fig. 1(a), the channel gain of the n-th V2I

link is denoted as gn and the interference channel gain from

the transmitter of the k-th V2V pair to the BS over the n-th

channel is represented as hn
k,B . Hence the capacity of the n-th

V2I link can be obtained as

RC
n = B log2

(

1 +
PC
n |gn|

2

∑K

k=1 ρ
n
kP

V
k |h

n
k,B |

2 + σ2

)

(1)

where B is the bandwidth, σ2 refers to the power of the

Gaussian noise, and PC
n and PV

k denote the transmission

powers of the n-th CUE and k-th VUE, respectively. In (1), we

introduce a binary indicator ρnk , with ρnk = 1 if the k-th V2V

pair is activated on the n-th channel and ρnk = 0 otherwise.

Similarly, the rate of the k-th V2V link over the n-th channel

can be expressed as

RV
k [n] = B log2

(

1 +
ρnkP

V
k |h

n
kk|

2

∑K

l ̸=k ρ
n
l P

V
l |h

n
lk|

2 + PC
n |g

n
k |

2 + σ2

)

(2)

where gnk represents the interference channel gain of the n-th

CUE to the k-th V2V pair on the n-th channel and hn
lk refers

to the channel gain from the l-th V2V pair transmitter to the k-

th V2V pair receiver over the n-th channel. From (1) and (2),

the set of spectrum allocation indicators {ρnk |k ∈ K, n ∈ N}
is critical to the maximization of the capacity of the V2X

network.

In general, the V2V links mainly carry essential safety

information, while the V2I links support less important en-

tertainment services [12]. In order to ensure the QoS of the

V2X network, the transmission of V2V links should be given

the priority and supported with high reliability. As a result,

the spectrum allocation problem can be formulated as the

following optimization problem

max
ρ

R =

K
∑

k=1

N
∑

n=1

RV
k [n] + ωC

N
∑

n=1

RC
n , (3)

subject to

ρnk ∈ {0, 1}, ∀k ∈ K, n ∈ N ;
N
∑

n=1

ρnk = 1 (4)

where ρ denotes {ρnk |∀k ∈ K, n ∈ N} and ωC is the weight

for the sum rate for the V2I link according to the priority.

The second constraint in (4) is due to the assumption that

each V2V link occupies only one channel.

III. RESOURCE ALLOCATION BASED ON GNN

In this section, we first formulate the V2X network as a

graph model and develop a GNN-based technique to extract

features relevant to resource optimization for V2V pairs. Then

we discuss how to use the GNN-extracted features to address

the optimization problem (3) based on RL.

A. GNN Method Design

In order to apply GNNs, the vehicular communication

network is first expressed as a graph. Inspired by [18],

each of the V2V pairs is regarded as a node while inter-

ference links between V2V pairs as edges. The node obser-

vation contains the VUEs channel gain and its correspond-

ing transmit power while the edge weights are represented

by the interference channel gain. For the network shown

in Fig. 1(a), the directed graph representation is given by

Fig. 1(b), where {hn
lk}

N = (h1
lk, h

2
lk, ..., h

N
lk) and {hn

k,B}
N =

(h1
k,B , h

2
k,B , ..., h

N
k,B). Thus, the observation of node v and

the weight of the link from node u to node v can be written

as xv = {{hn
vv}

N , {hn
v,B}

N , PV
v } and euv = {hn

uv}
N ,

respectively. Note that only VUEs are included in the graph

representation. Hence, all the observations about CUEs, such

as the channel gain from the CUE and its transmission power,

are not part of the node observation.
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(a) (b)

Fig. 1: (a) The structure of vehicular networks. (b) The graph representation of the vehicular network shown in (a).

After expressing the network as a graph, we use GNN to

extract node features. The concept of GNN has been first

introduced in [15], which aims at learning a feature embedding

µv ∈ R
ns of each node, containing the information of

adjacent nodes and edges, where ns is the dimension of the

feature embedding. The i-th iteration of µv is described as

µi
v = f(xv,xne[v], {euv}u∈N(v),µ

i−1
v , {µi−1

u }u∈N(v)),
(5)

where xne[v] denotes the observation of node v’s incoming

neighbors, N(v) represents the set of the node v’s incoming

neighbors, i.e., nodes that have an link to node v, and f(·) is

the updating function we need to design.

Motivated by the popular GNN framework in [19], the

updating function for the proposed GNN is derived by

µi
v = σ



W i
v



xv||µ
i−1
v ||

∑

u∈N(v)

euv||
∑

u∈N(v)

µi−1
u







 ,

(6)

where ·||· denotes the vector concatenation and W i
v is the

trainable weight of the node v for the i-th iteration. The

rectified linear unit (ReLU) is adopted as the activation

function of GNN, σ(x) = max(0, x).
In general, µ0

v = 0 at the beginning of feature embedding.

To reduce the network signaling overhead, only feature em-

beddings, {µi
v|v ∈ V }, are exchanged among the adjacent

nodes at the i-th iteration, where V = K is the set of the

nodes corresponding to V2V pairs. After I iterations, extracted

features for nodes are attained as {µI
v}v∈V .

B. Distributed Deep Q-Network Design

After extracting the features of V2V pairs from GNN, the

Q-network is developed to select the spectrum for each V2V

pair, which is treated as an agent in the RL framework. For

the k-th agent at the time step t, the state is defined as s
(t)
k =

{

x
(t)
k ,µ

I,(t)
k

}

, and the action is given by a
(t)
k = ρ

(t)
k , where

ρ
(t)
k = {ρ

1,(t)
k , ρ

2,(t)
k , ..., ρ

N,(t)
k }. The reward is designed as R

in (3) for all agents globally, i.e., r
(t+1)
k = R(t+1), ∀k ∈ K.

The superscript (t) represents the information as obtained at

the time step t. The whole structure of the GNN-RL scheme

is shown in Fig. 2.

Algorithm 1 Training Process for the Proposed Framework

Input: GNN structure, Q-network structure for each V2V,

and the environment simulator

Output: GNN and allocation policy πk represented by Q-

network Qk with parameter θk, for all k ∈ K
Initialisation : Initialize GNN and all Q-network models

1: for each training episode do

2: Start simulator and generate vehicles and links.

3: for time-step t = 0, ..., T − 1 do

4: Observe the graph information denoted by O(t)

including node observations x
(t)
k , ∀k ∈ K and edge

weights e
(t)
lk , ∀l, k ∈ K

5: Each V2V utilizes the proposed GNN in (6), and

after I iterations, extracts its feature µ
I,(t)
k

6: Each V2V takes s
(t)
k =

{

x
(t)
k ,µ

I,(t)
k

}

and selects

action a
(t)
k based on state s

(t)
k , according to the

policy πk derived from Qk, e.g., ϵ-greedy policy [20]

7: All V2V receive reward R(t+1)

8: Channels update and new graph information of the

next time step O(t+1) is obtained

9: Store {O(t), a(t), R(t+1), O(t+1)} in memory M
10: Sample mini-batch D from M uniformly

11: for each V2V agent k do

12: Use D to train GNN with parameters W and

the k-th Q-network with parameters θk jointly

by minimizing the mean square error (MSE) (7)

between estimation return and the Q-value

13: Update the k-th target Q-network: θ−
k ← θk every

Ntarget time steps

14: end for

15: Update target GNN: W− ←W every Ntarget time

steps

16: end for

17: end for
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Fig. 2: The structure of GNN-RL.

The details of the training process for the proposed GNN-

augmented RL framework is demonstrated in Algorithm 1.

Here, a(t) = {a
(t)
1 , ...,a

(t)
K } and the MSE for the k-th agent

is defined as
∑

D

[R(t+1) + γmax
a′

Qk(s
(t+1)
k (W−,O(t+1)),a′;θ−

k )

−Qk(s
(t)
k (W ,O(t)),a

(t)
k ;θk)]

2, (7)

where γ is the discount parameter. s
(t)
k (W ,O(t)) implies the

state is derived by the GNN with parameters W = {W i
k|∀k ∈

K, i = 1, ..., I}, which infers that parameters W and θk can

be trained simultaneously by minimizing (7).

IV. SIMULATION RESULTS

The simulation scenario is set up for the urban case in

Annex A of [3]. The simulation area size is 1,299 m ×
750 m, where the detailed parameters and the corresponding

channel models are the same as Table I and II in [14],

respectively. The weight of the sum rate for the V2I link is

set as ωC = 0.1. We assume the dimension of the feature ns

is the same for all µi
k, ∀k ∈ K and i = 0, 1, ..., I . Hence, the

trainable weights W i
k of the GNN have the same dimension

ns × ng , where ng is the length of the concatenate graph

information
[

xv||µ
i−1
v ||

∑

u∈N(v) euv||
∑

u∈N(v) µ
i−1
u

]

. The

total iteration of the GNN is set to be I = 3. The Q-

network for each V2V pair has three fully connected hidden

layers with 80, 40, and 20 neurons, respectively. The ReLU

function is chosen as the default activation function of the Q-

network. Besides, the activation function of the last iteration

of GNN and the output layers in Q-networks are set to be

a linear function. Adam optimizer [21] is adopted to update

the trainable parameters with a learning rate of 0.001 during

training. The number of training and testing episodes is 10,000

and 2,000, respectively. Each episode consists T = 1, 000 time

steps. We adopt ϵ-greedy policy [20] to balance the exploration
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Fig. 3: Average return per episode in training stage

0 250 500 750 1000 1250 1500 1750 2000

Number of Episodes

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o
rm

a
li
z
e
d
 R

e
tu

rn
GNN-RL

Random Scheme

Optimal Scheme

Fig. 4: The return comparison among GNN-RL scheme,

random scheme and optimal scheme with N = K = 4

and exploitation and the exploration rate, ϵ, linearly decreases

from 1 to 0.01 over the beginning 8,000 episodes of training.

The discount factor, γ, is chosen as 0.05. The target networks

update their parameters every 500 steps. The size of the mini-

batch is set as 512.

Fig. 3 shows the average return against the number of

training episodes with N = K = 4 and ns = 20. The

average return increases dramatically at the beginning and

gradually converges with the increasing training episodes,

which demonstrates the number of training episodes, 10, 000,

is enough to guarantee the convergence of the proposed

scheme. Scheme training converges slowly, but it is not a

significant problem since the training stage is totally offline.

Fig. 4 compares return R defined in (3) among three

resource allocation schemes with N = K = 4 and ns = 20.

The optimal scheme applies a brute-force full search to select

the optimal channel for each V2V pair. In the random scheme,

V2V pairs choose the spectrum uniformly in the channel

set N . Here, we normalize the return with the maximum

return obtained by the optimal scheme and smooth the return
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Fig. 6: The return comparison between GNN-RL scheme and

random scheme with N = K = 10

over adjacent episodes for clarity in demonstration. From the

figure, the average performance of GNN-RL framework is

approximate 90%, while the random scheme can only achieve

below 60% of the optimal.

Fig. 5 depicts the average normalized return of the GNN-

RL framework against ns with N = K = 4. In particular,

ns = 0 implies that each V2V pair makes the decision

only based on its local observation and GNN is not working.

The result in Fig. 5 indicates that GNN can aggregate more

information for decision making and significantly enhance

allocation performance.

In Fig. 6, we set N = K = 10, ns = 20 and compare the

return between the GNN-RL scheme and he random scheme.

Note that the optimal scheme is deemed computationally

infeasible in this case. The return is normalized with the

return of the GNN-RL scheme. In the large V2X network

with N = K = 10, the random scheme can achieve around

83% of the GNN-RL framework.

V. CONCLUSION

We present a GNN-augmented RL spectrum allocation

scheme for vehicular networks. GNN extracts the feature of

each V2V pair according to the network topology and neigh-

bors’ observations. Based on the extracted features and local

observations, V2V pairs can make decisions distributively

with Q-networks. Simulation results show that the proposed

GNN-RL scheme can achieve near-optimal performance.
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