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Abstract: In this work, we present a resource allocation scheme for managing trade-offs between
total throughput maximisation and system fairness in a non-orthogonal multiple access (NOMA)
system for 5G networks. Our proposed approach is designed to improve throughput and fairness
as performance metrics of NOMA in 5G networks. We apply integer linear programming for
user pairing and adopt particle swarm optimisation as the power allocation scheme for reducing
resource allocation complexity. To formulate the multi-objective problem, we use scalarisation of
multi-objective optimisation, which exhibits flexibility in assigning different weights to a single
objective—in the case of this study, either sum rate or fairness. Moreover, the problem is formulated
with a penalty function to prevent optimisation violating the constraints of the optimisation function.
Simulation results show that the proposed model outperformed the conventional approach by at
least 17% in terms of throughput maximisation and fairness rate.

Keywords: 5G communications; wireless communications; integer linear programming (ILP);
successive interference cancellation (SIC); multi-objective optimisation (MOO); weighted sum method
(WSM); particle swarm optimisation (PSO); Jain’s fairness index (JFI)

1. Introduction
1.1. Preliminaries

Non-orthogonal multiple access (NOMA) is a promising access scheme for 5G net-
works. It multiplexes multiple users on the same radio resources frequency, code, or time
with different power levels in the power domain. In contrast with orthogonal multiple
access (OMA), the NOMA technique utilises the power domain to multiplex multiple users
simultaneously. Thus, NOMA can support 5G requirements, such as massive connectivity,
enhanced spectral efficiency, and sum-rate, which can support a balanced data rate in a sys-
tem. In NOMA, the base station (BS) superimposes the message on the same subchannel for
the multiplexed users via superposition coding (SC); then, successive interference cancella-
tion (SIC) is applied to the signal detection receiver [1,2]. The NOMA system can provide
balanced throughput for users in the network in accordance with the channel conditions.

One fairness criterion that can be implemented involves using the strong channel
condition as a relay to improve the data rate under poor channel conditions; this technique
may improve reception reliability for users under poor channel conditions. However, this
improvement can come at the cost of additional channel resources, such as dedicated time
slots or power balance [3]. Hence, the power allocation scheme and user pairing can be
applied to support fairness with less system complexity [4].

1.2. Related Work

The power allocation optimisation problem is formulated as a non-convex optimisation
problem that is difficult to solve directly [5–7]. Furthermore, power allocation and user
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pairing are coupled problems, whilst the trade-off between throughput maximisation and
fairness is an additional optimisation challenge. Moreover, the analysed work assumed
that fairness can be affected by cell radius, number of users per cell, and path loss channel
coefficient [8–10]. The literature review pays particular attention to methods that focus on
fairness and throughput maximisation, as detailed in Table 1, and provides details about
the objectives of and the algorithms applied in existing approaches in the literature.

Table 1. Summary of the literature review.

Reference Objective Proposed Algorithm

[4]
Fairness criteria in downlink NOMA

systems with instantaneous channel state
information (CSI) and average CSI

Bisection iterative algorithms (BIAs) for
power allocation

[8]

Maximum–minimum fairness scheme to
maximise the minimum achievable user

fairness on the basis of a mm-wave
NOMA system

Beamforming and power allocation as a
joint problem

[9]

To determine the minimum time window
to guarantee and evaluate the specified
fairness using Jain’s fairness index (JFI)
for a short-term fairness NOMA system

Simple alternate optimisation (AO)
scheme to allocate power with α-fairness
under Karush–Kuhn–Tucker conditions

[10]

Achieve equal data rate and maximum
energy efficiency for a downlink

multiple-input and multiple-output
(MIMO) NOMA system

Dinkelbach’s method for power
allocation and user clustering

[11]
To achieve a better trade-off between

throughput and fairness for a downlink
NOMA system in 5G networks

Two-stage algorithm that uses
proportional fairness with zero-forcing

beamforming

[12]
To achieve maximum–minimum fairness
and throughput for a downlink NOMA

system with two users

Finite blocklength (FBL) to attain an
optimal power allocation

[13]
Maximise energy efficiency and

throughput fairness for downlink
time-NOMA (T-NOMA) systems

Power and time resource allocation
optimisation based on time-sharing using

an unmanned aerial vehicle (UAV)

[14]
Achieve the minimum required data rate

for each user and throughput
maximisation

Power discretisation method
Global optimal search (GOS)

Adaptive proportional fair (APF) and
classical waterfalling based on matching

theory (MWF)

For example, the authors of [8] formulated a joint beamforming and power allocation
problem to achieve a fair user data rate by utilising a maximum–minimum fairness scheme
to maximise the minimum achievable user fairness based on a mm-wave NOMA system.
The researchers first obtained closed-form optimal power allocation from the problem
formulation and then designed the beamforming vector to reduce joint optimisation [8].
In ref. [12], Salehi, Neda, and Majidi developed FBL to attain an optimal power allocation
that can also ensure fair throughput for a downlink NOMA system with two users. Their
investigation focused on achieving maximum–minimum fairness while enhancing total
throughput. The authors of [15] developed hybrid beamforming to improve the rate of
fairness and power consumption as multi-objectives. The optimisation scheme deployed
an inner approximation algorithm and graph theory and considered power control and
quality of service (QoS). In ref. [16], a fair NOMA scheme developed on the basis of a
scheduling paradigm assumes that users can always achieve the data rate and compare it if
they are using OMA. The authors also derived power allocation coefficient bounds as a
channel gain function for two users.
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The authors of [17] developed a scheme for a fairness system based on a nonuniform
power distribution to measure the rate difference between users to achieve data fairness. A
user’s data rate is measured with a fraction of the total power allocated to the user whilst
continuously checking the fairness index, where a value of ‘1’ is attained at fair rates.

In ref. [14], Long, Wang, Wei, and Chen investigated spectrum resource and power
allocation to achieve the minimum required data rate for each user and throughput max-
imisation as a trade-off scheme for a NOMA system. Their work formulated the problem as
a double-objective optimisation problem; the power discretisation method was then used
to convert the problem into a single-objective optimisation problem. Moreover, matching
the user-subchannel problem and power allocation is achieved by conducting GOS to de-
termine the upper bound of user throughput due to high complexity. The power allocation
scheme considers APF for throughput fairness and applied power allocation using MWF.

Alternatively, the authors of [13] proposed power and time resource allocation opti-
misation based on time-sharing to maximise energy efficiency and throughput fairness
for downlink T-NOMA systems using UAV. The joint optimisation scheme was proposed
to utilise the advantages of UAVs in communication systems for the maximisation of
throughput fairness and energy efficiency.

In ref. [6], a standalone simulated annealing algorithm was proposed for resource
allocation to maximise throughput for a NOMA system. As observed in this work, the
approach can maximise the total throughput but at the cost of a less fair throughput
distribution. Hence, investigating throughput maximisation while ensuring a fair data rate
in a 5G network is important.

In this work, we propose a hybrid scheme (ILPSO) for user pairing and power alloca-
tion based on integer linear programming (ILP) and particle swarm optimisation (PSO),
respectively, to achieve trade-offs between throughput maximisation and fairness. The
optimisation problem is formulated by converting multi-objective functions into a single
function using the scalarisation of multi-objective optimisation problems (SMOO). ILP is
the method proposed to perform the user pairing scheme to reduce the complexity of the
resource allocation problem [18]. The optimisation techniques used in PSO are inspired by
the behaviours of natural organisms, such as birds flocking and fish schooling [18,19]. Co-
operation amongst individual animals assists the groups to which they belong in achieving
common objectives, such as sourcing food within an efficient time.

The rest of the paper is organised as follows. In Section 2, the NOMA system model is
described, and the problem formulation for the objective function is proposed. In Section 3,
the user pairing scheme is suggested, and the PSO algorithm used for power allocation
is presented. Section 4 describes the simulations for the proposed algorithms. Finally,
Section 5 summarises the results.

2. NOMA System Model

We consider a single-cell NOMA network equipped with a single-input, single-output
(SISO) design in which the BS is located at the centre of the cell. The numbers of users and
subchannels are defined as U and N, respectively. Users U are uniformly distributed within
the cell. The BS transmits the superimposed signal for multiple users over N subchannels,
where a subchannel is indexed as n ∈ {1, 2, . . . . ., N}. The total bandwidth BTotal is divided
by the number of subchannels, and the subchannel bandwidth Bsc is divided equally for
each subchannel. Moreover, multiple users share the same subchannel in accordance with
NOMA concepts, where Un is the set of users sharing the same subchannel n. The total
transmit power distributed over the subchannels is PMax, where Pu,n is the user power, and
system power allocation is limited as ∑N

n ∑Un
u Pu,n ≤ PMax. The BS transmits signal xn on

subchannel n, and the transmitted signal is given by:

xn =
Un

∑
u=1

√
Pu,n x̃u,n , (1)
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where Pu,n is the power allocated to user u multiplexed on subchannel n, and the modelled
symbol is denoted as x̃u,n. The signal received by user u over subchannel n is described
as follows:

yu,n = gu,nxu,n +Zu,n ,

yu,n = gu,n
√

Pu,n x̃u,n + gu,n
Un
∑

i=u+1

√
Pi,n x̃i,n +Zi,n ,

(2)

where the channel gain coefficient between the uth user and the BS is represented as
gu,n = d−1

u,nhu,n, where d−1
u,n represents the path loss coefficient. The Rayleigh fading channel

gain is hu,n. du,n is the distance between the uth user for each channel and the BS. Zi,n is
the additive white Gaussian noise (AWGN) with a zero-mean complex random variable
and σ2

n variance is Zi,n ∼ CN
(
0, σ2

n
)
. The design assumes that the number of users is two

times the number of channels (U = 2N). The data rate on a given subchannel for the uth
user is described as follows:

Ru, n = Bsc log2(1 + SINRu,n), (3)

where the signal-to-interference-plus-noise ratio (SINR) is given as:

SINRu,n =
pu,n|gu,n|2

σ2
n + ∑l−1

i=1 pu,n|gu,n|2,
(4)

=

pu,n |gu,n |2

σ2
n

1 + ∑l−1
i=1

pu,n |gu,n |2

σ2
n

,
(5)

=
pu,nGu,n

1 + ∑u−1
i=1 pu,nGu,n

, (6)

where pu,n is the power allocated to the uth user on the nth subchannel. gu,n is the channel
response coefficient on the downlink for the uth user on the nth subchannel. Gl,n is the
channel response normalised by noise (CRNN) for the corresponding user. System design
is strictly multiplex, with only two users on each channel. For example, the subchannel n
multiplexes the two users U1,n and U2,n with |G1,n|2 ≥ |G2,n| 2, where the power allocation
scheme is P1,n ≤ P2,n in accordance with the power domain multiplexing protocol in
NOMA [20–22].

In our design, we assume that subchannels are sorted such that |G1,n|≥|G2,n| ≥ · · · ≥|GUn ,n|.
SIC is applied to each channel, where the intended signal can be detected by each user. The
high channel gain user firstly decodes the signal of the low channel gain user, cancels the
interference power, and then decodes the intended signal. By contrast, the low channel
gain user regards the interference power on the same subchannel as noise. This assumption
is common in NOMA based on SIC. Thus, the total throughput is:

R =
N

∑
n=1

Nsc

∑
i=1

Bsc log2(1 + SINRu, n). (7)

2.1. Problem Formulation

The resource allocation problem involves user pairing, channel power allocation, and
power ratio allocation to maximise throughput for a NOMA system in 5G networks. The
first objective is to maximise the throughput with respect to power allocation and user
pairing. The throughput function is described as follows:

f (δ, P) = Bsc

Nsc

∑
n=1

log2(1 + δnPnG1,n) + Bsc

Nsc

∑
n=1

log2

(
1 +

(1− δn)PnG2,n

1 + δnPnG2,n

)
. (8)
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where δ = [δ1, δ2, ... δNsc ]
T and P = [P1, P2, ... PNsc ]

T are the power ratio and channel power,
respectively. Furthermore, the power ratio for the multiplexed users is denoted as δn on a
subchannel n, and Pn is the subchannel n power.

The system is designed to achieve trade-offs between throughput maximisation and
system fairness to obtain the optimal solution. The problem design is formulated on the
basis of the SMOO approach to convert it into a single objective (SO) function [23]. The
primary objective function is formulated by adding each objective and pre-multiplying
each with a supplied weight scale [23]. The weight scale is set in proportion to the relative
importance of the objective. The problem is formulated as follows:

Maximise f (δ, P) (9)

Subject to C1 : 1T P ≤ Pmax, (10)

C2 : P ≥ 0, (11)

C3 : F ≥ Fdes, (12)

C4 : Ri ≥ Rmin, (13)

C5 : 0 ≤ δ ≤ 1, (14)

where C1 is the total transmit power constraint and C2 is the channel power constraint. The
fairness constraint is denoted as C3 ; the minimum data rate constraint is represented as C4.
The power ratio allocation varies between 0 and 1, as denoted in C5. Moreover, C5 prevents
the power ratio from reaching 1, previous work showing that the highest value of the
power ratio is sufficient to provide the maximum objective function [6]. These constraints
are applied to the objective function to protect the function from violating the constraint.
The fairness value is added as a constant that balances objective function maximisation.
For the implementation, the problem is converted into a minimisation problem, and, thus,
the throughput function is negated. The design of SMOO problems uses the weighted sum
method (WSM) [23]. Hence, the throughput objective function is normalised and scaled by
the number of users, such that the calculation can be generalised for any number of users.
The normalised objective function is written as follows:

q = − f (δ, P)
U

, (15)

where q is the normalised value of the fitness function. The cost function must include
the other constraints because PSO only allows upper and lower bound constraints. Any
violation in the sum of power, fairness and minimum user data rate constraints is added
to the cost function. More violations result in a higher cost function; thus, if no violation
occurs, then q∗ = 0. The penalty functions are presented as follows:

qp = max
(

0, 1T P− Pmax

)
, (16)

qF = max (0, Fdes − F), (17)

qR = max (0, Rmin − Ri). (18)

The constraint can make the optimisation problem considerably more difficult where
it is an essential step in making the optimisation more flexible and less complex. Conse-
quently, the constrained problems are converted into unconstrained problems by means of
an artificial penalty for violating the constraint as a new penalty function. The minimisation
problem is presented below, where p∗ denotes the corresponding penalties for violations.
Furthermore, the objective function is developed as follows:

minimise q + ppqp + pFqF + pRqR, (19)
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Subject to C1 : P ≥ 0, (20)

C2 : 0 ≤ δ ≤ 1, (21)

where Fdes is the fairness weight constant that can be predefined in the system. The
minimum user data rate is denoted as Rmin, where pR, pF, and pp are the penalty for user’s
data rate, fairness, and power violation, respectively.

2.2. Jain’s Fairness Index

JFI is a well-known metric applied to wireless communications to evaluate a system’s
fairness. The efficient resource allocation scheme can provide a flexible system to achieve
fair data distribution in NOMA systems [24]. Therefore, the second objective is to generate
a balanced data rate as Jain’s fairness objective. JFI is defined as follows:

JFI =
∑U

i=1 Ri

U ∑U
i=1 R2

i
, (22)

where Ri is the user data rate and U is the total number of users. This indicator varies in
accordance with the number of users and the achieved throughput. Given that two users
are multiplexed on the same channel as high and low channel gains, the minimum user
data rate for the user with low channel gain is ensured. Thus, fairness is an indicator of the
QoS in NOMA systems.

3. Resource Allocation Problem

The resource allocation problem is a joint optimisation based on user pairing and the
power allocation problem. The optimisation scheme can be decoupled to reduce system
design complexity. User pairing and the power allocation problem are addressed separately
to reduce system complexity. Consequently, we firstly formulate the user pairing scheme
by using ILP. Then, we apply PSO for power allocation optimisation. The system design is
developed in three scenarios for system performance. The first scenario is applied without
a constraint on minimum data rate and fairness. The second scenario is applied with only a
minimum data rate constraint. The third scenario is applied with minimum data rate and
fairness constraints.

3.1. User Pairing Using ILP

ILP is proposed to perform the user pairing scheme because user pairing is addressed
as a discrete problem [18,23]. The ILP method is a decision-making scheme that can improve
decision quality.

The user pairing problem formulation is described as follows. The first user is firstly
selected on each channel as a high channel gain user. The second user is then matched
to the same channel as a low channel gain user. In this problem, user pairing begins by
selecting the high channel gain user and then choosing a second user with low channel
gain in each channel. Let us denote the (U × Nsc) gain matrix M. Let Z be a (U × Nsc)
binary selection matrix.

Zij =

{
1 i f user i in channel j is selected
0 Otherwise

(23)

The first objective is to select one user from each channel such that the sum of the
gains is maximised. That is, a matrix Z is found such that the sum of the elements of MZ
is maximised. This optimisation problem can be expressed as follows:

Maximize
U

∑
i=1

Nsc

∑
j=1

MijZij, (24)

Subject to 1TZ = 1, (24a)
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Z1 ≤ 1, (24b)

Zij = {0, 1}, i = 1, ..., U, j = 1, . . . ., Nsc, (24c)

The newly updated matrix is denoted as the optimal solution ZH . Once the high
gain users are selected, the channels are updated with the first user selection. The second
objective is to select one user from each channel to minimise the sum of the gains. Similarly,
this optimisation problem can be expressed as follows:

Minimize
U

∑
i=1

Nsc

∑
j=1

MijZij, (25)

Subject to 1TZ = 1, (25a)

Z1 ≤ 1, (25b)

Zij = 0, i f ZH
ij = 1, (25c)

Zij = {0, 1}, i = 1, ..., U , j = 1, . . . ., Nsc, (25d)

The solution to this problem is denoted as ZL. The final selection matrix is Z∗ = ZH + ZL,
which has a pair of users on each channel. This process is encapsulated by a function
S : Z→ R2×Nsc . This function performs a mapping from a permutation number z to the
vectors of the sorted gain values in all the channels, concatenated vertically.

S(z) =
[

G1,1 G1,2 . . . G1,Nsc

G2,1 G2,2 . . . G2,Nsc

]
(26)

A value z is given. To obtain the gain value of a particular user i with either high or low
channel gain on a channel j, i.e., Gi, we assess the (ith, jth) element of S(z), denoted Zij(z).

3.2. PSO for Power Allocation

PSO is an algorithm based on natural organisms that are seeking habitats with suf-
ficient food, such as birds and fish. PSO is known as an agent-based algorithm because
it uses multiple agents or particles [18,19]. The implementation of PSO is considerably
simpler than those of the genetic algorithm (GA) and the ant colony algorithm (ACO),
which share some similarities with PSO’s optimisation techniques. PSO works on the
basis of the real-number randomness and global communication between swarm particles
rather than the mutations, crossover operators or pheromones used in GA and ACO. In
the current work, the PSO algorithm is proposed to obtain the optimal power solution in a
NOMA system based on the objective function (8).

In particular, the velocity and position of each particle are adjusted in accordance
with the group information. In PSO, the number of particles (QP) is predefined. Xi is the
position and Vi is the velocity of each particle. The dimension DS is the search space for
potential solutions to the optimisation problem. The quality of the solution is evaluated
iteratively for each particle through an objective function. The personal best of a particle
is Pbest i for the obtained objective function value, which is compared with the global best
value as Gbest.

Consequently, the position and velocity of each particle are modified along each
dimension. The position and velocity are coupled dynamics of a PSO particle. The velocity
dynamics are influenced by inertia and cognitive and social components, and these, in turn,
influence the position dynamic of PSO. Position and velocity dynamics are mathematically
described as follows:

Vi(t) = w(t)Vi(t− 1) + r1c1(t)
(

Xi
pbest(t)− Xi(t− 1)

)
+ r2c2(t)

(
Xgbest(t)− Xi(t− 1)

)
, (27)

Xi(t) = Xi(t− 1) + Vi(t), (28)
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where Vi(t) is the velocity and Xi(t) is the position of the particle along dimension d ≤ D.
w is the inertia weight, c1 and c2 are two acceleration factors as non-negative constants,
and r1 and r2 are two different uniformly and randomly distributed numbers within the
range [0, 1]. Inertia and acceleration vary in each iteration to improve PSO performance
with the following parameters:

w(t) = Wmax −
t× (Wmax −Wmin)

tmax
, (29)

where wmax and wmin are the maximum and minimum inertia weights, respectively. The
acceleration factor is determined as follows:

c1(t) = c1,0 +
t×
(

c1, f − c1,0

)
tmax

, (30)

c2(t) = c2,0 +
t×
(

c2, f − c2,0

)
tmax

, (31)

where c1, f and c1,0 represent the initial values and c2, f and c2,0 are the iterative final values
of c1 and c2, respectively. The parameters, constants, and values of PSO are listed in Table 2.

Table 2. Design Parameters of PSO.

Parameters Values

Size of particle swarm (QP) 50
Maximum inertia weight (Wmax ) 0.9
Minimum inertia weight (Wmin) 0.4
Acceleration constants (c1,c2) 1.4962
Maximum number of iterations (tmax) 500
Maximum velocity (Vmax) 0.5
Minimum velocity (Vmin) −0.5

PSO is used to address the power optimisation problem, as illustrated in Figure 1.
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The optimisation problem is non-convex with respect to variables δ and P for the
NOMA system. Therefore, PSO is utilised to obtain the optimal solution as a global
optimisation scheme. Let Xi(t) be the position vector of a PSO particle i in iteration t,
where Xi(t) contains the optimisation variables, as shown below.

Xi(t) =
[

δi(t)
Pi(t)

]
. (32)

The algorithm generates initial variable particles Xi(0) =
[
δi(0)T Pi(0)T

]T
, where the

subchannel power is P and δ is the power ratio. The PSO parameters are set as follows:
wmax, wmin, Vmax, ct,0, ct,f, and tmax. Then, the objective function is evaluated for each
particle as f

(
Xi(t)

)
, where i = 1, . . . ., NParticle . The possible solution is represented as

the position of each particle. Each particle updates the best position Xi
pbest(t) and then

updates the best position amongst all particles Xgbest(t). Subsequently, the inertia weight
w(t) and the two acceleration factors c1 and c2 are updated. Consequently, the velocity and
position of a particle are updated until the maximum iterations or the global best Xi

gbest(t)
is returned. This iterative algorithm continues until the optimal power allocation solution
is found.

4. Result and Performance Analysis

The NOMA system design was investigated using MATLAB. The simulation parame-
ters are summarised in Table 3.

Table 3. Parameters of the system design.

Parameters Values

Bandwidth (BW) 5 MHz
Cell radius 200 m
Maximum transmit power (Bs) 30 dbm (1 W)
Noise power spectral density (N◦ ) −174 dBm/Hz
User minimum data rate 500 b/s
Number of transmission antennas 1
Noise figure 9 dBm
Shadow standard deviation 8 dB
Throughput calculation Shannon’s capacity

Figure 2 shows the trade-offs between throughput maximisation and system fairness
with 4 to 24 users. The proposed algorithm, i.e., ILPSO, outperformed GOS by 17%,
MWF by 21.9%, and orthogonal frequency-division multiple access (OFDMA) by 33% [14].
As observed in Figure 2, ILPSO Scenarios 1 and 2 outperformed Scenario 3, along with
GOS, MWF, and OFDMA. These two scenarios achieved higher throughput because no
minimum data rate constraint was imposed during the optimisation process. However,
ILPSO Scenario 3 still achieved a higher data rate than the other schemes whilst also
considering fairness and data rate constraint. Considering that system design in ILPSO
Scenario 3 assigned higher priority to fairness, it also exhibited higher throughput than
GOS, MWF, or OFDMA. The system design applied a penalty during power optimisation,
restricting the power ratio, user data rate, and fairness to prevent constraint violation.
ILPSO Scenario 3 is the preferred scenario because of the penalty and fairness weight
applied to the function.

The objective function was evaluated for the three ILPSO scenarios that achieved better
performance than the existing approaches. ILP was performed earlier as a pairing scheme
to relax the optimisation process. Hence, PSO was applied to two variables restricted
by optimisation penalty to prevent the power constraint from reaching the upper and
lower power bounds. The penalty function and scaled weight were used in the objective
function to assist the algorithm in achieving the highest throughput during the optimisation.
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Moreover, the PSO algorithm achieved a good solution in earlier iterations and escaped
the local optimal search space. Considering that reasonable solutions were found after a
few iterations, an exploration can identify all possible solutions, enhancing the search for
a better solution. Therefore, PSO provides acceptable solutions for power allocation that
maximise throughput.
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In Figure 3, JFI is evaluated for 4 to 24 users. The ILPSO scenarios are compared with
GOS [17], MWF [14], and OFDMA. ILPSO Scenario 3 assigns higher priority to system
fairness, as indicated by its highest fairness value, because more weight is assigned to
making system fairness a priority in the objective function. ILPSO Scenarios 1 and 2 exhibit
lower fairness (below 0.5 for 12 users) due to constraint considerations, i.e., fairness weight
is not considered. The ILPSO scenarios achieve better fairness for a higher number of users
compared with GOS and OFDMA. ILPSO Scenario 3 is applied to ensure that system will
have a minimum user data rate and fairness. It demonstrates greater fairness due to the
fixed penalty used in the problem formulation. ILPSO Scenarios 1 and 2 present lower
fairness values due to violation of the constraints. However, ILPSO Scenario 2 shows better
fairness than ILPSO Scenario 2 because of the minimum data rate constraint applied to the
objective function.

In Figure 4, user throughput for the number of channels is estimated with the number
of users on the basis of the high and low channel gains. The primary concern is to ensure
that a low channel gain user is still achieving a sufficient data rate whilst a high channel
gain user is always achieving a better data rate. In ILPSO Scenario 3, a higher user data
rate is observed for a low channel gain user than in ILPSO Scenarios 1 and 2. By contrast,
ILPSO Scenario 3 exhibits a lower user data rate for a high channel gain user than ILPSO
Scenarios 1 and 2 to ensure that ILPSO Scenario 3 can guarantee a higher data rate for
low channel gain users. In ILPSO Scenarios 1 and 2, the user data rate gap between the
high and low channel gain users is considerable due to violation of the constraints. ILPSO
Scenario 2 reduces the gap between high and low channel gain users more than ILPSO
Scenario 1, which has no user data rate constraint. Therefore, ILPSO Scenario 3 achieves a
better balance between the high and low channel gain users whilst the low channel gain
users still receive a sufficient data rate.
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Figure 5 illustrates the convergence of the proposed algorithm for the three scenarios.
ILPSO Scenario 3 violates the constraints in the first 100 iterations. This scenario converges
after 200 iterations and at lower throughput than ILPSO Scenarios 1 and 2. Moreover,
ILPSO Scenarios 1 and 2 start with higher throughput and converge after 50 iterations with
higher achieved throughput. The ILPSO algorithm stops once convergence is achieved, and
higher throughput is reached during the last iteration. Hence, the algorithm stops moving
through the maximum number of iterations because no changes occur in the convergence.
ILPSO converges after at least 200 iterations for Scenario 3 and 50 iterations for Scenarios
1 and 2. ILPSO ends the process when the change per iteration is less than the tolerance
1e−6 for the scenario that finishs with a lower number of iterations. ILPSO runs the risk of
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producing a sparse solution during earlier iterations. The set of constraints is important
such that increasing the swarm size is unnecessary when capturing the global optimum.
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5. Conclusions

In this study, we proposed a hybrid resource allocation scheme (i.e., ILPSO) to optimise
the resource allocation and achieve a trade-off between throughput maximisation and
system fairness in a downlink NOMA system-based 5G network. Resource allocation
complexity can be reduced by separating the user paring and power allocation schemes.
The PSO algorithm was applied to two variables of power allocation with the assistance of a
penalty function to prevent the power constraint from reaching the upper and lower power
bounds. Therefore, PSO achieved acceptable solutions with simple control parameters and
a minimum number of iterations. The design of SMOO problems that used WSM was
applied to the optimisation problem to convert it into a SO function. Three ILPSO scenarios
were investigated to evaluate system fairness for the cost of total throughput maximisation.
The proposed method outperformed other approaches. In Scenario 3, it outperformed GOS
by 17%, MWF by 21.9%, and OFDMA by 33%. Moreover, the system exhibited greater
fairness than existing schemes, with Scenario 3 outperforming Scenarios 1 and 2. Finally,
the proposed scheme can satisfy throughput maximisation and fairness for future NOMA
system-based 5G networks.
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