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Resource Allocation for IRS-assisted Full-Duplex
Cognitive Radio Systems

Dongfang Xu, Student Member, IEEE, Xianghao Yu, Member, IEEE, Yan Sun, Member, IEEE, Derrick Wing
Kwan Ng, Senior Member, IEEE, and Robert Schober, Fellow, IEEE

Abstract—In this paper, we investigate the resource allocation
design for intelligent reflecting surface (IRS)-assisted full-duplex
(FD) cognitive radio systems. In particular, a secondary network
employs an FD base station (BS) for serving multiple half-duplex
downlink (DL) and uplink (UL) users simultaneously. An IRS is
deployed to enhance the performance of the secondary network
while helping to mitigate the interference caused to the primary
users (PUs). The DL transmit beamforming vectors and the UL
receive beamforming vectors at the FD BS, the transmit power
of the UL users, and the phase shift matrix at the IRS are jointly
optimized for maximization of the total spectral efficiency of the
secondary system. The design task is formulated as a non-convex
optimization problem taking into account the imperfect knowl-
edge of the PUs’ channel state information (CSI) and their max-
imum interference tolerance. Since the maximum interference
tolerance constraint is intractable, we apply a safe approximation
to transform it into a convex constraint. To efficiently handle the
resulting approximated optimization problem, which is still non-
convex, we develop an iterative block coordinate descent (BCD)-
based algorithm. This algorithm exploits semidefinite relaxation,
a penalty method, and successive convex approximation and is
guaranteed to converge to a stationary point of the approximated
optimization problem. Our simulation results do not only reveal
that the proposed scheme yields a substantially higher system
spectral efficiency for the secondary system than several baseline
schemes, but also confirm its robustness against CSI uncertainty.
Besides, our results illustrate the tremendous potential of IRS
for managing the various types of interference arising in FD
cognitive radio networks.

Index Terms—Block coordinate descent, imperfect channel
state information, intelligent reflecting surface, cognitive radio,
full-duplex.

I. INTRODUCTION

Radio spectrum is a naturally limited resource in wireless
communication systems. During the last couple of decades,
most of the available spectrum has been licensed and allocated
to provide various high data-rate communication services.
This has led to the problem of a spectrum crunch for future
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wireless communication systems [2]. However, according to
measurements of the actual spectrum utilization, e.g. [3], [4], a
large amount of the allocated spectrum is highly underutilized.
To improve the utilization of the limited spectral resource,
cognitive radio (CR) has been proposed to offer communica-
tion services to unlicensed secondary systems within licensed
frequency bands. One promising approach to spectrum sharing
is underlay CR where the secondary system is allowed to
use the spectrum concurrently with the primary users (PUs)
as long as the quality-of-service (QoS) of the PUs is not
severely impaired. Thus, to limit the performance degradation
caused to the primary network, the secondary system has to
be carefully designed [4]-[6]. For example, the authors of
[5] developed a joint transmit power allocation and receive
beamforming design to minimize the total transmit power of
the secondary transmitter, while constraining the interference
to the PUs to be below a given threshold. In [6], the au-
thors proposed a multi-objective optimization framework and
developed a Pareto-optimal resource allocation algorithm to
realize simultaneous wireless power and secure information
transfer in CR networks. However, since the CR networks in
[5], [6] employ half-duplex (HD) base stations (BSs) and the
uplink (UL) and downlink (DL) transmissions are performed
in orthogonal frequency bands, the radio spectral resources are
still underutilized.

To boost wireless spectral efficiency, full-duplex (FD) com-
munication has recently drawn considerable research interest
[7]-[11]. In fact, by incorporating FD BSs into CR networks,
the spectral efficiency can be potentially doubled compared to
traditional HD CR networks. However, since in CR networks
the secondary system has to share the spectrum with the
primary system, the QoS of the PUs is inevitably impaired by
the simultaneous UL and DL transmissions of the secondary
system. In general, compared to the PUs in conventional HD
CR networks, because of the larger number of concurrent
transmissions, the PUs in FD CR networks suffer from more
severe interference, which degrades the performance of the
primary network [7], [8]. Moreover, the self-interference (SI)
and co-channel interference (CCI) caused by the simultaneous
DL and UL transmissions, if left unattended, can also sig-
nificantly degrade the performance of the secondary system
[7]. To effectively manage the interference in FD CR net-
works, different resource allocation designs were developed
in [9]-[11]. In [9], the sub-channel assignment, user pairing,
and power allocation was jointly optimized to improve the
spectral efficiency of a FD CR system. In [10], the authors
investigated robust DL beamforming and UL power allocation



for minimization of the maximum interference leakage to the
PUs while taking into account the QoS requirements of the
SUs. In [11], multi-antenna precoding and relaying strategies
for cooperative FD CR systems were developed to maximize
the spectral efficiency of the secondary system while taking
into account a minimum required data rate for the PUs. Despite
these promising results, the PUs in FD CR systems may still
suffer from significant interference as the radio frequency (RF)
propagation environment of wireless systems is essentially
random and largely uncontrollable. In fact, in unfavorable
radio propagation environments, the designs proposed in [9]—
[11] cannot mitigate the interference caused to the PUs such
that their QoS requirements may be violated. In this case,
since the PUs have a higher priority for utilizing the spectrum,
the communication in the secondary network may be strictly
limited leading to a severe performance degradation of the
secondary network. To overcome this problem, more effective
interference management methods are urgently needed to
facilitate reliable and spectrum-efficient FD CR networks.
Recently, intelligent reflecting surfaces (IRSs) have emerged
as a promising solution for harnessing interference in wireless
communication systems [12]-[19]. In particular, an IRS is a
planar metasurface comprising a set of small passive low-cost
elements, such as phase shifters and printed dipoles, which
can be tuned individually to reflect the incident signals with
a desired phase shift [20]. By adaptively and smartly tuning
the phase shifts of the IRS elements according to the dynamic
radio propagation environment, the wireless channel can be
proactively manipulated, which introduces additional degrees
of freedom (DoFs) for resource allocation [12]. Moreover,
the reflected signals can be combined with the non-reflected
signals in a constructive or destructive manner to enhance
the desired signal power strength or to suppress detrimental
interference, which improves the overall system performance.
Besides, due to their relatively simple structure [20], IRSs
can be flexibly installed on building facades and interior
walls, and thus can be smoothly integrated into existing
cellular communication systems [12]. Deploying IRSs may in-
crease the complexity of resource allocation algorithm design.
However, several works have shown that with an advanced
but computationally-efficient resource allocation design IRS-
assisted wireless systems can achieve significant performance
gains compared to conventional wireless systems without IRS
[13]-[15], [21], [22]. In particular, the authors of [13] consid-
ered an IRS-aided multiple-input single-output (MISO) system
and studied the joint design of the beamforming at the BS and
the IRS to minimize the total BS transmit power. The authors
of [14] considered an IRS-enhanced single-user system and
developed two computationally efficient suboptimal algorithms
for maximizing the received power of the user. The authors of
[15] introduced artificial noise (AN) to improve the physical
layer security of an IRS-assisted multiuser communication
system and jointly optimized the IRS phase shifts, DL beam-
formers, and AN design. The authors of [21] studied the
benefits of IRSs in orthogonal frequency division multiple
access systems and formulated a joint transmit power and
IRS phase shift optimization problem for maximization of the
system throughput. The authors of [22] investigated the joint

BS beamforming and IRS phase shift design and proposed two
suboptimal algorithms to guarantee physical layer security in
an IRS-assisted multiple-input single-output (MISO) system.
However, the authors of [13]-[15], [21], [22] considered HD
systems, which cannot exploit the full potential of IRSs. In
fact, since IRSs naturally operate in a FD manner [19], they
can be conveniently incorporated into existing FD CR network
concepts to further increase spectral efficiency. Yet, the designs
proposed in [13]-[15], [21], [22] are not directly applicable to
IRS-assisted FD CR networks. In particular, the simultaneous
UL and DL transmissions of the secondary system, the su-
perposition of the direct and reflected paths, and the coupling
between the DL beamforming vectors, UL transmit powers,
and IRS phase shifts makes the resource allocation design for
IRS-assisted FD CR networks very challenging. To the best
of the authors’ knowledge, the design of spectrally-efficient
IRS-assisted FD CR networks has not been investigated in the
literature, yet.

Motivated by the above discussion, in this paper, we inte-
grate IRSs into FD CR networks and investigate the corre-
sponding resource allocation algorithm design. In particular,
as the secondary system is allowed to share the spectrum
of the primary system as long as the QoS of the PUs is
not severely compromised, the IRS is utilized to establish
a favorable radio propagation environment. In particular, we
aim to maximize the spectral efficiency of the secondary
system by jointly optimizing the DL transmit beamformers,
the UL transmit power, the UL receive beamformers, and the
IRS phase shifts. The problem formulation takes into account
the imperfect knowledge of the channel state information
(CSI) of the PUs at the FD BS of the secondary system
and the maximum interference leakage tolerance of the PUs.
Since the maximum interference leakage tolerance constraint
is intractable, we transform it into a convex constraint by
applying a safe approximation. Due to the coupling between
the optimization variables and the unit-modulus constraint
of the IRS phase shifts, even with the safe approximation,
the formulated problem is still highly non-convex and it is
very challenging to obtain the optimal solution. Hence, we
propose a block coordinate descent (BCD)-based iterative
algorithm to obtain a suboptimal solution [23]. In particular,
by applying successive convex approximation (SCA) [24] and
semidefinite relaxation (SDR), the DL transmit beamforming
and UL power allocation policies are obtained with the other
optimization variables being fixed. Then, we derive the closed-
form optimal solution for the receive beamforming vector
of the secondary BS given the other optimization variables.
Subsequently, we obtain the phase shift matrix of the IRS by
applying a penalty method [25] and SCA. The developed BCD
algorithm is guaranteed to converge to a stationary point of the
approximated optimization problem. Simulation results reveal
that IRSs and the proposed algorithm can significantly enhance
the performance of secondary networks while efficiently mit-
igating the interference to the PUs.

Notations: In this paper, boldface lower case and boldface
capital letters denote vectors and matrices, respectively. N
denotes the set of nonnegative integers. RV XM and CN*M
denote the space of N x M real-valued and complex-valued
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Fig. 1. CR system comprising a secondary FD base station, J = 2 secondary
UL users, and K = 2 secondary DL users sharing the spectrum with I = 2
PUs. The IRS is deployed to enhance the system performance of the secondary
network and to mitigate the interference to the PUs. The direct paths and
reflected paths are denoted by solid arrows and dashed arrows, respectively.
The signals of the primary transmitter are not shown for clarity.

matrices, respectively. R {-} extracts the real part of a complex
number. HY denotes the set of all N-dimensional complex
Hermitian matrices. Iy indicates the N x N identity matrix.
|-] and ||-||2 denote the absolute value of a complex scalar and
the [o-norm of a vector, respectively. AT A* and AH stand
for the transpose, the conjugate, and the conjugate transpose
of matrix A, respectively. A > 0 indicates that A is a
positive semidefinite matrix. Rank(A), Tr(A), [A],,, and
|A|l, denote the rank, the trace, the (i,)-entry, and the trace
norm of matrix A, respectively. x; denotes the i-th element
of vector x. Diag(X) represents a diagonal matrix whose
diagonal elements are extracted from the main diagonal of
matrix X; diag(x) denotes an N x N diagonal matrix with
main diagonal elements x1,--- ,2y. £{-} denotes statistical

expectation. ~ and 2 stand for “distributed as” and “defined
as”, respectively. The distribution of a circularly symmetric
complex Gaussian random variable with mean p and variance
o2 is denoted by CN(p1,02). The gradient vector of function
f(x) with respect to x is denoted by V f(x). x! denotes the

optimal value of optimization variable x.

II. SYSTEM MODEL

In this section, we present the IRS-assisted multiuser FD
CR network model and discuss our assumptions regarding the
CSI available for resource allocation.

A. IRS-Assisted Full-Duplex Cognitive Radio System Model

We consider a narrow-band IRS-assisted CR communication
system! consisting of a primary license-holding network and
a secondary unlicensed network, cf. Figure 1. In particular,
the primary network comprises one primary transmitter and [
PUs, while the secondary network includes one secondary FD
BS, J UL users, and K DL users. The primary transmitter,

'In this paper, we consider an underlay CR network [26] where the
secondary FD BS can opportunistically coexist with the primary transmitter as
long as the interference leakage to the PUs is kept below a certain threshold.

the I PUs, and the K + J secondary users are single-
antenna HD devices. The secondary FD BS is equipped with
Nt > 1 antennas’, indexed by A 2 {1,---,Nr}, and
simultaneously performs DL transmission and UL reception
in the same frequency band®. Due to the spectrum sharing,
the QoS of the primary network is impaired by interference
leakage from the secondary network. To effectively suppress
the interference and improve the system performance of the
secondary network, an IRS is deployed. In particular, the IRS
comprises M phase shifters, indexed by M 2 {1,---, M},
and is programmable and reconfigurable via an IRS controller.
For notational simplicity, we define sets Z = {1,--- I},
J = A{l,---,J}, and £ = {1,---,K} for the indices
of the PUs, secondary UL users, and secondary DL users,
respectively.

In a given time slot, the secondary FD BS transmits signal
> wkd]kDL to the K DL users, where dEL € C and wy, €
ke
CN7*1 denote the information symbol for secondary DL user
k and the corresponding beamformer, respectively. Without
loss of generality, we assume 8{|d],?L 2} =1, Vk € K. The
received signals at PU i, the secondary FD BS, and secondary
DL user k are given by, respectively®,

(f]};,i + (fP]{),i)H ‘I’fpil) Z\/pigdg

nez

yr

Signal from the primary transmitter

+ Y reddt + >/ 1 @hy jdi

JjET jeT

Interference from the secondary uplink

+ 3 weddt + > I @ FwdRt 4l (1)
kex kel

Interference from the secondary downlink

yU = > Vb hoydit + Y /p FY Why d"

JjET JjET

Desired signal

+ 8> wid)t + ) FHUFwd"

ke kel
Self-interference
+ (FU 4+ FTwEP) Y fpPdl 4Vt )

neZl

Interference from the primary transmitter

v = 8hawkdy "+ gR PFwidy "

desired signal

+ > ehwedtt+ > gl WFw,dP"
rek\{k} rek\{k}

Multiuser interference

2To facilitate reliable UL signal detection, we assume that the number of
antennas equipped at the secondary FD BS is equal to or larger than the
number of secondary UL users, i.e., N7 > J.

3Simultaneous transmission and reception with the same antenna can be
realized by employing a circulator-based FD radio transceiver, as demonstrated
in [27].

“In this paper, we assume that the secondary network is time-synchronized
and frequency-synchronized with the primary network.
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nel
Interference from the primary transmitter

Here, ff;; € C and ff ; € CM*! denote the channel between
the primary transmitter and PU i and the channel vector
between the IRS and PU i, respectively. Diagonal matrix ¥ =
diag (€Y1, -+, eI ) represents the phase shift matrix of the
IRS [13], where ¢, € [—7, 7], Vm € M, is the phase shift
introduced by the m-th IRS element. The channel between the
primary transmitter and the IRS is denoted by '~ € CM*1,
ph € R and df, € C denote the transmit power for PU n,
Vn € Z, and the corresponding data symbol, respectively.
Ip; € CNt>! and lg,; € CM*! denote the channel vector
between the secondary BS and PU ¢ and the channel vector
between the IRS and PU 4, respectively®. Matrix F € CM >Nt
models the channel between the secondary FD BS and the IRS.
Variables dUL € C and p; € R are the data symbol and the
correspondmg power transmitted by secondary UL user J to
the secondary FD BS, respectively. We assume £ {|dUL’ =1
without loss of generality. The channel gain between sec-
ondary UL user j and PU i is denoted by e; ;. hp ; € CNtx1
and hg; € CM*! denote the channel vector between the
secondary BS and secondary UL user j and the channel
vector between the IRS and secondary UL user j, respectively.

S > widPl in (2) represents the SI resulting from the DL
ke
transmission with S € CNTt*NT denoting the SI channel

matrix of the secondary FD BS. The term > F# WFw,dP"

in (2) denotes the SI introduced by theker/éﬂection of the
DL transmit signal by the IRS. fUL € CNt*! denotes the
channel between the primary transmitter and the secondary
BS. gpx € CVm*! and gg € CM*! denote the channel
vector between the secondary BS and DL user k£ and the
channel vector between the IRS and DL user k, respectively.
The channel gain between secondary UL user j and secondary
DL user k is denoted by g;x. fY denotes the channel
between the primary transmitter and secondary DL user k.
n"t ~ CN(0,02 In.) and np" ~ CN(0,02, ) denote the
equivalent additive white Gaussian noises (AWGNSs) at the
secondary FD BS and secondary DL user k, which capture
the combined effect of thermal noise and signal processing
noise [29]. n}) includes the joint effects of thermal noise and
signal processing noise at PU 1.

Remark 1: In the following, for resource allocation design,
we model the interference from the primary transmitter to
the secondary BS and to secondary user k, ie., (fUl +

FAREPT) S \/pPdl and (fD% + gl ,®fP~1) S /pRdE,
nEI nEI

5The delays between the signal propagating through the direct path and the
reflected path via the IRS are typically much shorter than the symbol duration.
For instance, for a cell with a radius of 50 m as considered in our simulations,
cf. Figure 2, the maximum round-trip delay is 0.33 us, which is significantly
shorter than the 70 ps symbol duration in the Long-Term Evolution (LTE)
standard [28]. Thus, we neglect the impact of intersymbol interference in this

paper.

as additional AWGNs z"" ~ CN (0,02 In,) and 2% ~
CN(0, a?k), Vk € K, respectively. This is due to the fact that,
as can be seen from (2) and (3), the signals originating from
the primary transmitter may affect the IRS phase shift matrix
design. To accurately capture this effect for resource allocation
algorithm design, both the transmit power of the primary
transmitter and the CSI between the primary transmitter and
the secondary network have to be known. However, learning
the power allocation policy and the CSI of the primary network
would significantly increase the signalling overhead for the
secondary network. As a result, resource allocation design
taking into account the exact structure of the interference from
the primary transmitter may not be feasible in practice. For
notational simplicity, in the following, we include variances
o2 , and o? . in the variances of nYl and n L respectively.
We note that the interference from the primary transmitter
is approximated as additional AWGN for resource allocation
design only. For evaluation of the performance of the proposed
resource allocation scheme, the actual system defined by (1)-
(3) is simulated.

B. Channel State Information

In this paper, we assume that both the primary network and
the secondary network are time division duplex systems with
slowly time-varying channels. During the channel estimation
phase of the secondary network, the secondary FD BS can
reliably estimate all links of the secondary network with the
assistance of the SUs and the IRS [30]. As a result, we assume
that the perfect CSI of the secondary network is available at
the secondary FD BS for resource allocation. However, this
assumption may not be valid for the channels between the
secondary network and the PUs. In practice, the PUs can not
be expected to directly interact with the secondary FD BS.
Moreover, the PUs may be idle for a long period of time due to
bursty data transmission. As a result, the CSI of the PUs can be
obtained only occasionally at the secondary FD BS when the
PUs are active in the primary network, which leads to outdated
PU CSI at the FD BS. In this paper, we develop a worst-case
optimization framework to capture the impact of imperfect PU
CSI on resource allocation design [31]. Specifically, the CSI
of the link between the FD BS and PU 4, i.e., Ip ;, the CSI of
the link between the IRS and PU ¢, i.e., Ig ;, and the CSI of
the link between PU i and secondary UL user j are modeled
as:

lD,i = ID7i+A1D,i and QD,i é {ID,iiAlg7iAlD,i < EQDJ;} ,(4)
A

Ig,; =1Ig;+Alg; and Qr; = {Ig|AL Alg; <eg ). ()
€;j = EM—FAem and Qi,j é {ei7j|AefjAei,j < Eij},

respectively, where 1p ;, Ir ;, and €; ; are the CSI estimates
and Alp ;, Alg;, and Ae; ; are the corresponding unknown
estimation errors, respectively. We denote the channel uncer-
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tainty regions® by continuous sets Qp,i, Or,i» and §; ; with
radii ep 4, €Rr,i, and &; ;, respectively.

III. RESOURCE ALLOCATION PROBLEM FORMULATION

In this section, after introducing the adopted performance
metrics, we formulate the proposed resource allocation opti-
mization problem.

A. Performance Metrics

The achievable spectral efficiency (bits/s/Hz) of secondary
DL user k is given by RP = log,(1 + I'PY), where T'P-
is the receive signal-to-noise-plus-interference ratio (SINR) of
secondary DL user k£ and given by (7), where (7) is shown
at the top of this page. On the other hand, the spectral
efficiency (bits/s/Hz) of secondary UL user j is given by
RJUL = logy(1 + I‘}JL), where F]UL is the receive SINR of
secondary UL user j and given by (8), where (8) is shown
at the top of this page. Here, v; € CN7*! is the receive
beamforming vector for decoding the message of secondary
UL user j at the secondary FD BS. We note that due to
the limited dynamic range of the receiver, the SI cannot be
suppressed completely even if perfect CSI of the SI channel
is available at the secondary FD BS [33]. Thus, similar to
[33], [34], we model the residual SI after cancellation at each
receive antenna as an independent Gaussian distortion noise
with zero mean and a variance proportional to the power
received at that antenna. In particular, according to [33, Eq.
(4)], the term DJS»I in (8) is given by (9), where (9) is shown at
the top of this page. Here, constant 1, 0 < 1 < 1, captures the
impact of the residual interference after SI cancellation at the
secondary FD BS [35]. We note that due to the propagation
attenuation between the FD BS and the IRS, the reflected
interference in (9) is negligible’ compared to self-interference.
As a result, we can approximate (9) as follows

D]S-I ~ Tr (nvjvaiag(ZkawaHD .
kel

®In this paper, we assume the radius of the channel uncertainty region
is known. Yet, we note that the channel estimation error itself is a random
variable which lies in the given channel uncertainty region. In practice, the CSI
estimates and the channel uncertainty regions can be determined by applying
existing channel estimation schemes for IRS-assisted wireless systems, see,
e.g., [30], [32].

"For a CR network where the IRS is 100 m away from the FD BS
and a path loss exponent of 2, the term FH\IlekwaH\IIHF +
FH\I'kawkHSH + kawaH\IIHF is attenuated by approximately a
factor of 10~° compared to the term kawkI,{SH

(10)

B. Optimization Problem Formulation

In this paper, we optimize Wy, v;, p;, and ¥ to maximize
the system spectral efficiency of the secondary network while
limiting the interference caused by the secondary network to
the PUs. The corresponding optimization problem is formu-
lated as follows

maximize F(Wk, Vi, Pj, ‘I’)
Wi, V05,

st Cl: Y |lwi]|* < PRE

max’
ke
C2: 0 S Py S Pj,max;, vj,
C3: ‘[‘Il]m,m = 1’ Vm,
C4: max Z 115w + lﬁ[i‘I’ka‘Q
Ip,i€Qp.i ’ ’
lR,iEQR,ikeK
€ ;€Q; ;
2 .
e+ Wb < Vi)
jeTg

where F(wk.,vj,pj,\Il) is defined as F(wk,vj,pj,\Il) 2
> witlogy (1+T55)+ 3 wPllogy (14T1Y). Here, wi™ >
jeg keK

0 and wP™ > 0 denote predefined weights for secondary UL
user j and DL user k, which can be used to prioritize the UL
and DL users. PPL > 0 and p; max > 0 in constraints C1
and C2 limit the maximum transmit powers of the secondary
FD BS and secondary UL user j, respectively. Constraint C3
guarantees that the diagonal phase shift matrix ¥ has M unit
modulus components on its main diagonal. C4 constrains the
maximum tolerable interference leakage. In particular, despite
the imperfection of the CSI, the secondary network is required
to ensure that the interference leakage to PU ¢ does not exceed
the maximum interference tolerance pioy, .

We note that problem (11) is a highly non-convex optimiza-
tion problem. In particular, the coupling of the optimization
variables, the non-convexity of the objective function, the unit-
modulus constraint C3, and the semi-infinite constraint C4
are the main obstacles for solving the considered resource
allocation problem efficiently. To the best of the authors’
knowledge, the globally optimal solution of this problem
is in general intractable. In the next section, we develop a
suboptimal BCD-based iterative algorithm to solve problem
(11) with polynomial time complexity.
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IV. SOLUTION OF THE OPTIMIZATION PROBLEM

In this section, we first employ a safe approximation to
convert constraint C4 to a set of convex constraints. Then, we
propose a BCD-based algorithm to tackle the approximated
problem, which is still highly non-convex. In fact, BCD is a
widely applicable approach that divides coupled optimization
variables into several blocks and solves the optimization
problem for one block at a time while fixing the variables in
the other blocks [23]. In particular, we divide the optimization
variables into three blocks: {wy,p,;}, {v;}, and {¥}. By
employing SCA and SDR, we obtain the transmit beam-
forming vector wj, and transmit power p;. Then, we derive
a closed-form solution for receive beamforming vector v;.
Subsequently, we solve for ¥ by applying a penalty method
and SCA.

A. Transformation of the Semi-Infinite Constraints

In the literature, semi-infinite constraints are commonly
transformed into tractable linear matrix inequality (LMI) con-
straints [31]. However, due to the coupling between the opti-
mization variables and the coupling between the signals of the
direct and reflect paths, it is challenging to transform constraint
C4 into an LMI that is jointly convex with respect to wy and
W. To facilitate robust resource allocation algorithm design,
we first apply inequality |a + b+ ¢|* < 3]a|> + 3 |b]> + 3 |c|,
where a, b, and ¢ are complex numbers, to the left hand side of
constraint C4 to obtain a tractable upper bound®. In particular,
a subset of the set defined by constraint C4 is given by

C4: max
Ip,i€Qp,i
IR, i €QR,i
€i,j GSZL]‘

+ Al wFwi ") + 3 (
JjET

- _ 2
S~ (A wil” + [Ip owe + T WFwy|

_H 2
@J+thhR4

12)

+ [Bei P+ AL Ohe[*) < B v

In the remainder of the paper, we tackle the following approx-
imated optimization problem:

maximize F(Wk,Vj,pj, \Il)

Wi, Vji,p;, ¥

st.  C1,C2,C3,C4. (13)

We note that any feasible solution of (13) is also a feasible
solution of (11). Hence, (13) is a safe approximation of (11)

8We note that the upper bound becomes tight when a, b, and ¢ have similar
values.

[36]. Then, we define slack variables [3;, 7v;, and 7; and rewrite
constraint C4 equivalently as constraints C4a, C4b, C4c, and
C4d which are shown at the top of this page, respectively.
We note that C4d is convex in w;, and ¥ individually while
C4a, C4b, and C4c are still semi-infinite constraints. Next, we
introduce a lemma for transforming constraints C4a, C4b, and
Céc into LMI constraints.

Lemma 1 (S-Procedure [37]) Let a function f,,(x), m €
{1,2}, x € CN*!, be defined as

fm(x) = xT A, x + 2R {agx} + 17
where A,, € HV, a,, € CN*! and a,, € R. Then, the
implication f;(x) < 0= f3(x) < 0 holds if and only if there
exists a 0 > 0 such that

(5[A1 31} o |:A2 az} =0,
al ay 212 az

(18)

provided that there exists a point X such that f,,(X) < 0.
To facilitate the application of Lemma 1, we first rewrite
constraint C4c as follows

(Y FW,F"+> pHg; ¥

keK JjeT

Algﬂ‘I’ HA]R,i"_Ti < Vis V’L,

(19)
where Wy, 2 wyw/ and Hp; 2 hg ;hf{ ;. By apply-
ing Lemma 1, the following implication can be obtained:
Al ,Alg,; — e, < 0 = Céc holds if and only if there
exist 8; > 0 such that

Céc: S@Ci(Wk,pj,‘I’,’ymTi,(Si)
 [6:0y — UBWH 0 .

where B 2 SSFWLFH + Y pJHR ;. To simplify the
ke je
notation, we rewrite the LMI in (20) as follows

C4c: S@Ci(Wk,pj7'I’7'Yi»Ti76i>
o (SlIM 0 H H
- [ 0 —5i€%{,i—7i+7¢] - CTIBYEC L0, @l

where C = [ Ip; 0 |. Similarly, by applying Lemma 1, we
rewrite constraints C4a and C4b as follows

Cda: S, (pj. Bi, i)
LZ’IJ 0
0 — > ek, -

jeg
C4b: Sy, (Wi, Bi, i, ki)

Bi+ el | = Di'PD; = 0, (22)

Ptol,;
3



Tr(grg; W)

Pt = — 5 and (29)
>, Tr(grgy Wr) + X pjlekl” + ok,
rek\{k} JjET
iTr ﬁﬁHV H
F}JL _ _ p; Tr( Vi) . (30)
S pTr(hehi )+ Tr(nv;v HDlag( Z SWSH)) + o ||v;||
teT\{5}
fr == wPtogy [ > Tr@f W)+ pjilesnl* + 02, | (33)
ke rekk JjeJ
fo = —z:wULlog2 (ZptTr hth v,V )+UU Hv]|| + Tr(nv,v HDlag ZSWkSH))> (34)
JjeT teg keK
g=—Y wptlogy [ Y Tr(@8F W)+ > pileinl® +02, |, (39)
kek rek\{k} jeg
go = wa}JLlog2 Z e Tr( hth Vjiv; Y 4o ||v]|| + Tr(nv,v HDlag ZSWkSH)) (36)
jeg teI\{5} kek
_ |:I<;iINT 0 } _ ZE?WkEl = 0,(23) (30) which are shown at the top of this page, respectively.
0 —rich i~ it B oK N Constraint C4d can be rewritten equivalently as:
Cad: S TeMIEW) + S s 192 <7, Vi (31
where L, ki >0, P = dlag(pl, < pJ),s Dié [IJO],and ,;C ( ]%:7 s

B 2 [Iy, 0 ec
p; and C4b is convex with respect to Wy. Moreover, C4c is
convex with respect to p; and Wy, but is still non-convex with
respect to ¥ due to the quadratic term WBWH

] We note that Cda is convex with respect to

B. Optimizing {Wy,p;} for Given ¥ and v,

For given W and v;, we first rewrite the terms
%k‘i‘ng‘I’hRg‘ in (7),

the term |h#Z 75v]—|—th\Il Fv]’

and

2
‘gD Wi T+ gR, k‘I’FWr

in (8), and the terms

ngzwarlequwk’ and e, +10 Why | in (16) as
ollows, respectively,
&b kWi + gﬁ{k\I’kal & Wk‘ = Tr(grg) Wi), (24)
2
b v, + i @1 Fv, " = [nv,| = Te(h;hfv,vH), 25
_ _ 2 ~ 2 A~
‘lDﬂ-wk +1§7i\11ka’ ! wk‘ — Te(LI7W,),  (26)
2
|aj + g8 1 Uhe | = lejul® @7)
_ =H 2 2
€ij +1g¥hr ;| = [di;]", (28)
where gj, € CNtx1, ﬁj € (CNTXI,L € CNmx1, Pjk € C, and

¥; ; € C are defined as g, = gp x+F7 ¥ gr 1, h; =hp ;+
FHWhg ;, 1, = 1D1+FH\II TR 0jk = Gk +gRJ\IIhR
and ¥;; = €;; + 1R ;¥hg ;, respectively. Then, the received
SINR of the k-th secondary DL user and the received SINR
of the j-th secondary UL user can be rewritten as (29) and

o

Then, the joint DL transmit beamforming and UL power
allocation design, i.e., {Wy,p;}, is formulated as follows

maximize ZwULlogz(l + FUL —i—ZwELlogQ(l + TP

HY
oeori eI < kex

s.t. Cl: ZTr(Wk
kel
C5: Wy, = 0, Vk, C6: Rank(Wy) <1, Vk.

< PPL  (2,Cda, Cdb, Cdc, Cad,

max?

(32)

Here, constraints C3, C6, and W, € HNT are imposed to
ensure that W = wkwf holds after optimization. The non-
convexity of (32) originates from the objective function and
the rank constraint C6. Next, we aim to obtain a suboptimal
solution of (32) iteratively by applying SCA. For notational
simplicity, we define f1, f2, g1, and g2 which are shown at the
top of this page, respectively. Note that the negative objective
function in (32) can be expressed as fi; + fo — g1 — ¢o.

Then, in the n-th iteration of the SCA, for a given feasible®
point (W7,p}), we construct a global underestimator of
91(Wy, p;) as follows

91(Wi,pj) > g1 (Wi, p}) + vajgl(WZ»p?)(Pj —p})
jeJ
n ' H n
+ZTT((VWk91(Wk7Pj)) (W, — Wk))
kek
A -~ n 7
= gl(Wlij» k>pj)> (37)
where
Vw, g1

9The superscript n denotes the SCA iteration index.



UL

Sy wj Z nv;vi Diag(SSH) a1
W92 = — ~—= ,
* In2 =5 X pTe(behffvyvl) + Te(pvvi Diag( Y SWiSH)) + o) v ]|”
teJ\{s} ke
V. g Wyl Tr(h hfv;vH) @)
p; 92 = — 55 == .
" In2 LY pTe(bhf v, vE) + Te(pv;vH Diag( Y SWiSH)) + o v, |
TSI R ! Kek
B Z - %ék@? 38) g})go'ri'thm‘iﬁucc(ejssﬂve Convex Approximation Algorithm for
- ~ ~ 2 ’ tainin an :
iy THEBIW) + 5 lesul” + 03, B Rt
rek\{t} jeJ 1: Set initial point W} and pj, iteration index n = 1, and error
tolerance 0 < egca < 1.
and 2: repeat
3: Solve (43) for given W} and pj and store the intermediate
Vi, 91 solution Wy, and p;
WPt ) |2 4: Setgjv?tl,ﬁvzfniwﬁand Py =pj
- Z S Ti( H IHQ) QD];: | ‘2 = 39) 5: until |« kprﬁ);Wi p,’i)| 20 < esca
Tr(gr8l W,) + > pjleikl” +o N kP50l
MR ey A - " 6: Wi =W} and p} = pJ

Similarly, for a given feasible point (W}, p}), the global
underestimator of go(Wy, p;) is given by

92<Wkapj) 2 gQ(WZap?)

n T H n
+ZT1"((Vwk92( 1)) (Wk—wk))
keKx
+> Vi, 02 (Wi D5) (0 — 1)

JjeT
A n 7
ZQQ(WkapjaWkapj)a (40)
where Vw, g2 and V. g2 are shown at the top of this page,
respectively.

Then, for a given feasible point (W7,p}) in the n-th
iteration, a lower bound of the maximization problem in
(32) can be obtained by solving the following optimization
problem

~

F(kapj)

minimize
Wi,p5,8i,Yis

Tiy0iyliyki

st.  C1,C2,Cda,Cdb,Cdc, Cdd, C5,C6,  (43)
where ﬁ(Wk,pj) is defined as ﬁ(Wk,pj) 2 1+ fo—
91 (Wi, pj, Wi, p?t) — G2 (Wi, pj, Wi, pl}). We note that the
remaining non-convexity of problem (43) stems from rank-one
constraint C6. Hence, we adopt SDR and remove constraint
C6. The relaxed version of problem (43) can now be optimally
solved by standard convex solvers such as CVX [38]. Next,
we verify the tightness of SDR in the following theorem.

Theorem 1: If PPL > 0, an optimal beamforming matrix
W, satisfying Rank(W,) < 1 can always be obtained.

Proof: Please refer to Appendix A. |

Then, we tighten the upper bound of (32) by solving (43)
iteratively. The SCA algorithm for obtaining the optimal W]t
and p;- of (32) is summarized in Algorithm 1. We note that
Algorithm 1 is guaranteed to converge to a locally optimal
solution of (32) [24].

C. Optimizing v; for Given W, Wy, and p;

For given ¥, Wy, and p;, the UL spectral efficiency is
maximized if for each UL user j, the receive beamforming
vector v; maximizes the corresponding receive SINR F}IL.
In particular, we can obtain the optimal receive beamforming
vector v; by solving the following optimization problem [39]:

Hy WH
L. ijj hjhj Vj
maximize ——j——"—", (44)
A2 \s Ry, v,

where ﬁj was defined in (25) and Ry, € CN7*NT s defined
as follows

R, = Y pi(hpihf, + F/®hg hi,
teT\{5}
+ hp b ,¥"F + F"Whg hf T7F)

+ nDiag(ZSWkSH) + o3 In,.
ke

(45)

Moreover, the optimization problem in (44) can be recast as
the following equivalent convex optimization problem [39]

minimize Vf Ry, vy
Vi
st. CT: ypyvihy = 1. (46)
The optimal solution of (46) is given by [39]
vl = 0;ypR 'y, (47)

where ; is a scalar to adjust v;- such that equality constraint
C7 is satisfied. We note that for the original problem in (44), o,
can be omitted as it has no effect on the value of the objective
function.



[bL _ Tr(OG,W,GH) 57)
i > Ti(OGLW,Gf) + X p;Tr(0Q, k) + 02’
rek\{k} jeJ
UL _ p;Tr(©@TH, JVivj H ) 58)
J > piTe(@THv;vIH[T) + Tr(nv;v fDlag( > SWSH)) + o ||vj||2.
teJ\{5} ke
i = —ZWELlog2(ZTr(®GkWTGkH) +3 0 (TH(©Q;0)) +o—§k), (59)
kek rek jeg
fo = —z:wJULlog2 (ZptTr(GTHtvjvJHHf) + Tr(nvjvJHDiag(ZSWkSH)) + 0 ||v,|? ), (60)
JjeET teJ kel
5 = —ZWELlog2< 3 T(OGW, G+ Y p; (TH(OQ;4)) +agk)7 61)
kel rek\{k} JjeT
g2 = wa]ULlogQ( Z ptTr(GTHtvjfof{)Jr Tr (nvijDiag(ZSWkSH))Jra% [|v; 12 ) (62)
JjET teT\{j} ke
- _ 2
D. Optimizing ¥ for Given Wy, p;, and v; ‘1gﬂ.wk 4 1§’i\IJka’ = Tr(@Lika{{), (52)
For given Wy, p;, and v, the optimization problem for the B _H 2
IRS phase shift design is given by €ij + lR,ilI’hR,j’ = Tr(OP, ), (53)

UL UL DL
maximize w; log, (1 F lo +TI
aximize Z go(1+ )+ Zwk go(1+T%7)
Siikg JET ke
st.  C3,Cda, Cdb,Cdc, Cad. (48)

We note that both the objective function and constraints C3
and C4c are non-convex functions which makes the IRS design
very challenging. Next, we first tackle the non-convex objec-
tive function in (48). In partlcular we rewrite the quadratic

term ’gD KWr + B8R, L WFw,| in (7) as follows:

g oW, + gl WFw,|”
= gh«Wgn,. + 2R {gh W, F ¥ g 1.}
+ gh , YFW, FTwlgp
= ggkwrgD,k + 2R {gg,kWrFHdiag(gR,k)e}
+ 0Hdiag(gg’k)FWTFHdiag(gR)k)G

= Tx([0"p"] [diagégivk)F}Wr[FH diag(gn k) 0.) [z])

= Tr(8” G, W, G 6) = Tr(0G, W, G, (49)

where optimization variables 8 € CM*1 § € C(M+Dx1 and
(:) c CM+1)x(M+1) arg~deﬁned as 0 = [ejwl’ A 7eJﬂJM]H
0 = [07 p]T, and ® = 00", respectively. Moreover, p € C is
a dummy variable with |p|> = 1. Besides, G, € CM+1)xNr
is defined as Gy = [(diag(gl{ ,)F)" gph.]"

Similarly, we rewrite the term |g;; + gf ,®hg ;| in

hgt\I’Fv” in (8), and the terms

(7), the term |hD Vi +
2

_ 2
LlDJleRJ\IzFWk( and [e;; + 1y, Whe ;| in (16) as
ollows, respectively,
2
g + gl e @hy j|” = Tr(©Q, 1), (50)

Ihf v, + hf W Fv,[* = Te(@"H,v,vIHI), (51)

where Ht c C(M+1)><NT and L, € (C(ZI\ZI-Fl)XNT are
defined as H; = [(diag(hgt)F) h]*)’t] and L; =

[(diag(Ig,i)F)T Ig7i]T, respectively. Moreover, Q; €

CMFOXMHL) and P, ; € CMFUXMHY) are defined as
Qjx
_ [diag(gf ) Hr jdiag(grk) ¢ zdiag(gf ,)hr,;
= P 2 ,(54)
hy; ;diag(gr,k)q),k |0,k
Pij
. H s e . <H
_ dlag(lR,i)HR’jdlag(lR,i) ei,jdlag(lRi)hR,j 55
o hH di 1 = — 2 ) ( )
r jdiag(lr.i)€; €
respectively.

Then, we rewrite constraint C4d equivalently as

Cad: Y Tr(OL;W,L) + Y Tr(OP; ;) <7, Vi. (56)
ke jeT

We note that C4d is a convex constraint with respect to ©.
Moreover, the receive SINR of secondary DL user k and the
receive SINR of secondary UL user j can be equivalently
rewritten as (57) and (58), where (57) and (58) are shown at
the top of this page, respectively. For notational simplicity, we
define f1, fo2, g1, and g2 which are shown at the top of this
page, respectively. Note that the negative objective function in
(48) can be expressed as f1 + fo — g1 — ga-

Next, by employing singular value decomposition, we trans-
form constraint C4c into a convex constraint. Specifically, for
given Wy, and p;, we recast matrix B as B = Y osu v,

where o are the singular values of B, and uy andéVd are the
corresponding left and right singular vectors of B, respectively.
Then, we rewrite the term C? WBWH C in constraint Cdc as
follows

C"wBYC = Y 7.C"diag(1,)00" diag(v!')C



UJUL

_ i
In2

teT\{7}

Z PthVijHf

Jejtej\{j}

Veg: = ;
092 Z S (Tr(@THtvjvJHHfI)) + Tr(nvjvaiag(kZKSWkSH)) + 0% ||Vj||2
€

(70)

= Z&sﬁSGEsv (63)
where D, E, € CM+UX(M+1) ure defined as Dy =

[CHdiag(u,) 0] and E, = Elag(ovs)c

Hence, we can rewrite constraint C4c equivalently as

] , respectively.

6‘10: Saci (@, Tis 51)
;I 0 L=~
=Mo" e, +%} — Zast@Es = 0. (64)

Now, constraint Céc is a convex function with respect to ©.

Therefore, for given Wy, p;, and v;, we can obtain ® by
solving the following optimization problem

minimize ]?1 + fg — 01— G2
OcHM T 8, v,

Tiy0iybiy ki
st. C3: Diag(®) = Iy41, aa, ab.azlc,&ld,

C8: © = 0, C9: Rank(®) = 1, (65)

where ® = 0 and constraints C8 and C9 are imposed to
ensure ® = #OH holds after optimization. We note that the
rank-one constraint C9 is an obstacle to solving problem (65).
In the literature, SDR is commonly adopted to tackle the
rank-one constraint [40]. Yet, applying SDR to (65) may not
result in a rank-one matrix ®. Moreover, some approximation
methods such as Gaussian randomization cannot guarantee the
convergence of the overall BCD algorithm [40]. To tackle
this obstacle, we first transform the combinatorial constraint
C9 equivalently into the following difference of convex (d.c.)
functions constraint [41]:

Co: @], - [®], <o, (66)

where ||®]|, denotes the spectral norm, i.e., | @[, = 01(®),
where o;(©) denotes the i-th largest singular value of matrix
©. We note that for any ® € HM*! and ® > 0, we have
1], = > 0:(®) > ||®], = max 0;(®) and the equality

holds if anlgivonly if ® is a rank-one matrix. Yet, the resulting
constraint C9 is still non-convex. To circumvent this obstacle,
we adopt a penalty approach [25] and recast (65) as follows:

J?l +f2 — 01— G2 +X(||@||* - ||@H2)

minimize

st.  C3,Cda, Cdb,Cdc, C4d, C8, (67)

where x > 0 is a constant which penalizes the objective
function for any matrix ® whose rank is larger than one. Then,
we use a sequence of ), to approach infinity and reveal that
problem (67) is equivalent to problem (65) in the following
theorem [25].

Algorithm 2 Successive Convex Approximation Algorithm for
Obtaining '

1: Set initial point ®!, iteration index n = 1, and error tolerance
0<esca K1

2: repeat

3:  For given ®", obtain the intermediate solution ® by solving
(72)

Setn=n-+1and O = O

! |F(@m)—F@©@" 1]

|F(em)]

: unti

61" — @n
: Recover ¥' from ©Ff

< esca

AR A

Theorem 2: Denote the optimal solution of problem (67)
as ®, with penalty factor x,. When x, is sufficiently large,
ie., xg — 00, every limit point © of the sequence {O,} is
an optimal solution of problem (65).

Proof: Please refer to Appendix B. |

The optimization problem in (67) is still an intractable
problem due to the non-convexity of the objective function.
Yet, we note that fi, fo, g1, g2, ||®],, and ||®], are all
convex functions and the problem in (67) is in the canonical
form of d.c. programming. Thus, a stationary point of (67)
can be obtained by applying SCA [24]. To start with, we first
construct a global underestimator of g;. In particular, for any
feasible point ©", the differentiable convex function g;(®)
satisfies the following inequality:

51(0) > 7:(0") + Tr((Vem(0) (0 - o))

where Veg; is shown at the top of this page. We note
that g, (©,©®") in (68) is a global underestimator of g;(@).
Similarly, for feasible point ®", global underestimators of
g2(®) and ||®||, can be constructed as follows, respectively,

72(0) = 2(0") + Tr((Vor(0) (@ - 0m)

2 5,(,0m), (69)

where Vggo is shown at the top of this page, and

max(er’rrblax)H(e - @n)) é @”’ (71)

11, > 0", + T (6
where 6], is the eigenvector associated with the principal
eigenvalue of @™,

Therefore, for any given point ®", an upper bound on (65)
is obtained by solving the following optimization problem:

e = A T ra _ _ =n
minimize F(©) 2 i 4 fy— g, — gy + x( 0]~ 0")
OcH*! ;,

VisTis0istiyki
C3, Cda, C4b.Cdc, Cad, C8.

s.t. (72)



Algorithm 3 Block Coordinate Descent Algorithm

1: Set initial points (w)', (p;)*, (v;)*, and (¥)?, iteration index
m = 1, and convergence tolerance 0 < epcp K 1

2: repeat

3:  Solve (43) for given ¥ = (&)™ and v; = (v;)™
Algorithm 1 and obtain (w)™"* and (p;)™**

4:  Calculate (v;)™T! for given ¥ = ()™, wy, = (wy)™ ",
and p; = (p;)™*" using (47)

5. Solve (72) for wi = (wi)™ !, p; = (p;)™ ",
(vj)™ ! by applylng Algorithm 2 and recover ()
based on (@)™t
Setm=m+1

F((Wk)mx(Pj)mv(Vj)mv<‘I’>m)

by applying

7: until —1| < eBcp,
Jal (wk)m*1,(pj)mfl,(vj-)mfl,(‘Il)m'*l)
where F'(-,-,-,-) is defined in (11)
8: wi = (wi)™, p} = (p))™, vi = (v;)", ¥ = (¥)"

Note that (72) is a convex optimization problem and the
optimal solution of (72) can be obtained via CVX [38].
The proposed algorithm for solving (67) is summarized in
Algorithm 2. We note that the function value of (67) is upper
bounded by the minimum of (72). Moreover, by iteratively
applying Algorithm 2, we can gradually tighten the upper
bound and obtain a sequence of solutions ®. Furthermore,
the objective function of (72) is monotonically non-increasing
and the developed algorithm is guaranteed to converge to a
stationary point of (67) [24].

The overall BCD based algorithm is summarized in Algo-
rithm 3. Recall that objective function in (43) is monotonically
decreasing in each iteration of Algorithm 1 and the receive
beamforming vector v;(- admits a closed-form solution, cf. (47).
We note that any limit point of the non-increasing sequence
{(wr)™, (p;)™, (vi)™, ()™}, cy obtained with Algorithm
3 is a stationary point of (13). Moreover, the function value
of the sequence {(wx)™, (p;)™, (v;)™, (¥)™},,cn IS guar-
anteed to converge to a stationary value'® of the objective
function of (13) in polynomial time [23]. We note that due to
the safe approximation of constraint C4, a stationary point of
(13) is a feasible suboptimal solution of the original problem
in (11). Furthermore, according to [42, Theorem 3.12], the
computational complexity of an SDP problem with m SDP
constraints, where each constraint contains an n X n positive
semidefinite matrix, is given by O(mn® + m?n? + m?). For
the relaxed version of problem (43), we have m = 3I and
n = N, while for problem (72), we have m = 2[ and
n = M + 1. Therefore, the computational complexity of
each iteration of the developed BCD algorithm is given by

O (log(=L;) (BINS + 912 N3 +2(M+1)° +413(M +1) +
351%) )

V. SIMULATION RESULTS

In this section, we study the system performance of the
proposed resource allocation scheme via simulations. The

10We note that swapping the order of steps 3, 4, and 5 would not affect
the convergence of Algorithm 3 [23]. Yet, the order of steps 3, 4, and 5 may
affect the value to which Algorithm 3 converges as a different order implies
a different search direction in the feasible set.

A Uplink user

B pownlink user

A
* =

50 meters
-------------- IRS

* Primary user

100 meters

Primary transmitter FD BS

Fig. 2. Simulation setup for an IRS-assisted FD CR network which comprises
I =2 PUs, K =2 DL users, and J = 3 UL users.

TABLE I

SYSTEM PARAMETERS ADOPTED IN SIMULATIONS.
fe Carrier center frequency 2.5 GHz
Pj,max Max. transmit power of UL user j 10 dBm
apyU Path loss exponent for direct paths | 3.9
PDL. Max. transmit power of FD BS 30 dBm
QBR Path loss exponent 2.1
QRU Path loss exponent 2.3
n ST cancellation coefficient —85 dB [27]
on. Secondary DL user noise power —100 dB
a,%U Secondary FD BS noise power —110 dBm
G Secondary FD BS antenna gain 5 dBi
Dol Interference tolerance —90 dBm
Gsr Rician factor for SI channels 5dB
Co Path loss at 1 m 40 dB
KRician Rician factor for IRS channels 5
ESCA SCA error tolerance 0.01
EBCD BCD error tolerance 0.01

Penalty factor 103

wIT, WP | Weights of UL and DL users 1

schematic system model for the simulated FD CR network
is shown in Figure 2.

A. Simulation Setup

We focus on the resource allocation of one sector of the
secondary network. The distance from the secondary FD
BS to the IRS is 50 m!'. Unless specified otherwise, the
primary network contains I = 2 PUs while the secondary
network comprises K = 2 secondary DL users and J =
secondary UL users. Both the PUs and the SUs are uniformly
and randomly distributed in the considered sector. For the
ease of presentation, in the sequel, the maximum normalized

. . E
estimation errors of the PU CSI are defined as ’U% ;= ﬁ
2 R 52 j 2 2D
— — 2, — J—
VR, = i LHQ, and vj = |2’ where vy, = vg,; =

V2 i = =2, Vi € T, VieJ. Moreover the path loss model for
the reﬂected path is given by PLS = C2(dgr)*B® (dgry)*®,
where Cy = 40 dB is a constant related to the carrier center
frequency at the reference distance of 1 m. Variables dgg = 50
m and dry are the distance between the FD BS and the IRS
and the distance between the IRS and the users, respectively,
and apr = 2.1 and agy = 2.3 are the corresponding path
loss exponents [13]. The path loss model for the direct path

"n practice, the location of the IRS can be either optimized or chosen for
convenience.



is given by PLY = Cy(dgy)*®v, where agy = 3.9 is the
path loss exponent'?. The fading coefficients of the SI channel
are generated as independent and identically distributed Rician
random variables with Rician factor 5 dB [34]. Besides, for
the channels between the secondary FD BS and all I +J + K
users, we model the small scale fading coefficients of the
channels of the direct paths as independent and identically
distributed Rayleigh random variables while the small scale
fading coefficients of the channels of the reflected paths follow
a Rician distribution.

Furthermore, the total transmit power of the primary trans-
mitter is assumed to be p* = Z pl = 35 dBm. More-

over, the path loss model for the reﬂected path between the
primary transmitter and secondary DL user k is given by
PLY, = C3(rP)*rr(r})*rv, where apr = 3.6 denotes
the path loss exponent of the channel between the primary
transmitter and the IRS'3, and ¥ = 150 m and r}} denote
the distance between the primary transmitter and the IRS
and the distance between the IRS and secondary DL user
k, respectively. The path loss model for the reflected path
between the primary transmitter and the secondary FD BS
is given by PLy, = C3(rP)*"(dgr)*®®. The path loss
model for the direct path between the primary transmitter
and secondary DL user k is given by PLY, = Co(rp)orv,
where rk and apy = 3.9 denote the dlstance between the
primary transmitter and secondary DL user & and the path loss
exponent of the corresponding channel. The path loss model
for the direct path between the primary transmitter and the
secondary FD BS is given by PLp = Co(rg)*"®, where
rg” = 100 m and apg = 3.6 denote the distance between
the primary transmitter and the secondary FD BS and the
corresponding path loss exponent, respectively.

In the following, for resource allocation algorithm design,
the interference caused by the prinlary transmitter, i.e., (FU~ +

FHWEP=1) 3 \/phdy and (fB% + gff ,WEP) S VpldE,
neI nEI

is modelled as additional AWGN z"" ~ CN(0,02 I,) and

2t ~ CN(0,02), Vk € K, respectrvely Variances o2,
2 2 _ 1

and o7 , Vk € K, are set as 07, = p (PLPU + PLEO)

and 02, = p" (57— PLE + PLP ), respectively. Hence, when

implementing Algorlthm 3, the total variances of the AWGN
at the secondary FD BS and at secondary DL user k are set
to be (02 + o072 ) and (02 + 07 ), Vk € K, respectively.
On the other hand, for performance evaluation, we apply
the solution obtained with Algorithm 3 in (2) and (3) and
calculate the spectral efficiency taking into account the exact
interference caused by the primary transmitter, i.e., (fU 4
FAgfP-! z Vrhdh and (fB% + gl wEP ! z\/g e

nGI
respectlvely Besrdes for all channels involving the primary

transmitter, we model the small scale fading coefficients of the

2In practice, IRSs are usually deployed at favourable locations. As a
result, we assume that the reflected signals suffer from a less severe path
loss compared to the signals directly received from the BS.

31n this paper, the IRS is intended to serve the users located in the area
of the secondary network. Thus, the IRS is deployed at a location that is
favorable for the secondary network. As a result, we assume that the link
between the primary transmitter and the IRS suffers from a more severe path
loss compared to the link between the secondary FD BS and the IRS.

channels as independent and identically distributed Rayleigh
random variables. The parameter values adopted in our simu-
lations are listed in Table I.

B. Baseline Schemes

For comparison, we consider four baseline schemes. For
baseline scheme 1, zero-forcing beamforming (ZF-BF) is
employed at the FD BS for both DL and UL transmissions
and the phases of the IRS are generated in a random manner.
In particular, the directions of both the DL beamformer wy
for desired user k and UL beamformer v; for desired user
j are fixed and lie in the null spaces of all the other DL
user channels and all the other UL user channels, respectively.
Then, by optimizing the DL and UL transmit powers, i.e.,
pPY € R and p;, we solve the problem in (13) subject to power
constraints C1 and C2 and interference leakage constraint
C4 by applying Algorithm 1'%, For baseline scheme 2, we
assume that the considered FD CR network does not employ
an IRS". Then, we optimize DL beamforming vectors wy,
UL beamforming vectors v;, and the transmit powers of the
UL users for maximization of the system spectral efficiency
subject to constraints C1, C2, and C4 in (13). For baseline
scheme 3, we assume that the secondary BS operates in the
HD mode where the UL reception and the DL transmission are
realized in two orthogonal time slots of equal duration. As a
result, both CCI and SI do not exist. In particular, for the first
time slot, the DL spectral efficiency is maximized by jointly
optimizing wy, and ¥ subject to constraints C1, C3, and C4
in (13)'°. Then, for the second time slot, we maximize the UL
spectral efficiency by optimizing UL beamforming vector v,
phase shift matrix W, and the transmit powers of UL users, i.e.,
p; taking into account constraints C2, C3, and C4in (13). For a
fair comparison, the resulting total spectral efficiency obtained
for baseline scheme 3 is multiplied by a factor of one half due
to the orthogonal time slots needed for separating the UL and
DL transmissions. For baseline scheme 4, we assume that the
IRS employs random phase shifts. Then, we optimize the DL
beamforming vectors wy, the UL beamforming vectors v;,
and the transmit powers of the UL users for maximization of
the system spectral efficiency subject to constraints C1, C2,
and C4 in (13).

Furthermore, to reveal the tradeoff between the computa-
tional complexity and the achievable system performance, the
computational complexities of the proposed scheme and the
four baseline schemes are provided in Table II shown at the
top of next page. While the proposed scheme entails a higher
computational complexity compared to baseline schemes 1,
2, and 4, our simulation results in Figures 4-8 reveal that
the proposed scheme also achieves a significantly higher
performance.

14The optimization problem resulting for baseline scheme 1 is still non-
convex due to the non-convex objective function in (13).

SFor baseline scheme 2, we solve (43) and (44) by applying Algorithm 3
with ¥ = 0.

19For maximization of the DL spectral efficiency, we obtain wj, and ¥
by applying Algorithm 3 with p; = 0 and v; = 0, V5 € J. Similarly,
for maximization of the UL spectral efficiency, we obtain p;, v;, and ¥ by
applying Algorithm 3 with w;, = 0, Vk € K.
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COMPUTATIONAL COMPLEXITY COMPARISON.

Scheme

Computational complexity per iteration.
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Fig. 3. Convergence of the proposed BCD algorithm for different values of
Nr, M, I, J, and K with pgo1, = —90 dBm, v2 = 10%, and PRL, = 30
dBm.

C. Convergence of Algorithm 3

In Figure 3, we investigate the convergence of the proposed
BCD algorithm for different numbers of PUs I, secondary
UL users J, secondary DL users K, antenna elements N,
and IRS reflecting elements ). In particular, we consider
three cases: Case 1 with No = M =6, I = K = 2, and
J =3; Case 2 with Np =M =6, = K =4, and J = 5;
Case 3 with Ny = M =10, ] = K = 4, and J = 5. We
can observe that for all three cases, the proposed algorithm
monotonically converges to a stationary point. Specifically,
for Case 1, the proposed algorithm converges within 10
iterations of Algorithm 3. For Case 2, the proposed algorithm
needs considerably more iterations (roughly 30 iterations of
Algorithm 3) to converge since the larger number of users
leads to more optimization variables and constraints in (11).
Compared to Case 2, for Case 3, the proposed algorithm needs
around 10 extra iterations for convergence since the larger
values of Nt and M enlarge the size of the solution space
of the considered problem significantly. We also note that the
number of iterations required for the proposed algorithm to
converge is more sensitive to the number of users than to the
number of antennas and reflecting elements.

D. Average System Spectral Efficiency versus Maximum DL
Transmit Power

In Figure 4, we study the average system spectral efficiency
versus the maximum DL transmit power, PPl | for different

max?
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- © -Baseline scheme 1
-~ Baseline scheme 2
[ Baseline scheme 3
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Proposed scheme

Spectral efficiency

aseline scheme 4 I improvement

[ Baseline’scheme 3

Baseline scheme 1

Average system spectral efficiency (bits/s/Hz)

Maximum DL transmit power, PE';X (dBm)

Fig. 4. Average system spectral efficiency (bits/s/Hz) versus maximum

downlink transmit power (dBm) for different resource allocation schemes for

Np =8 M =381=2,J =3, K =2, peo; = —90 dBm, and
2 = 10%.

resource allocation schemes. As expected, the system spectral
efficiency increases monotonically with PPL . Moreover, we
observe that the proposed scheme outperforms all baseline
schemes. In fact, compared to the baseline schemes, the sig-
nificant performance improvement achieved by the proposed
resource allocation scheme is enabled by the joint optimization
of ®, wy, p;j, and v;. On the one hand, the proposed scheme
can create a more favorable radio propagation environment
by optimizing the phase shift matrix of the IRS. On the
other hand, it can fully exploit the DoFs introduced by the
multiplexing of multiple UL and DL users on the same spectral
resource via FD, which improves the spectral efficiency of the
CR network. On the contrary, the four baseline schemes yield
a dramatically lower system spectral efficiency. Specifically,
for baseline scheme 1, the FD BS is unable to fully exploit
the DoFs available for resource allocation because of the
fixed beamforming vector. Although the multiuser interference
(MUI) is mitigated by ZF-BF, both the CCI and the remaining
SI become more serious as PDL increases which limits the
system spectral efficiency. For baseline scheme 2, since there
is no IRS available, there are no DoFs for customizing a
favorable radio propagation environment for enhancing the
desired signal and suppressing the interference at the PUs.
For baseline scheme 3, although orthogonal DL and UL
transmissions completely avoid CCI and SI, the resulting
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downlink users for different resource allocation schemes for N0 = 8, M = 8,
I =2, v2=10%, ptol, = —90 dBm, and PRL, = 30 dBm.

strictly suboptimal use of the DL and UL time resources
leads to a significant loss of spectral efficiency. Baseline
scheme 4 achieves a considerable system spectral efficiency
improvement compared to baseline scheme 2. The reasons
behind this are twofold. On the one hand, the IRS facilitates
a higher received power for both the secondary users and the
secondary FD BS because of the reflected path established by
the IRS. On the other hand, the beamforming vectors for both
UL and DL transmission are optimized to match the cascaded
channels of the reflected paths, i.e., hgyj\IlF and gf{’k\IlF,
respectively, which potentially improves the performance of
the secondary network. Nevertheless, the proposed scheme still
outperforms baseline scheme 4 by a significant margin due to
the joint optimization of all available resources.

E. Average System Spectral Efficiency versus Number of Sec-
ondary Users

Figure 5 depicts the average system spectral efficiency
versus the number of secondary DL users for different resource
allocation schemes. As can be seen from Figure 5, as K grows,
the system spectral efficiency achieved with the proposed
scheme and baseline schemes 1-3 increase since all schemes
are able to exploit multiuser diversity. Similarly, we observe
that the performance of the proposed scheme improves when
the number of UL users, J, increases. However, compared to
the proposed scheme, the system spectral efficiency for the
baseline schemes are significantly lower. In particular, due to
the partially fixed beamforming pattern of baseline scheme 1,
the increasing CCI and SI associated with larger K cannot be
mitigated which results in a substantially lower system spectral
efficiency. For baseline scheme 2, since the IRS is not utilized,
the system is unable to mitigate the growing MUI in UL and
DL introduced by the increasing number of DL users K. For
baseline scheme 3, the achieved system spectral efficiency
is still lower compared to the proposed scheme due to the
inefficient utilization of radio spectrum caused by the HD BS.
Furthermore, in Figure 5, we verify the accuracy of modeling
the interference caused by the primary transmitter as additional
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Fig. 6. Average system spectral efficiency (bits/s/Hz) versus number of
elements for different resource allocation schemes for K = 2,1 =2, J =3,
2 =10%, ptor; = —90 dBm, and PR, = 30 dBm.

max

AWGN. Based on the resource allocation policy obtained
by applying Algorithm 3, we compare the average system
spectral efficiency for two cases: For Case A, we evaluate
the performance of the system by modelling the interference

from the primary network, i.e., (fUL'+FZwfP=1) S~ /pPab
nel
L+ 8k, 0 WPl Z \/pbdl, as additional AWGNs

n’

~ CN(O o2 Ing) and zP% ~ CN(0,02), Vk € K,
respectlvely For Case B, the 1nterference from the primary net-
work is modelled exactly as (fVL+FHwfP—1) 5™\ /pPdP and

nel
(/D% + e, 2fFT) \/17 for performance evaluation,
as descrlbed in Sectlon V-A. As can been seen from Figure
5, the performance difference between Case A and Case B
is very small. This suggests that modelling the interference
caused by the primary transmitter as additional AWGN is
indeed appropriate.

and (

E. Average System Spectral Efficiency versus Number of An-
tenna/IRS Elements

In Figure 6, we investigate the average system spectral
efficiency versus the number of antenna/IRS elements. Specif-
ically, to reveal the performance gain achieved by deploying
an IRS, for the proposed scheme two cases are considered:
Case 1 with a fixed number of antennas at the secondary
BS (Nt = 4) and increasing M and Case 2 with a fixed
number of phase shifters (M = 4) and increasing Nt. We
observe that increasing the number of elements in Case 1
results in a larger performance gain compared to Case 2.
The reason behind this is twofold. On the one hand, as the
number of reflectors at the IRS increases, there are more
DoFs for customizing favorable BS-IRS-user channels which
improves both the UL and the DL beamforming gain. On
the other hand, the additional IRS elements can reflect more
power of the signal transmitted by the secondary FD BS
which results in a power gain. Moreover, as can be seen
from Figure 6, the average system spectral efficiency for the



TABLE III
COMPARISON BETWEEN THE ACTUAL INTERFERENCE AND ITS UPPER BOUND.

Terms S ilatb+cf [ (lal+[bF +c)
a=A wy, b= Al WFwy, c =1 ;w + Iy ;¥Fwy, —91.1 dBm —90.9 dBm

a = | /ijei’]', b= A /ijlgi‘IlhR,jv C = ,/Pj€ij +ig¢‘1’hR,] —98.1 dBm —97.7 dBm

Total interference —90.3 dBm —90 dBm
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Fig. 7. Average system spectral efficiency (bits/s/Hz) versus maximum nor-
malized channel estimation error, v, for different schemes for Np =M =38,
K =1=2J=3,pyl, = —90 dBm, and PPL = 30 dBm.

max

proposed scheme and the three baseline schemes improve as
the number of antennas, Nt, at the FD BS increases. This
can be explained by the fact that the extra DoFs provided
by the additional antennas facilitates a higher beamforming
resolution for both DL transmission and UL reception which
lead to higher received SINRs. Yet, as Nt increases, the
channel hardening effect leads to a diminishing growth rate
of the system spectral efficiency. Figure 6 also shows that
the average system spectral efficiency of the proposed scheme
increases faster with Nt than the average system spectral
efficiency of the baseline schemes thanks to the proposed
optimization framework which exploits the system resources
efficiently. Furthermore, for the parameter values adopted in
Figure 6 and N7 = 4 and M = 10, we also verify the tightness
of the inequality used to safely approximate constraint C4 in
(12). The corresponding numerical results, which have been
obtained by averaging over different channel realizations, are
provided in Table IIT shown at the top of this page. As can
be seen from Table III, the difference between the actual
interference and the upper bound is only 0.3 dB. This indicates
that the proposed safe approximation is relatively tight.

G. Average System Spectral Efficiency versus Maximum Nor-
malized Channel Estimation Error

In Figure 7, we study the average system spectral efficiency
versus the maximum normalized channel estimation error. As
expected, the average system spectral efficiency decreases with
increasing v2. This is due to the fact that, as v? increases, the
secondary BS becomes less flexible and more conservative in
resource allocation. In particular, the BS has to allocate more
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Fig. 8. Outage probability (%) versus maximum interference leakage tolerance
(dBm) for different resource allocation schemes for No =8, M =8, K = 2,
I=2J=3,v2=10%, and PRL = 30 dBm.

max

DoFs to satisfy the interference leakage constraint C4. As a
result, fewer DoFs are available for suppressing the SI and
facilitating accurate DL beamforming at the FD BS which
degrades the system performance. Besides, over the entire
range of v2, the proposed scheme significantly outperforms
baseline schemes 1-3. This unveils that by jointly optimizing
all available DoFs, the proposed scheme can mitigate the
interference leakage more efficiently than the three baseline
schemes, even in the presence of CSI uncertainty. Besides,
compared to the proposed scheme and baseline scheme 3, we
observe that baseline scheme 1 and baseline scheme 2 are
less sensitive to channel estimation errors in the considered
range. For baseline scheme 1, the random phase shift pattern
of the IRS already results in a significant performance loss and
increasing v? from 0 to 10% only leads to a small additional
loss. For baseline scheme 2, since the IRS is not deployed,
only the imperfect knowledge of the CSI of the direct paths
affects the performance, which leads to a smaller degradation.

H. Outage Probability versus Maximum Interference Leakage
Tolerance

Figure 8 shows the outage probability of the users in the
primary network versus the maximum interference leakage
tolerance for different resource allocation schemes. The outage
probability is defined as the probability that the interference
leakage from the secondary network to the ¢-th PU is higher
than a predefined target interference leakage tolerance piay,.
For comparison, we also study the outage probability of a
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non-robust scheme. Specifically, for the non-robust scheme,
we solve a problem similar to (11) but treat the estimated
CSI of the PUs as perfect CSI. Then, using the actual CSI
of the PUs, we check if the interference leakage constraint
C4 in (11) is satisfied. As can be observed from Figure 8,
both the proposed scheme and baseline schemes 1-4 yield a
significant outage probability reduction compared to the non-
robust scheme. Moreover, as we set the maximum interference
leakage tolerance to pto1, = —90 dBm, the outage probabilities
of the proposed scheme and all baseline schemes decrease to
zero for target interference leakage tolerances piny, < —90
dBm. In contrast, the non-robust scheme still suffers from
outages. These results underline the robustness of the proposed
scheme against imperfect CSI.

VI. CONCLUSION

In this paper, we proposed to integrate an IRS into a
multiuser FD CR system to simultaneously improve the system
performance of the secondary network and effectively mitigate
the interference caused to the PUs. In particular, the system
spectral efficiency of the secondary network was maximized
by jointly optimizing the DL transmit beamforming vectors
and the UL receive beamforming vectors at the FD BS, the
UL transmit power of the UL users, and the phase shift matrix
at the IRS. We considered the robust design of IRS-assisted
FD CR systems taking into account the imperfect knowledge
of the CSI of the PUs. Since the resulting interference leakage
tolerance constraint is an obstacle to efficient resource alloca-
tion algorithm design, we proposed a safe approximation of the
original optimization problem. To tackle the non-convexity of
the resulting design problem, we developed a BCD algorithm
to solve the approximated problem in an alternating manner. In
particular, the design of the DL transmit beamformers and UL
transmit power was tackled by SCA and SDR, and the optimal
UL receive beamformers were derived in closed form. The
unit modulus constrained optimization problem introduced by
the IRS was first transformed to a rank-constrained problem
and then addressed by applying a penalty method and SCA.
The proposed BCD algorithm is guaranteed to converge to
a stationary point of the approximated optimization problem.
Simulation results not only revealed the significant system
spectral efficiency improvement achieved by the proposed
scheme compared to four baseline schemes but also verified its
robustness against the imperfect knowledge of the CSI of the
PUs. Moreover, our results illustrated that IRSs are an efficient
means to mitigate the various forms of interference in FD CR
systems.

Finally, we note that the system model considered in this
paper can serve as a starting point for studying the impact of
practical constraints in IRS-assisted FD CR systems. Potential
future research topics in this direction include IRS-assisted
FD CR systems with hardware impairments and discrete phase
shifts.

APPENDIX
A. Proof of Theorem 1

To start with, we recast the relaxed version of (43) in
equivalent form as (73) which is shown at the top of this page.
Here, ¢, and ; are slack variables and = collects all terms
which are not relevant for the proof. Note that the problem in
(73) is jointly convex with respect to all optimization variables
and the Slater’s condition is satisfied for (73) [37]. Therefore,
strong duality holds, i.e., the gap between the optimal value of
(73) and that of its dual problem is zero [37]. Specifically, the
Lagrangian function of (73) in terms of beamforming matrix
W, is given as follows

£=€Y (Wi = Y Tr((Yw, i + Vw,32) " Wi
kel kel

_ZTT(S@}L (Wk, Bia Yis Hi)T@bl) - ZTr(WkYk)
1€L ke

+Y B TrMLIW,) = >G> Tr(grgl W
i€ rek ke rek

,ZTK(S@Q_ (Wk,pj, ‘Il, Yis Tiy 51)T@01)
i€l

*Z@Tr(nvijDiag(ZSWkSH)) + 7. (74)

JjeT kex
Here, we have introduced T to collect all terms that do
not involve Wy,. The scalar Lagrange multipliers , Bl, Qk,
and ¢; > 0 are associated with constraints C1, C4d, C10,
and Cl11, respectively. The positive semidefinite Lagrange

multiplier matrices TC4b e CWz+x(Np+1) Tg, €
CHMFDXMHD) “and Y, € CNt*NT gre associated with

constraints C4b, C4c, and C5, respectively. The dual problem
of (73) is given by

maximize minimize L. (75)
Ty, Taac, Y0, Wi.p;.0ivi,Ti,
£,8:,Cr,55>0 Oistishi Pk,

Next, by checking the Karush-Kuhn-Tucker (KKT) conditions
with respect to Wy, we investigate the structure of the optimal
W/ of (75). Specifically, for W, we have

. ¢t Bt TAT t t t
Klg 7623 7 >0 TC4b’TC4 athoa (76)



K2: Y]WI = K3: Vi £ =0, (77)
k

where ¢1, I, ¢I, TJr , TT671 , and Y] are the optimal

Lagrange multipliers for (75) Note that there exists at least

one £ > 0 since constraint C1 is active for optimal Wz

To facilitate the proof, K3 in (77) is explicitly expressed as

follows

Y] ="y, — AL (78)
where AZ is given by
AL = Vwk/g\l (WZ) + Vwk,gz ZEHTc4b i
i€l

_ H T H g, H o 27T TH
Y c YFT,, Flefc > B
i€l €L

+> grel + > clnv, v Diag(ss™). (79)
keK JjeJ

Next, by unveiling the structure of matrix Y!, we show
that the optimal WT always satisfies Rank(WT) < 1. De-
note the maximum eigenvalue of matrix AT as VZ?X € R.
We note that due to the randomness of the channels, the
probability of having multiple eigenvalues with the same

value 1/2?" is zero. Reviewing (78), if VAT > ¢T, then
k

YJr >~ 0 does not hold which contradlcts K1. On the other
hand if Vm?x < &1, then Y is a positive semidefinite

matrix with Rank(Yk) > Nt — 1. Considering K2, this

leads to Rank(WT) < 1. Next, we construct a bounded

optimal solution based on the above discussion. Specifically,

we construct a unit-norm vector erg‘”‘ € CNt*1 which lies
k

in the null space of YT, ie., YT max = 0. Let emg"X be the

unit-norm elgenvector associated Wlth the principal elgenvalue

I/Zax of matrix A Thus, the optimal W7 can be expressed
as W = weiﬁx(eiix)h’ Here, parameter c can be tuned

such that the DL transmit power constraint C1 is satisfied. B

B. Proof of Theorem 2

To start with, we define the objective function and the op-
timal solution of problem (65) as F'(®) and ©F, respectively.
Then, for any feasible ®, we have the following inequality:

F(®") < F(e). (80)

We further define the objective function of problem (67)

as G(©; ). Assuming ©, minimizes G(-;xq) With penalty
factor x, for each ¢, we have the following inequality:
F(©4) + Xq([1Oq], = 1O4]l,) = G(®g: xq)
< F(Oh) + (|0, - [87],) = G(OT; x,)

< e,

where equality (a) holds due to the fact that any optimal
solution of (65), i.e., ©F, fulfills ||©T|| —||©T||, < 0. Then,
we rearrange the inequality in (81) and obtain the following
inequality:

(81)

1  ~
Heq”* - ||®qH2 < ;(F<®T> -

q

F(©,). (82

Recall that if © is a limit point of the sequence {©®,}, we
can find an infinite subsequence Q such that

i =
qlené 0, = o. (83)

Then, as ¢ € Q, ¢ — oo, we take the limit on both sides of
(82) and obtain the following relation chain:

=1 S © 5
18] - lI®ll, = lim 1©,]. - 1©4l,

()

1~ ~
< lim v (F(O") - F(®,)) =0, (84)

where equality (b) holds because of the continuity property of
norm functions and equality (c) holds due to x, — oo. Thus,
we have that H@H* — H6H2 = 0. As a result, O is a feasible
solution of problem (65).

On the other hand, for any x, > 0, we take the limit of
(81) as i € Q, ¢ — oo, which leads to the inequality:

() -

F(®) < (®)+gi€%xq(|\®q\|*— 184]l,) < F(©), (85)

where inequality (d) is due to the nonnegativity of the term
1©4ll, — 1©4]l,- As © is a feasible point whose objective
value is no larger than that of the optimal solution ©F, we
conclude that © is also an optimal solution of problem (65),
as claimed. This completes the proof.
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