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Device-to-device (D2D) communication with direct terminal connection is a promising candidate for 5G communication, which
increases the capacity of cellular networks and spectral efficiency. Introducing D2D communication to cellular users (CUs) will
increase system capacity, and CUs will provide reusable channel resources for D2D users (DUs). However, the sharing of
channel resources between CUs and DUs will lead to cofrequency interference and affect the communication quality of user
terminals. As a means of improving spectrum utilization and solving cofrequency interference problems, a one-to-many D2D
communication system model is established in cellular networks. Through model analysis, the interference between CUs and
DUs is correlated with their distance from one another. Considering the different interference of CUs to DUs at different
distances, an algorithm for resource allocation based on distance grouping is proposed. With this algorithm, DUs will reuse
channel resources of CUs within a reasonable distance in the group, and interference between DUs and CUs will be
minimized. The improved particle swarm optimization algorithm is used to solve the optimal power, to achieve the maximum
transmission rate of the system. Simulated results show that the algorithm will significantly improve system throughput and
performance while also lowering the computational complexity of the algorithm, enabling the whole system to have better
communication quality.

1. Introduction

In recent years, as mobile users and communication services
have grown rapidly, the demand for wireless bandwidth has
significantly increased. Wireless communication systems can
no longer meet their long-term development needs because
of the limited spectrum resources [1]. In the R12 standard of
the 3rd Generation Partnership Project (3GPP), direct termi-
nal technology is proposed for cellular networks. It was cre-
ated to solve the high demand on the base station and to
overcome the traditional concept of transmission through
the central base station (BS). Direct communication is
between two mobile devices within a certain range without
going through the base station (BS) [2–4]. In addition to
improving the performance of edge users, the network can
also be extended [5–7]. With the increasing complexity of

research, D2D communication has slowly become an impor-
tant technology in the fifth-generation (5G)mobile communi-
cation system and has also been widely accepted. D2D
communication is low latency and highly reliable, which
makes it perfect for vehicle-to-vehicle (V2V), UAV, and emer-
gency communications [8–13]. Academic and industrial
researchers are becoming increasingly interested in this topic,
so much research has been done on mode selection, power
control, and resource allocation [14–31].

1.1. Related Work. D2D communication is mainly divided
into cellular, dedicated, and reuse. In the dedicated mode, part
of the spectrum resources is allocated to D2D communication,
so users of D2D and cellular do not interfere with each other.
In the multiplexing mode, there is no difference in frequency
usage between D2D and cellular communication. Despite the
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interference problems between D2D and cellular communica-
tion, the multiplexing mode has received more attention and
research due to its higher-frequency spectrum utilization. This
paper introduces the notion that D2D links can work in the
hybrid mode under resource multiplexing. It is also discussed
how independent decoupling and optimization of mixed-
mode allocation and resource allocation can be achieved using
energy-splitting variables [32]. In the literature, the through-
put of the whole system is maximized under the premise of
ensuring the SNR of the D2D link and cellular link. An inno-
vative approach is presented in the paper [33], which decom-
poses the multicell interference minimization problem into
two subproblems, introduces a two-stage game theory to solve
the RB and power allocation problem, and evaluates the pro-
posed approach in terms of spectral efficiency and energy effi-
ciency. An alliance game model has been proposed in the
literature to make D2D links with the same transmission
mode form coalitions. By using the cooperative game method,
under the premise of meeting the data rate requirements of
each link, all D2D links in the alliance cooperate to select the
channel, so as to minimize total transmission power, but the
transmission power in this paper is not dynamic, which resists
the transmission quality of the system [34]. The literature
studies the problems of dual mode selection, channel alloca-
tion, and power control of D2D communication to maximize
the overall throughput of the system while ensuring the mini-
mization of interference generated [35]. D2D communication
improves spectrum utilization and lowers the base station
load. A significant problem with the multiplexing of spectrum
resources is that it will cause serious cochannel interference
between users. To reduce interference, reasonable control of
user transmission power is particularly important. A joint
power control algorithm was proposed, which combines two
parameters, and calculates the path loss compensation factor
by utilizing the distance factor [36]. The adaptive power con-
trol Q-learning algorithm is proposed tomaximize system effi-
ciency under optimal transmission power conditions, but Q-
learning is flat, does not capture task structure well, and is par-
ticularly constrained by dimensional disasters [37]. To solve
the optimization problem, a two-step distributed method is
proposed in [38]. The RB allocation problem is expressed as
a noncooperative game, and it is shown to be an accurate
potential game. Distributed autonomous game theory is also
used to solve the uplink transmission power control problem.
Under a pure D2D communication model, power control and
resource allocation is proposed. It groups D2D users reason-
ably, allocates resources by vertex coloring, and maximizes
system throughput on the premise of ensuring signal quality
for cellular users and edge cellular users [39].

At present, D2D communication in cellular networks is
optimized using a variety of methods, such as the Hungarian
algorithm, Gale-Shapley algorithm, particle swarm optimi-
zation algorithm (PSO), and game theoretic approach.
Among them, PSO is a famous intelligent algorithm that
can solve n-dimensional optimization problems. With
orthogonal frequency division multiple access (OFDMA),
the total bandwidth can be divided into smaller subcarriers
for better and more adaptive resource allocation. The PSO
algorithm is used to distribute the rate and subcarriers opti-

mally to more users and, hence, maximize the system
throughput. As a result of the tests, the algorithm shows
good convergence under the condition of minimal transmis-
sion power allocation [40]. A power allocation algorithm
based on particle swarm optimization is proposed to solve
the interuser interference when D2D communication is
introduced in cellular networks. The algorithm can effec-
tively allocate transmission power between each user while
meeting the minimum rate requirements of each user to
maximize the overall throughput of the cellular network
[41]. However, the basic particle swarm optimization algo-
rithm is prone to local optimality. The improved particle
swarm optimization algorithms are utilized to solve the
above-mentioned problem.

According to reference [42], in order to increase the
spectral efficiency and system throughput, the cellular user
allows different D2D pairs to share spectral resources. Simu-
lation results show that NR-PSO is effective at solving the
mixed-integer programming problem (MINLP).

1.2. Paper Contribution. There is a great deal of research
being done on one-to-one D2D communication; even though
it has been shown to be effective, they do not allocate all cellu-
lar user resources, resulting in low spectrum utilization. For
improving the system throughput and effectively using spec-
trum resources, a one-to-many mode is proposed, and a
resource allocation algorithm based on distance grouping is
implemented to solve the channel allocation problem. Addi-
tionally, the particle swarm optimization algorithm is
improved to solve the objective function. The following is a
summary of the main contributions of this work:

(1) A one-to-many D2D communication model is
designed to ensure flexibility and fairness and
improve the spectrum utilization of D2D users’ mul-
tiplexing of cellular users. Meanwhile, the maximiza-
tion of network throughput in mixed-integer
nonlinear programming is solved

(2) By taking mutual interference into account, a signal-
to-noise ratio formula for D2D users is derived, the
correlation between distance and interference is dis-
covered, and a system model for distance grouping is
constructed to improve resource allocation efficiency
and system transmission capacity

(3) A dynamic power control strategy is proposed to
reduce interference between users, and an improved
particle swarm algorithm is presented for solving
MINLP. Simulation results demonstrate the effec-
tiveness of the proposed method

The following is a summary of the remainder of this
paper: Section 2 introduces the D2D communication model
based on the D2D basic theory. In Section 3, a resource allo-
cation algorithm based on distance grouping is proposed,
which can get reasonable resource allocation. Section 4 pre-
sents simulation results demonstrating the effectiveness of
the proposed algorithm. In the final section, conclusions
are wrapped.
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2. D2D Communication Network Model

In the first section, the D2D one-to-one base system model
is introduced. The second section introduces the one-to-
many system model proposed in this paper. The third part
introduces the dynamic power control strategy.

2.1. Resource Allocation for D2D Communication. D2D
resource allocation involves allocating channels to D2D
users, which can be divided into dedicated and multiplexing.
The dedicated mode obtains channel resources through
orthogonal allocation, but the spectrum resources are lim-
ited. Currently, most D2D users use multiplexing to share
resources. The interference of a D2D user when multiplex-
ing cellular user channel resources is in Figure 1.

D2D users’ multiplexing of cellular users’ uplink and
downlink results in interference, as shown in Figures 1(a)
and 1(b). It can be seen that D2D users are interfered by cel-
lular users and base stations are interfered by D2D users
when multiplexing the uplink. When multiplexing down-
links, interference to D2D and cellular users comes mainly
from base stations. Since cellular users transmit less power
than base stations, they generate less interference, and base
stations are better able to handle interference. Therefore, this
work mainly considers the reuse of cellular user uplink
resources by D2D users.

2.2. System Model. A single-cell cellular network consists of
base stations (BS), M cellular users (CUs), and N D2D users
(DUs), with the BS being at the center of the cell, as shown
in Figure 2.

Consider the system as fully loaded, meaning all spec-
trum resources are occupied by CUs, and there is no mutual
interference. Generally, each subcarrier can be assigned to
only one cellular user. CUs are denoted as j ∈ C = f1, 2,⋯,
Mg, and DUs are represented as i ∈D = f1, 2,⋯,Ng.

DUs’ reuse of CUs’ uplink subcarriers are allowed in this
paper. Since the one-to-one model does not fully utilize the cel-
lular resources, the one-to-many model is considered in order
to maximize spectrum resource multiplexing gains. From the
D2D mode’s flexibility perspective, allowing one DU to reuse
multiple CU resources improves D2D performance greatly.
The constraints of this reuse mode are given in Eq. (17).

It is assumed that intercell interference can be effectively
reduced through interference management. As such, we only
analyze the interference within the cell. The BS is assumed to
be capable of acquiring perfect channel state information
(CSI) for all relevant links. As described in [43], there is path
loss between the transmitting and receiving nodes, which
makes up the channel gain, fast fading induced by multipath
fading, and slow fading induced by shadow fading, which are
obeyed by the exponential normal distribution and log-
positive distribution, respectively.

G = Γμξd−α, ð1Þ

where Γ is the path loss constant, μ stands for the fast fading
factor, ξ denotes the slow fading factor, d is the distance, and
α represents the path loss exponent.

Similarly, the definition could derive Gj,B, Gi,B, Gi,i, and
Gj,i as CU j and BS, DUi transmitter and BS, DUi transmitter
and receiver, and CU j and DUi receiver channel gain,
respectively. The multiplexing factor is a binary variable. If
DUi multiplexes the uplink subcarrier of CU j, then ρij is 1;
otherwise, it is 0. Hence, we can denote the signal-to-inter-
ference-plus-noise ratio (SINR) of CU j to BS and the SINR
from the DUi transmitter to receiver as

γCj =
PjGj,B

∑N
i=1ρi,jPiGi,B +N0

, ð2Þ

γDi = PiGi,i
∑M

j=1ρi,jPjGj,i +N0
: ð3Þ

The transmission power of CU j is denoted by Pj, the
transmission power of DUi is represented by Pi when multi-
plexing cellular channel resources, and N0 stands for vari-
ance of zero mean Additive White Gaussian Noise
(AWGN).

Therefore, based on Shannon’s formula, the transmis-
sion rates (unit: bit/s) of CU j and DUi are as follows:

Rj = B∗ log2 1 + γCj

� �
, ð4Þ

Ri = B∗ log2 1 + γDi
À Á

: ð5Þ

Consequently, the total data rate of the system is

Rsum = 〠
M

j=1
Rj + 〠

M

j=1
〠
N

i=1
Ri: ð6Þ

2.3. Dynamic Power Control Strategy. The base station deals
with interference received in communication by adjusting
the transmission power and resource allocation of DUs. In
traditional D2D communication, the static power mode is
used, which leads to large interference between the CUs
and DUs and low resource utilization. In order to solve the
problem of cochannel interference caused by the reuse of
channel resources, a dynamic power control strategy is pro-
posed that adjusts the power based on channel environment
and user location changes. To maintain good communica-
tion between DUs and CUs, Eqs. (2) and (3) should be
greater than the minimum SINR. According to the for-
mula, CUs and DUs should have a maximum transmit
power of Eqs. (7) and (8) and a minimum transmit power
of Eqs. (9) and (10).

Pj ≤
PiGi,i − γi,minN0
∑M

j=1ρi,jGj,iγi,min
= Pj,max, ð7Þ

Pi ≤
PjGj,B − γj,minN0

∑N
i=1ρi,jGi,Bγj,min

= Pi,max, ð8Þ
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Pj ≥
γj,min ∑N

i=1ρi,jPiGi,B +N0
� �

Gj,B
= Pj,min, ð9Þ

Pi ≥
γi,min ∑M

j=1ρi,jPjGj,i +N0
� �

Gi,i
= Pi,min:

ð10Þ

2.4. Problem Formulation. Previously, only the D2D user
rate optimization problem was studied, ignoring cellular
user rates. Through power control and joint channel
resource allocation, we aim to maximize transmission rates
across the entire system to ensure a great user experience.

Here, we formulate the optimization challenge as follows:

max
ρi, j,Pi ,Pjf g

〠
M

j=1
Rj + 〠

M

j=1
〠
N

i=1
Ri

 !
, ð11Þ

γCj ≥ γj,min, ∀j ∈ C, ð12Þ

γDi ≥ γi,min, ∀i ∈D, ð13Þ

Pj,min ≤ Pj ≤ Pj,max, ∀j ∈ C, ð14Þ

DU-S DU-R

CU

CU

Interference link
Communication link

(a)

Interference link
Communication link

DU-S DU-R

CU
CU

(b)

Figure 1: Interference in the multiplexing of cellular user channel resources by D2D users.
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Figure 2: System model based on the D2D underlaying cellular networks.
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Pi,min ≤ 〠
N

i=1
〠
M

j=1
ρi,j ∗ Pi ≤ Pi,max, ∀i ∈D, ð15Þ

0 ≤ 〠
N

i=1
ρi,j ≤ 1, ∀j ∈ C, ð16Þ

0 ≤ 〠
M

j=1
ρi,j ≤w, ∀i ∈D, ð17Þ

ρj,i ∈ 0, 1ð Þ, ∀j ∈ C,∀i ∈D: ð18Þ

The maximized system throughput is expressed in Eq.
(11). Equation (12) represents the minimum requirement for
the CU j transmission rate. Equation (13) represents the min-
imum requirement for the DUi transmission rate. Equation
(14) limits the maximum transmission power range of CU j.
Equation (15) limits the transmission power range of DUi. A
single CU can be multiplexed by a single DU as indicated in
Eq. (16). A DU may reuse multiple CUs’ resources, as illus-
trated in Eq. (17). It is worth mentioning that the D2D user
reuse constraint can only be less than or equal to 1 in the
one-to-one model. In this paper, the D2D user reuse con-
straint can be greater than 1. Equation (18) indicates that the
reuse parameter is a binary variable. In Eqs. (11)–(18), the
problem with a MINLP shows up: it cannot directly solve this
problem in mathematics. Therefore, the improved particle
swarm algorithm is proposed to arrive at an approximate opti-
mal solution. In the following chapters, further details about
this method are provided.

3. Resource Allocation Algorithm Based on
Distance Grouping

In the first section, the distance-based grouping strategy in
the one-to-many system model is proposed. The second sec-
tion introduces the improved particle swarm optimization
algorithm which is proposed to solve the mixed-integer pro-
gramming problem.

3.1. Distance-Based Grouping Strategy. In D2D communica-
tion, as a result of interference from obstacles such as path loss,
the channel resources selected by the base station are not the
optimal ones, which decreases the system transmission rate.
This situation is more complex in one-to-many communica-
tion. Considering the correlation between user distance and
interference size, a resource allocation algorithm based on dis-
tance grouping is proposed in this paper, which allows D2D
users to select the optimal channel resource multiplexing
when the threshold condition is met. It not only ensures the
reasonable allocation of channel resources but also improves
the efficiency of algorithm execution and maximizes the trans-
mission rate of the system. The model diagram based on dis-
tance grouping is shown in Figure 3.

According to the analysis of the system model, the user
SNR is obtained, namely, Eqs. (2) and (3). Equation (1) is
substituted into Eqs (2) and (3) to give birth to the following

equations, respectively.

γCj =
PjGj,B

∑N
i=1ρi,jPi Γμξdi,B

−αð Þ +N0
, ð19Þ

γDi = PiGi,i
∑M

j=1ρi,jPj Γμξdj,i
−αÀ Á

+N0
: ð20Þ

It is found that the distance between CUs and DUs is
inversely proportional to the interference of CUs to DUs.
The longer the distance between CUs and DUs, the less
interference will be generated. Therefore, within each group,
D2D users select appropriate cellular user link resources for
reuse, based on the distance between them.

3.2. Improved PSO Algorithm

3.2.1. Problem Transformation. The PSO algorithm is
improved in a tractable constraint problem in this paper.
The objective function and constraints of the system model
are converted into the sum of penalty terms, which is used
as the fitness function of the improved PSO algorithm. In
order to facilitate the processing of PSO, we convert the con-
straints into penalty terms, which are expressed as follows: ei
(i = 1⋯ E) represents the penalty term, where E is the num-
ber of the divisor. The expression is the following constraint:

e1 = γj,min − γCj , ∀j ∈ C, ð21Þ

e2 = γi,min − γDi , ∀i ∈D, ð22Þ
e3 = Pj − Pj,max, ∀j ∈ C, ð23Þ

e4 = 〠
N

i=1
〠
M

j=1
ρi,j ∗ Pi − Pi,max, ∀i ∈D, ð24Þ

e5 = 〠
N

i=1
ρi,j − 1, ∀j ∈ C, ð25Þ

e6 = 〠
M

j=1
ρi,j −w, ∀i ∈D: ð26Þ

Then, according to the objective function Eq. (11) and
the penalty term Eqs. (21)–(26), the fitness function of the
improved PSO algorithm can be expressed as

f ρi,j, Pi, Pj

� �
= max

ρi, j ,Pi ,Pjf g
〠
M

j=1
Rj + 〠

M

j=1
〠
N

i=1
Ri

 !
+ l1∗e1+⋯+lE∗eE:

ð27Þ

The l1 (i = 1⋯ E) represents the factor of the penalty
term, which is introduced to avoid infinite expansion of
the sum of the penalty terms.

In the traditional particle swarm optimization algorithm,
the inertia weight of the updated particle velocity is fixed, so
it is challenging to converge. The inertia weight will change
according to the gradient descent function in this paper.
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As the number of update rounds increases, the inertia weight
will become smaller and eventually stabilize to the set mini-
mum value, causing the particles to stabilize in the final
update stage. Furthermore, the learning factor in the tradi-
tional particle swarm optimization algorithm is manually
set and fixed. The size of the learning factor can ensure the
ability of particle detection. In order to improve the accuracy
of the resource allocation algorithm and ensure the precise
convergence of the later particles, the fixed value to an adap-
tive one is changed in this paper. Every particle in the search
space is updated with its position and velocity through
improved particle swarm optimization as follows:

Vt+1
i =wVt

i + c1r1 Pt
id − Xt

i

À Á
+ c2r2 Gt

d − Xt
i

À Á
, ð28Þ

Xt+1
i = Xt

i + Vt+1
i : ð29Þ

w denotes the inertia weight (inertia weight) and c1 and
c2 represent nonnegative constant learning factors.

3.2.2. The Improved Inertia Weights. The inertia weight coef-
ficient is introduced to control the speed of the drop in iner-
tia weight. This prevents particles from falling into the local
optimal solution. A gradient descent function is used for
inertia weight, and its expression is

w =wmin +
wmax −wmin

tH
: ð30Þ

In this formulation, wmin stands for the minimum inertia
weight, wmax denotes the maximum inertia weight, t repre-
sents the current iteration number, and H denotes the iner-
tia weight coefficient.

The coefficient of inertia can be dynamically adjusted
according to the following equation:

H =H 1 + γrð Þ, ð31Þ

where r denotes a random number uniformly distributed in
the range ½0, 1� and γ represents a positive integer.

3.2.3. The Improved Learning Factor. The fixed value to an
adaptive one is changed in this paper, and the improved
expression is

c1 = c1 max +
c1 min − c1 maxð Þt

Tmax
, ð32Þ

c2 = c2 min +
c2 max − c2 minð Þt

Tmax
: ð33Þ

c1max and c2max stand for the maximal learning factors,
and c1min and c2min are the minimum learning factors. Then,
sort the particle fitness over all iterations. As a result of sort-
ing, 50% of the particles are retained and the rest are modi-
fied by adaptive mutation.

vtbd = vtgd 1 + βrð Þ, ð34Þ

CU1

DU-S

d1

Interference link
Communication link 

CU2
DU-R

d2

Figure 3: The grouping model based on distance.
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xtbd = xtgd 1 + αrð Þ: ð35Þ

vtgd and xtgd are the velocity and position of particles that

have a 50% fitness value, respectively. The xtbd and vtbd are
denoted the positions and velocities of the poorer 50% par-
ticles in the swarm, corrected by adaptive mutation, respec-
tively. r denotes a random number uniformly distributed
Gaussian in the range of ½0, 1�. α and β are two positive
numbers given. At the same time, the algorithm constrains
the position and velocity of each particle within the given
range. Furthermore, by introducing the mutation factor P,
the algorithm will be better able to deal with mutations.
Not only can the algorithm be prevented from falling into
local minima, but it can also jump from local minima effec-
tively. The expression of mutation factors is described as fol-
lows:

P = Pmbest
id −Ggbest

d , ð36Þ

where Pmbest
id is the mean value of the optimal particle posi-

tion obtained in the ith iteration and Ggbest
d is the global posi-

tion value of the optimal particle obtained so far.
It is worth mentioning that this paper uses the improved

particle swarm optimization algorithm to solve the optimal
solution through an iterative process.

3.2.4. Resource Allocation Algorithm Based on Distance
Grouping. The resource allocation algorithm based on dis-
tance grouping is shown in Algorithm 1.

3.2.5. Complexity Analysis. The complexity analysis of the
D2D channel selection and power control strategy is divided
into two stages, which effectively solves the mixed-integer
nonlinear programming problem produced by the original
problem. As part of DUs’ channel selection, both parties’
communication link selection problems must be calculated
and matched. Therefore, the algorithm complexity required
in the DU channel selection stage is OðMNÞ. The computa-
tional complexity of the KM algorithm is OðM3Þ. At the
optimal power control stage of DU and CU, each iterative
operation must resolve at most OðMNÞ power control prob-
lems. At this stage, the algorithmic complexity is OðTMNÞ,
where T is the number of iterations. Particle swarm algo-
rithms are computationally complex OðnÞ, where n is the
particle swarm size. Overall, the channel selection and power
control strategy proposed in this paper is of OððT + 1ÞMN
+ n +M3Þ level algorithmic complexity.

4. Simulation Results

The performance of a proposed resource allocation scheme
for distance-based grouping is proven in this section. The
simulation model considers a single-cell system with a base
station, a D2D pair, and cell users evenly distributed within
the cell. To verify the feasibility of the resource allocation
algorithm proposed in this paper, the modified particle
swarm algorithm in the ungrouped one-to-one model, the
adaptive mutation particle swarm algorithm in the
ungrouped one-to-one model, and the traditional resource
allocation algorithm in the ungrouped one-to-one model

1: Initializes particle parameters, the maximum number of iterations Imax, the individual optimal value of particles Pbest, the global
optimal value of particles Gbest, the global optimum in the last round Glast, and the stop counting variable count
2: Set iteration index i, stationary threshold delta
3: For1 ≤ i ≤ Imaxdo
4: Calculate the objective function value and penalty term according to Eq. (11) and Eqs. (12)–(17)
5: The particle fitness is calculated by using the objective function value and penalty term Eq. (27)
6: Calculate the individual optimal value of particles Pbest and the global optimal value of particles Gbest

7: If Gbest −Gbest last < delta do
8: Set count = count + 1
9: Else do
10: Set count = 0
11: End if
12: Set Gbest last =Gbest i

13: If Pbest i > Pbest do
14: Pbest = Pbest i

15: End if
16: If Gbest i > Gbest do
17: Gbest = Gbest i

18: End if
19: Update velocities Vi and position Xi according to Eqs. (28) and (29)
20: Update particle position Xi using particle velocity Vi according to Eq. (29)
21: Set i = i + 1
22: If count ≥ delta do
23. Break
24: End if
25:End for

Algorithm 1: Resource allocation algorithm based on distance grouping.
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are compared. The main parameters of this paper are sum-
marized in Table 1.

The change trend of system throughput and DUs under
different resource management schemes is shown in
Figure 4. As plotted in the curve trend, a rise in D2D users
is accompanied by an increase in cellular users. CUs provide
reusable resources for D2D users, so the system throughput
increases for all four algorithms. Under any number of DUs,
compared to the three comparison algorithms, the proposed
algorithm obtains better throughput, since the improved

particle swarm algorithm is more able to get out of the local
optimal solution and find the global optimal solution. It is
shown that D2D communication significantly boosts cellular
network throughput.

Fixed D2D users numbering 20 under four different
algorithms are depicted in Figure 5. Increasing the number
of cellular subscribers gradually increases system through-
put. As plotted in Figure 5, as the number of CUs increases,
so does the throughput of the system, since CUs provide
more reusable resources for DUs. With 30 CUs, the reusable

Table 1: Simulation setup.

Parameters Value

Number of CUs (M) 20-50

Number of DUs (N) 5-40

Cell radius (R) 500m

D2D link distance (d) 5-45 (m)

Transmission power of CU j (Pj,max) 24 dBm

Maximal transmission power of DUi (Pi,max) 24 dBm

Noise spectral density (N0) –174 dBm/Hz

γj,min, γi,min 2 bps/Hz

Maximal learning factors (c1max, c2max) 2.5

Minimum learning factors (c1min, c2min) 0.5

Path loss constant (Γ) 0.01

Fast fading factor (μ) Exponential distributed with unit mean

Slow fading factor (ξ) Log-normal distributed with standard deviation of 8 dB

Path loss exponent (α) 3

Random number uniformly distributed (r) [0, 1]

Maximal number of iterations (Tmax) 150

500
25 30 35 40

Number of DUs

45 50

1000

N
et

w
or

k 
th

ro
ug

hp
ut

 (b
ps

/H
z)

1500

2000

AMBPSO
PSO

Distance grouping algorithm
Ungrouping algorithm

Figure 4: Network throughput with different numbers of D2D users.
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resources provided are the smallest, and the system through-
put is the smallest. With 50 cellular users, the most reusable
resources are provided, and the system throughput is the
highest. The system throughput increases the most with
the proposed scheme.

With the number of DUs gradually increasing, the sys-
tem throughput will also rise, as depicted in Figure 6. D2D
users reach a certain number; since the number of cellular
users is fixed, there will be no subcarriers available for
D2D users to choose from or use; hence, the system

throughput will decrease. Compared to the other three algo-
rithms, the proposed algorithm has a higher system
throughput, indicating that it can reasonably allocate cellular
user resources and control interuser interference.

The variation of the D2D user system throughput under
different maximum transmission powers is shown in
Figure 7. An increase in transmission power will lead to
more D2D communications and higher system throughput,
as shown by the change trend. With transmission power of
any DU at maximum, the algorithm achieves the highest
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system throughput. Moreover, D2D users’ increasing trans-
mission power will cause cellular networks to suffer more
interference. As shown in the figure, the system throughput
shows a slight downward trend. Thus, the D2D users’ max-
imum transmission power will slightly limit the increase of
system throughput.

Figures 8 and 9 show the results of the system through-
put and running time analysis of the four algorithms with

varying iteration times in order to analyze the search capa-
bility and convergence speed of the improved algorithm.
As the number of iterations increases, the figure shows that
the system throughput increases accordingly. After a certain
number of iterations, the system throughput reaches a max-
imum and remains constant because all D2D users reuse cel-
lular user channel resources. The algorithm converges before
the 50th iteration. According to this algorithm, it converges
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in the shortest time possible, and the maximum system
throughput is achieved. Based on the change curve in
Figure 9, increasing the number of iterations also extends
the operation time of the four algorithms, but the operation
time of the algorithm in this paper is the shortest. In the ini-
tial convergence, it took 16 seconds. By comparison, using
the algorithm has the fastest convergence speed and system
throughput is greatly improved.

5. Conclusion

In this paper, D2D communication can enable flexible mul-
tiplexing of cellular users’ uplink resources. To ensure fair-
ness, a DU may multiplex multiple CU uplink resources.
While meeting the QoS requirements of CUs and DUs, it
solves the problem of maximizing system throughput by tak-
ing into account the constraints of rate, transmission power,
and reuse factor. The problem presented here is a MINLP
problem. A distance-based resource allocation algorithm is
proposed, based on the relationship between user distances
and interference levels, that allocates channel resources in a
moderate and efficient manner. According to the simulation
results, the proposed scheme has better performance than
other benchmark schemes. How to investigate the joint
problem of information transmission and power control is
our future work. The method proposed in this paper is
employed to bring the chance of extending D2D
communication.
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