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Resource Allocation for IRS-assisted Full-Duplex

Cognitive Radio Systems
Dongfang Xu, Student Member, IEEE, Xianghao Yu, Member, IEEE, Yan Sun, Member, IEEE, Derrick Wing

Kwan Ng, Senior Member, IEEE, and Robert Schober, Fellow, IEEE

Abstract—In this paper, we investigate the resource allocation
design for intelligent reflecting surface (IRS)-assisted full-duplex
(FD) cognitive radio systems. In particular, a secondary network
employs an FD base station (BS) for serving multiple half-duplex
downlink (DL) and uplink (UL) users simultaneously. An IRS is
deployed to enhance the performance of the secondary network
while helping to mitigate the interference caused to the primary
users (PUs). The DL transmit beamforming vectors and the UL
receive beamforming vectors at the FD BS, the transmit power
of the UL users, and the phase shift matrix at the IRS are jointly
optimized for maximization of the total spectral efficiency of the
secondary system. The design task is formulated as a non-convex
optimization problem taking into account the imperfect knowl-
edge of the PUs’ channel state information (CSI) and their max-
imum interference tolerance. Since the maximum interference
tolerance constraint is intractable, we apply a safe approximation
to transform it into a convex constraint. To efficiently handle the
resulting approximated optimization problem, which is still non-
convex, we develop an iterative block coordinate descent (BCD)-
based algorithm. This algorithm exploits semidefinite relaxation,
a penalty method, and successive convex approximation and is
guaranteed to converge to a stationary point of the approximated
optimization problem. Our simulation results do not only reveal
that the proposed scheme yields a substantially higher system
spectral efficiency for the secondary system than several baseline
schemes, but also confirm its robustness against CSI uncertainty.
Besides, our results illustrate the tremendous potential of IRS
for managing the various types of interference arising in FD
cognitive radio networks.

Index Terms—Block coordinate descent, imperfect channel
state information, intelligent reflecting surface, cognitive radio,
full-duplex.

I. INTRODUCTION

Radio spectrum is a naturally limited resource in wireless

communication systems. During the last couple of decades,

most of the available spectrum has been licensed and allocated

to provide various high data-rate communication services.

This has led to the problem of a spectrum crunch for future
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wireless communication systems [2]. However, according to

measurements of the actual spectrum utilization, e.g. [3], [4], a

large amount of the allocated spectrum is highly underutilized.

To improve the utilization of the limited spectral resource,

cognitive radio (CR) has been proposed to offer communica-

tion services to unlicensed secondary systems within licensed

frequency bands. One promising approach to spectrum sharing

is underlay CR where the secondary system is allowed to

use the spectrum concurrently with the primary users (PUs)

as long as the quality-of-service (QoS) of the PUs is not

severely impaired. Thus, to limit the performance degradation

caused to the primary network, the secondary system has to

be carefully designed [4]–[6]. For example, the authors of

[5] developed a joint transmit power allocation and receive

beamforming design to minimize the total transmit power of

the secondary transmitter, while constraining the interference

to the PUs to be below a given threshold. In [6], the au-

thors proposed a multi-objective optimization framework and

developed a Pareto-optimal resource allocation algorithm to

realize simultaneous wireless power and secure information

transfer in CR networks. However, since the CR networks in

[5], [6] employ half-duplex (HD) base stations (BSs) and the

uplink (UL) and downlink (DL) transmissions are performed

in orthogonal frequency bands, the radio spectral resources are

still underutilized.

To boost wireless spectral efficiency, full-duplex (FD) com-

munication has recently drawn considerable research interest

[7]–[11]. In fact, by incorporating FD BSs into CR networks,

the spectral efficiency can be potentially doubled compared to

traditional HD CR networks. However, since in CR networks

the secondary system has to share the spectrum with the

primary system, the QoS of the PUs is inevitably impaired by

the simultaneous UL and DL transmissions of the secondary

system. In general, compared to the PUs in conventional HD

CR networks, because of the larger number of concurrent

transmissions, the PUs in FD CR networks suffer from more

severe interference, which degrades the performance of the

primary network [7], [8]. Moreover, the self-interference (SI)

and co-channel interference (CCI) caused by the simultaneous

DL and UL transmissions, if left unattended, can also sig-

nificantly degrade the performance of the secondary system

[7]. To effectively manage the interference in FD CR net-

works, different resource allocation designs were developed

in [9]–[11]. In [9], the sub-channel assignment, user pairing,

and power allocation was jointly optimized to improve the

spectral efficiency of a FD CR system. In [10], the authors

investigated robust DL beamforming and UL power allocation
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for minimization of the maximum interference leakage to the

PUs while taking into account the QoS requirements of the

SUs. In [11], multi-antenna precoding and relaying strategies

for cooperative FD CR systems were developed to maximize

the spectral efficiency of the secondary system while taking

into account a minimum required data rate for the PUs. Despite

these promising results, the PUs in FD CR systems may still

suffer from significant interference as the radio frequency (RF)

propagation environment of wireless systems is essentially

random and largely uncontrollable. In fact, in unfavorable

radio propagation environments, the designs proposed in [9]–

[11] cannot mitigate the interference caused to the PUs such

that their QoS requirements may be violated. In this case,

since the PUs have a higher priority for utilizing the spectrum,

the communication in the secondary network may be strictly

limited leading to a severe performance degradation of the

secondary network. To overcome this problem, more effective

interference management methods are urgently needed to

facilitate reliable and spectrum-efficient FD CR networks.

Recently, intelligent reflecting surfaces (IRSs) have emerged

as a promising solution for harnessing interference in wireless

communication systems [12]–[19]. In particular, an IRS is a

planar metasurface comprising a set of small passive low-cost

elements, such as phase shifters and printed dipoles, which

can be tuned individually to reflect the incident signals with

a desired phase shift [20]. By adaptively and smartly tuning

the phase shifts of the IRS elements according to the dynamic

radio propagation environment, the wireless channel can be

proactively manipulated, which introduces additional degrees

of freedom (DoFs) for resource allocation [12]. Moreover,

the reflected signals can be combined with the non-reflected

signals in a constructive or destructive manner to enhance

the desired signal power strength or to suppress detrimental

interference, which improves the overall system performance.

Besides, due to their relatively simple structure [20], IRSs

can be flexibly installed on building facades and interior

walls, and thus can be smoothly integrated into existing

cellular communication systems [12]. Deploying IRSs may in-

crease the complexity of resource allocation algorithm design.

However, several works have shown that with an advanced

but computationally-efficient resource allocation design IRS-

assisted wireless systems can achieve significant performance

gains compared to conventional wireless systems without IRS

[13]–[15], [21], [22]. In particular, the authors of [13] consid-

ered an IRS-aided multiple-input single-output (MISO) system

and studied the joint design of the beamforming at the BS and

the IRS to minimize the total BS transmit power. The authors

of [14] considered an IRS-enhanced single-user system and

developed two computationally efficient suboptimal algorithms

for maximizing the received power of the user. The authors of

[15] introduced artificial noise (AN) to improve the physical

layer security of an IRS-assisted multiuser communication

system and jointly optimized the IRS phase shifts, DL beam-

formers, and AN design. The authors of [21] studied the

benefits of IRSs in orthogonal frequency division multiple

access systems and formulated a joint transmit power and

IRS phase shift optimization problem for maximization of the

system throughput. The authors of [22] investigated the joint

BS beamforming and IRS phase shift design and proposed two

suboptimal algorithms to guarantee physical layer security in

an IRS-assisted multiple-input single-output (MISO) system.

However, the authors of [13]–[15], [21], [22] considered HD

systems, which cannot exploit the full potential of IRSs. In

fact, since IRSs naturally operate in a FD manner [19], they

can be conveniently incorporated into existing FD CR network

concepts to further increase spectral efficiency. Yet, the designs

proposed in [13]–[15], [21], [22] are not directly applicable to

IRS-assisted FD CR networks. In particular, the simultaneous

UL and DL transmissions of the secondary system, the su-

perposition of the direct and reflected paths, and the coupling

between the DL beamforming vectors, UL transmit powers,

and IRS phase shifts makes the resource allocation design for

IRS-assisted FD CR networks very challenging. To the best

of the authors’ knowledge, the design of spectrally-efficient

IRS-assisted FD CR networks has not been investigated in the

literature, yet.

Motivated by the above discussion, in this paper, we inte-

grate IRSs into FD CR networks and investigate the corre-

sponding resource allocation algorithm design. In particular,

as the secondary system is allowed to share the spectrum

of the primary system as long as the QoS of the PUs is

not severely compromised, the IRS is utilized to establish

a favorable radio propagation environment. In particular, we

aim to maximize the spectral efficiency of the secondary

system by jointly optimizing the DL transmit beamformers,

the UL transmit power, the UL receive beamformers, and the

IRS phase shifts. The problem formulation takes into account

the imperfect knowledge of the channel state information

(CSI) of the PUs at the FD BS of the secondary system

and the maximum interference leakage tolerance of the PUs.

Since the maximum interference leakage tolerance constraint

is intractable, we transform it into a convex constraint by

applying a safe approximation. Due to the coupling between

the optimization variables and the unit-modulus constraint

of the IRS phase shifts, even with the safe approximation,

the formulated problem is still highly non-convex and it is

very challenging to obtain the optimal solution. Hence, we

propose a block coordinate descent (BCD)-based iterative

algorithm to obtain a suboptimal solution [23]. In particular,

by applying successive convex approximation (SCA) [24] and

semidefinite relaxation (SDR), the DL transmit beamforming

and UL power allocation policies are obtained with the other

optimization variables being fixed. Then, we derive the closed-

form optimal solution for the receive beamforming vector

of the secondary BS given the other optimization variables.

Subsequently, we obtain the phase shift matrix of the IRS by

applying a penalty method [25] and SCA. The developed BCD

algorithm is guaranteed to converge to a stationary point of the

approximated optimization problem. Simulation results reveal

that IRSs and the proposed algorithm can significantly enhance

the performance of secondary networks while efficiently mit-

igating the interference to the PUs.

Notations: In this paper, boldface lower case and boldface

capital letters denote vectors and matrices, respectively. N

denotes the set of nonnegative integers. RN×M and C
N×M

denote the space of N ×M real-valued and complex-valued
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Fig. 1. CR system comprising a secondary FD base station, J = 2 secondary
UL users, and K = 2 secondary DL users sharing the spectrum with I = 2
PUs. The IRS is deployed to enhance the system performance of the secondary
network and to mitigate the interference to the PUs. The direct paths and
reflected paths are denoted by solid arrows and dashed arrows, respectively.
The signals of the primary transmitter are not shown for clarity.

matrices, respectively. ℜ{·} extracts the real part of a complex

number. H
N denotes the set of all N -dimensional complex

Hermitian matrices. IN indicates the N ×N identity matrix.

|·| and ||·||2 denote the absolute value of a complex scalar and

the l2-norm of a vector, respectively. AT , A∗, and AH stand

for the transpose, the conjugate, and the conjugate transpose

of matrix A, respectively. A � 0 indicates that A is a

positive semidefinite matrix. Rank(A), Tr(A), [A]i,i, and

‖A‖∗ denote the rank, the trace, the (i, i)-entry, and the trace

norm of matrix A, respectively. xi denotes the i-th element

of vector x. Diag(X) represents a diagonal matrix whose

diagonal elements are extracted from the main diagonal of

matrix X; diag(x) denotes an N × N diagonal matrix with

main diagonal elements x1, · · · , xN . E {·} denotes statistical

expectation. ∼ and
∆
= stand for “distributed as” and “defined

as”, respectively. The distribution of a circularly symmetric

complex Gaussian random variable with mean µ and variance

σ2 is denoted by CN (µ, σ2). The gradient vector of function

f(x) with respect to x is denoted by ∇xf(x). x
† denotes the

optimal value of optimization variable x.

II. SYSTEM MODEL

In this section, we present the IRS-assisted multiuser FD

CR network model and discuss our assumptions regarding the

CSI available for resource allocation.

A. IRS-Assisted Full-Duplex Cognitive Radio System Model

We consider a narrow-band IRS-assisted CR communication

system1 consisting of a primary license-holding network and

a secondary unlicensed network, cf. Figure 1. In particular,

the primary network comprises one primary transmitter and I

PUs, while the secondary network includes one secondary FD

BS, J UL users, and K DL users. The primary transmitter,

1In this paper, we consider an underlay CR network [26] where the
secondary FD BS can opportunistically coexist with the primary transmitter as
long as the interference leakage to the PUs is kept below a certain threshold.

the I PUs, and the K + J secondary users are single-

antenna HD devices. The secondary FD BS is equipped with

NT > 1 antennas2, indexed by N ∆
= {1, · · · , NT}, and

simultaneously performs DL transmission and UL reception

in the same frequency band3. Due to the spectrum sharing,

the QoS of the primary network is impaired by interference

leakage from the secondary network. To effectively suppress

the interference and improve the system performance of the

secondary network, an IRS is deployed. In particular, the IRS

comprises M phase shifters, indexed by M ∆
= {1, · · · ,M},

and is programmable and reconfigurable via an IRS controller.

For notational simplicity, we define sets I = {1, · · · , I},

J = {1, · · · , J}, and K = {1, · · · ,K} for the indices

of the PUs, secondary UL users, and secondary DL users,

respectively.

In a given time slot, the secondary FD BS transmits signal∑
k∈K

wkd
DL
k to the K DL users, where dDL

k ∈ C and wk ∈
C

NT×1 denote the information symbol for secondary DL user

k and the corresponding beamformer, respectively. Without

loss of generality, we assume E{
∣∣dDL
k

∣∣2} = 1, ∀k ∈ K. The

received signals at PU i, the secondary FD BS, and secondary

DL user k are given by, respectively4,

yPi =
(
fPD,i +

(
fPR,i
)H

ΨfP−I
)∑

n∈I

√
pPnd

P
n

︸ ︷︷ ︸
Signal from the primary transmitter

+
∑

j∈J

√
pjei,jd

UL
j +

∑

j∈J

√
pj l

H
R,iΨhR,jd

UL
j

︸ ︷︷ ︸
Interference from the secondary uplink

+
∑

k∈K

lHD,iwkd
DL
k +

∑

k∈K

lHR,iΨFwkd
DL
k

︸ ︷︷ ︸
Interference from the secondary downlink

+nPi , (1)

yUL =
∑

j∈J

√
pj hD,jd

UL
j +

∑

j∈J

√
pj F

HΨhR,jd
UL
j

︸ ︷︷ ︸
Desired signal

+ S
∑

k∈K

wkd
DL
k +

∑

k∈K

FHΨFwkd
DL
k

︸ ︷︷ ︸
Self-interference

+
(
fUL + FHΨfP−I

)∑

n∈I

√
pPnd

P
n

︸ ︷︷ ︸
Interference from the primary transmitter

+nUL, (2)

yDL
k = gHD,kwkd

DL
k + gHR,kΨFwkd

DL
k︸ ︷︷ ︸

desired signal

+
∑

r∈K\{k}

gHD,kwrd
DL
r +

∑

r∈K\{k}

gHR,kΨFwrd
DL
r

︸ ︷︷ ︸
Multiuser interference

2To facilitate reliable UL signal detection, we assume that the number of
antennas equipped at the secondary FD BS is equal to or larger than the
number of secondary UL users, i.e., NT ≥ J .

3Simultaneous transmission and reception with the same antenna can be
realized by employing a circulator-based FD radio transceiver, as demonstrated
in [27].

4In this paper, we assume that the secondary network is time-synchronized
and frequency-synchronized with the primary network.
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+
∑

j∈J

√
pjqj,kd

UL
j +

∑

j∈J

√
pjg

H
R,kΨhR,jd

UL
j

︸ ︷︷ ︸
Co-channel interference

+
(
fDL
D,k + gHR,kΨfP−I

)∑

n∈I

√
pPnd

P
n

︸ ︷︷ ︸
Interference from the primary transmitter

+nDL
k . (3)

Here, fPD,i ∈ C and fPR,i ∈ C
M×1 denote the channel between

the primary transmitter and PU i and the channel vector

between the IRS and PU i, respectively. Diagonal matrix Ψ =
diag

(
ejψ1 , · · · , ejψM

)
represents the phase shift matrix of the

IRS [13], where ψm ∈ [−π, π], ∀m ∈ M, is the phase shift

introduced by the m-th IRS element. The channel between the

primary transmitter and the IRS is denoted by fP−I ∈ C
M×1.

pPn ∈ R and dPn ∈ C denote the transmit power for PU n,

∀n ∈ I, and the corresponding data symbol, respectively.

lD,i ∈ C
NT×1 and lR,i ∈ C

M×1 denote the channel vector

between the secondary BS and PU i and the channel vector

between the IRS and PU i, respectively5. Matrix F ∈ C
M×NT

models the channel between the secondary FD BS and the IRS.

Variables dUL
j ∈ C and pj ∈ R are the data symbol and the

corresponding power transmitted by secondary UL user j to

the secondary FD BS, respectively. We assume E{
∣∣dUL
j

∣∣2} = 1
without loss of generality. The channel gain between sec-

ondary UL user j and PU i is denoted by ei,j . hD,j ∈ C
NT×1

and hR,j ∈ C
M×1 denote the channel vector between the

secondary BS and secondary UL user j and the channel

vector between the IRS and secondary UL user j, respectively.

S
∑
k∈K

wkd
DL
k in (2) represents the SI resulting from the DL

transmission with S ∈ C
NT×NT denoting the SI channel

matrix of the secondary FD BS. The term
∑
k∈K

FHΨFwkd
DL
k

in (2) denotes the SI introduced by the reflection of the

DL transmit signal by the IRS. fUL ∈ C
NT×1 denotes the

channel between the primary transmitter and the secondary

BS. gD,k ∈ C
NT×1 and gR,k ∈ C

M×1 denote the channel

vector between the secondary BS and DL user k and the

channel vector between the IRS and DL user k, respectively.

The channel gain between secondary UL user j and secondary

DL user k is denoted by qj,k. fDL
D,k denotes the channel

between the primary transmitter and secondary DL user k.

nUL ∼ CN (0, σ2
nU

INT
) and nDL

k ∼ CN (0, σ2
nk
) denote the

equivalent additive white Gaussian noises (AWGNs) at the

secondary FD BS and secondary DL user k, which capture

the combined effect of thermal noise and signal processing

noise [29]. nPi includes the joint effects of thermal noise and

signal processing noise at PU i.

Remark 1: In the following, for resource allocation design,

we model the interference from the primary transmitter to

the secondary BS and to secondary user k, i.e., (fUL +
FHΨfP−I)

∑
n∈I

√
pPnd

P
n and (fDL

D,k + gHR,kΨfP−I)
∑
n∈I

√
pPnd

P
n ,

5The delays between the signal propagating through the direct path and the
reflected path via the IRS are typically much shorter than the symbol duration.
For instance, for a cell with a radius of 50 m as considered in our simulations,
cf. Figure 2, the maximum round-trip delay is 0.33 µs, which is significantly
shorter than the 70 µs symbol duration in the Long-Term Evolution (LTE)
standard [28]. Thus, we neglect the impact of intersymbol interference in this
paper.

as additional AWGNs zUL ∼ CN (0, σ2
z0
INT

) and zDL
k ∼

CN (0, σ2
zk
), ∀k ∈ K, respectively. This is due to the fact that,

as can be seen from (2) and (3), the signals originating from

the primary transmitter may affect the IRS phase shift matrix

design. To accurately capture this effect for resource allocation

algorithm design, both the transmit power of the primary

transmitter and the CSI between the primary transmitter and

the secondary network have to be known. However, learning

the power allocation policy and the CSI of the primary network

would significantly increase the signalling overhead for the

secondary network. As a result, resource allocation design

taking into account the exact structure of the interference from

the primary transmitter may not be feasible in practice. For

notational simplicity, in the following, we include variances

σ2
z0

and σ2
zk

in the variances of nUL and nDL
k , respectively.

We note that the interference from the primary transmitter

is approximated as additional AWGN for resource allocation

design only. For evaluation of the performance of the proposed

resource allocation scheme, the actual system defined by (1)-

(3) is simulated.

B. Channel State Information

In this paper, we assume that both the primary network and

the secondary network are time division duplex systems with

slowly time-varying channels. During the channel estimation

phase of the secondary network, the secondary FD BS can

reliably estimate all links of the secondary network with the

assistance of the SUs and the IRS [30]. As a result, we assume

that the perfect CSI of the secondary network is available at

the secondary FD BS for resource allocation. However, this

assumption may not be valid for the channels between the

secondary network and the PUs. In practice, the PUs can not

be expected to directly interact with the secondary FD BS.

Moreover, the PUs may be idle for a long period of time due to

bursty data transmission. As a result, the CSI of the PUs can be

obtained only occasionally at the secondary FD BS when the

PUs are active in the primary network, which leads to outdated

PU CSI at the FD BS. In this paper, we develop a worst-case

optimization framework to capture the impact of imperfect PU

CSI on resource allocation design [31]. Specifically, the CSI

of the link between the FD BS and PU i, i.e., lD,i, the CSI of

the link between the IRS and PU i, i.e., lR,i, and the CSI of

the link between PU i and secondary UL user j are modeled

as:

lD,i = lD,i+∆lD,i and ΩD,i
∆
=
{
lD,i|∆lHD,i∆lD,i ≤ ε2D,i

}
,(4)

lR,i = lR,i+∆lR,i and ΩR,i
∆
=
{
lR,i|∆lHR,i∆lR,i ≤ ε2R,i

}
, (5)

ei,j = ei,j+∆ei,j and Ωi,j
∆
=
{
ei,j |∆eHi,j∆ei,j ≤ ε2i,j

}
, (6)

respectively, where lD,i, lR,i, and ei,j are the CSI estimates

and ∆lD,i, ∆lR,i, and ∆ei,j are the corresponding unknown

estimation errors, respectively. We denote the channel uncer-
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ΓDL
k =

∣∣∣gHD,kwk + gHR,kΨFwk

∣∣∣
2

∑
r∈K\{k}

∣∣∣gHD,kwr + gHR,kΨFwr

∣∣∣
2

+
∑
j∈J

pj

∣∣∣qj,k + gHR,kΨhR,j

∣∣∣
2

+ σ2
nk

. (7)

ΓUL
j =

pj
∣∣vHj hD,j + vHj FHΨhR,j

∣∣2
∑

t∈J\{j}

pt
∣∣vHj hD,t + vHj FHΨhR,t

∣∣2 +DSI
j + σ2

U ‖vj‖2
. (8)

DSI
j = Tr

(
ηvjv

H
j Diag

(∑

k∈K

Swkw
H
k SH︸ ︷︷ ︸

self-interference

+FHΨFwkw
H
k FHΨHF+ FHΨFwkw

H
k SH + Swkw

H
k FHΨHF︸ ︷︷ ︸

reflected interference

))
. (9)

tainty regions6 by continuous sets ΩD,i, ΩR,i, and Ωi,j with

radii εD,i, εR,i, and εi,j , respectively.

III. RESOURCE ALLOCATION PROBLEM FORMULATION

In this section, after introducing the adopted performance

metrics, we formulate the proposed resource allocation opti-

mization problem.

A. Performance Metrics

The achievable spectral efficiency (bits/s/Hz) of secondary

DL user k is given by RDL
k = log2(1 + ΓDL

k ), where ΓDL
k

is the receive signal-to-noise-plus-interference ratio (SINR) of

secondary DL user k and given by (7), where (7) is shown

at the top of this page. On the other hand, the spectral

efficiency (bits/s/Hz) of secondary UL user j is given by

RUL
j = log2(1 + ΓUL

j ), where ΓUL
j is the receive SINR of

secondary UL user j and given by (8), where (8) is shown

at the top of this page. Here, vj ∈ C
NT×1 is the receive

beamforming vector for decoding the message of secondary

UL user j at the secondary FD BS. We note that due to

the limited dynamic range of the receiver, the SI cannot be

suppressed completely even if perfect CSI of the SI channel

is available at the secondary FD BS [33]. Thus, similar to

[33], [34], we model the residual SI after cancellation at each

receive antenna as an independent Gaussian distortion noise

with zero mean and a variance proportional to the power

received at that antenna. In particular, according to [33, Eq.

(4)], the term DSI
j in (8) is given by (9), where (9) is shown at

the top of this page. Here, constant η, 0 < η ≪ 1, captures the

impact of the residual interference after SI cancellation at the

secondary FD BS [35]. We note that due to the propagation

attenuation between the FD BS and the IRS, the reflected

interference in (9) is negligible7 compared to self-interference.

As a result, we can approximate (9) as follows

DSI
j ≈ Tr

(
ηvjv

H
j Diag

(∑

k∈K

Swkw
H
k SH

))
. (10)

6In this paper, we assume the radius of the channel uncertainty region
is known. Yet, we note that the channel estimation error itself is a random
variable which lies in the given channel uncertainty region. In practice, the CSI
estimates and the channel uncertainty regions can be determined by applying
existing channel estimation schemes for IRS-assisted wireless systems, see,
e.g., [30], [32].

7For a CR network where the IRS is 100 m away from the FD BS
and a path loss exponent of 2, the term FHΨFwkw

H
k
FHΨHF +

FHΨFwkw
H
k
SH + Swkw

H
k
FHΨHF is attenuated by approximately a

factor of 10−8 compared to the term Swkw
H
k
SH .

B. Optimization Problem Formulation

In this paper, we optimize wk, vj , pj , and Ψ to maximize

the system spectral efficiency of the secondary network while

limiting the interference caused by the secondary network to

the PUs. The corresponding optimization problem is formu-

lated as follows

maximize
wk,vj ,pj ,Ψ

F
(
wk,vj , pj ,Ψ

)

s.t. C1:
∑

k∈K

‖wk‖2 ≤ PDL
max,

C2: 0 ≤ pj ≤ pj,max, ∀j,
C3:

∣∣∣[Ψ]m,m

∣∣∣ = 1, ∀m,

C4: max
lD,i∈ΩD,i

lR,i∈ΩR,i

ei,j∈Ωi,j

∑

k∈K

∣∣lHD,iwk + lHR,iΨFwk

∣∣2

+
∑

j∈J

pj
∣∣ei,j + lHR,iΨhR,j

∣∣2 ≤ ptoli , ∀i, (11)

where F
(
wk,vj , pj ,Ψ

)
is defined as F

(
wk,vj , pj ,Ψ

) ∆
=∑

j∈J

ωUL
j log2

(
1 + ΓUL

j

)
+
∑
k∈K

ωDL
k log2(1+ΓDL

k ). Here, ωUL
j ≥

0 and ωDL
k ≥ 0 denote predefined weights for secondary UL

user j and DL user k, which can be used to prioritize the UL

and DL users. PDL
max > 0 and pj,max > 0 in constraints C1

and C2 limit the maximum transmit powers of the secondary

FD BS and secondary UL user j, respectively. Constraint C3

guarantees that the diagonal phase shift matrix Ψ has M unit

modulus components on its main diagonal. C4 constrains the

maximum tolerable interference leakage. In particular, despite

the imperfection of the CSI, the secondary network is required

to ensure that the interference leakage to PU i does not exceed

the maximum interference tolerance ptoli .

We note that problem (11) is a highly non-convex optimiza-

tion problem. In particular, the coupling of the optimization

variables, the non-convexity of the objective function, the unit-

modulus constraint C3, and the semi-infinite constraint C4

are the main obstacles for solving the considered resource

allocation problem efficiently. To the best of the authors’

knowledge, the globally optimal solution of this problem

is in general intractable. In the next section, we develop a

suboptimal BCD-based iterative algorithm to solve problem

(11) with polynomial time complexity.
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C4a: max
ei,j∈Ωi,j

∑

j∈J

pj |∆ei,j |2 + βi ≤
ptoli
3
, ∀ and C4b: max

lD,i∈ΩD,i

∑

k∈K

∣∣∆lHD,iwk

∣∣2 + γi ≤ βi, ∀i, (14)

C4c: max
lR,i∈ΩR,i

∑

k∈K

∣∣∆lHR,iΨFwk

∣∣2 +
∑

j∈J

pj
∣∣∆lHR,iΨhR,j

∣∣2 + τi ≤ γi, ∀i, (15)

C4d:
∑

k∈K

∣∣∣lHD,iwk + l
H

R,iΨFwk

∣∣∣
2

+
∑

j∈J

pj

∣∣∣ei,j + l
H

R,iΨhR,j

∣∣∣
2

≤ τi, ∀i. (16)

IV. SOLUTION OF THE OPTIMIZATION PROBLEM

In this section, we first employ a safe approximation to

convert constraint C4 to a set of convex constraints. Then, we

propose a BCD-based algorithm to tackle the approximated

problem, which is still highly non-convex. In fact, BCD is a

widely applicable approach that divides coupled optimization

variables into several blocks and solves the optimization

problem for one block at a time while fixing the variables in

the other blocks [23]. In particular, we divide the optimization

variables into three blocks: {wk, pj}, {vj}, and {Ψ}. By

employing SCA and SDR, we obtain the transmit beam-

forming vector wk and transmit power pj . Then, we derive

a closed-form solution for receive beamforming vector vj .

Subsequently, we solve for Ψ by applying a penalty method

and SCA.

A. Transformation of the Semi-Infinite Constraints

In the literature, semi-infinite constraints are commonly

transformed into tractable linear matrix inequality (LMI) con-

straints [31]. However, due to the coupling between the opti-

mization variables and the coupling between the signals of the

direct and reflect paths, it is challenging to transform constraint

C4 into an LMI that is jointly convex with respect to wk and

Ψ. To facilitate robust resource allocation algorithm design,

we first apply inequality |a+ b+ c|2 ≤ 3 |a|2+3 |b|2+3 |c|2,

where a, b, and c are complex numbers, to the left hand side of

constraint C4 to obtain a tractable upper bound8. In particular,

a subset of the set defined by constraint C4 is given by

C4: max
lD,i∈ΩD,i

lR,i∈ΩR,i

ei,j∈Ωi,j

∑

k∈K

( ∣∣∆lHD,iwk

∣∣2 +
∣∣∣lHD,iwk + l

H

R,iΨFwk

∣∣∣
2

+
∣∣∆lHR,iΨFwk

∣∣2
)
+
∑

j∈J

pj

( ∣∣∣ei,j + l
H

R,iΨhR,j

∣∣∣
2

+ |∆ei,j |2 +
∣∣∆lHR,iΨhR,j

∣∣2
)
≤ ptoli

3
, ∀i. (12)

In the remainder of the paper, we tackle the following approx-

imated optimization problem:

maximize
wk,vj ,pj ,Ψ

F
(
wk,vj , pj ,Ψ

)

s.t. C1,C2,C3,C4. (13)

We note that any feasible solution of (13) is also a feasible

solution of (11). Hence, (13) is a safe approximation of (11)

8We note that the upper bound becomes tight when a, b, and c have similar
values.

[36]. Then, we define slack variables βi, γi, and τi and rewrite

constraint C4 equivalently as constraints C4a, C4b, C4c, and

C4d which are shown at the top of this page, respectively.

We note that C4d is convex in wk and Ψ individually while

C4a, C4b, and C4c are still semi-infinite constraints. Next, we

introduce a lemma for transforming constraints C4a, C4b, and

C4c into LMI constraints.

Lemma 1 (S-Procedure [37]) Let a function fm(x), m ∈
{1, 2}, x ∈ C

N×1, be defined as

fm(x) = xHAmx+ 2ℜ
{
aHmx

}
+ am, (17)

where Am ∈ H
N , am ∈ C

N×1, and am ∈ R. Then, the

implication f1(x) ≤ 0 ⇒ f2(x) ≤ 0 holds if and only if there

exists a δ ≥ 0 such that

δ

[
A1 a1
aH1 a1

]
−
[
A2 a2
aH2 a2

]
� 0, (18)

provided that there exists a point x̂ such that fm(x̂) < 0.

To facilitate the application of Lemma 1, we first rewrite

constraint C4c as follows

∆lHR,iΨ
( ∑

k∈K

FWkF
H+

∑

j∈J

pjHR,j

)
ΨH∆lR,i+τi ≤ γi, ∀i,

(19)

where Wk
∆
= wkw

H
k and HR,j

∆
= hR,jh

H
R,j . By apply-

ing Lemma 1, the following implication can be obtained:

∆lHR,i∆lR,i − ε2R,i ≤ 0 ⇒ C4c holds if and only if there

exist δi ≥ 0 such that

Ĉ4c: S
Ĉ4ci

(Wk , pj ,Ψ, γi, τi, δi)

=

[
δiIM −ΨBΨH 0

0 −δiε2R,i − τi + γi

]
� 0, ∀i, (20)

where B
∆
=

∑
k∈K

FWkF
H +

∑
j∈J

pjHR,j . To simplify the

notation, we rewrite the LMI in (20) as follows

Ĉ4c: S
Ĉ4ci

(Wk , pj ,Ψ, γi, τi, δi)

=

[
δiIM 0

0 −δiε2R,i − τi + γi

]
−CHΨBΨHC � 0, (21)

where C =
[
IM 0

]
. Similarly, by applying Lemma 1, we

rewrite constraints C4a and C4b as follows

Ĉ4a: S
Ĉ4ai

(pj , βi, ιi)

=

[
ιiIJ 0

0 −∑
j∈J

ιiǫ
2
i,j − βi +

ptoli
3

]
−DH

i PDi � 0, (22)

Ĉ4b: S
Ĉ4bi

(Wk , βi, γi, κi)
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ΓDL
k =

Tr(ĝkĝ
H
k Wk)∑

r∈K\{k}

Tr(ĝkĝHk Wr) +
∑
j∈J

pj |ϕj,k|2 + σ2
nk

and (29)

ΓUL
j =

pjTr(ĥjĥ
H
j vjv

H
j )

∑
t∈J\{j}

ptTr(ĥtĥHt vjv
H
j ) + Tr

(
ηvjv

H
j Diag

( ∑
k∈K

SWkSH
))

+ σ2
U ‖vj‖2

, (30)

f1 = −
∑

k∈K

ωDL
k log2


∑

r∈K

Tr(ĝkĝ
H
k Wr) +

∑

j∈J

pj |ϕj,k|2 + σ2
nk


 , (33)

f2 = −
∑

j∈J

ωUL
j log2

(∑

t∈J

ptTr(ĥtĥ
H
t vjv

H
j ) + σ2

U ‖vj‖2 +Tr
(
ηvjv

H
j Diag

(∑

k∈K

SWkS
H
))
)
, (34)

g1 = −
∑

k∈K

ωDL
k log2


 ∑

r∈K\{k}

Tr(ĝkĝ
H
k Wr) +

∑

j∈J

pj |ϕj,k|2 + σ2
nk


 , (35)

g2 = −
∑

j∈J

ωUL
j log2


 ∑

t∈J\{j}

ptTr(ĥtĥ
H
t vjv

H
j ) + σ2

U ‖vj‖2 +Tr
(
ηvjv

H
j Diag

(∑

k∈K

SWkS
H
))

 . (36)

=

[
κiINT

0

0 −κiε2D,i − γi + βi

]
−
∑

k∈K

EHi WkEi � 0, (23)

where ιi, κi ≥ 0, P
∆
= diag(p1, · · · , pJ ), Di

∆
=
[
IJ 0

]
, and

Ei
∆
=
[
INT

0
]
. We note that Ĉ4a is convex with respect to

pj and Ĉ4b is convex with respect to Wk. Moreover, Ĉ4c is

convex with respect to pj and Wk but is still non-convex with

respect to Ψ due to the quadratic term ΨBΨH .

B. Optimizing {Wk, pj} for Given Ψ and vj

For given Ψ and vj , we first rewrite the terms∣∣∣gHD,kwr + gHR,kΨFwr

∣∣∣
2

and

∣∣∣qj,k + gHR,kΨhR,j

∣∣∣
2

in (7),

the term
∣∣hHD,tvj + hHR,tΨ

HFvj
∣∣2 in (8), and the terms∣∣∣lHD,iwk + l

H

R,iΨFwk

∣∣∣
2

and

∣∣∣ei,j + l
H

R,iΨhR,j

∣∣∣
2

in (16) as

follows, respectively,

∣∣gHD,kwk + gHR,kΨFwk

∣∣2=
∣∣ĝHk wk

∣∣2= Tr(ĝkĝ
H
k Wk), (24)

∣∣hHD,jvj + hHR,jΨ
HFvj

∣∣2=
∣∣∣ĥHj vj

∣∣∣
2

= Tr(ĥjĥ
H
j vjv

H
j ), (25)

∣∣∣lHD,iwk + l
H

R,iΨFwk

∣∣∣
2

=
∣∣∣̂lHi wk

∣∣∣
2

= Tr(̂lîl
H
i Wk), (26)

∣∣qj,k + gHR,kΨhR,j

∣∣2= |ϕj,k|2 , (27)
∣∣∣ei,j + l

H

R,iΨhR,j

∣∣∣
2

= |ϑi,j |2 , (28)

where ĝk ∈ C
NT×1, ĥj ∈ C

NT×1, l̂i ∈ C
NT×1, ϕj,k ∈ C, and

ϑi,j ∈ C are defined as ĝk = gD,k+FHΨHgR,k, ĥj = hD,j+

FHΨhR,j , l̂i = lD,i +FHΨH lR,i, ϕj,k = qj,k + gHR,jΨhR,j ,

and ϑi,j = ei,j + l
H

R,iΨhR,j , respectively. Then, the received

SINR of the k-th secondary DL user and the received SINR

of the j-th secondary UL user can be rewritten as (29) and

(30) which are shown at the top of this page, respectively.

Constraint C4d can be rewritten equivalently as:

Ĉ4d:
∑

k∈K

Tr(̂lîl
H
i Wk) +

∑

j∈J

pj |ϑi,j |2 ≤ τi, ∀i. (31)

Then, the joint DL transmit beamforming and UL power

allocation design, i.e., {Wk, pj}, is formulated as follows

maximize
Wk∈H

NT ,pj ,
βi,γi,τi,δi,ιi,κi

∑

j∈J

ωUL
j log2(1 + ΓUL

j )+
∑

k∈K

ωDL
k log2(1 + ΓDL

k )

s.t. C1:
∑

k∈K

Tr(Wk) ≤ PDL
max, C2, Ĉ4a, Ĉ4b, Ĉ4c, Ĉ4d,

C5: Wk � 0, ∀k, C6: Rank(Wk) ≤ 1, ∀k. (32)

Here, constraints C5, C6, and Wk ∈ H
NT are imposed to

ensure that Wk = wkw
H
k holds after optimization. The non-

convexity of (32) originates from the objective function and

the rank constraint C6. Next, we aim to obtain a suboptimal

solution of (32) iteratively by applying SCA. For notational

simplicity, we define f1, f2, g1, and g2 which are shown at the

top of this page, respectively. Note that the negative objective

function in (32) can be expressed as f1 + f2 − g1 − g2.

Then, in the n-th iteration of the SCA, for a given feasible9

point (Wn
k , p

n
j ), we construct a global underestimator of

g1(Wk, pj) as follows

g1(Wk, pj) ≥ g1(W
n
k , p

n
j ) +

∑

j∈J

∇pjg1(W
n
k , p

n
j )(pj − pnj )

+
∑

k∈K

Tr
((

∇Wk
g1(W

n
k , p

n
j )
)H

(Wk −Wn
k )
)

∆
= ĝ1(Wk, pj ,W

n
k , p

n
j ), (37)

where

∇Wk
g1

9The superscript n denotes the SCA iteration index.
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∇Wk
g2 = −

ωUL
j

ln2

∑

j∈J

ηvjv
H
j Diag(SSH)

∑
t∈J\{j}

ptTr(ĥtĥHt vjv
H
j ) + Tr

(
ηvjv

H
j Diag

( ∑
k∈K

SWkSH
))

+ σ2
U ‖vj‖2

, (41)

∇pjg2 = −
ωUL
j

ln2

∑

r∈J\{j}

Tr(ĥrĥ
H
r vjv

H
j )

∑
t∈J\{r}

ptTr(ĥtĥHt vrvHr ) + Tr
(
ηvjv

H
j Diag

( ∑
k∈K

SWkSH
))

+ σ2
U ‖vr‖2

. (42)

=
∑

t∈K\{k}

−ωDL
k

ln2 ĝkĝ
H
k∑

r∈K\{t}

Tr(ĝkĝHk Wr) +
∑
j∈J

pj |ϕj,k|2 + σ2
nk

, (38)

and

∇pjg1

=
∑

k∈K

−ωDL
k

ln2 |ϕj,k|2∑
r∈K\{k}

Tr(ĝkĝHk Wr) +
∑
j∈J

pj |ϕj,k|2 + σ2
nk

. (39)

Similarly, for a given feasible point (Wn
k , p

n
j ), the global

underestimator of g2(Wk, pj) is given by

g2(Wk, pj) ≥ g2(W
n
k , p

n
j )

+
∑

k∈K

Tr
((

∇Wk
g2(W

n
k , p

n
j )
)H

(Wk −Wn
k )
)

+
∑

j∈J

∇pjg2(W
n
k , p

n
j )(pj − pnj )

∆
= ĝ2(Wk, pj ,W

n
k , p

n
j ), (40)

where ∇Wk
g2 and ∇pjg2 are shown at the top of this page,

respectively.

Then, for a given feasible point (Wn
k , p

n
j ) in the n-th

iteration, a lower bound of the maximization problem in

(32) can be obtained by solving the following optimization

problem

minimize
Wk,pj ,βi,γi,
τi,δi,ιi,κi

F̂ (Wk, pj)

s.t. C1,C2, Ĉ4a, Ĉ4b, Ĉ4c, Ĉ4d,C5,C6, (43)

where F̂ (Wk, pj) is defined as F̂ (Wk, pj)
∆
= f1 + f2 −

ĝ1(Wk, pj ,W
n
k , p

n
j )− ĝ2(Wk, pj ,W

n
k , p

n
j ). We note that the

remaining non-convexity of problem (43) stems from rank-one

constraint C6. Hence, we adopt SDR and remove constraint

C6. The relaxed version of problem (43) can now be optimally

solved by standard convex solvers such as CVX [38]. Next,

we verify the tightness of SDR in the following theorem.

Theorem 1: If PDL
max > 0, an optimal beamforming matrix

Wk satisfying Rank(Wk) ≤ 1 can always be obtained.

Proof: Please refer to Appendix A. �

Then, we tighten the upper bound of (32) by solving (43)

iteratively. The SCA algorithm for obtaining the optimal w
†
k

and p
†
j of (32) is summarized in Algorithm 1. We note that

Algorithm 1 is guaranteed to converge to a locally optimal

solution of (32) [24].

Algorithm 1 Successive Convex Approximation Algorithm for

Obtaining W
†
k and p

†
j

1: Set initial point W
1
k and p1j , iteration index n = 1, and error

tolerance 0 ≤ εSCA ≪ 1.
2: repeat
3: Solve (43) for given W

n
k and pnj and store the intermediate

solution Wk and pj
4: Set n = n+ 1, Wn

k = Wk, and pnj = pj

5: until
|F̂ (Wn

k ,pnj )−F̂ (Wn−1
k

,p
n−1
j

)|
|F̂ (Wn

k
,pn

j
)|

≤ εSCA

6: W
†
k = W

n
k and p

†
j = pnj

C. Optimizing vj for Given Ψ, Wk, and pj

For given Ψ, Wk, and pj , the UL spectral efficiency is

maximized if for each UL user j, the receive beamforming

vector vj maximizes the corresponding receive SINR ΓUL
j .

In particular, we can obtain the optimal receive beamforming

vector vj by solving the following optimization problem [39]:

maximize
vj

pjv
H
j ĥjĥ

H
j vj

vHj RIjvj
, (44)

where ĥj was defined in (25) and RIj ∈ C
NT×NT is defined

as follows

RIj =
∑

t∈J\{j}

pt
(
hD,th

H
D,t + FHΨhR,th

H
D,t

+ hD,th
H
R,tΨ

HF+ FHΨhR,th
H
R,tΨ

HF
)

+ ηDiag
(∑

k∈K

SWkS
H
)
+ σ2

UINT
. (45)

Moreover, the optimization problem in (44) can be recast as

the following equivalent convex optimization problem [39]

minimize
vj

vHj RIjvj

s.t. C7:
√
pjv

H
j ĥj = 1. (46)

The optimal solution of (46) is given by [39]

v
†
j = ̺j

√
pjR

−1
Ij

ĥj , (47)

where ̺j is a scalar to adjust v
†
j such that equality constraint

C7 is satisfied. We note that for the original problem in (44), ̺j
can be omitted as it has no effect on the value of the objective

function.
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ΓDL
k =

Tr(ΘGkWkG
H
k )∑

r∈K\{k}

Tr(ΘGkWrG
H
k ) +

∑
j∈J

pjTr(ΘQj,k) + σ2
nk

, (57)

ΓUL
j =

pjTr(Θ
THjvjv

H
j HH

j )
∑

t∈J\{j}

ptTr(ΘTHtvjv
H
j HH

t ) + Tr
(
ηvjv

H
j Diag

( ∑
k∈K

SWkSH
))

+ σ2
U ‖vj‖2

. (58)

f̃1 = −
∑

k∈K

ωDL
k log2

(∑

r∈K

Tr(ΘGkWrG
H
k ) +

∑

j∈J

pj
(
Tr(ΘQj,k)

)
+ σ2

nk

)
, (59)

f̃2 = −
∑

j∈J

ωUL
j log2

(∑

t∈J

ptTr(Θ
THtvjv

H
j HH

t ) + Tr
(
ηvjv

H
j Diag

(∑

k∈K

SWkS
H
))

+ σ2
U ‖vj‖2

)
, (60)

g̃1 = −
∑

k∈K

ωDL
k log2

( ∑

r∈K\{k}

Tr(ΘGkWrG
H
k ) +

∑

j∈J

pj
(
Tr(ΘQj,k)

)
+ σ2

nk

)
, (61)

g̃2 = −
∑

j∈J

ωUL
j log2

( ∑

t∈J\{j}

ptTr(Θ
THtvjv

H
j HH

t )+ Tr
(
ηvjv

H
j Diag

(∑

k∈K

SWkS
H
))
+σ2

U ‖vj‖2
)
. (62)

D. Optimizing Ψ for Given Wk, pj , and vj

For given Wk, pj , and vj , the optimization problem for the

IRS phase shift design is given by

maximize
Ψ,βi,γi,τi,
δi,ιi,κi

∑

j∈J

ωUL
j log2(1 + ΓUL

j ) +
∑

k∈K

ωDL
k log2(1 + ΓDL

k )

s.t. C3, Ĉ4a, Ĉ4b, Ĉ4c, Ĉ4d. (48)

We note that both the objective function and constraints C3

and Ĉ4c are non-convex functions which makes the IRS design

very challenging. Next, we first tackle the non-convex objec-

tive function in (48). In particular, we rewrite the quadratic

term

∣∣∣gHD,kwr + gHR,kΨFwr

∣∣∣
2

in (7) as follows:

∣∣gHD,kwr + gHR,kΨFwr

∣∣2

= gHD,kWrgD,k + 2ℜ
{
gHD,kWrF

HΨHgR,k

}

+ gHR,kΨFWrF
HΨHgR,k

= gHD,kWrgD,k + 2ℜ
{
gHD,kWrF

Hdiag(gR,k)θ
}

+ θ
Hdiag(gHR,k)FWrF

Hdiag(gR,k)θ

= Tr
([
θ
Hρ∗

][diag(gHR,k)F
gHD,k

]
Wr

[
FHdiag(gR,k) gD,k

][θ
ρ

])

= Tr(θ̃HGkWrG
H
k θ̃) = Tr(ΘGkWrG

H
k ), (49)

where optimization variables θ ∈ C
M×1, θ̃ ∈ C

(M+1)×1, and

Θ ∈ C
(M+1)×(M+1) are defined as θ = [ejψ1 , · · · , ejψM ]H ,

θ̃ = [θT ρ]T , and Θ = θ̃θ̃
H , respectively. Moreover, ρ ∈ C is

a dummy variable with |ρ|2 = 1. Besides, Gk ∈ C
(M+1)×NT

is defined as Gk =
[(
diag(gHR,k)F

)T
g∗
D,k

]T
.

Similarly, we rewrite the term

∣∣∣qj,k + gHR,kΨhR,j

∣∣∣
2

in

(7), the term
∣∣hHD,tvj + hHR,tΨFvj

∣∣2 in (8), and the terms∣∣∣lHD,iwk + l
H

R,iΨFwk

∣∣∣
2

and

∣∣∣ei,j + l
H

R,iΨhR,j

∣∣∣
2

in (16) as

follows, respectively,

∣∣qj,k + gHR,kΨhR,j

∣∣2 = Tr(ΘQj,k), (50)
∣∣hHD,tvj + hHR,tΨ

HFvj
∣∣2 = Tr(ΘTHtvjv

H
j HH

t ), (51)

∣∣∣lHD,iwk + l
H

R,iΨFwk

∣∣∣
2

= Tr(ΘLiWkL
H
i ), (52)

∣∣∣ei,j + l
H

R,iΨhR,j

∣∣∣
2

= Tr(ΘPi,j), (53)

where Ht ∈ C
(M+1)×NT and Li ∈ C

(M+1)×NT are

defined as Ht =
[(
diag(hHR,t)F

)T
h∗
D,t

]T
and Li =[(

diag(l
H

R,i)F
)T

l
∗

D,i

]T
, respectively. Moreover, Qj,k ∈

C
(M+1)×(M+1) and Pi,j ∈ C

(M+1)×(M+1) are defined as

Qj,k

=

[
diag(gHR,k)HR,jdiag(gR,k) q

∗
j,kdiag(g

H
R,k)hR,j

hHR,jdiag(gR,k)qj,k |qj,k|2
]
, (54)

Pi,j

=

[
diag(l

H

R,i)HR,jdiag(lR,i) e∗i,jdiag(l
H

R,i)hR,j

hHR,jdiag(lR,i)ei,j |ei,j |2

]
, (55)

respectively.

Then, we rewrite constraint Ĉ4d equivalently as

C̃4d:
∑

k∈K

Tr(ΘLiWkL
H
i ) +

∑

j∈J

Tr(ΘPi,j) ≤ τi, ∀i. (56)

We note that C̃4d is a convex constraint with respect to Θ.

Moreover, the receive SINR of secondary DL user k and the

receive SINR of secondary UL user j can be equivalently

rewritten as (57) and (58), where (57) and (58) are shown at

the top of this page, respectively. For notational simplicity, we

define f̃1, f̃2, g̃1, and g̃2 which are shown at the top of this

page, respectively. Note that the negative objective function in

(48) can be expressed as f̃1 + f̃2 − g̃1 − g̃2.

Next, by employing singular value decomposition, we trans-

form constraint Ĉ4c into a convex constraint. Specifically, for

given Wk and pj , we recast matrix B as B =
∑
s

σ̃sũsṽ
H
s ,

where σ̃s are the singular values of B, and ũd and ṽd are the

corresponding left and right singular vectors of B, respectively.

Then, we rewrite the term CHΨBΨHC in constraint Ĉ4c as

follows

CHΨBΨHC =
∑

s

σ̃sC
Hdiag(ũs)θθ

Hdiag(ṽHs )C
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∇Θg̃2 =
∑

j∈J

−ωUL
j

ln2

∑
t∈J\{j}

ptHtvjv
H
j HH

t

∑
t∈J\{j}

pt
(
Tr(ΘTHtvjv

H
j HH

t )
)
+Tr

(
ηvjv

H
j Diag

( ∑
k∈K

SWkSH
))

+ σ2
U ‖vj‖2

, (70)

=
∑

s

σ̃sD̃sΘẼs, (63)

where D̃s, Ẽs ∈ C
(M+1)×(M+1) are defined as D̃s =

[
CHdiag(ũs) 0

]
and Ẽs =

[
diag(ṽs)C

0

]
, respectively.

Hence, we can rewrite constraint Ĉ4c equivalently as

C̃4c: SC4ci
(Θ, τi, δi)

=

[
δiIM 0

0 −δiε2R,i − τi + γi

]
−
∑

s

σ̃sD̃sΘẼs � 0. (64)

Now, constraint C̃4c is a convex function with respect to Θ.

Therefore, for given Wk, pj , and vj , we can obtain Θ by

solving the following optimization problem

minimize
Θ∈H

M+1,βi,γi,
τi,δi,ιi,κi

f̃1 + f̃2 − g̃1 − g̃2

s.t. C̃3: Diag(Θ) = IM+1, Ĉ4a, Ĉ4b.C̃4c, C̃4d,

C8: Θ � 0, C9: Rank(Θ) = 1, (65)

where Θ � 0 and constraints C8 and C9 are imposed to

ensure Θ = θ̃θ̃
H holds after optimization. We note that the

rank-one constraint C9 is an obstacle to solving problem (65).

In the literature, SDR is commonly adopted to tackle the

rank-one constraint [40]. Yet, applying SDR to (65) may not

result in a rank-one matrix Θ. Moreover, some approximation

methods such as Gaussian randomization cannot guarantee the

convergence of the overall BCD algorithm [40]. To tackle

this obstacle, we first transform the combinatorial constraint

C9 equivalently into the following difference of convex (d.c.)

functions constraint [41]:

C̃9: ‖Θ‖∗ − ‖Θ‖2 ≤ 0, (66)

where ‖Θ‖2 denotes the spectral norm, i.e., ‖Θ‖2 = σ1(Θ),
where σi(Θ) denotes the i-th largest singular value of matrix

Θ. We note that for any Θ ∈ H
M+1 and Θ � 0, we have

‖Θ‖∗ =
∑
i

σi(Θ) ≥ ‖Θ‖2 = max
i

σi(Θ) and the equality

holds if and only if Θ is a rank-one matrix. Yet, the resulting

constraint C̃9 is still non-convex. To circumvent this obstacle,

we adopt a penalty approach [25] and recast (65) as follows:

minimize
Θ∈H

M+1,βi,γi,
τi,δi,ιi,κi

f̃1 + f̃2 − g̃1 − g̃2 + χ
(
‖Θ‖∗ − ‖Θ‖2

)

s.t. C̃3, Ĉ4a, Ĉ4b, C̃4c, C̃4d,C8, (67)

where χ ≫ 0 is a constant which penalizes the objective

function for any matrix Θ whose rank is larger than one. Then,

we use a sequence of χq to approach infinity and reveal that

problem (67) is equivalent to problem (65) in the following

theorem [25].

Algorithm 2 Successive Convex Approximation Algorithm for

Obtaining Ψ†

1: Set initial point Θ1, iteration index n = 1, and error tolerance
0 ≤ εSCA ≪ 1.

2: repeat
3: For given Θ

n, obtain the intermediate solution Θ by solving
(72)

4: Set n = n+ 1 and Θ
n = Θ

5: until
|F̃ (Θn)−F̃ (Θn−1)|

|F̃ (Θn)|
≤ εSCA

6: Θ
† = Θ

n

7: Recover Ψ† from Θ
†

Theorem 2: Denote the optimal solution of problem (67)

as Θq with penalty factor χq. When χq is sufficiently large,

i.e., χq → ∞, every limit point Θ of the sequence {Θq} is

an optimal solution of problem (65).

Proof: Please refer to Appendix B. �

The optimization problem in (67) is still an intractable

problem due to the non-convexity of the objective function.

Yet, we note that f̃1, f̃2, g̃1, g̃2, ‖Θ‖∗, and ‖Θ‖2 are all

convex functions and the problem in (67) is in the canonical

form of d.c. programming. Thus, a stationary point of (67)

can be obtained by applying SCA [24]. To start with, we first

construct a global underestimator of g̃1. In particular, for any

feasible point Θn, the differentiable convex function g̃1(Θ)
satisfies the following inequality:

g̃1(Θ) ≥ g̃1(Θ
n) + Tr

((
∇Θg̃1(Θ

n)
)H

(Θ−Θn)
)

∆
= g1(Θ,Θ

n), (68)

where ∇Θg̃1 is shown at the top of this page. We note

that g1(Θ,Θ
n) in (68) is a global underestimator of g̃1(Θ).

Similarly, for feasible point Θn, global underestimators of

g̃2(Θ) and ‖Θ‖2 can be constructed as follows, respectively,

g̃2(Θ) ≥ g̃2(Θ
n) + Tr

((
∇Θg̃2(Θ

n)
)H

(Θ−Θn)
)

∆
= g2(Θ,Θ

n), (69)

where ∇Θg̃2 is shown at the top of this page, and

‖Θ‖2 ≥ ‖Θn‖2 +Tr
(
θ
n
max(θ

n
max)

H(Θ−Θn)
)

∆
= Θ

n
, (71)

where θ
n
max is the eigenvector associated with the principal

eigenvalue of Θn.

Therefore, for any given point Θn, an upper bound on (65)

is obtained by solving the following optimization problem:

minimize
Θ∈H

M+1,βi,
γi,τi,δi,ιi,κi

F̃ (Θ)
∆
= f̃1 + f̃2 − g1 − g2 + χ

(
‖Θ‖∗ −Θ

n)

s.t. C̃3, Ĉ4a, Ĉ4b.C̃4c, C̃4d,C8. (72)
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Algorithm 3 Block Coordinate Descent Algorithm

1: Set initial points (wk)
1, (pj)

1, (vj)
1, and (Ψ)1, iteration index

m = 1, and convergence tolerance 0 ≤ εBCD ≪ 1
2: repeat
3: Solve (43) for given Ψ = (Ψ)m and vj = (vj)

m by applying
Algorithm 1 and obtain (wk)

m+1 and (pj)
m+1

4: Calculate (vj)
m+1 for given Ψ = (Ψ)m, wk = (wk)

m+1,
and pj = (pj)

m+1 using (47)
5: Solve (72) for wk = (wk)

m+1, pj = (pj)
m+1, and vj =

(vj)
m+1 by applying Algorithm 2 and recover (Ψ)m+1

based on (Θ)m+1

6: Set m = m+ 1

7: until

∣

∣

∣

∣

∣

∣

F

(

(wk)
m,(pj)

m,(vj)
m,(Ψ)m

)

F

(

(wk)
m−1,(pj)m−1,(vj)m−1,(Ψ)m−1

) − 1

∣

∣

∣

∣

∣

∣

≤ εBCD,

where F (·, ·, ·, ·) is defined in (11)

8: w
†
k = (wk)

m, p
†
j = (pj)

m, v
†
j = (vj)

m, Ψ† = (Ψ)m

Note that (72) is a convex optimization problem and the

optimal solution of (72) can be obtained via CVX [38].

The proposed algorithm for solving (67) is summarized in

Algorithm 2. We note that the function value of (67) is upper

bounded by the minimum of (72). Moreover, by iteratively

applying Algorithm 2, we can gradually tighten the upper

bound and obtain a sequence of solutions Θ. Furthermore,

the objective function of (72) is monotonically non-increasing

and the developed algorithm is guaranteed to converge to a

stationary point of (67) [24].

The overall BCD based algorithm is summarized in Algo-

rithm 3. Recall that objective function in (43) is monotonically

decreasing in each iteration of Algorithm 1 and the receive

beamforming vector v
†
j admits a closed-form solution, cf. (47).

We note that any limit point of the non-increasing sequence

{(wk)
m, (pj)

m, (vj)
m, (Ψ)m}

m∈N
obtained with Algorithm

3 is a stationary point of (13). Moreover, the function value

of the sequence {(wk)
m, (pj)

m, (vj)
m, (Ψ)m}

m∈N
is guar-

anteed to converge to a stationary value10 of the objective

function of (13) in polynomial time [23]. We note that due to

the safe approximation of constraint C4, a stationary point of

(13) is a feasible suboptimal solution of the original problem

in (11). Furthermore, according to [42, Theorem 3.12], the

computational complexity of an SDP problem with m SDP

constraints, where each constraint contains an n× n positive

semidefinite matrix, is given by O
(
mn3 +m2n2 +m3

)
. For

the relaxed version of problem (43), we have m = 3I and

n = NT, while for problem (72), we have m = 2I and

n = M + 1. Therefore, the computational complexity of

each iteration of the developed BCD algorithm is given by

O
(
log( 1

εSCA
)
(
3IN3

T+9I2N2
T+2I(M+1)3+4I2(M+1)2+

35I3
))

.

V. SIMULATION RESULTS

In this section, we study the system performance of the

proposed resource allocation scheme via simulations. The

10We note that swapping the order of steps 3, 4, and 5 would not affect
the convergence of Algorithm 3 [23]. Yet, the order of steps 3, 4, and 5 may
affect the value to which Algorithm 3 converges as a different order implies
a different search direction in the feasible set.

FD BS

Downlink user

Uplink user

Primary transmitter

Primary user

IRS

50 meters

S

50 meters100 meters

Fig. 2. Simulation setup for an IRS-assisted FD CR network which comprises
I = 2 PUs, K = 2 DL users, and J = 3 UL users.

TABLE I
SYSTEM PARAMETERS ADOPTED IN SIMULATIONS.

fc Carrier center frequency 2.5 GHz

pj,max Max. transmit power of UL user j 10 dBm

αBU Path loss exponent for direct paths 3.9

PDL
max Max. transmit power of FD BS 30 dBm

αBR Path loss exponent 2.1
αRU Path loss exponent 2.3
η SI cancellation coefficient −85 dB [27]

σ2
nk

Secondary DL user noise power −100 dB

σ2
nU

Secondary FD BS noise power −110 dBm

Gi Secondary FD BS antenna gain 5 dBi

ptoli Interference tolerance −90 dBm

GSI Rician factor for SI channels 5 dB

C0 Path loss at 1 m 40 dB

KRician Rician factor for IRS channels 5
εSCA SCA error tolerance 0.01
εBCD BCD error tolerance 0.01
χ Penalty factor 103

ωUL
j , ωDL

k
Weights of UL and DL users 1

schematic system model for the simulated FD CR network

is shown in Figure 2.

A. Simulation Setup

We focus on the resource allocation of one sector of the

secondary network. The distance from the secondary FD

BS to the IRS is 50 m11. Unless specified otherwise, the

primary network contains I = 2 PUs while the secondary

network comprises K = 2 secondary DL users and J = 3
secondary UL users. Both the PUs and the SUs are uniformly

and randomly distributed in the considered sector. For the

ease of presentation, in the sequel, the maximum normalized

estimation errors of the PU CSI are defined as υ2D,i =
ε2D,i

‖lD,i‖
2 ,

υ2R,i =
ε2R,i

‖lR,i‖
2 , and υ2i,j =

ε2i,j

|ei,j |
2 , where υ2D,i = υ2R,i =

υ2i,j = υ2, ∀i ∈ I, ∀j ∈ J . Moreover, the path loss model for

the reflected path is given by PLS
R = C2

0 (dBR)
αBR(dRU)

αRU ,

where C0 = 40 dB is a constant related to the carrier center

frequency at the reference distance of 1 m. Variables dBR = 50
m and dRU are the distance between the FD BS and the IRS

and the distance between the IRS and the users, respectively,

and αBR = 2.1 and αRU = 2.3 are the corresponding path

loss exponents [13]. The path loss model for the direct path

11In practice, the location of the IRS can be either optimized or chosen for
convenience.
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is given by PLS
D = C0(dBU)

αBU , where αBU = 3.9 is the

path loss exponent12. The fading coefficients of the SI channel

are generated as independent and identically distributed Rician

random variables with Rician factor 5 dB [34]. Besides, for

the channels between the secondary FD BS and all I+J +K
users, we model the small scale fading coefficients of the

channels of the direct paths as independent and identically

distributed Rayleigh random variables while the small scale

fading coefficients of the channels of the reflected paths follow

a Rician distribution.

Furthermore, the total transmit power of the primary trans-

mitter is assumed to be pP =
∑
i∈I

pPi = 35 dBm. More-

over, the path loss model for the reflected path between the

primary transmitter and secondary DL user k is given by

PLP
Rk

= C2
0 (r

P)αPR(rRk )
αRU , where αPR = 3.6 denotes

the path loss exponent of the channel between the primary

transmitter and the IRS13, and rP = 150 m and rRk denote

the distance between the primary transmitter and the IRS

and the distance between the IRS and secondary DL user

k, respectively. The path loss model for the reflected path

between the primary transmitter and the secondary FD BS

is given by PLP
R0

= C2
0 (r

P)αPR(dBR)
αBR . The path loss

model for the direct path between the primary transmitter

and secondary DL user k is given by PLP
Dk

= C0(r
D
k )

αPU ,

where rDk and αPU = 3.9 denote the distance between the

primary transmitter and secondary DL user k and the path loss

exponent of the corresponding channel. The path loss model

for the direct path between the primary transmitter and the

secondary FD BS is given by PLP
D0

= C0(r
D
0 )

αPB , where

rR0 = 100 m and αPB = 3.6 denote the distance between

the primary transmitter and the secondary FD BS and the

corresponding path loss exponent, respectively.

In the following, for resource allocation algorithm design,

the interference caused by the primary transmitter, i.e., (fUL+
FHΨfP−I)

∑
n∈I

√
pPnd

P
n and (fDL

D,k + gHR,kΨfP−I)
∑
n∈I

√
pPnd

P
n ,

is modelled as additional AWGN zUL ∼ CN (0, σ2
z0
INT

) and

zDL
k ∼ CN (0, σ2

zk
), ∀k ∈ K, respectively. Variances σ2

z0

and σ2
zk

, ∀k ∈ K, are set as σ2
z0

= pP
(

1
PLP

R0

+ 1
PLP

D0

)

and σ2
zk

= pP
(

1
PLP

Rk

+ 1
PLP

Dk

)
, respectively. Hence, when

implementing Algorithm 3, the total variances of the AWGN

at the secondary FD BS and at secondary DL user k are set

to be (σ2
z0

+ σ2
nU

) and (σ2
zk

+ σ2
nk
), ∀k ∈ K, respectively.

On the other hand, for performance evaluation, we apply

the solution obtained with Algorithm 3 in (2) and (3) and

calculate the spectral efficiency taking into account the exact

interference caused by the primary transmitter, i.e., (fUL +
FHΨfP−I)

∑
n∈I

√
pPnd

P
n and (fDL

D,k + gHR,kΨfP−I)
∑
n∈I

√
pPnd

P
n ,

respectively. Besides, for all channels involving the primary

transmitter, we model the small scale fading coefficients of the

12In practice, IRSs are usually deployed at favourable locations. As a
result, we assume that the reflected signals suffer from a less severe path
loss compared to the signals directly received from the BS.

13In this paper, the IRS is intended to serve the users located in the area
of the secondary network. Thus, the IRS is deployed at a location that is
favorable for the secondary network. As a result, we assume that the link
between the primary transmitter and the IRS suffers from a more severe path
loss compared to the link between the secondary FD BS and the IRS.

channels as independent and identically distributed Rayleigh

random variables. The parameter values adopted in our simu-

lations are listed in Table I.

B. Baseline Schemes

For comparison, we consider four baseline schemes. For

baseline scheme 1, zero-forcing beamforming (ZF-BF) is

employed at the FD BS for both DL and UL transmissions

and the phases of the IRS are generated in a random manner.

In particular, the directions of both the DL beamformer wk

for desired user k and UL beamformer vj for desired user

j are fixed and lie in the null spaces of all the other DL

user channels and all the other UL user channels, respectively.

Then, by optimizing the DL and UL transmit powers, i.e.,

pDL
k ∈ R and pj , we solve the problem in (13) subject to power

constraints C1 and C2 and interference leakage constraint

C4 by applying Algorithm 114. For baseline scheme 2, we

assume that the considered FD CR network does not employ

an IRS15. Then, we optimize DL beamforming vectors wk,

UL beamforming vectors vj , and the transmit powers of the

UL users for maximization of the system spectral efficiency

subject to constraints C1, C2, and C4 in (13). For baseline

scheme 3, we assume that the secondary BS operates in the

HD mode where the UL reception and the DL transmission are

realized in two orthogonal time slots of equal duration. As a

result, both CCI and SI do not exist. In particular, for the first

time slot, the DL spectral efficiency is maximized by jointly

optimizing wk and Ψ subject to constraints C1, C3, and C4

in (13)16. Then, for the second time slot, we maximize the UL

spectral efficiency by optimizing UL beamforming vector vj ,

phase shift matrix Ψ, and the transmit powers of UL users, i.e.,

pj taking into account constraints C2, C3, and C4 in (13). For a

fair comparison, the resulting total spectral efficiency obtained

for baseline scheme 3 is multiplied by a factor of one half due

to the orthogonal time slots needed for separating the UL and

DL transmissions. For baseline scheme 4, we assume that the

IRS employs random phase shifts. Then, we optimize the DL

beamforming vectors wk, the UL beamforming vectors vj ,

and the transmit powers of the UL users for maximization of

the system spectral efficiency subject to constraints C1, C2,

and C4 in (13).

Furthermore, to reveal the tradeoff between the computa-

tional complexity and the achievable system performance, the

computational complexities of the proposed scheme and the

four baseline schemes are provided in Table II shown at the

top of next page. While the proposed scheme entails a higher

computational complexity compared to baseline schemes 1,

2, and 4, our simulation results in Figures 4-8 reveal that

the proposed scheme also achieves a significantly higher

performance.

14The optimization problem resulting for baseline scheme 1 is still non-
convex due to the non-convex objective function in (13).

15For baseline scheme 2, we solve (43) and (44) by applying Algorithm 3
with Ψ = 0.

16For maximization of the DL spectral efficiency, we obtain wk and Ψ

by applying Algorithm 3 with pj = 0 and vj = 0, ∀j ∈ J . Similarly,
for maximization of the UL spectral efficiency, we obtain pj , vj , and Ψ by
applying Algorithm 3 with wk = 0, ∀k ∈ K.
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TABLE II
COMPUTATIONAL COMPLEXITY COMPARISON.

Scheme Computational complexity per iteration.

Proposed scheme O
(

log( 1
εSCA

)
(

3IN3
T + 9I2N2

T + 2I(M + 1)3 + 4I2(M + 1)2 + 35I3
)

)

Baseline scheme 1 O
(

2I(K + J)3.5 + IK3.5 + IJ3.5
)

[42]

Baseline scheme 2 O
(

log( 1
εSCA

)
(

3IN3
T + 9I2N2

T + 27I3
)

)

Baseline scheme 3 O
(

log( 1
εSCA

)
(

3IN3
T + 9I2N2

T + 4I(M + 1)3 + 8I2(M + 1)2 + 43I3
)

)

Baseline scheme 4 O
(

log( 1
εSCA

)
(

3IN3
T + 9I2N2

T + 27I3
)

)
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Fig. 3. Convergence of the proposed BCD algorithm for different values of
NT, M , I , J , and K with ptoli = −90 dBm, υ2 = 10%, and PDL

max = 30
dBm.

C. Convergence of Algorithm 3

In Figure 3, we investigate the convergence of the proposed

BCD algorithm for different numbers of PUs I , secondary

UL users J , secondary DL users K, antenna elements NT,

and IRS reflecting elements M . In particular, we consider

three cases: Case 1 with NT = M = 6, I = K = 2, and

J = 3; Case 2 with NT = M = 6, I = K = 4, and J = 5;

Case 3 with NT = M = 10, I = K = 4, and J = 5. We

can observe that for all three cases, the proposed algorithm

monotonically converges to a stationary point. Specifically,

for Case 1, the proposed algorithm converges within 10
iterations of Algorithm 3. For Case 2, the proposed algorithm

needs considerably more iterations (roughly 30 iterations of

Algorithm 3) to converge since the larger number of users

leads to more optimization variables and constraints in (11).

Compared to Case 2, for Case 3, the proposed algorithm needs

around 10 extra iterations for convergence since the larger

values of NT and M enlarge the size of the solution space

of the considered problem significantly. We also note that the

number of iterations required for the proposed algorithm to

converge is more sensitive to the number of users than to the

number of antennas and reflecting elements.

D. Average System Spectral Efficiency versus Maximum DL

Transmit Power

In Figure 4, we study the average system spectral efficiency

versus the maximum DL transmit power, PDL
max, for different
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Fig. 4. Average system spectral efficiency (bits/s/Hz) versus maximum
downlink transmit power (dBm) for different resource allocation schemes for
NT = 8, M = 8, I = 2, J = 3, K = 2, ptoli = −90 dBm, and

υ2 = 10%.

resource allocation schemes. As expected, the system spectral

efficiency increases monotonically with PDL
max. Moreover, we

observe that the proposed scheme outperforms all baseline

schemes. In fact, compared to the baseline schemes, the sig-

nificant performance improvement achieved by the proposed

resource allocation scheme is enabled by the joint optimization

of Φ, wk, pj , and vj . On the one hand, the proposed scheme

can create a more favorable radio propagation environment

by optimizing the phase shift matrix of the IRS. On the

other hand, it can fully exploit the DoFs introduced by the

multiplexing of multiple UL and DL users on the same spectral

resource via FD, which improves the spectral efficiency of the

CR network. On the contrary, the four baseline schemes yield

a dramatically lower system spectral efficiency. Specifically,

for baseline scheme 1, the FD BS is unable to fully exploit

the DoFs available for resource allocation because of the

fixed beamforming vector. Although the multiuser interference

(MUI) is mitigated by ZF-BF, both the CCI and the remaining

SI become more serious as PDL
max increases which limits the

system spectral efficiency. For baseline scheme 2, since there

is no IRS available, there are no DoFs for customizing a

favorable radio propagation environment for enhancing the

desired signal and suppressing the interference at the PUs.

For baseline scheme 3, although orthogonal DL and UL

transmissions completely avoid CCI and SI, the resulting
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strictly suboptimal use of the DL and UL time resources

leads to a significant loss of spectral efficiency. Baseline

scheme 4 achieves a considerable system spectral efficiency

improvement compared to baseline scheme 2. The reasons

behind this are twofold. On the one hand, the IRS facilitates

a higher received power for both the secondary users and the

secondary FD BS because of the reflected path established by

the IRS. On the other hand, the beamforming vectors for both

UL and DL transmission are optimized to match the cascaded

channels of the reflected paths, i.e., hHR,jΨF and gHR,kΨF,

respectively, which potentially improves the performance of

the secondary network. Nevertheless, the proposed scheme still

outperforms baseline scheme 4 by a significant margin due to

the joint optimization of all available resources.

E. Average System Spectral Efficiency versus Number of Sec-

ondary Users

Figure 5 depicts the average system spectral efficiency

versus the number of secondary DL users for different resource

allocation schemes. As can be seen from Figure 5, as K grows,

the system spectral efficiency achieved with the proposed

scheme and baseline schemes 1-3 increase since all schemes

are able to exploit multiuser diversity. Similarly, we observe

that the performance of the proposed scheme improves when

the number of UL users, J , increases. However, compared to

the proposed scheme, the system spectral efficiency for the

baseline schemes are significantly lower. In particular, due to

the partially fixed beamforming pattern of baseline scheme 1,

the increasing CCI and SI associated with larger K cannot be

mitigated which results in a substantially lower system spectral

efficiency. For baseline scheme 2, since the IRS is not utilized,

the system is unable to mitigate the growing MUI in UL and

DL introduced by the increasing number of DL users K. For

baseline scheme 3, the achieved system spectral efficiency

is still lower compared to the proposed scheme due to the

inefficient utilization of radio spectrum caused by the HD BS.

Furthermore, in Figure 5, we verify the accuracy of modeling

the interference caused by the primary transmitter as additional

4 5 6 7 8 9 10

Number of elements

0

1

2

3

4

5

6

7

8

A
v
e
ra

g
e
 s

y
s
te

m
 s

p
e
c
tr

a
l 
e
ff
ic

ie
n
c
y
 (

b
it
s
/s

/H
z
) Proposed scheme, M = 4

Baseline scheme 1, M = 4

Baseline scheme 2, M = 4

Baseline scheme 3, M = 4

Proposed scheme, N
T
 = 4

M = 4

Proposed scheme
N

T
 = 4

Baseline scheme 2

Baseline scheme 3

Baseline scheme 1

Spectral efficiency

improvement

Fig. 6. Average system spectral efficiency (bits/s/Hz) versus number of
elements for different resource allocation schemes for K = 2, I = 2, J = 3,
υ2 = 10%, ptoli = −90 dBm, and PDL

max = 30 dBm.

AWGN. Based on the resource allocation policy obtained

by applying Algorithm 3, we compare the average system

spectral efficiency for two cases: For Case A, we evaluate

the performance of the system by modelling the interference

from the primary network, i.e., (fUL+FHΨfP−I)
∑
n∈I

√
pPnd

P
n

and (fDL
D,k + gHR,kΨfP−I)

∑
n∈I

√
pPnd

P
n , as additional AWGNs

zUL ∼ CN (0, σ2
z0
INT

) and zDL
k ∼ CN (0, σ2

zk
), ∀k ∈ K,

respectively. For Case B, the interference from the primary net-

work is modelled exactly as (fUL+FHΨfP−I)
∑
n∈I

√
pPnd

P
n and

(fDL
D,k + gHR,kΨfP−I)

∑
n∈I

√
pPnd

P
n for performance evaluation,

as described in Section V-A. As can been seen from Figure

5, the performance difference between Case A and Case B

is very small. This suggests that modelling the interference

caused by the primary transmitter as additional AWGN is

indeed appropriate.

F. Average System Spectral Efficiency versus Number of An-

tenna/IRS Elements

In Figure 6, we investigate the average system spectral

efficiency versus the number of antenna/IRS elements. Specif-

ically, to reveal the performance gain achieved by deploying

an IRS, for the proposed scheme two cases are considered:

Case 1 with a fixed number of antennas at the secondary

BS (NT = 4) and increasing M and Case 2 with a fixed

number of phase shifters (M = 4) and increasing NT. We

observe that increasing the number of elements in Case 1

results in a larger performance gain compared to Case 2.

The reason behind this is twofold. On the one hand, as the

number of reflectors at the IRS increases, there are more

DoFs for customizing favorable BS-IRS-user channels which

improves both the UL and the DL beamforming gain. On

the other hand, the additional IRS elements can reflect more

power of the signal transmitted by the secondary FD BS

which results in a power gain. Moreover, as can be seen

from Figure 6, the average system spectral efficiency for the
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TABLE III
COMPARISON BETWEEN THE ACTUAL INTERFERENCE AND ITS UPPER BOUND.

Terms
∑ 1

3
|a+ b+ c|2 ∑

(|a|2 + |b|2 + |c|2)
a = ∆lHD,i

wk , b = ∆lHR,i
ΨFwk , c = l

H

D,iwk + l
H

R,iΨFwk −91.1 dBm −90.9 dBm

a =
√
pj∆ei,j , b =

√
pj∆lHR,i

ΨhR,j , c =
√
pjei,j + l

H

R,iΨhR,j −98.1 dBm −97.7 dBm

Total interference −90.3 dBm −90 dBm
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Fig. 7. Average system spectral efficiency (bits/s/Hz) versus maximum nor-
malized channel estimation error, υ2, for different schemes for NT = M = 8,
K = I = 2, J = 3, ptoli = −90 dBm, and PDL

max = 30 dBm.

proposed scheme and the three baseline schemes improve as

the number of antennas, NT, at the FD BS increases. This

can be explained by the fact that the extra DoFs provided

by the additional antennas facilitates a higher beamforming

resolution for both DL transmission and UL reception which

lead to higher received SINRs. Yet, as NT increases, the

channel hardening effect leads to a diminishing growth rate

of the system spectral efficiency. Figure 6 also shows that

the average system spectral efficiency of the proposed scheme

increases faster with NT than the average system spectral

efficiency of the baseline schemes thanks to the proposed

optimization framework which exploits the system resources

efficiently. Furthermore, for the parameter values adopted in

Figure 6 and NT = 4 and M = 10, we also verify the tightness

of the inequality used to safely approximate constraint C4 in

(12). The corresponding numerical results, which have been

obtained by averaging over different channel realizations, are

provided in Table III shown at the top of this page. As can

be seen from Table III, the difference between the actual

interference and the upper bound is only 0.3 dB. This indicates

that the proposed safe approximation is relatively tight.

G. Average System Spectral Efficiency versus Maximum Nor-

malized Channel Estimation Error

In Figure 7, we study the average system spectral efficiency

versus the maximum normalized channel estimation error. As

expected, the average system spectral efficiency decreases with

increasing υ2. This is due to the fact that, as υ2 increases, the

secondary BS becomes less flexible and more conservative in

resource allocation. In particular, the BS has to allocate more
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DoFs to satisfy the interference leakage constraint C4. As a

result, fewer DoFs are available for suppressing the SI and

facilitating accurate DL beamforming at the FD BS which

degrades the system performance. Besides, over the entire

range of υ2, the proposed scheme significantly outperforms

baseline schemes 1-3. This unveils that by jointly optimizing

all available DoFs, the proposed scheme can mitigate the

interference leakage more efficiently than the three baseline

schemes, even in the presence of CSI uncertainty. Besides,

compared to the proposed scheme and baseline scheme 3, we

observe that baseline scheme 1 and baseline scheme 2 are

less sensitive to channel estimation errors in the considered

range. For baseline scheme 1, the random phase shift pattern

of the IRS already results in a significant performance loss and

increasing υ2 from 0 to 10% only leads to a small additional

loss. For baseline scheme 2, since the IRS is not deployed,

only the imperfect knowledge of the CSI of the direct paths

affects the performance, which leads to a smaller degradation.

H. Outage Probability versus Maximum Interference Leakage

Tolerance

Figure 8 shows the outage probability of the users in the

primary network versus the maximum interference leakage

tolerance for different resource allocation schemes. The outage

probability is defined as the probability that the interference

leakage from the secondary network to the i-th PU is higher

than a predefined target interference leakage tolerance ptari .

For comparison, we also study the outage probability of a
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minimize
Wk,pj ,βi,γi,τi,

δi,ιi,κi,φ̂k,ψ̂j

−
∑

k∈K

log2(φ̂k + σ2
nk
)−

∑

j∈J

log2(ψ̂j)−
∑

k∈K

Tr
((

∇Wk
ĝ1 +∇Wk

ĝ2
)H

Wk

)
+ Ξ

s.t. C1,C2, Ĉ4a, Ĉ4b, Ĉ4c, Ĉ4d,C5, C10: φ̂k ≤
∑

r∈K

Tr(ĝkĝ
H
k Wr) +

∑

j∈J

pj |ϕj,k|2 , ∀k,

C11: ψ̂j ≤
∑

t∈J

ptTr(ĥjĥ
H
j vjv

H
j ) + Tr

(
ηvjv

H
j Diag

(∑

k∈K

SWkS
H
))

+ σ2
U ‖vj‖2 , ∀j. (73)

non-robust scheme. Specifically, for the non-robust scheme,

we solve a problem similar to (11) but treat the estimated

CSI of the PUs as perfect CSI. Then, using the actual CSI

of the PUs, we check if the interference leakage constraint

C4 in (11) is satisfied. As can be observed from Figure 8,

both the proposed scheme and baseline schemes 1-4 yield a

significant outage probability reduction compared to the non-

robust scheme. Moreover, as we set the maximum interference

leakage tolerance to ptoli = −90 dBm, the outage probabilities

of the proposed scheme and all baseline schemes decrease to

zero for target interference leakage tolerances ptari ≤ −90
dBm. In contrast, the non-robust scheme still suffers from

outages. These results underline the robustness of the proposed

scheme against imperfect CSI.

VI. CONCLUSION

In this paper, we proposed to integrate an IRS into a

multiuser FD CR system to simultaneously improve the system

performance of the secondary network and effectively mitigate

the interference caused to the PUs. In particular, the system

spectral efficiency of the secondary network was maximized

by jointly optimizing the DL transmit beamforming vectors

and the UL receive beamforming vectors at the FD BS, the

UL transmit power of the UL users, and the phase shift matrix

at the IRS. We considered the robust design of IRS-assisted

FD CR systems taking into account the imperfect knowledge

of the CSI of the PUs. Since the resulting interference leakage

tolerance constraint is an obstacle to efficient resource alloca-

tion algorithm design, we proposed a safe approximation of the

original optimization problem. To tackle the non-convexity of

the resulting design problem, we developed a BCD algorithm

to solve the approximated problem in an alternating manner. In

particular, the design of the DL transmit beamformers and UL

transmit power was tackled by SCA and SDR, and the optimal

UL receive beamformers were derived in closed form. The

unit modulus constrained optimization problem introduced by

the IRS was first transformed to a rank-constrained problem

and then addressed by applying a penalty method and SCA.

The proposed BCD algorithm is guaranteed to converge to

a stationary point of the approximated optimization problem.

Simulation results not only revealed the significant system

spectral efficiency improvement achieved by the proposed

scheme compared to four baseline schemes but also verified its

robustness against the imperfect knowledge of the CSI of the

PUs. Moreover, our results illustrated that IRSs are an efficient

means to mitigate the various forms of interference in FD CR

systems.

Finally, we note that the system model considered in this

paper can serve as a starting point for studying the impact of

practical constraints in IRS-assisted FD CR systems. Potential

future research topics in this direction include IRS-assisted

FD CR systems with hardware impairments and discrete phase

shifts.

APPENDIX

A. Proof of Theorem 1

To start with, we recast the relaxed version of (43) in

equivalent form as (73) which is shown at the top of this page.

Here, φ̂k and ψ̂j are slack variables and Ξ collects all terms

which are not relevant for the proof. Note that the problem in

(73) is jointly convex with respect to all optimization variables

and the Slater’s condition is satisfied for (73) [37]. Therefore,

strong duality holds, i.e., the gap between the optimal value of

(73) and that of its dual problem is zero [37]. Specifically, the

Lagrangian function of (73) in terms of beamforming matrix

Wk is given as follows

L = ξ
∑

k∈K

Tr(Wk)−
∑

k∈K

Tr
((

∇Wk
ĝ1 +∇Wk

ĝ2
)H

Wk

)

−
∑

i∈I

Tr
(
S
Ĉ4bi

(Wk , βi, γi, κi)TĈ4bi

)
−
∑

k∈K

Tr(WkYk )

+
∑

i∈I

β̂i
∑

r∈K

Tr(̂lîl
H
i Wr)−

∑

k∈K

ζ̂k
∑

r∈K

Tr(ĝkĝ
H
k Wr)

−
∑

i∈I

Tr
(
S
Ĉ4ci

(Wk , pj ,Ψ, γi, τi, δi)TĈ4ci

)

−
∑

j∈J

ς̂jTr
(
ηvjv

H
j Diag

(∑

k∈K

SWkS
H
))

+Υ. (74)

Here, we have introduced Υ to collect all terms that do

not involve Wk . The scalar Lagrange multipliers ξ, β̂i, ζ̂k,

and ς̂j ≥ 0 are associated with constraints C1, Ĉ4d, C10,

and C11, respectively. The positive semidefinite Lagrange

multiplier matrices T
Ĉ4bi

∈ C
(NT+1)×(NT+1), T

Ĉ4ci
∈

C
(M+1)×(M+1), and Yk ∈ C

NT×NT are associated with

constraints Ĉ4b, Ĉ4c, and C5, respectively. The dual problem

of (73) is given by

maximize
T

Ĉ4bi
,T

Ĉ4ci
,Yk�0,

ξ,β̂i,ζ̂k,ς̂j≥0

minimize
Wk,pj ,βi,γi,τi,

δi,ιi,κi,φ̂k,ψ̂j

L. (75)

Next, by checking the Karush-Kuhn-Tucker (KKT) conditions

with respect to Wk, we investigate the structure of the optimal

W
†
k of (75). Specifically, for W

†
k, we have

K1: ξ†, β̂
†
i , ζ̂

†
k, ς̂

†
j ≥ 0, T

†

Ĉ4bi

,T
†

Ĉ4ci
,Y

†
k � 0, (76)
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K2: Y
†
kW

†
k = 0, K3: ∇

W
†

k

L = 0, (77)

where ξ†, β̂
†
i , ζ†c , T

†

Ĉ4bi

, T
†

Ĉ4ci
, and Y

†
k are the optimal

Lagrange multipliers for (75). Note that there exists at least

one ξ† > 0 since constraint C1 is active for optimal W
†
k.

To facilitate the proof, K3 in (77) is explicitly expressed as

follows

Y
†
k = ξ†INT

−∆
†
k, (78)

where ∆
†
k is given by

∆
†
k = ∇Wk

ĝ1(W
†
k) +∇Wk

ĝ2(W
†
k)−

∑

i∈I

EHi T
†

Ĉ4bi

Ei

−
∑

i∈I

CHΨFT
†

Ĉ4ci
FHΨHC−

∑

i∈I

β̂
†
i l̂îl

H
i

+
∑

k∈K

ζ̂
†
kĝkĝ

H
k +

∑

j∈J

ς̂
†
j ηvjv

H
j Diag(SSH). (79)

Next, by unveiling the structure of matrix Y
†
k, we show

that the optimal W† always satisfies Rank(W†
k) ≤ 1. De-

note the maximum eigenvalue of matrix ∆
†
k as νmax

∆
†

k

∈ R.

We note that due to the randomness of the channels, the

probability of having multiple eigenvalues with the same

value νmax
∆

†

k

is zero. Reviewing (78), if νmax
∆

†

k

> ξ†, then

Y
†
k � 0 does not hold which contradicts K1. On the other

hand, if νmax
∆

†

k

≤ ξ†, then Y
†
k is a positive semidefinite

matrix with Rank(Y∗
k) ≥ NT − 1. Considering K2, this

leads to Rank(W†
k) ≤ 1. Next, we construct a bounded

optimal solution based on the above discussion. Specifically,

we construct a unit-norm vector emax
∆

†

k

∈ C
NT×1 which lies

in the null space of Y
†
k, i.e., Y

†
ke

max
∆

†

k

= 0. Let emax
∆

†

k

be the

unit-norm eigenvector associated with the principal eigenvalue

νmax
∆

†

k

of matrix ∆
†
k. Thus, the optimal W∗

k can be expressed

as W
†
k = ̟emax

∆
†

k

(emax
∆

†

k

)H . Here, parameter ̟ can be tuned

such that the DL transmit power constraint C1 is satisfied. �

B. Proof of Theorem 2

To start with, we define the objective function and the op-

timal solution of problem (65) as F̃ (Θ) and Θ†, respectively.

Then, for any feasible Θ, we have the following inequality:

F̃ (Θ†) ≤ F̃ (Θ). (80)

We further define the objective function of problem (67)

as G̃(Θ;χ). Assuming Θq minimizes G̃(·;χq) with penalty

factor χq for each q, we have the following inequality:

F̃ (Θq) + χq
(
‖Θq‖∗ − ‖Θq‖2) = G̃(Θq;χq)

≤ F̃ (Θ†) + χq(
∥∥Θ†

∥∥
∗
−
∥∥Θ†

∥∥
2
) = G̃(Θ†;χq)

(a)
= F̃ (Θ†), (81)

where equality (a) holds due to the fact that any optimal

solution of (65), i.e., Θ†, fulfills
∥∥Θ†

∥∥
∗
−
∥∥Θ†

∥∥
2
≤ 0. Then,

we rearrange the inequality in (81) and obtain the following

inequality:

‖Θq‖∗ − ‖Θq‖2 ≤ 1

χq

(
F̃ (Θ†)− F̃ (Θq)

)
. (82)

Recall that if Θ is a limit point of the sequence {Θq}, we

can find an infinite subsequence Q such that

lim
q∈Q

Θq = Θ. (83)

Then, as q ∈ Q, q → ∞, we take the limit on both sides of

(82) and obtain the following relation chain:

∥∥Θ
∥∥
∗
−
∥∥Θ
∥∥
2

(b)
= lim

q∈Q
‖Θq‖∗ − ‖Θq‖2

≤ lim
q∈Q

1

χq

(
F̃ (Θ†)− F̃ (Θq)

) (c)
= 0, (84)

where equality (b) holds because of the continuity property of

norm functions and equality (c) holds due to χq → ∞. Thus,

we have that
∥∥Θ
∥∥
∗
−
∥∥Θ
∥∥
2
= 0. As a result, Θ is a feasible

solution of problem (65).

On the other hand, for any χq ≥ 0, we take the limit of

(81) as i ∈ Q, q → ∞, which leads to the inequality:

F̃ (Θ)
(d)

≤ F̃ (Θ) + lim
q∈Q

χq(‖Θq‖∗ − ‖Θq‖2) ≤ F̃ (Θ†), (85)

where inequality (d) is due to the nonnegativity of the term

‖Θq‖∗ − ‖Θq‖2. As Θ is a feasible point whose objective

value is no larger than that of the optimal solution Θ†, we

conclude that Θ is also an optimal solution of problem (65),

as claimed. This completes the proof.
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