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Abstract— In recent years, in order to provide a better quality
of service (QoS) to Internet of Things (IoT) devices, the cloud
computing paradigm has shifted toward the edge. However,
the resource capacity (e.g., bandwidth) in fog network technology
is limited and it is essential to efficiently bind the IoT applications
with stringent QoS requirements with the available network
infrastructure. In this paper, we formulate a joint user association
and resource allocation problem in the downlink of the fog
network, considering the evergrowing demand of QoS require-
ments imposed by the ultra-reliable low latency communications
and enhanced mobile broadband services. First, we determine
the priority of different QoS requirements of heterogeneous
IoT applications at the fog network by enforcing the analytical
framework using an analytic hierarchy process (AHP). Using
the AHP, we then formulate a two-sided matching game to
initiate stable association between the fog network infrastructure
(i.e., fog devices) and IoT devices. Subsequently, we consider the
externalities in the matching game that occurs due to job delay
and solve the network resource allocation problem by applying
the “best-fit” resource allocation strategy during matching. The
simulation results illustrate the stability of the user association
and efficiency of resource allocation with higher utility gain.

Index Terms— Fog computing, Internet of Things (IoT),
ultra-reliable low latency communications (URLLC), enhanced
mobile broadband (eMBB), resource allocation.
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I. INTRODUCTION

THE EMERGING Fog Network technology is considered

to be indispensable for IoT devices providing a wide

variety of inherent features such as low latency, location

awareness, mobility and wireless access capability unlike its

predecessor cloud [1]. In fact, gateway devices are most com-

monly considered as parts of the Fog Network infrastructure

(e.g., Fog) because of their vicinity to IoT devices. With some

computational and storage capabilities combined with the

connectivity functions, the Fog devices seamlessly associate

with the IoT devices to provide a cloud like reinforcement

to the IoT applications at the edge. In both IoT and the

Fog Network, one core objective is to provide the quality

of service (QoS) to the end users, which can be achieved

by efficiently allocating the limited network resources to het-

erogeneous IoT applications and services. Therefore, the end

users use the licensed or unlicensed spectrum, depending on

the availability of the network resources and heterogeneous

network interfaces for a wide variety of IoT applications [2].

As the number of heterogeneous IoT devices is increasing

exponentially, the amount of real-time and non-real-time IoT

traffic with multiple QoS requirements is also rapidly increas-

ing. The typical QoS requirements of the Internet traffic of

heterogeneous applications are depicted in Table I. Yet in IoT,

any newly discovered IoT devices in the environment may

necessitate entirely new IoT applications that require different

resource requests and rapid resource deployment [3]. As a

result, the priority of the QoS parameters in Table I is diverse.

In that case, the resource allocation has to be mapped

to a particular IoT application, depending on the applica-

tion type, resource demand, and service priority [5]. For

example, the Ultra-Reliable Low Latency Communications

(URLLC) service type [6] applications have high requirement

of a tolerable bit error rate (BER) followed by ensuring an

acceptable data delay [7]. In contrast, the enhanced Mobile

Broadband (eMBB) service type [8] applications in Fog net-

work generating real time IoT traffics [9] may have more

stringent requirement on the bandwidth requirement than that

of timeliness and error free communication [10].

Most of the traditional distributed and centralized resource

allocation schemes for IoT mainly focus on the IoT service

or task provisioning [11], [12] rather than considering the
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TABLE I

TYPICAL QoS REQUIREMENTS OF INTERNET TRAFFIC [4]

user and channel state information, and the priority of the

application specific QoS parameters. As a result, QoS man-

agement for heterogeneous IoT applications is still an open

issue and is not well-investigated. In a typical cellular network,

the optimization [13] and game theoretic [14] resource alloca-

tion and QoS management approaches are often subjected to

different application specific QoS parameters. However, in IoT,

it is essential to consider not only application specific QoS

parameters, but also the prioritization of QoS parameters along

with environmental variations such as externalities, [15] while

allocating the application specific network resources.

Under the above circumstances, in this paper we propose a

joint user association and resource allocation scheme that not

only evaluates the application specific QoS requirements, but

also considers the priority of the QoS parameters. Furthermore,

we consider the network-wide stability during self-organizing

user association and resource allocation for IoT applications

in a dynamic Fog Network environment. In essence, the main

contributions of this paper are as follows:

• We formulate a joint user association and resource allo-

cation problem in the downlink of the Fog Network

with QoS constraints, and we show that the centralized

optimization for this problem is NP-hard. Therefore,

we provide an analytical framework AHP (Analytic Hier-

archy Process) to decompose the complex QoS manage-

ment problem into manageable and tractable hierarchi-

cal sub-problems to prioritize the QoS parameters and

requirements of the eMBB and URLLC service type IoT

applications.

• We formulate a two-sided matching game to initiate the

user association followed by resource allocation between

the Fog Network infrastructures (i.e., Fog devices) and

the IoT devices.

Furthermore, the AHP based analytical framework pro-

vides a qualitative QoS evaluation that significantly

enhances the performance of the matching outcome by

prioritizing the application specific QoS parameters while

creating the preference order of the players. We also

applied the “best-fit” network resource allocation strategy

for the matching to ensure stability in user association,

which deals the externalities in the one-to-many matching

game.

• We perform extensive numerical analysis to evaluate the

performance of the proposed approach. The results show

that the integrated AHP and matching game approach for

QoS aware joint user association and resource allocation

achieves higher utility gain for the users. In addition,

the efficiency of the “best-fit” resource allocation strategy

in the matching game outperforms the traditional match-

ing and AHP based approach. The results also demon-

strate the stability of the association between the IoT

and Fog devices in the case of a dynamic and scalable

network.

The remainder of the paper is organized as follows.

In Section II, we present an extensive literature review based

on the current research. In Section III, we present the network

model and problem formulation. Section IV explains in detail

how we solve the proposed optimization problem with AHP

and matching theory and deal with the externalities by apply-

ing the “best-fit” resource allocation strategy during matching.

In Section V, we present the numerical analysis to validate

the performance and efficiency of our proposed approach user

association and resource allocation. Finally, in Section VI we

conclude the discussion.

II. RELATED WORKS

A number of studies have proposed new mathematical

models, including optimization theory [16], game theory [17],

machine learning [18] and an analytic hierarchy process

(AHP) [19], to capture the user perceived QoS for enabling

network performance analytics [20], [21] for network resource

allocation. In order to solve the network resource alloca-

tion problem, in [22], the authors proposed a solution to

the problem of assigning services with heterogeneous and

noninterchangeable resource demands to the multiple network

interfaces of an IoT device. However, the convergence rates

of the optimization-based resource allocation approaches are

slow and unsuitable for dense large scale network [23]. In fact,

this may cause instability in the network, as the number of IoT

devices in the network may increase or decrease over time.

In [24], the authors proposed AHP to managing resources

in a large-scale heterogeneous wireless network that supports

reconfigurable devices. In [25], the authors considered user

centric requirements (such as bandwidth) and network centric

concerns (such as load balancing and designed utility func-

tions) to precisely quantify the relationship between the QoE

and these attributes, and the preference weights are calculated

by AHP. In [26], the authors focusd on considering the impact

of installing remotely controlled switches in the reliability

indices as well as the AHP decision making algorithm for the

switch allocation. However, the AHP based decision making

is unable to address the effects of the preference correlation on

the outcomes generated by applications that require two-sided

joint decision making, where the preferences of both sides are

equally important.

In [27], the authors proposed a reinforcement learning based

code offloading mechanism in Fog network to ensure low-

latency service delivery towards mobile service consumers.

In [28], the authors proposed ThinkAir, which uses dynamic

adaptation and dynamic scaling of computational power in

the mobile cloud computing. The advantage of applying a

reinforcement learning algorithm like Q-learning is that it

can converge to the optimal value in the case of discrete

problems. However, the approach is more suitable for a closed

environment and becomes infeasible if the state space is too

large.
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Fig. 1. Fog network model.

The user perceived quality of the network performance

should be analyzed for different QoS requirements imposed

by the user centric IoT application and services at the edge

of the network or Fog radio access network (F-RAN) [29].

The traditional game theoretic approaches are widely adopted

in both the existing cellular and F-RAN architecture for

resource allocation where the IoT devices are likely to be

deployed [30]–[32]. However, the problem of using conven-

tional game theoretic approaches in IoT is that, in most of

the cases, the external effects and the application specific

QoS priorities of the IoT devices are overlooked during two-

sided decision making for the network resource allocation.

Therefore, the stability of the matching game is not guaranteed

in a dynamic IoT environment.

In the next section, the problem formulation for the joint

user association and resource allocation in the Fog network

model is presented in detail.

III. NETWORK MODEL AND PROBLEM FORMULATION

A. Network Model

One of the fundamental challenges for Fog devices in

existing cellular networks is the user association where the Fog

devices and IoT devices have different sizes, capacities and

capabilities [33]. In Fig. 1, let us consider a set of Fog devices

R =
{

1, . . . , R} where each device has a corresponding set

of subchannels K =
{

1, . . . , K} with a fixed bandwidth of

bk
d,r and these devices are statically deployed, e.g., the Fog

access point (F-AP). There is also a set of IoT devices D =
{

1, . . . , D} with M =
{

1, . . . , M} QoS parameters deployed

at the Fog Network, e.g., smart-phones, tablets, customer

premises equipment (CPE). Unlike static Fog devices, IoT

devices can dynamically join or leave the Fog Network envi-

ronment. In addition, the service providers provide different

generic types of services S =
{

1, . . . , S} to the IoT devices in

the Fog Network. The weights of different QoS parameters are

represented as a vector �wd
s,m where each entry is the respective

weight of the service type specific QoS parameter. In this

scenario, we assume the Fog Network Coordinator (FNC) acts

as a mediator between the IoT service providers at the remote

cloud and the edge level IoT devices. In this paper, we consider

s ∈ S to represent two major service types or categories such

as enhanced Mobile Broadband (eMBB) and Ultra-Reliable

Low Latency Communications (URLLC) where there can be

many IoT application classes [34]. Additionally, the weights

of different QoS requirements vary from one service type to

another. For example, in eMBB services, the core priority is

to ensure high data rate or throughput whereas in URLLC

the core priority is to ensure acceptable delay and bit error

rate (BER) requirements. An FNC located in a particular

geographic area is able to coordinate with multiple service

types simultaneously. In the network model, we assume that

the IoT devices are capable of executing IoT applications

and the Fog devices are serving as gateways to reach the

IoT service provider in the cloud. Therefore, the IoT devices

associate with the Fog devices in the Fog Network to commu-

nicate with the IoT service or content providers through the

FNC and core network. In such a case, the IoT devices use

the limited network resources provided by the Fog devices

to ensure proper channel coding and to receive the content

from the remote IoT service providers. Both the Fog Network

infrastructures and IoT devices distributively handle the QoS

management tasks including analyzing and prioritizing the

QoS requirements or parameters of the heterogeneous IoT

applications provided by different service providers. There-

fore, the Fog devices perform the context-aware user associ-

ation for application specific network resource allocation. In

addition, the Fog devices publish their resource information

to the FNC so that only the subscribed and authorized IoT

devices can localize and access the Fog devices.

1) Bandwidth Allocation: Each Fog device r ∈ R can serve

multiple IoT devices d ∈ D based on the available statistical

channel state information (CSI), e.g., signal-to-interference-

plus-noise ratio (SINR), line of sight component [35].

In addition, we denote by, Ar the set of IoT devices that

are associated with Fog device r ∈ R. Thus, the transmission

capacity between each Fog device r ∈ R with subchannel

k ∈ K and each IoT device d ∈ Ar is,

βk
d,r(b

k
d,r) = bk

d,r log(1 + ψk
d,r). (1)

In (1), bk
d,r represents the allocated bandwidth for IoT device

d ∈ Ar that uses subchannel k ∈ K of Fog device r ∈ R
where br

max =
∑

k∈K bk
d,r is the maximum bandwidth of

the channel of r ∈ R. ψk
d,r =

ek
d,rκk

d,r

σ2+Id,r
is the SINR when

the Fog device r ∈ R allocates its subchannel k ∈ K to

IoT device d ∈ D. Here, ek
d,r is the transmission power and

κk
d,r is the channel gain between each Fog device r ∈ R

and the associated IoT device d ∈ Ar. The variance of the

Additive white Gaussian noise (AWGN) is denoted as σ2

and Id,r denotes the channel interference. In our scenario,

the interference Id,r =
∑

r′ 6=r ek
d,r′κk

d,r′, r0 ∈ R\{r} where

the transmission between Fog device r0 and its respective

IoT device d0 ∈ Ar′ use the same subchannels of βk
d,r.
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The transmission power and channel gain are denoted as ek
d,r′

and κk
d,r′ between Fog device r0 and IoT device d.

2) Job Delay: As each Fog device r ∈ R sends job requests

to multiple associated IoT devices d ∈ Ar , the data packet

transmission process at each Fog device is modeled as an

M/M/1 queuing system [36] where the mean arrival traffic

rate is given by λr (packets/sec) at each r ∈ R and the

packet transmission rate or service rate of the queue is µr

(packets/sec) with mean packet size Navg . The aggregated

traffic in each Fog device is, λr =
∑

d∈Ar
λd,r.

The packet transmission times are exponentially distributed

with mean 1
µr

(secs/packet) where we assume the slow fading

channels. For the stability of the system, we consider the

utilization of the queue is λr

µr
< 1. The mean job delay for the

aggregated traffic of d ∈ Ar including the queuing delay and

transmission delay is,

ϕd,r =
Navg

βk
d,r(b

k
d,r)

+
λr

(µr − λr)
. (2)

In (2), we consider the transmission delay and queuing delay

as job delay to evaluate the performance of each association

between r ∈ R and d ∈ Ar. Furthermore, the queuing delay

depends on the congestion level of r ∈ R and the transmission

delay depends on the amount of time to send Navg bits into

the link, where the transmission rate is βk
d,r(b

k
d,r).

3) Bit Error Rate (BER) Calculation: The transmitted data

between the associated IoT device d ∈ Ar and Fog device

r ∈ R could be corrupted even if the interference Id,r is

trivial. The performance of the modulation can be expressed

as
βk

d,r

bk
d,r

(bits/HZ) from (1) which represents the spectral

efficiency. Thus, the BER can be calculated as [37],

νd,r =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0.2 × e

−1.6 ×
ek

d,r

σ+Id,r

log(h) − 1 , if
ek

d,r

σ + Id,r

≥ Υr

1, otherwise.

(3)

In (3),
ek

d,r

σ
is the energy per bit to noise power spectral density

ratio with considering interference Id,r, Υr is the threshold for

correct modulation, and h is the given modulation index.

4) QoS Aware Utility Function: Each Fog device r ∈ R
allocates the downlink bandwidth bk

d,r to its associated IoT

devices d ∈ Ar. Thus, the QoS aware utility function for the

association between each Fog device r ∈ R and each of the

associated device d ∈ Ar at subchannel k is calculated by

the following QoS based utility function,

Uk
d,r(b

k
d,r, w

d
s,m)=

wd
s,m1

· βk
d,r(b

k
d,r) · w

d
s,m2

(

1−νd,r

)

wd
s,m3

ϕd,r

. (4)

The utility function in (4) effectively captures the throughput,

job delay and BER that Fog devices r ∈ R can deliver

to the associated IoT devices d ∈ Ar, given the SINR.

In addition, wd
s,m1

, wd
s,m2

, and wd
s,m3

are the corresponding

weight values of the throughput, BER and job delay for the

service type s ∈ S. Unlike the conventional cellular network,

in Fog, the IoT devices d ∈ D are part of different IoT service

platform. Therefore, the utility function in (4) effectively

captures the service types and weights of individual QoS

parameters set by different IoT service providers. In later

section we will provide an analytical framework for the IoT

service providers so that the service specific weights of the

QoS parameters of different service types can be calculated

efficiently.

B. Problem Formulation

The goal of the resource allocation in the network is to

maximize the aggregated utility of the joint association and

resource allocation subject to the QoS requirements imposed

by the IoT devices. Therefore, the problem is formulated as,

maximize
Φd,k,δd,r

∑

r∈R

∑

d∈D

∑

k∈K

Φd,kδd,rU
k
d,r(b

k
d,r, w

d
s,m) (5)

s.t.
∑

d∈D

∑

k∈K

Φd,kδd,rb
k
d,r ≤ br

max, r ∈ R (6)

Φd,kδd,rβ
k
d,r(b

k
d,r) ≥ βd

sla, ∀d ∈ D, r ∈ R, k ∈ K

(7)

Φd,k

∑

m∈M

wd
s,m ≤ 1, ∀d ∈ D, k ∈ K (8)

ϕd,r(δd,r) ≤ ϕd
sla, ∀d ∈ D, r ∈ R (9)

νd,r(δd,r) ≤ νd
sla, ∀d ∈ D, r ∈ R (10)

∑

k∈K

Φd,k ≤ 1, ∀d ∈ D (11)

∑

d∈D

δd,r ≤ qr, ∀r ∈ R (12)

∑

r∈R

δd,r ≤ 1, ∀d ∈ D. (13)

In general, the constraints in (7)-(10) address the contextual

information for the QoS aware association and allocation

between each Fog device r ∈ R and associated IoT devices

in d ∈ D. In the constraint (11), Φd,k is the binary indicator

variable such that,

Φd,k =

{

1, if d is assigned to subchannel k

0, otherwise.
(14)

In (14), Φd,k = 1 indicates that an IoT device d ∈ D is

assigned to the subchannel k of Fog device r ∈ R and

Φd,k = 0 otherwise. In (13), δd,r is the binary indicator

variable defined as follows,

δd,r =

{

1, if d is associated with r

0, otherwise.
(15)

In (15), δd,r = 1 indicates that an IoT device d ∈ D
is assigned to the Fog device r; otherwise, δd,r = 0. The

constraint in (12) indicates that each Fog device r can be

associated with a limited number of IoT devices d ∈ D and qr

is the quota value, which is equal to the number of subchannels

of Fog device r. In (13), the constraint indicates each of IoT

device d ∈ D can be associated with only one Fog device

r ∈ R. The first two constraints (7) and (6) address the

network resource allocation for the application running in the

IoT devices. The constraint in (6) is the bandwidth capacity

bk
d,r of the associated Fog device r ∈ R when the assigned
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subchannel is k ∈ K and br
max is the maximum bandwidth

of the fog devices r ∈ R. In (7), the capacity (throughput)

βk
d,r is an allocation vector with feasible allocations based on

the subchannel bandwidth bk
d,r via Fog device r ∈ R while

assigning subchannel k ∈ K, and βd
sla is the minimum QoS

requirement imposed by IoT device d ∈ Ar.

In (9) the delay constraint is shown where the job delay is

a function of δd,r, indicating the job delay is calculated once

there is an association between d ∈ D and r ∈ R. The delay

constraint between each Fog device r ∈ R and associated

IoT device d ∈ D is calculated as ϕd,r(δd,r), which is less

than or equal to the maximum delay ϕd
sla that a particular

application running at the IoT device d ∈ D can tolerate. The

constraint in (10) accounts for the BER constraint once there is

an association between d ∈ D and r ∈ R. The BER νd,r(δd,r)
of the association δd,r should be less than the maximum

BER νd
sla as per the application requirement imposed by each

d ∈ D. In (8), when Φd,k = 1, the summation of the M
weight factors for each QoS parameters under the service type

s ∈ S is not more than 1. Therefore, individual weights of the

QoS parameters (6), (7), (9) and (10) are set for the eMBB

and URLLC service types s ∈ S which should be greater

than or equal to zero. In addition, for any valid allocation

under the QoS constraints in (6)-(13), the objective function

in (5) is effectively maximized for the association between

different IoT devices belonging to either eMBB or URLLC

service types and the corresponding Fog devices where the

weights of individual QoS parameters are set by different

service providers.

The decision problem in (5) can be reduced to a base

problem of 0/1 multiple-knapsack problem [38] with the corre-

sponding constraints in (6)-(13), which is NP-Complete [39].

Similar to the 0/1 multiple-knapsack problem, the combina-

torial nature of the problem in (5) leads to find all the feasible

associations and allocations where the complexity of the prob-

lem is O(2D×R×K) which grows exponentially depending on

the number of IoT devices, Fog devices, and subchannels in the

corresponding sets in order to maximize the network utility.

In fact, there is no known polynomial algorithm which can

tell, given a solution of (5), whether it is optimal. As a result,

we can infer that the decision problem in (5) belongs to the

same category of the problem of multiple-knapsack problem

which is proven to be NP-hard [40]. Therefore, in the next

section we solve the problem in (5) by adopting the AHP based

matching game approach for resource allocation between the

Fog devices in R and IoT devices in D.

IV. QOS AWARE RESOURCE ALLOCATION VIA

AHP AND MATCHING THEORY

In this section, first we devise an analytical framework

using AHP in order to qualitatively stratify the decision factors

(e.g., throughput, BER, and delay) followed by learning the

local and global weights for the decision factors and the IoT

devices, respectively. Second, we formulate a matching game

to solve the problem in (5), where the preferences of the

players are created using AHP based qualitative evaluation.

Finally, we apply the “best-fit” resource allocation (RA)

Fig. 2. AHP hierarchy for the candidate IoT devices.

TABLE II

PAIR-WISE COMPARISON SCALE

strategy with the proposed matching game to deal with the

externalities such as “peer-effects”. The detailed discussion

on the AHP and matching game with externalities is explained

later in this section.

A. Hierarchical Stratification via AHP

In Fig. 2, the multiple criteria decision-making method,

AHP, decomposes the complex QoS management problem into

tractable hierarchical sub-problems.

In level 0, the goal of the AHP is the selection of candidate

IoT devices. Level 1 of the hierarchy is comprised of the

QoS criteria, which are considered as decision factors. The

priorities of the decision factors vary from one service type

to another. Last, the bottom level 2 of the hierarchy evaluates

the alternative candidate IoT devices based on the evaluation

of the decision factors performed in level 1.

The QoS requirements of the IoT devices are considered to

be a QoS matrix Q ∈ Rd×m where each entry qd,m represents

the minimum QoS requirements imposed by d ∈ D. The pair-

wise comparison of the candidate IoT devices is based on M
QoS criteria or decision factors. Therefore, each of the factors

has a weight as per the relative importance to the candidate

selection problem. We assume that subjective judgments as

per Table II are based on the decision factors and enforced

by the service provider considering the service specific QoS

requirements. There are several judgment scales that have been

proposed for different decision problems [41]. However, in our

proposed decision making problem, we use the linear scale

since this is considered as the best scale to represent the

weight rations between the decision factors [42]. Based on

our proposed multi-criteria decision problem, the AHP model

can be explained through the following three steps.
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Algorithm 1: Pair-Wise Comparison Matrix Creation at

FNC

Input: D, S, P ∈ Rm×m, Q ∈ Rd×m, �tr, ρ ← 0.1
Result: W r ∈ Rd×m

1 Initialize: P̄ ∈ Rm×m, m̃,
2 repeat

3 foreach d ∈ D do

4 while j �= m do

5 m̃[j] ←
∑m

i=1 P [i][j]
6 foreach i in the jth column of P do

7 P̄ [i][j] ← P [i][j]
m̃[j]

8 j ← j + 1
9 �wd

s,m ← 1
m

∑m
j

∑m
i P̄ [i][j]

10 Update CR using (16) and (17)

11 W r ← W r ∪ �wd
s,m

12 until CR ≤ ρ;

1) Step 1 (Pairwise Comparison for Level 1): Each d ∈ D
corresponds to a pairwise comparison matrix P ∈ Rm×m

which is also a reciprocal matrix based on the subjective

judgment of the QoS parameters or decision factors provided

by different service providers considering different service

types. The IoT service provider uses the pair-wise compar-

ison scale to create the pair-wise comparison matrix P as

shown in Table II, and then sends this matrix to the FNC

for further qualitative analysis. Each entry mij in the pair-

wise attribute comparison matrix P represents the relative

importance between the QoS attributes i and j, corresponding

to the row and column respectively (lines 3-5 in Alg. 1). Then,

P is column-wise normalized as P̄ ∈ Rm×m and each entry

of P̄ represents the normalized relative weight (lines 6-8 in

Alg. 1). Afterwards, the weight vector �wd
s,m is calculated by

averaging the rows of P̄ , where �wd
s,m =

{

m̄1, m̄2, m̄3

}T
=

{

mdelay , mBER, mdatarate

}T
, ∀d ∈ D, ∀s ∈ S

(

line 11 in

Alg.1
)

. The weight vector �wd
s,m is the normalized principle

eigen vector, which represents the local weights of each QoS

attribute in level 1 and is then added to the local weight

matrix W r ∈ Rd×m of r ∈ R (line 9 in Alg. 1). Since

the comparison matrix P is based on the relative importance

among the QoS criteria or decision factors, the logic of

preference should satisfy the transitive property. Therefore,

the consistency of matrix P is checked through the consistency

index CI [43], which represents the deviation of consistency

as (line 12 in Alg. 1),

CI =
λmax − n

n − 1
. (16)

In (16), n is the dimension of the square matrix P , and

λmax is the principle eigenvalue of P , which is calculated

through the summation of products between each entry of the

weight vector �wr
d and the sum of the columns of the pair-wise

attribute comparison matrix P . If the value of CI is relatively

large, the inconsistency of the preferences in P becomes

more significant [44]. By using the consistency index CI ,

the consistency ratio CR is calculated as,

CR =
CI

RI
. (17)

In (17), RI is the Random Consistency Index (RCI) and

the inconsistency of the matrix is acceptable if CR is less

than or equal to ρ = 0.1, otherwise the subjective judgment is

revised for the consistency by modifying P (line 10 in Alg. 1).

Finally the FNC disseminates the context information in step 1,

including W r and Q ∈ Rd×m for the corresponding Fog

devices in R.

2) Step 2 (Pair-Wise Comparison in Level 2): In level 2,

r ∈ R evaluates the candidate IoT devices d ∈ D under

different decision factors m ∈ M of the service type s ∈ S
to compute the alternative candidate matrix A ∈ Rd×m in

Alg. 2. In the alternative matrix A, each row represents the

IoT devices d ∈ D and the columns are the QoS parameters

m ∈ M for a given service type s ∈ S. Each entry in the

QoS matrix Q is row and column normalized as Q̄ (line 2

in Alg. 2). After that, each candidate IoT device in Q̄ is

multiplied by its corresponding weight value in the parent

local vector �wd
s,m from the local weight matrix W r (lines 3-5

in Alg. 2).

Algorithm 2: Global Weight Vector at Each Fog Devices

Input: D, M, Q ∈ Rd×m, W r ∈ Rd×m

Result: �wr
g

1 Initialize: Q̄ ∈ Rd×m, A ∈ Rd×m

2 Normalize Q as Q̄

3 for i ∈ D do

4 foreach jth factor in the ith candidate in Q̄ do

5 A[i][j] = W r[i][j] · Q̄[i][j]

6 �wr
g ←

∑D
i=1

∑M
j=1 A[i][j]

3) Step 3 (Weight Based Profiling in Level 0): At this step,

the global weight vector �wr
g =

{

w1, w2, wd

}T
is calculated

through Alg. 2, where it takes the alternative matrix A from

step 2 and the local weight vector �wd
s,m ∈ W r from step 1 as

the input to generate the global weight vector �wr
g for r ∈ R.

Each entry in Ar is multiplied by its corresponding parent in

W r in order to generate the global weight vector �wr
g for r ∈ R

(

line 6 in Alg. 2
)

. The global weight vector �wr
g represents the

weights used for ranking the IoT devices based on the QoS

evaluation in level 1 and level 2 of the AHP.

B. Resource Allocation via Matching

In this stage, we find a stable matching or association

between two sets D and R considering the individual pref-

erences of the players (IoT and Fog devices) in order to

perform the resource allocation (RA). For such an association,

we model our problem as the “one-to-many” matching game,

which solves the classical “College Admissions” problem [45].

In addition, the pairwise comparison matrix and the global

weight vector from AHP are used as input parameters to

create the preference profile of players in the “one-to-many”

matching game.
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1) Matching Game Formulation: In our formulation,

we define “College” as the Fog devices with quota qr ≥ 1
and “Student” as the IoT devices with quota qd = 1, where

each Fog device can be associated or matched with IoT

devices up to their quota limits. However, in the proposed

matching game, we introduce a dynamic quota in which Fog

device r can allocate the network resource (i.e., bandwidth)

of different portion sizes to the associated IoT devices in

d ∈ Ar. The portion sizes of the allocations are based on

the QoS requirements of d ∈ D and sustained until the QoS

requirements are not violated. Therefore, The outcome of the

matching game is a matching function δ that mutually assigns

each player r ∈ R and d ∈ D under the following conditions

of the matching δ : D ∪R =⇒ 2D∪R such that,

(1) δ(r) ⊆ R such that |δ(r)| ≤ qr, ∀r ∈ R
(2) δ(d) ⊆ D such that |δ(d)| ≤ 1, ∀d ∈ D
(3) If r ∈ δ(d) then δ(r) = Ar, ∀r ∈ R
(4) d ∈ δ(r) if and only if δ(d) = {r}, ∀d ∈ D and ∀r ∈ R.

Here, qr is the maximum resource capacity of r ∈ R and

each d ∈ D can associate with exactly one r ∈ R as per (12)

and (13) in problem (5) where |δ(·)| is the cardinality of the

matching instance δ(·). In addition, if there is a matching δ
between IoT device d and Fog device r, the Fog device r adds

the matching δ to the accepted list Ar.

2) Preference Profile of Players: The global weight vector

�wr
g and the corresponding local weight vectors �wr

d ∈ W r,

∀d ∈ D from the AHP are the parameters used to create the

preference lists for the players in the matching game. The

preference relation between the players in the preferences lists

pd, ∀d ∈ D and pr, ∀r ∈ R hold the transitive property within

the matching framework as defined in Definition 1.

Definition 1: A matching game is defined using two sets of

players R and D where the corresponding transitive preference

relations ≻r, and ≻d of each player in r ∈ R, and d ∈ D,

respectively, are used to build preferences over one another.

In a matching game, the preference list of each r ∈ R is

denoted as pr and the rank or preference ≻r of the IoT devices

in pr is based on the respective weight values in �wr
g , given as,

d ≻r d0 ⇔ w > w0 where (w, w0) ∈ �wr
g and d �= d0,

where Fog device r prefers IoT device d more than IoT device

d0 in pr, as the weight value w of IoT device d is higher than

the weight value w0 of IoT device d0.
Likewise, each IoT device d ∈ D receives the respective

local weight vectors �wr
d, ∀d ∈ D from the Fog devices r ∈ R

and measures the channel condition using (1) and (3) so that

d ∈ D can calculate the expected utility as,

Ūd,r = wd
s,m1

· βd,r(bd,r) · w
d
s,m2

(

1 − νd,r

)

. (18)

In (18), the expected utility function captures the service type

based QoS requirements βd,r and νd,r with the respective

QoS parameters weight values wd
s,m1

and wd
s,m2

. The weight

values are calculated by the Fog devices in r ∈ R according

to (6)-(8) and (10) in problem (5). The expected utility also

reflects the achievable degree of satisfaction under an error-

free communication based on the statistical channel state

information (CSI) between the corresponding d ∈ D and

r ∈ R. Therefore, in pd, the preference relation ≻d of d with

the Fog devices r ∈ R can be represented as,

r ≻d r0 ⇔ Ūd,r > Ūd,r′, r �= r0,

where IoT device d prefers Fog device r more than the Fog

device r0 in pd, as the expected utility Ūd,r of the Fog device

r is higher than the expected utility Ūd,r′ of the Fog device r0.
3) Externalities in Matching: In the case of a “one-to-

many” maching game, the existing matchings or associations

δd,r become unstable due to the externalities or environmental

variations. Thus, it is not possible to apply the “Deffered

Acceptance” algorithm directly to guarantee stable matching

for resource allocation without considering externalities. In the

proposed matching game, we consider the performance of the

matching instances which are affected by additional exter-

nalities such as the average job delay in (9) and BER in

(10) which depend on the corresponding congestion level on

each r ∈ R and channel interference. Therefore, in the pro-

posed one-to-many stable matching for the resource allocation

algorithm, we consider the additional externalities as “peer-

effects” where the stability and performance of a matching

between a Fog device r and an IoT device d depend on not

only the specific matching instance δd,r but also the influence

of other neighboring matching instances δd′,r of the same Fog

device r. Based on the current scenario, we formulate the

definition of a blocking pair in Definition 2,

Definition 2: A blocking pair of a matching {d0, r} ∈ δd′,r

is a pair of players {d, r} /∈ δd′,r such that:

a) β̃r(b̃r) ≥ βd
sla, d ≻r ∅ and r ≻d δ0(r0)

b) β̃r(b̃r) < βd
sla, β̃r +

∑

d′∈Ar
βd′,r(bd′,r) ≥ βd

sla, {d} ≻r

{d0} and r ≻d δ0(r0)
c) Ud,r < Ūd,r, {d} ≻r {d0} and r ≻d δ0(r0).

where ≻d and ≻r indicate the preference relation between

the matching instances δ(·) and δ0(·), respectively. In addition,

δd′,r is the matching between IoT device d0 and Fog device

r and δ0d,r′ is the matching between IoT device d and Fog

device r0, where the matching instance δd,r is the blocking

pair. In condition (a), if Fog device r has enough residual

quota β̃r(b̃r) = βr
max(br

max) −
∑

d′∈Ar
βd′,r(bd′,r) and IoT

device d prefers Fog device r than its current association with

Fog device r0, r accepts the proposal from d. In condition (b),

the residual quota β̃r(b̃r) of each Fog device r ∈ R is fulfilled

when β̃r(b̃r) < βd
sla for any requesting IoT device d ∈ pr.

Thus, Fog device r rejects the least preferred IoT device

d0 ∈ Ar in order to admit the proposal from IoT device d.

Both the conditions (a) and (b) in our formulation introduce

the challenge of dynamic quota in the game which is similar

to [46]. However, in condition (c), we consider an additional

challenge of externalities in the matching game where the

matching utility Ud,r′ between IoT device d and Fog device

r0 is less than the expected utility Ūd,r′ which indicates the

degradation of the matching performance due to externalities

in (2) and (3). In such case, both IoT device d and Fog device r
deviate from their current associations and create the blocking

pair.

4) Proposed Matching Algorithm: At each iteration l, each

IoT device d ∈ D starts making proposals to the most

preferred Fog device r ∈ R that appears in its preference
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Algorithm 3: Matching Algorithm With Externalities

Input: D, R, pd, pr,W r

1 Initialize: Ar = {∅} ;Ld = {∅} ; l ← 0
Matching:

2 repeat

3 l ← l + 1

4 Each d ∈ D proposes the most preferred r ∈ p
(l)
d and

r /∈ L
(l)
d

5 while p
(l)
d �= ∅ and ∃d ∈ p

(l)
r do

6 if d ≻r ∅ and β̃
(l)
r (b̃r) ≥ βd

sla then

7 if Ūd,r > Ud,r′ then

8 L
(l)
d ← L

(l)
d ∪ {δ(d)(l−1)}

9 δ(r)(l) ← d

10 A
(l)
r′ ← A

(l)
r′ \{δ(r0)(l)}

11 A
(l)
r ← A

(l)
r ∪ {δ(r)(l)}

12 Update p
(l)
r′ , p

(l)
d , β̃

(l)
r (b̃r)

13 else

14 L
(l)
d ← L

(l)
d ∪ {δ(d)(l)}

15 Update p
(l)
r , p

(l)
d , β̃

(l)
r (b̃r)

16 else

17 for d0 ∈ A
(l)
r do

18 if (d, δ(l)) ≻r (d0, δ(l−1)) then

19 L
(l)
d′ ← L

(l)
d′ ∪ {δ(d0)(l)}

20 δ(r)(l) ← d

21 A
(l)
r ← A

(l)
r \{δ(r)(l−1)}

22 A
(l)
r ← A

(l)
r ∪ {δ(r)(l)};

23 Update p
(l)
r , p

(l)
d′ , β̃

(l)
r (b̃r)

24 else

25 L
(l)
d ← L

(l)
d ∪ {δ(d)(l)}

26 Update p
(l)
r , p

(l)
d , β̃

(l)
r (b̃r)

27 until δ
(l)
d,r �= δ

(l+1)
d,r ;

28 Calculate matching utilities based on A
(l)
r using (1), (2),

(3), (4) and W r

29 Resource Allocation:

30 Apply Alg. 4: alloc(R, A
(l)
r , L

(l)
d , p

(l)
r , p

(l)
d )

31 Output: δ
(l)
d,r

list pd (lines 3-4 in Alg. 3). After receiving the proposal from

IoT device d, Fog device r holds the proposal if it has not

received any other proposals (line 6 in Alg. 3). If IoT device

d previously matched with any other Fog device r0 ∈ pd\{r},

d compares the utility from prior the matching δd,r′ , Ud,r′

with the expected matching utility from δd,r, Ūd,r (line 7 in

Alg. 3). Since the utility function in (18) effectively captures

the performance parameters (1) and (3) of the matching,

the utility function represents the overall performance gain

of any matching instances. Therefore, if the expected utility

of matching δd,r is higher than the prior utility of matching

δd,r′ , IoT device d puts the matching δd,r′ in its rejection list

Ld and a new matching instance δd,r is created (lines 8-9

in Alg. 3). Consequently, Fog device r0 also removes the

matching δd,r′ from its accepted list Ar′ and Fog device r adds

Algorithm 4: Best Fit RA: alloc(R, Ar, Ld, pr, pd)

Input: R, Ar, Ld, pr , pd

Result: Ar, Ld, pr , pd

1 Initialize: βr
temp(b

r
temp) = {∅}

2 β̃r(b̃r) ← βr
max(br

max) −
∑

d∈Ar
βd,r(bd,r)

3 while ∃d ∈ Ar and Ud,r < Ūd,r do

4 if (d, δ(r)) ≻r (d0, δ(r)) ∈ Ar then

5 βr
temp(b

r
temp) ← β̃r(b̃r) + βd′,r(bd′,r)

6 if βr
temp(b

r
temp) ≥ βd

sla then

7 Update Ld′ , pd′ , Ar, pr, β̃r(b̃r)
8 else

9 Update Ld, pd, Ar, pr, β̃r(b̃r)

the matching δd,r to its accepted list Ar (lines 10-11 in Alg. 3).

Otherwise, IoT device d puts Fog device r in its rejected list

Ld and continues making proposals as per the preference order

of its preference list pd (line 14 in Alg. 3). If Fog device

r has no residual quota to support the new proposal from

IoT device d, Fog device r first checks the accepted list Ar

for any least preferred existing matching instance (line 17 in

Alg. 3). Second, if there exists any least preferred matching

δd′,r, Fog device r rejects and removes the matching δd′,r from

Ar to accommodate the more preferred matching δd,r (lines

19-23 in Alg. 3). In the case of any mutual rejection between

two players, the corresponding preference lists and the residual

capacity of Fog device r ∈ R are updated accordingly

(lines 12, 15, and 23 in Alg. 3).

In the proposed matching game, we have applied the

“best-fit” resource allocation strategy to deal with the exter-

nalities, ensuring the stability of the matching game. First,

Fog device r calculates the residual quota β̃r after temporarily

allocating the network resources to the IoT devices in the

accepted list Ar (line 2 in Alg. 4). If there exists any

δ(r) ∈ Ar that violates the QoS conditions given in (6), (7),

(9) and (10), the utility of that matching Ud,r also degrades.

Therefore, Fog device r sequentially finds the least preferred

IoT device d0 ∈ pr other than IoT device d ∈ pr\{d
0}

and creates a temporary allocation βr
temp(b

r
temp) (lines 3-5 in

Alg. 4). Second, if the temporary allocation can accommodate

IoT device d, Fog device r rejects the proposal from the least

preferred IoT device d0 and allocates the network resource to

the more preferred IoT device d (lines 6-7 in Alg. 4). However,

if IoT device d is the least preferred in Ar, Fog device r breaks

the association with d, and the corresponding preference lists

and rejected lists are updated (line 9 in Alg. 4). The algorithm

converges and becomes stable when the matching of two

consecutive iterations l remains unchanged (line 22 in Alg. 3).

Theorem 1: Alg. 3 produces stable association.

Proof: Please see the technical report in [47] for more

detailed discussion about the proof of convergence and an

example scenario of the user association and resource allo-

cation using AHP and matching game.

The complexity of Alg. 3 is quantified by the complex-

ity of building the preference profiles by both Fog devices

and IoT devices which are inputs for Alg. 3. For each
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TABLE III

SIMULATION SETTINGS

Fog device, the complexity of building the preference profile

using standard sorting algorithm is O(R log (R)) and similarly

the complexity of building the preference profile of all the

IoT devices is O(D log (D)). Therefore, the input of Alg. 3

is
∑

d∈D |ρd| +
∑

r∈R |ρr| = 2DR where |ρd| and |ρr|
are the length of the respective preference profiles of IoT

device and Fog device. As Alg. 3 terminates after a finite

number of iterations, it can be seen that the worst case time

complexity of Alg. 3 is linear in the size of the preference

profiles with O(η) = O(DR) where D and R are the

numbers of IoT devices and Fog devices respectively. In case

of Alg. 4, the standard best-fit algorithm is used where the

time complexity is O(DR log (DR)). Therefore, the proposed

approach is suitable for practical implementation.

V. SIMULATION AND ANALYSIS

A. Simulation Setting

For the simulation, we consider a network composed on

10 Fog devices and 50 IoT devices. The transmit power of each

Fog device is 33 dBm and the path loss L(∆d,r) = 37+∆d,r is

calculated over the distance ∆d,r between the IoT devices and

Fog devices. We assume lognormal shadowing with standard

deviation of 4 dB for the Fog devices. The minimum required

SINR for each IoT device is 9.56 dB and the power density

of thermal noise power is 175 dBm/Hz. In the simulation,

the typical QoS requirements of the IoT devices are set based

on Table I where the constant packet size is 1500 bytes.

Using the simulation, we compare our proposed algorithm

with the two well-known baseline solutions which are deferred

acceptance (DA) algorithm [48] and analytic hierarchy process

(AHP) [49]. The DA approach considers the distance ∆d,r

between the IoT devices and Fog devices in order to create

the preference list. The AHP based approach considers the

global weights for not only sorting the preference list for IoT

devices and Fog devices, but also accepts the requests until

the quota requirements are fulfilled. The main parameters for

the simulation are provided in Table III.

B. Simulation Results

Fig. 3 depicts the performance gap and average utility of

the associations, where the number of Fog device is 3 and the

number of IoT device is 10. The complexity of the exhaustive

search algorithm is growing exponentially (i.e., O(2D×R×K))
where the optimal solution is one of the possible combinations

of the subsets of the sets D, R and K. Therefore, we consider

a small network for comparing our proposed approach with

Fig. 3. Average utility comparison between the optimal and the proposed
method, R = 3, D = 10.

the optimal solution. The proposed AHP based matching

approach produces sub-optimal results but in case of real-time-

IoT services, the proposed approach converges much faster

than the exhaustive search based resource allocation. Apart

from that, in the proposed AHP based matching approach,

the decision of the association between IoT and Fog devices

is QoS aware and thus the average utility of the associa-

tion between IoT and Fog devices increases as the network

size increases. Moreover, the performance gaps in terms of

average utility between the proposed AHP based matching

with externalities, DA, and AHP are correspondingly up to

23.32 %, 39.1319 %, and 69.2315 % when the network

size is |D| = 10. In Fig. 3, we observe that the average

utilities of all the methods are monotonically increasing up

to a network size of |D| = 8. However, the performance gap

increases slightly after the network size |D| = 8 because

of the impact of interference during the association. Since

the final outcomes of the exhaustive search based solution

are generated after iterating over all the possible association

and allocation combinations, the optimal average utilities after

|D| = 8 experience comparatively less interference than

the sub-optimal average utilities of the proposed approach.

Nonetheless, the proposed algorithm converges to a stable

solution even though there is noticeable interference which

degrades performance gain compared to the optimal solution.

In fact, none of the QoS requirements is violated due to the

interference effect in the proposed approach while achieving

the desired matching stability. On the other hand, we observe

a significant performance loss in the DA and AHP based

approaches due to the increased interference level compared to

the optimal solution which further solidifies the effectiveness

of the proposed approach. Besides. the AHP approach only

defines the preference lists of the Fog devices, and thus

is unable to improve the performance of the IoT devices.

On the other hand, the deffered acceptance (DA) approach

defines the preference order for both the IoT and Fog devices

based on the distance. Therefore, the number of requests from

the IoT devices to the nearby Fog devices increases when the

area is densely overloaded with the IoT devices. Overall the
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Fig. 4. Average throughput comparison between different methods, R = 10,
D = 50.

utility gain of the proposed solution is significantly higher

than those of the deferred acceptance (DA) and AHP based

approach due to the efficiency of the proposed solution in

handling the “peer-effects”, which provides a higher number

of associations. Fig. 3 also shows that the proposed AHP

based QoS aware matching approach provides joint decision

making for the associations with enhanced SINRs. Therefore,

the average throughput of the associations increases and a

smaller BER is achieved with lower delay than that of the

DA and AHP which are the context unaware approaches.

Fig. 4 shows the evaluation of the average throughput of the

associations in the proposed AHP based matching approach,

DA, and AHP. The throughput of the associations are improved

significantly in the proposed AHP based matching approach

compared to the other context-unaware methods. The aver-

age throughput between the proposed approach and the DA

approach is relatively close at the beginning when the network

size is small (i.e., |D| = 10). Since the association between the

IoT devices and Fog devices in the DA approach depends on

the RSSI, each IoT device tends to become associated with the

closest Fog device. As a result, as the network size increases,

the proposed approach outperforms the DA approach due to

effective load balancing whereas the DA approach needs to

deal with the large unequal loads. Apart from that, the QoS

unaware methods (i.e., DA and AHP) can not guarantee

stability in the association and thus are unable to improve

the user’s QoS satisfaction through the achievable throughput.

The results also demonstrate that the “best-fit” algorithm for

handling the “peer-effects” in the proposed matching approach

provides better throughput than that of the DA algorithm,

which is unable to address the “peer-effects” during resource

allocation. As a result, we also observe the throughput gain

between the proposed approach and the DA as well as AHP

approaches correspondingly up to 28.89 % and 55.56 %. This

result clearly confirms the usefulness of the proposed approach

in terms of the significant performance gain.

Fig. 5 demonstrates the utilization of the Fog devices

or network resources under the proposed approach and

DA algorithm. As the number of IoT device increases, in the

Fig. 5. Average network utilization between different methods, R = 10,
D = 50.

Fig. 6. Average bandwidth utilization between different methods, R = 10,
D = 50.

proposed approach, the utilization of the Fog devices or the

network resources increases significantly due to the increased

number of associations per Fog devices compared to the DA

approach. However, in Fig. 5, we observe that the effect of

externalities is not significant up to |D| = 20. Moreover,

the performance gap increases between the proposed approach

and DA when |D| = 25 as the DA approach is unable to

handle the “peer-effects” and is thus unstable. Due to this

reason, the number of rejections by the Fog devices increases,

which negatively impacts the network resource efficiency by

15.7143% when the network size reaches |D| = 50.

The bandwidth is limited in each of the Fog devices

and therefore, the bandwidth should be utilized efficiently.

Fig. 6 illustrates the bandwidth efficiency of each of the

Fog devices for a varying number of IoT devices in the

network. The proposed AHP based matching approach effi-

ciently utilizes the channel capacity of the Fog devices as

the number of simultaneous associated IoT devices increases.

The average bandwidth efficiency between the proposed AHP

based matching game and the DA approach is fairly similar

till the network size is |D| = 20. However, the bandwidth

efficiency increases the most when the network size is medium
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Fig. 7. Comparison of average bit error rate (BER) between different
methods, R = 10, D = 50.

and the density is from |D| = 25 to |D| = 35. As the

network size grows (i.e., |D| > 35), the bandwidth efficiency

gap between the proposed AHP based matching and DA

approach slightly decreases due to increasing interference

level. As a result, the number of allocation per Fog device

slightly decreases. However, the bandwidth efficiency gap is

still significant between the proposed approach and the DA

approach. One of the reasons behind this is that the proposed

“best-fit” resource allocation scheme demonstrates the multi-

user diversity [50] where the Fog devices are able to choose

relatively high quality of channels so that the IoT devices can

receive data more reliably.

In Fig. 7, the average bit error rate of the proposed approach

is smaller than the DA and AHP based approach. This phe-

nomenon is expected, as in the proposed AHP based matching

approach, the associations have a higher SINR gain when

the network size is small, (|D| = 20) and the externalities

is still not significant during the allocation. With increasing

number of IoT devices joining the network, the bit error rate

difference between the DA and AHP approaches becomes

indistinguishable. On the other hand, the received bit error rate

after applying the proposed AHP based matching algorithm is

increasing but compared to other two algorithms the increasing

rate still complies with the QoS constraints and which shows

the efficiency of handling the externalities.

From Fig. 8, we observe that the average job delay increases

in the DA algorithm and AHP approach than the proposed

AHP based matching. The reason behind this increased delay

is due to the congestion level at each Fog devices in the DA

algorithm and AHP approach as the network size is |D| > 20.

Since the proposed AHP based matching game approach

applies the “best-fit” allocation policy, the issue of dealing

with the ‘externalities’ during the network resource allocation

is properly handled which ensures necessary load balancing.

As a result, the congestion level is much lower in the proposed

approach that those of the other two methods. In Fig. 8, it is

also observed that the received BER after applying the DA

approach is slightly higher than that of the AHP. The reason

behind this is that, in the AHP based approach, the overloaded

Fig. 8. Average job delay comparison between different methods, R = 10,
D = 50.

Fog devices tend to reject the IoT devices after there is no

available network resource in order to converge to a stable

solution where the decision of resource allocation is one sided.

On the contrary, in the DA approach, the decision is two-sided;

thus, once an IoT device gets rejected by the corresponding

Fog device, the IoT device still has the option to propose

to its next preferred Fog device in the respective preference

list. As a result, the number of allocations is comparatively

higher in DA approach than that of the AHP approach.

However, the DA approach cannot conclusively converge to an

allocation solution and also unable to solve the issue of “peer-

effects” which is necessary to provide load-balancing to avoid

congestion at the Fog devices. In fact, the Fog devices remain

over-loaded in the DA approach than that of the proposed

approach. The reason behind is that, for any new allocation

at the Fog devices, the proposed approach always checks the

performance of the current allocations that have been made to

the IoT devices through “best-fit” algorithm before accepting

new allocation. As a result, the congestion level is significantly

lower in the proposed approach than that of the DA approach

that leads to incurring lower job delay for the proposed AHP

based matching game. In addition, in the proposed approach,

the delay constraint of the IoT devices is tolerable and does

not violate the job delay QoS requirement of the IoT devices.

On the other hand, the performance gain of the associations

through the DA and AHP approach reduces due to the violation

of the job delay requirement.

Fig. 9 depicts the convergence (Order 1 convergence) of the

proposed AHP based matching approach and DA algorithm.

Since the proposed approach is an iterative algorithm, under

the “peer-effects”, the solutions generated by the proposed

algorithm converge to a desired solution with slightly larger

number of iterations than that of the DA algorithm. Therefore,

the convergence rate of the proposed AHP based matching is

slightly slower than that of the DA algorithm (as the number

of IoT devices is larger) and the “best-fit” algorithm is imple-

mented to find the stable allocation. However, the proposed

algorithm guarantees both the convergence and stability in

spite of the “peer-effects” whereas the DA algorithm cannot

guarantee the desired stability.
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Fig. 9. Rate of convergence between different methods, R = 10, D = 50.

Fig. 10. Normalized average utility of the associations for D = 50.

Fig. 10 shows the control chart of the utility distribution

of the associations in the proposed AHP based matching

approach, where the utility is well-balanced, and there is no

violation, and the normalized average utility of the associations

at each iterations is close to the central line. At each iteration,

the IoT device density at each Fog device increases and when

the IoT device density is much lower, the performance gain

in terms of utility is quite higher than the average line and

tends to upper control limit (UCL). As the IoT device density

in the network increases (i.e., |D| > 35), the normalized

average utility per Fog device slimly tends toward lower

control limit (LCL) which is expected due to externalities.

However, none of the distributions violates the upper (UCL)

and lower control limit (LCL) even though the negative effect

of externalities at higher IoT device density.

VI. SUMMARY

In this paper, we have focused on ensuring the quality

of service for end users by efficiently allocating the limited

network resources to the heterogeneous IoT applications.

Therefore, we have proposed an analytic hierarchy process

based matching approach for self-organizing, and distributed

user association and resource allocation that are scalable and

well applicable to the dense Fog environment. Unlike conven-

tional resource allocation schemes for IoT, we have efficiently

mapped the network resources to the IoT applications by con-

sidering analytic hierarchy process based analytics, resource

demand, and application type of the QoS parameters for the

IoT applications. We have also provided a real-world example

to demonstrate the proposed approach for user association

and resource allocation in the Fog environment. In addition,

we have investigated the effects of externalities or environmen-

tal variations on the outcomes of the matching game through

extensive analysis. The simulation results show that, the pro-

posed approach is able to address externalities in the matching

game using the “best-fit” resource allocation strategy, and we

have observed significant performance gains compared to the

other conventional resource allocation schemes. We have also

validated the stability, complexity and, convergence of the

proposed user association and resource allocation algorithm.
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