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Abstract—This paper investigates the joint transmitter and re-
ceiver optimization for the energy efficiency (EE) in orthogonal
frequency-division multiple-access (OFDMA) systems. We first
establish a holistic power dissipation model for OFDMA systems,
including the transmission power, signal processing power, and
circuit power from both the transmitter and receiver sides, while
existing works only consider the one side power consumption
and also fail to capture the impact of subcarriers and users on
the system EE. The EE maximization problem is formulated as
a combinatorial fractional problem that is NP-hard. To make
it tractable, we transform the problem of fractional form into
a subtractive-form one by using the Dinkelbach transformation
and then propose a joint optimization method, which leads to
the asymptotically optimal solution. To reduce the computational
complexity, we decompose the joint optimization into two con-
secutive steps, where the key idea lies in exploring the inherent
fractional structure of the introduced individual EE and the
system EE. In addition, we provide a sufficient condition under
which our proposed two-step method is optimal. Numerical results
demonstrate the effectiveness of proposed methods, and the effect
of imperfect channel state information is also characterized.

Index Terms—Energy efficiency, OFDMA, joint transmitter and
receiver optimization, resource allocation.
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I. INTRODUCTION

O RTHOGONAL frequency division multiple access

(OFDMA) has emerged as a promising candidate for

the next generation wireless networks due to its high spectral

efficiency and resistance to multipath fading [1]. Meanwhile,

due to the explosive demand of data services and energy hungry

multimedia wireless devices, energy efficient oriented designs

are of great interests to reduce greenhouse gas emissions and

lower the operational expenditure. Energy efficiency defined

by bits per joule has been accepted gradually as an important

metric to assess the performance of communication systems

besides the system throughput [1], [2]. Therefore, investigating

the energy efficiency in OFDMA systems is particularly crucial

towards future wireless communication system designs.

The energy-efficient oriented designs in the OFDMA sys-

tems have attracted much attention recently [3]–[11]. The en-

ergy efficiency of the uplink scenario with flat fading channel

and frequency selective channel is investigated in [3] and [4],

respectively. In the downlink, the energy-efficient resource

allocation with quality-of-service (QoS) requirements is studied

in [5], but the optimal solution can only be obtained through

the exhaustive search for all the possible subcarrier assign-

ments. In [7], the optimality of the OFDMA for the energy

efficiency is proved under the inter-user interference in the

system. The authors in [10] study the energy efficiency of a

point to point OFDM system without involving the subcarrier

assignment while the authors in [11] focus on energy savings

in the BS side through BS cooperation in multicell OFDMA

systems, where the power consumption in the receiver side and

the signal processing power in terms of active subcarriers are

not optimized. Therefore, the conclusions and the proposed

methods therein may not be applicable considering the power

consumption of the receiver side which depends on the number

of active subcarriers.

In terms of system assumptions, previous works [3]–[9] may

have some drawbacks for the energy efficiency evaluation. First,

these works only take into consideration of the power con-

sumption from the BS side. Practically, the concept of energy

efficiency should involve the system overall throughput and the

system overall power consumption and it has been pointed out

that techniques adopted to improve the energy efficiency of

one end of the communication system may adversely affect the

energy efficiency of the other end [12], [13]. In addition, due

to the limited capacity of batteries, we should also carefully
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manage the power consumption in the user terminal side which

is also a crucial issue associated with the user experience [14]–

[16]. Meanwhile, as cellular communication networks evolve,

the cell coverage regions continue to shrink in size in order

to meet the high data demands or various kinds of QoS, such

as micro cells and femto cells, where the power consumption

of the user terminal is no longer negligible and it is in fact

comparable with the BS [13]–[16]. That is, the joint transmitter

and receiver optimization from a holistic perspective is required

when evaluating the energy efficiency of a communication

system. Second, most of these works either ignore the signal

processing or assume that it is a constant regardless of the

bandwidth. However, according to the system power dissipation

concluded from industrial circle recently, the signal processing

power linearly increases with the bandwidth or the number of

active subcarriers [17], [18]. Therefore, the constant circuit-

level modeling in [3]–[9] is failed to capture the characteristics

of energy efficiency enhancement with respect to subcarriers

and users.

In this paper, we investigate the system energy efficiency

considering all the above issues. Specifically, we focus on the

resource allocation for joint transmitter and receiver energy

efficiency maximization problem of OFDMA systems. We first

establish a general power consumption model in multiuser

OFDM systems by taking account of the transmission power

from the base station side, the signal processing power and the

fixed circuit power from both sides. Then, we propose a joint

optimization method to iteratively find the optimal solution

for the energy efficiency maximization problem based on the

Dinkelbach transformation which has been widely used in

energy efficiency optimization area [10], [11].

In order to reduce the computational complexity, we propose

a low complexity two-step method based on the relationship of

the introduced individual energy efficiency of the subcarrier-

user pattern and the system energy efficiency. Specifically, we

first design an efficient subcarrier assignment scheme according

to the individual energy efficiency of the subcarrier-user pat-

tern. For the power allocation, a linear complexity scheme is

developed by exploring the fractional structure of the system

energy efficiency. In addition, we also provide a sufficient

condition under which our proposed low complexity method

is optimal. From simulation results we can see the trade-off

between the spectral efficiency and the energy efficiency. It is

interesting to note that the energy efficiency of the proposed

method outperforms the conventional throughput maximization

method, even in the low power region due to the optimization

for the number of active subcarriers. Moreover, it is found that

exploiting more user diversity is not always beneficial from the

perspective of energy efficiency.

The remainder of this paper is organized as follows.

In Section II, we establish the power consumption model in

OFDMA systems and formulate the energy efficiency maxi-

mization problem. In Section III, a joint optimization method

is proposed to iteratively obtain the asymptotically optimal

SU pairing and power allocation. In Section IV, we design a

two-step method to obtain the near-optimal solution with low

complexity. Section V provides the simulation results and the

paper is concluded in Section VI.

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

In this section, we first introduce the system model of

OFDMA systems and then formulate the joint transmitter and

receiver energy efficiency maximization problem.

A. System Description

Consider a downlink OFDMA system in a single cell with

one BS and K users which are all equipped with one antenna.

The total bandwidth W is equally divided into N orthogonal

subcarriers, each with a bandwidth of B =W/N. The channel is

modeled to have both the large-scale attenuation and the small-

scale fading. Specifically, the large-scale attenuation includes

distance-dependent path loss and shadowing. The small-scale

fading is assumed to be frequency selective and independent

among different users. The channel coefficients are assumed to

keep unchanged within each scheduling interval, which consists

of multiple OFDM symbols. We assume that perfect channel

state information at the transmitter (CSIT) is available [19]–

[21] and the effects of imperfect CSIT will be demonstrated in

the simulation. In practice, the CSIT can be typically collected

by estimating it at each user terminal and sending it to the BS

via a feedback channel a frequency division duplex system,

or through channel estimation of the uplink in a time division

duplex system [11], [22]. We also assume that each subcarrier

is exclusively assigned to at most one user in each scheduling

interval, in order to avoid the interference among different

users. Each user, on the other hand, can occupy more than one

subcarrier.

Denote pi, j and gi, j as the allocated power and the channel

gain for user j on subcarrier i, respectively. Then, the maximum

achievable data rate of user j on subcarrier i, denoted as ri, j, is

given by

ri, j = B log2

(
1+

pi, jgi, j

N0B

)
, (1)

where N0 is the spectral density of the additive white Gaussian

noise. The system total data rate is defined as the weighted

sum rate of all the users, where the weight of user j is de-

noted as ω j. Note that the weights are introduced to guarantee

fairness among the users. Specifically, the controller can vary

the weights of different users to offer different priorities and

enforce certain concepts of fairness [19], [21]. Therefore, the

overall system data rate is given by

Rtot =
K

∑
j=1

ω j

N

∑
i=1

ρi, jri, j, (2)

where the binary indicator ρi, j∈{0,1} indicates that subcarrier i

is assigned to user j if ρi, j = 1, otherwise ρi, j = 0.

B. Power Consumption Model of the Whole System

The power consumption of the BS includes the over-the-air

transmission power, the signal processing power, and a fixed
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circuit power Pb [17], [23], [24]. Mathematically, it can be

expressed as

Pt =
N

∑
i=1

K

∑
j=1

ρi, j

(
pi, j

ξ
+Ps0

)
+Pb, (3)

where Ps0 denotes the signal processing power per subcarrier

[17] and ξ∈ (0,1) is a constant which accounts for efficiency of

the amplifier [1], [8], [11], [25]–[28]. Even though in practical

scenario there may not be the strict linearity, it has been shown

in [29] that a linear abstraction model for the amplifier is

effective enough to characterize the reality. In addition, it is im-

portant to mention from the energy efficiency perspective that

the subcarrier assignment variable ρi, j must be zero when the

corresponding power allocation variable pi, j is zero. Otherwise,

there will be a waste of signal processing power Ps0.

The power consumption of each user includes the signal

processing power which linearly scales with the number of

active subcarriers and a fixed circuit power [17], [23], [24], and

it is given by

Pr j =
N

∑
i=1

ρi, jPs j +Pu j, (4)

where Ps j and Pu j are the per-subcarrier signal processing

power and the fixed circuit power of user j, respectively.

Considering that different users may employ different types of

mobile terminals, Ps j and Pu j can be different for different j.

Therefore, the overall system power consumption including the

BS side and the user side is given by

Ptot = Pt +
K

∑
j=1

Pr j. (5)

After some manipulations, Ptot can be rewritten as

Ptot =
N

∑
i=1

K

∑
j=1

ρi, j

(
pi, j

ξ
+Ps0 +Ps j

)

︸ ︷︷ ︸
Pi, j

+
K

∑
j=1

Pu j +Pb

︸ ︷︷ ︸
P0

. (6)

Note that the physical interpretation of Pi, j is the power con-

sumed by the overall system (i.e., including both the transmitter

and the receiver) if subcarrier i is assigned to user j. P0

denotes the constant circuit power of the whole system which

scales with the total number of users in the system. Although

this paper only focuses on the downlink scenario, the power

consumption model established above is also applicable to

evaluating the system energy efficiency of the uplink scenario

simply by changing the user as the transmitter side and the BS

as the receiver side.

C. Problem Formulation

Energy efficiency has become an increasingly important

metric to assess the performance of communication systems.

In this work, it is defined as the overall system data rate Rtot

over the overall system power consumption Ptot , i.e.

EE =
Rtot

Ptot

. (7)

Our goal is to optimize the subcarrier assignment and the power

allocation for energy efficiency maximization subject to a peak

transmit power constraint at the BS and a minimum system

sum-rate requirement. Mathematically, we can formulate the

energy efficiency optimization problem as

max
ρ,p

∑K
j=1 ω j ∑N

i=1 ρi, jri, j

∑N
i=1 ∑K

j=1 ρi, jPi, j +P0

(8a)

s.t.
N

∑
i=1

K

∑
j=1

ρi, j pi, j � Pmax, (8b)

N

∑
i=1

K

∑
j=1

ρi, jri, j � Rmin, (8c)

pi, j � 0, ∀ i, j, (8d)

K

∑
j=1

ρi, j � 1, ∀ i, ρi, j ∈ {0,1}, ∀ i, j, (8e)

where ρ
∆
= {ρi, j|i = 1,2, . . .N; j = 1,2, . . . ,K} and p

∆
= {pi, j|i =

1,2 . . .N; j = 1,2 . . . ,K}.

In problem (8), constraint (8b) is the maximum transmit

power constraint of the BS. This maximum power Pmax not

only control the out-cell interference, but also restrict the power

amplifier to work in the linear region which corresponds to the

constant amplifier efficiency ξ. Constraint (8c) is the minimum

system data rate requirement where Rmin can be varied to trade

off the energy efficiency and the spectral efficiency, and thereby

guarantee the system quality of service in a certain extent.

Constraints (8d) and (8e) are to guarantee the feasible sets of

p and ρ in the considered system, respectively.

It is very challenging to solve problem (8) due to the ex-

istence of the binary variables ρi, j and the non-convex frac-

tional structure of the objective function. In fact, unlike the

conclusions in [5]–[7], even if the total transmission power is

fixed, it is still not equivalent to the conventional throughput

maximization problem since the number of active subcarriers

associated with the signal processing power also needs to be

optimized, which would further complicate the analysis of the

problem.

III. JOINT OPTIMIZATION BASED

ON DINKELBACH METHOD

In this section, we propose an asymptotically optimal subcar-

rier assignment and power allocation method by using Dinkel-

bach method together with dual decomposition method.

A. Problem Transformation

Dinkelbach method is known as an iterative method to solve

the fractional programming problem with a sequence of pa-

rameterized programming problems. Its notion is to transform

a fractional-form problem into a subtractive-form problem.

The equivalent transformation statement is summarized in the

following theorem [26], [30].
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Theorem 1: Let S= {(ρ, p)|∑K
j=1 ρi, j � 1,∀ i; pi, j � 0,ρi, j ∈

{0,1},∀ i, j}. There is

q∗ = max
(ρ,p)∈S

Rtol(ρ, p)

Ptol(ρ, p)
, (9)

if and only if,

U(q∗) = max
(ρ,p)∈S

{Rtol(ρ, p)−q∗Ptol(ρ, p)}= 0. (10)

In Theorem 1, q∗ is the optimal system energy efficiency to

be determined. Dinkelbach [30] provides a method to iteratively

update q. In each iteration, it solves a subtractive-form maxi-

mization problem (10) with a given q and then judge whether it

converges. If not, update q and repeat the maximization prob-

lem (10) until it converges or reaches the maximal iterations.

For further details and the proof of convergence, the readers

can refer to [26], [30].

Define V (ρ, p,q)
∆
= Rtol(ρ, p)− qPtol(ρ, p). After the equiv-

alent transformation of Theorem 1, in order to solve the op-

timization problem (8), we only need to solve the following

maximization problem for given q,

max
(ρ,p)

V (ρ, p,q) = Rtol(ρ, p)−qPtol(ρ, p) (11a)

s.t.
N

∑
i=1

K

∑
j=1

ρi, j pi, j � Pmax, (11b)

N

∑
i=1

K

∑
j=1

ρi, jri, j � Rmin, (11c)

pi, j � 0, ∀ i, j, (11d)

K

∑
j=1

ρi, j � 1, ∀ i, ρi, j ∈ {0,1}, ∀ i, j. (11e)

Due to binary variables ρi, j, problem (11) is still a mixed

combinatorial optimization problem. In general, the duality gap

of problem (11) and its dual problem is not zero because of

its non-convexity [31]. However, it has been proved in [11],

[32] that for practical multicarrier systems with a large number

of subcarriers, the so-called time-sharing condition is satisfied,

which implies a zero duality gap between the primal problem

and its dual problem. Therefore, the optimal solution of the

dual problem is also the solution of the primal problem. In the

following subsections, we shall also apply the results from [11]

to solve our problem (11) in the dual domain.

B. Optimal Subcarrier Assignment and Power Allocation at a

Given Dual Point

The Lagrangian function of problem (11) is

L(ρ, p,λ,µ)

=
N

∑
i=1

K

∑
j=1

ω jρi, jri, j +λ

(
Pmax −

N

∑
i=1

K

∑
j=1

ρi, j pi, j

)

−q

(
N

∑
i=1

K

∑
j=1

ρi, jPi, j +P0

)
+µ

(
N

∑
i=1

K

∑
j=1

ρi, jri, j −Rmin

)

=
N

∑
i=1

K

∑
j=1

ρi, jXi, j(pi, j)+λPmax −µRmin −qP0, (12)

where

Xi, j(pi, j) = (ω j +µ)ri, j −qPi, j −λpi, j. (13)

In the above equation, λ and µ are the Lagrange multi-

pliers corresponding to the maximum transmit power con-

straint (11b) and the minimum system data rate constraint

(11c), respectively. Note that the boundary constraints with

respect to ρi, j and pi, j will be absorbed into the optimal

solution in the following. Then the associated dual function of

problem (11) is

g(λ,µ) = max
ρ,p

L(ρ, p,λ,µ), s.t. (11d),(11e). (14)

From (12) and (14), we can observe that the coupling

constraints (11b) and (11c) have been removed and g(λ,µ)
can be decomposed into N subproblems which can be solved

independently with given dual variables λ and µ. In addition,

due to the decoupling of ρ and p in constraints, we can first

maximize L(ρ, p,λ,µ) over the power allocation variables p.

Then according to the derived power allocation results, we

obtain the optimal subcarrier assignment indicator ρ.

In order to maximize L(ρ, p,λ,µ) for given λ and µ, we

should maximize each Xi, j(pi, j) for each subcarrier. It is easy

to verify that Xi, j(pi, j) is concave with respect to pi, j, where

the stationary point is also the optimal point. By setting the

derivative of Xi, j(pi, j) with respect to pi, j to zero, the optimal

power allocation of user j on subcarrier i is

p∗i, j =

[
Bξ(ω j +µ)

(q+λξ) ln2
−

BN0

gi, j

]+
, (15)

where [x]+ denotes max(x,0). The above power allocation

result looks like the classical water filling policy. Here, the

water-level depends not only on the dual variables but also

on the individual weight w j of user j, thereby resulting in the

multi-level water-filling policy. Moreover, since q increases as

the iteration goes according to the Dingkebach method, the

water-level Bξ(ω j + µ)/(q+λξ) ln2 will decrease on the con-

trary. This implies to use less power to achieve higher energy

efficiency. In addition, from (11a), q can also be interpreted

as the penalty for power in accord with the Lagrangian mul-

tiplier associated with the power constraint in the conventional

throughput maximization problem.

Substituting p∗i, j back into (13), we can obtain the optimal

value of Xi, j(pi, j) which is denoted as X∗
i, j(p∗i, j). Here, we

should note that X∗
i, j(p∗i, j) is not guaranteed to be positive even

if p∗i, j > 0, since it depends on the given values of q and gi, j.

As we can see in the following, the positive uncertainty of
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X∗
i, j(p∗i, j) will make a critical impact for the optimal assignment

indicator. After obtaining the optimal power allocation p∗, we

next determine the optimal subcarrier assignment indicator ρ∗.

From (14), we have

L(ρ, p∗,λ,µ) =
N

∑
i=1

K

∑
j=1

ρi, jX
∗
i, j +λPmax −µRmin −qP0. (16)

As we know that X∗
i, j can be regarded as the marginal benefit of

assigning subcarrier i to user j. Note that the constraints on the

assignment indicator for different subcarriers are independent

in (11d). Then the problem (11) can be decomposed into

N subproblems in parallel, which means that we can select

the optimal user for each subcarrier independently. Recall the

fact that the subcarrier can only be exclusively assigned to at

most one user. Then there is only at most one ρi, j having the

binary value of 1. Therefore, the optimal subcarrier assignment

indicator is given by, for all i,

ρ∗
i, j =

{
1, j = arg max

j′=1,...,K
X∗

i, j′ and X∗
i, j′ > 0,

0, otherwise.
(17)

From (15) and (17), we can see that if X∗
i, j′ � 0 for p∗

i, j′ > 0,

it means that assigning subcarrier i to its best user j′ still

cannot result in the positive marginal benefit. In other words,

this subcarrier should not be activated from the perspective of

energy efficiency.

C. Dual Problem Optimization

After computing ρ∗ and p∗ with given λ and µ in Subsection-B,

we now solve the standard dual optimization problem which is

min
λ,µ

g(λ,µ) (18a)

s.t. λ � 0,µ � 0. (18b)

Since the dual problem is always a convex optimization

problem by definition, the commonly used ellipsoid method

and subgradient method can be employed to update λ and µ

toward the optimal solution with global convergence. Here, we

adopt the ellipsoid since the subgradient method needs to

determine the step size which has a critical impact on the perfor-

mance and the convergence. According to (14), the subgradient

of the dual function is given as follows

∆λ =Pmax −
N

∑
i=1

K

∑
j=1

ρ∗
i, j p

∗
i, j, (19)

∆µ =
N

∑
i=1

K

∑
j=1

ρ∗
i, jB log2

(
1+

p∗i, jgi, j

N0B

)
−Rmin. (20)

The details of a suitable choice of the initial ellipsoid, the

updating of the ellipsoid, and the stopping criterion can be

found in [22], [31].

D. Power Refinement and Overall Resource

Allocation Algorithm

Having obtained the optimal dual variables λ and µ, we now

determine the optimal primal variables to the primal problem

(11). If the optimal subcarrier assignment ρ∗ and power allo-

cation p∗ at the optimal dual point (λ∗, µ∗) satisfy the power

constraint, then duality gap is zero and the solution is globally

optimal. Otherwise, if the power allocation p∗ exceed the

maximum transmit power, then the duality gap is non-zero and

we need to refine the power allocation and restrain it into the

feasible region. Specifically, the primal subcarrier assignment

is assumed to be ρ∗, and the refined power allocation p∗ is

then found by classical waterfilling policy over all the active

subcarriers indicated by ρ∗.

Finally, combining all the above subsections, the overall

procedure to solve the original problem (8) is outlined in

Algorithm 1.

Algorithm 1 Joint transmitter and receiver energy efficiency

optimization

1: Initialization: Given the initial q= 0, n= 0, the maximal

tolerance ε, and the maximal iterations Lmax;

2: repeat

3: initialize λ, µ, and an initial ellipsoid;

4: repeat

5: Compute p∗i, j and X∗
i, j using (15) and (13) with given

q, λ, and µ;

6: Determine the optimal assignment indicator ρ∗
i, j by

(17) for all subcarriers;

7: Update dual variables λ, µ, and the ellipsoid with

subgradients in (19) and (20);

8: until λ and µ converge

9: Refine the power allocation;

10: if V (ρ∗, p∗,q)> ε and n < Lmax

11: n = n+1;

12: Update q = Rtol(ρ
∗,p∗)

Ptol(ρ∗,p∗)
;

13: else Convergence

14: popt = p∗;

15: ρopt = ρ∗;

16: EEopt = q∗;

17: return;

18: end

19: end

IV. LOW COMPLEXITY ENERGY-EFFICIENT DESIGN

Since the joint optimization method needs to iteratively con-

verge to the optimal solution, its high computational complexity

would lead to additional energy cost which may degrade the

expectation of the energy-efficient design. In this section, we

develop a low-complexity two-step method to obtain a near

optimal solution by addressing the system energy efficiency

directly from a fractional-form perspective. The key idea lies

in the relationship between the individual energy efficiency

eei, j and the system energy efficiency EE. In the next, we first
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introduce the individual energy efficiency of one subcarrier-

user pattern.

A. Individual Energy Efficiency of One Subcarrier-User

Pattern

Assume that subcarrier i is assigned to user j. Define the

individual energy efficiency (iEE) of this subcarrier-user pat-

tern as

eei, j =
ω jri, j

Pi, j
=

ω jB log2

(
1+

pi, jgi, j

N0B

)

pi, j

ξ +Ps0 +Ps j

, (21)

where Pi j is defined in (6). From (21), we can observe that

the individual energy efficiency eei, j increases with the channel

gain gi, j and the user weight ω j, and decreases with the signal

processing power Ps0 and Ps j, respectively. In addition, it is

easy to show that eei, j is a strictly quasiconcave function of

pi, j. Although the stationary point is not necessarily the optimal

point for a strictly quasiconcave function [31], this fractional

type function has been proved in [33] to have the stationary

point which is also the optimal point. Due to this property, we

set the partial derivative of eei, j with respect to pi, j to zero, i.e.,

∂eei, j

∂pi, j
=

ω jBgi, j

(N0B+pi, jgi, j) ln2
Pi, j −

ω j

ξ ri, j

(
pi, j

ξ +Ps0 +Ps j

)2
= 0. (22)

After some simple manipulations, we can get the optimal

power allocation p∗i, j and the optimal energy efficiency ee∗i, j as

follows

ee∗i, j =
ξω jBgi, j(

BN0 + p∗i, jgi, j

)
ln2

. (23)

Based on (21) and (23), numerical values of ee∗i, j and p∗i, j can

be easily obtained. In the following, we will show that this

introduced individual energy efficiency will play an important

role in the algorithm design.

B. Efficient Subcarrier Assignment

In this subsection, we first investigate a special case of the

optimal subcarrier assignment, which will provide valuable

insights for the proposed heuristic scheme design. By separat-

ing subcarrier m with the other subcarriers, the system energy

efficiency can be expressed as

EE =
∑i �=m ∑K

j=1 ρi, jω jri, j +∑K
j=1 ρm, jω jrm, j(

∑i �=m ∑K
j=1 ρi, jPi, j +P0

)
+∑K

j=1 ρm, jPm, j

. (24)

From (24) we can see that if the allocated power pm, j on

subcarrier m is zero for all j, then subcarrier m makes no

contribution to the system energy efficiency, since the pattern

rate rm, j are zeros for all j. On the other hand, if pm, j is nonzero

for some j, we should determine which user should occupy

subcarrier m. Assume that subcarrier m is assigned to user k,

i.e., ρm,k = 1, and ρm, j = 0 for j �= k. Substituting the expression

of rate and power for subcarrier m into (24), we have

EE=
∑i �=m ∑K

j=1 ρi, jω jri, j+ωkB log2

(
1+

pm,kgm,k

N0B

)

(
∑i �=m ∑K

j=1 ρi, jPi, j+P0

)
+
(

pm,k

ξ +Ps0 +Psk

) . (25)

Based on the observation of (25), we get the following theorem.

Theorem 2: For subcarrier m, if there is a certain user k with

the following property:

ωk = max
j=1,...,K

ω j,

gm,k = max
j=1,...,K

hm, j,

Psk = min
j=1,...,K

Ps j, (26)

then user k is the optimal user occupying subcarrier m in

maximizing EE.

Proof: Please see Appendix A.

Theorem 2 indicates that if a user can contribute the highest

data rate with the lowest power consumption among all the

users on subcarrier m, then we should assign subcarrier m to

this user regardless of the power allocation. In practice, there

are chances that on certain subcarriers, no user will have the

property in Theorem 2. Nevertheless, motivated by Theorem 2,

we propose to adopt the maximal individual energy efficiency

(iEE) ee∗i, j as the metric to select the user for each subcarrier.

Then the proposed heuristic subcarrier assignment policy is

ρi, j =

{
1, j = arg max

j′=1,...,K
ee∗

i, j′ ,

0, otherwise, ∀ i,
(27)

where ee∗i, j is defined in (23).

Note that this scheme is not sufficient for the optimality of

EE since it does not consider the optimal power allocation and

the assignment of other subcarriers. However, on the same sub-

carrier, the only different items among users are the weight ω j,

the channel gain gi, j and signal processing power Ps j. Clearly,

the maximum individual energy efficiency ee∗i, j of a subcarrier-

user pattern involves all of them. From Section IV-A, we know

that higher iEE implies that the user has larger ω j or higher

gi, j or lower Ps j in some sense. Meanwhile, from Theorem 2,

the user j with the larger ω j, higher gi, j and lower Ps j is more

preferable to occupy the subcarrier i in order to achieve the

highest energy efficiency. Therefore, it is rational to adopt this

iEE based scheme for the subcarrier assignment. Simulation

results in Section V will demonstrate the effectiveness of this

subcarrier assignment scheme.

C. Efficient Power Allocation

In this subsection, we investigate the power allocation with

given subcarrier assignment policy ρi, j in Section III-B. Since

each subcarrier i has been assigned to a unique user j by (27),

the considered system is then simplified to a parallel-channel

system with N subcarriers. For notation simplicity, the user

index j is dropped in the subsequent discussion and denote

Pci
∆
= Ps0 +Ps j. Furthermore, if the power allocation pi is zero,
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the signal processing power associated with subcarrier i should

also be zero. Therefore, we need to introduce the set of active

subcarriers as follows.

Denote R as the set of subcarriers that are allocated with

positive powers, i.e., R = {i|pi > 0}. Then, problem (8) is

simplified into the following problem,

max
p

EE =
∑i∈R ωiB log2

(
1+ pigi

N0B

)

∑i∈R

(
pi

ξ +Pci

)
+P0

(28a)

s.t. ∑
i∈R

pi � Pmax, (28b)

∑
i∈R

B log2

(
1+

pigi

N0B

)
� Rmin. (28c)

According to the classical water-filling policy, constraint (28c)

is actually requiring a minimum total transmit power so that

to guarantee the spectral efficiency. Denote Pmin as the total

transmit power required in achieving the minimum system data

rate Rmax, i.e.,

∑
i∈R

B log2

(
1+

pigi

N0B

)
= Rmin and ∑

i∈R

pi = Pmin. (29)

Based on the above, we can further transform problem (28) into

the following,

max
p

EE =
∑i∈R ωiB log2

(
1+ pigi

N0B

)

∑i∈R

(
pi

ξ +Pci

)
+P0

(30a)

s.t. Pmin � ∑
i∈R

pi � Pmax. (30b)

Given the active subcarrier set R, ∑i∈R Pci +P0 in the denom-

inator is fixed and problem (30) is a standard quasiconcave

optimization problem [31]. The optimal solution can be eas-

ily obtained by the conventional bisection based water-filling

method in [10], [34]. In the next, we first investigate the case

without the constraint (30b) to obtain the optimal subcarrier set

R, which motivates the low complexity scheme design.

Denote Ropt as the optimal set of the problem (30) without

the constraint (30b). Our task is then reduced to finding Ropt

in which the allocated power for each subcarrier is positive.

However, the complexity for searching the optimal set Ropt

is 2N − 1 since there are N subcarriers in the system. In the

following, we propose an iEE ordering based scheme which is

optimal for the power allocation only with a linear complexity.

The key idea of this scheme is based on exploiting the

inherent fractional property of ee∗i and EE. We first sort all

subcarriers by ee∗i in descending order according to (23), i.e.,

ee∗1 � ee∗2 � . . . � ee∗N . Then, we add each subcarrier to set R

successively according to the order. In the Lth round, we should

determine whether the Lth subcarrier should be added to the set

R. Let EEL = (∑L
l=1 rl)/(∑

L
l=1 Pl +P0) and EE∗

L is denoted as

its optimal value. We have the following theorem.

Theorem 3: 1) If EE∗
L−1 � ee∗L, then there must be EE∗

L−1 �

EE∗
L � ee∗L and the Lth subcarrier should be added to the set R;

2) If EE∗
L−1 > ee∗L, then there must be EE∗

L−1 > EE∗
L > ee∗L and

the Lth subcarrier should not be added to the set R.

Proof: Please see Appendix B.

Theorem 3 implies that in the Lth round the comparison

result of EE∗
L−1 and ee∗L is sufficient to determine whether the

Lth subcarrier should be added to set R in the optimal solution.

Based on Theorem 3 and the ordering property, we further have

the following corollary.

Corollary: When EE∗
L−1 > ee∗L, the first L−1 subcarriers are

allocated with positive powers and compose the optimal set Ropt

and EE∗
L−1 is the highest system energy efficiency for given ρ∗.

Proof: Please see Appendix C.

Corollary 1 implies that subcarriers behind the Lth subcarrier

cannot be added to set R either, which means that the set

including the first L− 1 subcarriers is the optimal set Ropt and

EE∗
L−1 is the optimal system energy efficiency for given ρ in

Section III-B.

After considering the case study without constraints, we now

proceed to address the case with the maximum transmit power

and the minimum system data rate constraints, i.e., problem

(30). Similarly, we firstly sort all subcarriers by their iEE ee∗i in

descending order according to (23), i.e., ee∗1 � ee∗2 � . . .� ee∗N .

Then we add each subcarrier to the set R successively according

to the order. In the (L − 1)th round, we solve problem (30)

and denote its optimal value as EE∗
L−1. Then following the

procedure of Theorem 3, we compare EE∗
L−1 with ee∗L.

• If EE∗
L−1 � ee∗L, unlike the conclusion in Theorem 3,

adding the Lth subcarrier is not certain to improve the

system energy efficiency due to the restriction of Pmax

(inequality (a) in (32) may not hold). Thus, we need to

compare EE∗
L with EE∗

L−1. If there further exists EE∗
L−1 �

EE∗
L , this implies that adding the Lth subcarrier can indeed

improve the system energy efficiency, otherwise, it cannot

be added to the scheduling set. Then, we jump over this

subcarrier and go to judge the next subcarrier.

• If EE∗
L−1 > ee∗L, the statement EE∗

L−1 > EE∗
L in Theorem

3 also may not hold true due to the restriction of Pmin.

Similarly, by the previous conclusion, we need to compare

EE∗
L with EE∗

L−1. If there further exists EE∗
L−1 > EE∗

L , this

implies that adding the Lth subcarrier cannot improve the

system energy efficiency, otherwise, it should be added to

the scheduling set. Then, we jump over this subcarrier and

go to judge the next subcarrier.

We should note that this ordering based successive allocation

(OSA) scheme is no longer globally optimal for the problem

(30) with strict constraints. However, OSA scheme focuses

on scheduling the subcarrier which is always beneficial to the

system energy efficiency and thereby can result in a good

performance. In addition, it is only of linear complexity since

the problem is directly addressed in fractional manner. We call

this two-step method for the energy efficiency OFDMA design

as the iEE ordering based successive allocation (iEEOSA)

algorithm, which is summarized in Algorithm 2, where EE ′
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and p′l respectively denote the system energy efficiency and the

power allocation of the OSA scheme for given ρ.

Algorithm 2 iEE ordering based successive allocation

algorithm

1: for i = 1 : N

2: for j = 1 : K

3: Compute p∗i, j and ee∗i, j by (21) and (23);

4: end

5: Determine ρi, j by (27).

6: end

7: Sort all N subcarriers in descending order according to

their individual energy efficiency ee∗i and set EE∗
0 = 0;

8: for L = 1 : N

9: Compare EE∗
L−1 with ee∗L;

10: if EE∗
L−1 � ee∗L do

11: Add the Lth subcarrier to R;

12: Compute p∗l and EE∗
L (l ∈ R) by (30);

13: if EE∗
L < EE∗

L−1do

14: R = R−{L};

15: else EE∗
L � EE∗

L−1do

16: R = R;

17: end

18: else EE∗
L−1 > ee∗Ldo

19: R′ = R;

20: p′l = p∗l (l ∈ R), p′l = 0,(l �∈ R);
21: EE ′ = EE∗

L−1.

22: return

23: end

24: end

In order to get deeper understanding of the iEEOSA method,

in the next, we provide a sufficient condition under which our

proposed iEEOSA method is optimal for problem (8).

Theorem 4: If all users have the same signal processing

power Ps j and they are equally weighted, then the iEEOSA

method is optimal for the original problem (8).

Proof: Please see Appendix D.

This theorem is due to the fact that when all users have the

same weight ω j and the same signal processing power Ps j,

the optimal user with the highest channel gain gi, j is also the

user with highest iEE ee∗i, j on each subcarrier, which means

that the iEE based scheme for the subcarrier assignment and

the OSA scheme for the power allocation even with constraints

are both optimal according to Theorem 2 and Corollary 1, re-

spectively. Therefore, the optimality of the iEEOSA method is

guaranteed.

D. Complexity Analysis

In this subsection, we provide the complexity comparison

between the exhaustive search method, the joint optimization

method, and the iEEOSA method. For the exhaustive search

method, since we also need to optimize the number of ac-

tive subcarriers, then each subcarrier have K + 1 possibilities.

TABLE I
SYSTEM PARAMETERS

Therefore, its total complexity is about O((K + 1)NΩ), where

Ω is complexity of given subcarrier assignment [5]. The com-

plexity of the JO method is about O(LKN2α), where L is the

iterations for the convergence of the Dinkelbach method and

2α is the iterations of updating two dual variables [35]. For the

iEEOSA method, its complexity mainly lies in computing ee∗i, j
in the first step and linearly obtaining the active subcarriers set

R in the second step. Therefore, its total complexity is about

O(KN). Compared with the JO method, the complexity for the

convergence of updated q in the out layer and dual variables in

the inner layer is reduced.

V. SIMULATION RESULTS

In this section, we provide simulation results to demonstrate

the effectiveness of the proposed resource allocation methods

for the joint transmitter and receiver energy efficiency maxi-

mization. The cell of the network is hexagonal with a radius

of 1000 meters, within which the users are randomly and

uniformly distributed outside of the concentric circle with the

radius of 100 meters. We assume that there are five users in

the system and the user weights are 0.5, 0.75, 1, 1.25, and

1.5, respectively. The main system parameters are from [5],

[17] as listed in Table I if without specific explanation. The

fixed circuit power of the BS and the user terminal is set to

be 2000 mW and 50 mW as in [5] and [17], respectively.

In order to characterize different types of user terminals, we

assume that signal processing powers per subcarrier of different

users vary from 5 mW to 30 mW and the signal processing

power per subcarrier of the BS is set to be 40 mW as in [17],

which also almost coincides with the baseband consumption

level in [18]. For all simulations, 10 000 channel realizations

are executed.

A. Convergence and Optimality of Joint Optimization (JO)

Method

Fig. 1 depicts the energy efficiency achieved with the number

of iterations of the joint optimization (JO) method under small

K and N. The red dashed lines are the results of the exhaustive

search method. Since only for small value, it is possible to car-

rier out the exhaustive search within a reasonable computation

time. As seen in Fig. 1, JO method can always converge and
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Fig. 1. The system energy efficiency achieved versus the number of the
iterations using the JO method.

Fig. 2. The performance comparison of improved (Optimal), OSA, and
EMMPA schemes under two Pb cases (K = 5).

obtain the optimal solutions for all the configurations, which

demonstrates the optimality of the JO method.

B. Optimality of OSA Scheme for Power Allocation Without

Constraints

Fig. 2 illustrates the comparison of the OSA, the improved

scheme in [27] and the EMMPA scheme [27]. The improved

scheme and the EMMPA scheme are proposed to obtain the op-

timal and the suboptimal power allocation solutions to the prob-

lem (30) without constraints. However, the improved scheme

has a quadric complexity. In order to demonstrate the optimality

of the OSA for the power allocation, without loss of generality,

we assume that each subcarrier is randomly assigned to a

user. It can be observed that the OSA scheme is optimal and

significantly outperforms the EMMPA scheme.

Fig. 3. The system energy efficiency versus the maximum transmit power
(K = 5,N = 128).

C. System Energy Efficiency and Throughput Versus Maximum

Transmit Power

In Fig. 3, we compare the system energy efficiency of the

following methods: 1) JO; 2) iEEOSA; 3) Throughput Opti-

mal: the convention throughout maximization problem [22];

4) iEEEMMPA: SEE based subcarrier assignment with

EMMPA; 5) FIXOSA: Fixed subcarrier assignment with OSA;

6) FIXEMMPA: Fixed subcarrier assignment with EMMPA.

As we can observe that iEEOSA method can achieve the

near-optimal performance of the optimal energy efficiency, and

only in the lower power region, it suffers a slight performance

loss mainly due to its non-optimality for the maximal power

constraint case. It is interesting to note that in the low power

regime, although the JO method and the Throughput Optimal

method both increase with the transmit power, the JO method

still outperforms the Throughput Optimal method, which im-

plies that the energy efficiency maximization problem is not

equivalent to the throughput maximization problem. The reason

is that even with the fixed transmit power, the system power

consumption may still vary depending on the number of active

subcarriers. As the transmit power increases, the constraint be-

comes relaxed, iEEOSA almost achieve the same performance

as the optimal method, which also demonstrates our theoret-

ical analysis of constraints absent case, while the throughput

optimization method results in low energy efficiency due to its

overusing of the transmit power. In addition, from the compar-

ison of iEEOSA and RAOSA, iEEEMMPA and RAEMMPA,

the advantage of the proposed iEE based assignment scheme

is demonstrated. Comparing JO and Throughput Optimal, we

can observe the tradeoff between the energy efficiency and the

system throughput.

Fig. 4 further demonstrates the effectiveness of the proposed

method and the energy efficiency and the spectral efficiency

tradeoff. The Throughput Optimal method always results in the

highest throughput at the cost of sacrificing energy efficiency

while energy efficiency oriented designs approach constants

due to their conservative nature of using power.
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Fig. 4. The system throughput versus the maximum transmit power (K = 5,
N = 128).

Fig. 5. The system energy efficiency versus the number of subcarriers (K=5).

D. System Energy Efficiency Versus Number of Subcarriers

and Number of Users

In Fig. 5, we compare the system energy efficiency versus

number of subcarriers and the number of users for all methods

mentioned in Fig. 3. It can be observed that JO, iEEOSA can

increase the system energy efficiency in a large range number of

subcarriers, while iEEEMMPA and FIXMMPA are very easily

to make the system energy efficiency saturate since they do not

optimize the number of active subcarriers.

Fig. 6 shows the energy efficiency versus the number of

users. We can see that within the medium-sized number of

users, iEEOSA still achieve near-optimal performance, while

for large number of users, it results in a slight performance

loss since there are much more possibilities for the subcarrier

assignment. In addition, when the number of users is large,

the efficient power allocation is not attractive due to the multi-

user diversity, and this is also why iEEOSA converges with

iEEEMMPA.

Fig. 6. The system energy efficiency versus the number of users and all the
users have the same weight (N = 128).

Fig. 7. The effects of the fixed circuit power of the BS on the system energy
efficiency (K = 5,N = 128).

E. System Energy Efficiency Versus Fixed Power Consumption

of BS and Cell Radius

The effects of the fixed power consumption Pb of the BS

on the system energy efficiency is depicted in Fig. 7. We can

see that the energy efficiency of all the methods decrease with

the increasing of the Pb. Additionally, it is notable that the

performance gap between iEEMMPA and iEEOSA decreases

as the Pb increases. This can be readily understood since when

the Pb is larger, it becomes more dominated in the total power

consumption, which weakens the performance benefits from the

energy efficiency oriented power allocation.

Fig. 8 characterizes the effect of the cell radius on the

energy efficiency. As expected, the energy efficiency of all the

methods decreases with the increasing size of the cell due to the

increasing path loss. Moreover, we notice that the performance

gap between iEEMMPA and iEEOSA increases when the cell
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Fig. 8. The effects of the cell radius on the system energy efficiency (K =
5,N = 128).

radius increases. Because when the channel conditions of users

vary in a large range, the effective power allocation plays a

critical important role for energy efficiency optimization.

F. Effects of Imperfect CSIT on System Energy Efficiency

In this subsection, demonstrate the effects of imperfect CSIT

on the system performance. The channel gain is given by

gi, j = l j|hi, j|
2, where l j represents the large-scale attenuation

and hi, j is the small-scale fading coefficient between the BS and

user j on subcarrier i. Since the path loss and the shadowing

are slowly varying random processes which both change on

the order of seconds for low mobility users, the large-scale

attenuation are assumed estimated perfectly [26]. Therefore,

following the convention, to capture the effect of imperfect

CSIT, the multipath fading CSIT between the BS and user j

on subcarrier i can be typically modeled as [26], [36]:

hi, j = h̃i, j +∆hi, j, (31)

where hi, j and h̃i, j are the actual CSIT and the estimated CSIT

of user j on subcarrier i, respectively, available to the central

controller, while △hi, j is the corresponding CSIT error. Here,

h̃i, j and △hi, j are independent Gaussian random variables.

Besides, hi, j, h̃i, j and △hi, j have zero means and normalized

variances of 1, 1-ξ, and ξ, respectively [26].

As observed in Fig. 9, with the increasing of the channel

estimation error ξ, the system energy efficiency decreases, and

the gap between perfect CSIT and imperfect CSIT increases.

In addition, the low complexity iEEOSA method also achieves

most performance of the JO method under the same channel

estimation error, which further demonstrates its effectiveness

for the energy-efficient resource allocation. Moreover, we can

also note that as the cell size r becomes larger, the performance

loss caused by imperfect CSIT would be degraded. This is be-

cause although imperfect CSIT weakens the effectiveness of the

resource allocation, when the channel condition is worse, the

Fig. 9. The effects of the channel estimation error on the system energy
efficiency (K = 5, N = 128).

Fig. 10. The system energy efficiency versus the maximum transmit power
under different channel estimation errors (K = 5, N = 128).

energy efficiency oriented resource allocation tends to utilize

more transmit power and in turn degrades the sensitivity of

resource allocation strategy to imperfect CSIT.

In Fig. 10, we show the variation of the system energy

efficiency with the maximum transmit power under different

channel estimation errors ξ and static circuit powers Pb. It is

observed that the system energy efficiency loss under fixed ξ
will first increase and then keep constant with the increase of the

maximum transmit power, which contradicts the phenomenon

in throughput maximization field where the throughput loss

would be compensated by increasing the transmit power. This is

due to the fact that the energy efficiency oriented design makes

the resource allocation more sensitive to the channel at first,

and then its conservative nature of utilizing power leads the

performance loss at fixed ξ robust to the transmit power. Also,
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the performance loss due to imperfect CSIT is less for the BS

with larger Pb, which is mainly due to the fact that larger circuit

power Pb naturally leads to higher system throughput so as to

improve the energy efficiency and thus makes performance less

sensitive to imperfect CSIT.

Based on the above results, we conclude that the proposed

energy-efficient resource allocation can still provide insights

for practical systems under imperfect CSIT except for some

performance loss. In addition, the performance loss caused by

imperfect CSIT can also be compensated by larger coverage

and larger static circuit power of the BS.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have investigated the joint transmitter and

receiver optimization for the energy efficiency of OFDMA

systems, where a practical power consumption model is es-

tablished to capture the effects of active subcarriers and users

on the signal processing power and the static circuit power,

respectively. Then, we propose a joint optimization method to

iteratively solve the energy efficiency maximization problem

based on Dinkelbach transformation. To provide more insights

into low complexity designs, we first introduce the individual

energy efficiency of a subcarrier-user pattern and then propose

an efficient two-step method. The key idea of this method is

to explore the inherent relationship of the individual energy

efficiency and the system energy efficiency. Numerical results

show the tradeoff between the energy efficiency and the spectral

efficiency, and the impacts of subcarriers and users on the sys-

tem energy efficiency. Moreover, it is also found that exploiting

more user diversity is not always beneficial from the perspective

of system energy efficiency.

There are also several important issues unaddressed in this

paper and left for future work. First, Individual data rate

constraint for each user: Since the low complexity iEEOSA

method first assigns subcarriers to users from the system per-

spective instead of each user, the quality of service of individual

user can not be guaranteed. The challenge of addressing the

individual QoS is how to jointly assign subcarriers and allocate

the power so as to satisfy the data rate requirement while

achieving the maximal system energy efficiency. Second, Non-

linear power amplifier: In practice, adopting the non-linear

power amplifier may largely improve the system efficiency,

but its modeling and problem solving issues still need further

investigation. Third, Optimal number of users: We have shown

that more users may not be helpful for the system energy

efficiency and how to design the user scheduling policy is also

an interesting issue. Last but not the least, Robust resource allo-

cation: Designing practical methods for the resource allocation

under imperfect channel CSIT is also very challenging [37].

APPENDIX A

PROOF OF THEOREM 2

Assume that the user k satisfies the properties of Theorem 2,

i.e., ωk = max
j=1...,K

ω j, gm,k = max
j=1...,K

hm, j, and Psk = min
j=1...,K

Ps j.

Denote EE∗(m, j) as the optimal energy efficiency of assigning

subcarrier m to any user j ( j �= k) under the transmit power

constraint and the data rate constraint. Let p̂i, j and ρ̂i, j be

the corresponding power allocation and indicator of assigning

subcarrier m to user j, respectively. Denote EE∗(m,k) as the

optimal energy efficiency of selecting the user k for the subcar-

rier m under constraints. Let p̌i, j and ρ̌i, j be the corresponding

power allocation and indicator of assigning subcarrier m to user

k, respectively. Then

EE∗(m, j)

=
∑i �=m ∑K

j=1 ρ̂i, jω jri, j( p̂i, j)+ω jB log2

(
1+

p̂m, jhm, j

N0B

)

(
∑i �=m ∑K

j=1 ρ̂i, jPi, j( p̂i, j)+P0

)
+
(

p̂m, j

ξ +Ps0 +Ps j

)

(a)

�
∑i �=m ∑K

j=1 ρ̂i, jω jri, j( p̂i, j)+ωkB log2

(
1+

p̂m,kgm,k

N0B

)

(
∑i �=m ∑K

j=1 ρ̂i, jPi, j( p̂i, j)+P0

)
+
(

p̂m,k

ξ +Ps0+Psk

)

(b)

�
∑i �=m ∑K

j=1 ρ̌i, jω jri, j( p̌i, j)+ωkB log2

(
1+

p̌m,kgm,k

N0B

)

(
∑i �=m ∑K

j=1 ρ̌i, jPi, j( p̌i, j)+P0

)
+
(

p̌m,k

ξ +Ps0+Psk

)

= EE∗(m,k) (32)

where the inequality (a) is due to gm,k � gm, j and Psk � Ps j, and

the inequality (b) is because that p̌i, j and ρ̌i, j are the optimal

solutions corresponding to EE∗(m, j).
Hence, for ∀ j( j �= k), we have EE∗(m, j) � EE∗(m,k).

Therefore the user k is the optimal user for subcarrier m to

achieve the maximal system energy efficiency. This completes

the proof.

APPENDIX B

PROOF OF THEOREM 3

Denote p̂L
l as the optimal power allocations corresponding

to EE∗
L , and p∗L is the optimal power corresponding to the Lth

subcarrier’s energy efficiency ee∗L.

1) If EE∗
L−1 � ee∗L,

EE∗
L =

∑L
l=1 ωlrl

(
p̂L

l

)

∑L
l=1 Pl

(
p̂L

l

)
+P0

= max
p

∑L
l=1 ωlrl(pl)

∑L
l=1 Pl(pl)+P0

(a)

�
∑L−1

l=1 ωlrl

(
p̂L

l

)
+ωLrL (p∗L)

∑L−1
l=1 Pl

(
p̂L

l

)
+P0 +PL (p∗L)

� min

{
∑L−1

l=1 ωlrl

(
p̂L

l

)

∑L−1
l=1 Pl

(
p̂L

l

)
+P0

,
ωLrL (p∗L)

PL (p∗L)

}

= min
{

EE∗
L−1,ee∗L

}

=EE∗
L−1 (33)



428 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 63, NO. 2, FEBRUARY 2015

In this case, we know that adding the Lth subcarrier can

obviously increase the system energy efficiency. On the

other hand,

EE∗
L = max

p

∑L
l=1 ωlrl(pl)

∑L
l=1 Pl(pl)+P0

=
∑L−1

l=1 ωlrl

(
p̂L

l

)
+ωLrL( p̂L

L)

∑L−1
l=1 Pl

(
p̂L

l

)
+P0 +PL

(
p̂L

L

)

� max

{
∑L−1

l=1 ωlrl

(
p̂L

l

)

∑L−1
l=1 Pl

(
p̂L

l

)
+P0

,
ωLrL( p̂L

L)

PL( p̂L
L)

}

� max

{
∑L−1

l=1 ωlrl

(
p̂L−1

l

)

∑L−1
l=1 Pl

(
p̂L−1

l

)
+P0

,
ωLrL (p∗L)

PL (p∗L)

}

= max
{

EE∗
L−1,ee∗L

}

=ee∗L. (34)

Based on (33) and (34), we have

EE∗
L−1 � EE∗

L � ee∗L. (35)

2) If EE∗
L−1 > ee∗L, we can prove EE∗

L−1 > EE∗
L > ee∗L by

a similar argument in the case 1). In this case, adding

the Lth subcarrier cannot increase the system energy

efficiency. This completes the proof.

APPENDIX C

PROOF OF COROLLARY 1

We first prove that the optimal powers {p̂L
l } allocated to

subcarriers in the set R will be positive after adding the Lth

subcarrier to R by the iEE ordering based scheme. Assume

p̂L
l = 0 for some l ∈ {1,2 . . . ,L}, which means that the lth

subcarrier should be removed from R since R is the set of users

with positive powers. Then according to Theorem 3 we have

EE∗
L−1 � EE∗

L � ee∗L, when EE∗
L−1 � ee∗L. (36)

Since the subcarriers are added to R in the descending order,

we have ee∗L � ee∗l . Then, we have EE∗
L � ee∗L � ee∗l . Based on

Theorem 3, the lth subcarrier should be added to R and allo-

cated with positive power, which contradicts to the assumption

that the lth subcarrier should be removed from R.

In the next, we prove that the energy efficiency based on

the optimal subcarriers set Ropt is higher than that based on

arbitrary set R̂ with positive power allocation. For a set R, EE∗
R

denotes the optimal energy efficiency based on R.

Let Ropt ∆
= {1, · · · ,LRopt}. Applying the OSA scheme in

Section IV-C over R̂, we can find the optimal set R̂opt . Assume

R̂opt ∆
= {l1, · · · , lK}, where l1, . . . , lK are the indices of the corre-

sponding {eelK}
K
k=1 in descending order. Then EE∗

R̂
� EE∗

R̂opt �

ee∗lK by (35). Note that ee∗lK � ee∗lK−1 � · · ·� ee∗1. By Theorem 3

and (35), we can add (lK − 1) to the set R̂opt if (lK −1) �∈ R̂opt

and obtain

EE∗
R̂
� EE∗

R̂opt � EE∗
R̂opt∪{lK−1}

� ee∗lK−1 � ee∗lK−2 � · · ·� ee∗1.

(37)

If (lK −1) ∈ R̂opt , we jump over (lK −1) and consider (lK −2).
Define

R̂
opt
1 =

{
R̂opt ∪{lK −1}, if (lK −1) �∈ R̂opt ;

R̂opt , otherwise.
(38)

If (lK −2) �∈ R̂
opt
1 , we add (lK −2) to R̂

opt
1 and obtain

EE∗
R̂
� EE∗

R̂opt � EE∗
R̂

opt
1

� EE∗
R̂

opt
1 ∪{lK−2}

� ee∗lK−2 � · · ·� ee∗1. (39)

If (lK −2) ∈ R̂
opt
1 , we jump over (lK −2) and consider (lK −3).

For l = 2, · · · , lK −1, define

R̂
opt
l =

{
R̂

opt
l−1 ∪{lK − l}, if (lK − l) �∈ R̂

opt
l−1;

R̂
opt
l−1, otherwise.

(40)

Following the similar procedure, we can successively check if

(lK − l) ∈ R̂
opt
l−1 for l = 3, · · · ,(lK −1), and finally obtain

EE∗
R̂
� EE∗

R̂opt � EE∗
R̂

opt
1

� EE∗
R̂

opt
2

� · · ·� EE∗
R̂

opt
lK−1

. (41)

Note that R̂
opt
lK−1 = {1, · · · , lK}. Since the optimal set Ropt ∆

=
{1, · · · ,LRopt}, we have EE∗

R̂
opt
lK−1

�EE∗
Ropt by Theorem 3. There-

fore we have EE∗
R̂
� EE∗

R̂
opt
lK−1

� EE∗
Ropt and conclude that Ropt

is the optimal set. This completes the proof.

APPENDIX D

PROOF OF THEOREM 4

If all the users have the same signal processing power ps j and

are equally weighted i.e., Ps j =Psk and ω j =ωk for ∀ j �= k, then

the condition Psk = min
j=1,...,K

Ps j and ωk = max
j=1,...,K

ω j are satisfied

for each subcarrier. According to Theorem 2, the optimal

user for the subcarrier m should satisfy the condition gm,k =
max

j=1,...,K
gm, j. On the other hand, in the iEE based subcarrier

assignment scheme, we choose the user with the highest ee∗i, j
as the optimal user. From (23), by taking the first derivative of

ee∗i, j with respect to gi, j, we can get

dee∗i, j

dgi, j
=

ω jξB2N0 ln2

(BN0 + p∗i, jgi, j ln2)2
> 0. (42)

It implies that ee∗i, j strictly increases with gi, j. Then ee∗m,k =
max

j=1,...,K
ee∗m, j holds with gm,k = max

j=1,...,K
gm, j, which implies that

the iEE based subcarrier assignment scheme is optimal. Un-

der this condition, the optimality of the OSA scheme for the

power allocation can be easily proved by a similar proof of

Corollary 1.
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