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Abstract
The proposed infrastructure of the next generation wireless networks not only

contains the centralized control but also enables the mobile devices to make dis-

tributed decisions. The focus of this thesis is to investigate the application of

game theoretic approaches in distributed solutions to resource allocation prob-

lems in wireless networks. As a useful analytical tool to find distributed solutions

to various practical problems, game theory has great potential to be applied in

modeling various wireless communication problems, such as spectrum allocation,

interference management, accessing mode selection, etc.. Furthermore, it gives us

an insight into the behavior and interaction among the independent autonomous

mobile nodes.

Our work reported in this thesis is focused on two emerging fields in wireless

network research: the spectrum-sharing based heterogeneous networks (HetNets)

and the device-to-device communication enabled mobile networks. The former

has been included in the Long Term Revolution Advanced (LTE-A) standard as a

promising technique in enhancing the network capacity. The latter is considered

to be a competitive technique to further improve the quality of service (QoS) and

latency in the mobile network. Geared with the game theoretic tools, we inves-

tigate some fundamental problems in the spectrum-sharing based heterogeneous

networks, and provide practical and distributed algorithms to solve a series of

resource allocation problems.

In Chapters 1 and 2, we first give brief introduction to the background knowl-

edge in HetNets and game theory. Then we discuss the problems we face in

HetNets, and give literature review to various applications of game theory in

wireless networks. We also highlight the structure of this thesis and the major

contributions.

In Chapter 3, we first investigate the joint power control and sub-band allo-

cation issues in the spectrum-sharing based heterogeneous network using a non-

cooperative game theoretical model. The licensed spectrum of the macro-cell
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operator is divided into non-overlapping sub-bands, each of which can be utilized

by several unlicensed subscribers (ULS). We propose a Stackelberg game theo-

retical approach to simultaneously solve the interference management problem

of the macro-cell, and the resource allocation problems of the femto-cells. Our

approach is modeling the macro-cell base station (MBS) as a game leader and

the unlicensed subscribers as followers. We have two purposes in designing the

pay-off functions. One is to give sufficient protection to the licensed subscribers

(LS), e.g., the macro-cell users, and the other one is to maximize the achieved

rate of the unlicensed subscribers. To balance these two purposes, we establish

the connection between the pay-off functions of the MBS and unlicensed sub-

scribers by assuming that the unlicensed subscribers should pay for occupying

the spectrum of the MBS operator. The unlicensed subscribers also compete for

the limited sub-bands in a distributed manner. The proposed algorithm ensures

that the interference of the small cell users towards macro-cell base station is

kept under a tolerable level, while the unlicensed subscribers achieve the Nash

Equilibrium of the resource allocation sub-game.

In Chapter 4, under the same system setup, we further explore the appli-

cation of the cooperative game model in the above problem. The interference

control is still accomplished using pricing scheme under the Stackelberg game

model. However, the unlicensed users utilize the sub-bands shared by the MBS

in a cooperative way. The nearby unlicensed users can send and receive signals

cooperatively by forming virtual multiple-input-multiple-output (MIMO) chan-

nels, in order to improve the pay-off sum of the unlicensed users. The cooperation

among the unlicensed users is modeled as an overlapping coalition formation game

(OCF-game). The OCF-game together with the Stackelberg game form a hier-

archical game framework to jointly solve the interference control problem on the

macro-cell side and the resource allocation problems on the unlicensed users side.

Different from the previous chapters in which we discuss the interaction be-

tween the MBS and the ULSs, in Chapter 5 we focus on the interaction between
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the small cell base station (SBS) and the LSs. More specifically, we discuss about

how the LSs can benefit by smartly shifting between different tiers of hetero-

geneous network. We explore the potential benefit of cooperation between the

small cells and the licensed subscribers, and model the accessing mode selection

problem of the licensed subscribers as a Stackelberg game. We show the capacity

of small cell can be guaranteed, while the energy efficiency of the licensed sub-

scribers can be improved if they properly cooperate. Furthermore, the proposed

approach copes with the distributed nature of the user-deployed small cell net-

works, and requires no inter-cell coordination. The proposed approach is flexible

in practice, by adjusting the objective functions, the benefit gained via cooper-

ation can be balanced between the capacity gain of small cells and the energy

efficiency improvement of the licensed subscribers. Therefore it can be applied

flexibly for various design purposes.

So far the cellular networks are operated mainly under a central controller, and

the signals are forwarded and relayed by the base stations. However to establish

the direct link among mobile devices may improve the transmission rate and

latency in particular scenarios. Furthermore, in modeling the previous games, we

assume that all the players know the historical and current information of their

opponents, which results in dynamic games with perfect information, since the

base station (BS) can act as a coordinator to forward the information. However,

in D2D networks this information is difficult to obtain, so they mainly make

decisions based on their private beliefs about others’ actions. In Chapter 6, we

introduce the Bayesian dynamic game to model the problem of carrier aggregation

(CA) among D2D links in this scenario. More specifically, we assume that there

are several D2D links and each of them obtains an exclusive sub-band. To improve

the performance, each of the D2D links contacts each other to aggregate their sub-

bands. We model the CA problems of D2D links as a Bayesian coalition formation

game, in which each of the players is blind with their opponents’ actual behaviors

and properties, but can only make decision based on their beliefs. We find that the
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uncertainties of the belief about the types of other D2D links will affect the D2D

link’s decision-making. Therefore a two-loop algorithm is developed to enables

the players to iteratively update their belief and converge to a stable structure of

the CA.
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Chapter 1
Introduction and Outline

1.1 Heterogeneous Networks: An Overview

The next generation wireless systems will include many heterogeneous networks

(HetNets) which are complementary to each other. For example, the device-

to-device (D2D) communications for establishing short range direct links, the

wireless local-area-network (WLAN) provides high-data-rate local-area access,

the cellular networks provide data and voice service covering a wide area, the

satellite communication networks cover an ultra-wide area for special purpose in

military and commercial applications. As the next generation mobile networks,

e.g., the Long Term Evolution (LTE), tend to merge into an all-IP-based infras-

tructure [23], it is interesting to investigate the issues that the mobile devices can

achieve global roaming among a variety of networks, and enjoy high data rate in

an energy efficient way. The landscape of the future wireless systems is sketched

in Fig.1.1.

More specifically, in this thesis, we investigate the heterogeneous wireless net-

works which evolve from the traditional large scale cellular networks. In the rest

of thesis, we denote the terminology of HetNets to be wireless networks with

multiple tiers which consist a variety of wireless networks with different coverage

3
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Figure 1.1: The heterogeneous wireless networks.

ranges and capacities, but all under the same radio access technology. The Het-

Nets have been included in Long Term Evolution Advanced (LTE-A) standard

as a part of the next generation mobile networks. A typical HetNets could be

a number of co-located macro-cells, micro-cells, pico-cells and femto-cells, which

result in various wireless coverage zones, ranging from outdoor to indoors. Apart

from these techniques in which the communications should be conducted by the

corresponding base stations (BS) of the cells, the D2D communications which

enable the direct link between cellular subscribers also drives attention in recent

years. The D2D communications is expected to improve the network capacity

and latency as the demand for proximity-based services are increasing. Hence,

the D2D layer is expected to be another component in the HetNets. However,

the infrastructure of the D2D-enabled HetNets will be more complex and the

standardization of the D2D communications is still under discussion.
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1.1.1 Cellular Network: From Homogeneous to Hetero-

geneous

The cellular structure has been adopted as the radio system deployment method-

ology for decades, from the analog 1G systems to digital systems such as 2G (e.g.,

GSM, IS-95), 3G (e.g., UMTS, CDMA2000), and the current 3.5G (e.g., LTE,

WiMax). The name of cell comes from the coverage area division scheme: the

area which requires the wireless communication service is divided into regular

shaped cells, centered in each cell there is a BS which provides the radio links

to the mobile users in this cell. The shapes of the cells are usually hexagon,

sometimes square or circle. The radio spectrum of the operator is divided and

assigned to the cells orthogonally: the adjacent cells are assigned with different

frequency bands and the non-adjacent cells can reuse a same frequency band.

In conventional cellular networks such as the 2G and 3G systems, the layouts

of the network are in a fully planned manner, and the cells are identical with

each other. Each cell contains a centered macro BS covering a relatively large

area and offers unrestricted access to the subscribers of its operator. All the BSs

share an identical design, from the transmit power levels, antenna patterns, to the

backhaul connectivity to the core network. The mobile devices carry similar data

flows with similar QoS requirements [41]. We call this kind of cellular network

the homogeneous wireless network.

However, there seems an endless desire for higher data rate transmission, espe-

cially in the last decade when the online multimedia based services become pop-

ular. The International Telecommunication Union Radio-communication Sector

(ITU-R) has proposed the International Mobile Telecommunications-Advanced

(IMT-Advanced) as the requirements for the next generation wireless network,

which is usually marketed as the 4G mobile phone and internet services[33]. The

IMT-Advanced requires the data rate to achieve 1Gbits/s for stationary mobile

devices and 100Mbits/s for high speed moving mobile devices, which are almost

ten times of that in current LTE systems. However, the spectrum suitable for
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wireless transmission is limited and people should find ways to utilize the li-

censed spectrum more efficiently. This becomes the main motivation driving the

development of HetNets.

The goal of using HetNets is to improve the data rate and network coverage,

support more subscribers and data services by reusing the existing frequency

bands allocated to the network operators. During the last decades, the popu-

lation of the mobile devices experiences a steep increasing, while more applica-

tions become data-hungry and require always online, e.g., the multimedia content

streaming service, the online game, the real-time video chat, etc.. These appli-

cations require much more bandwidth which exceeds the capacity of the tradi-

tional homogeneous large scale network. Our goal is to fulfill such demand for

high-speed-connections while considering the practical constraint of limited radio

resources. The frequency reuse, or spectrum-sharing among different cells in the

HetNets becomes an emerging topic. Furthermore, the distribution of the mobile

devices becomes rather unbalanced. For some sites so called ’hot spots’ in urban

area, a single macro cell can not provide enough bandwidth to the crowded mo-

bile devices, and this burden can be off-loaded by the deployment of underlying

small cells.

1.1.2 Capacity Gain: From Radio Access to Network Topol-

ogy

The wireless communication networks have been developed and commercialized

for almost 30 years, for every generation there are evolutionary advances in dif-

ferent technical aspects. From 1G to 2G, the key technical advance is the shifting

from analog modulation to digital modulation, which has greatly improved the

network capacity and robustness. From 2G to 3G, the spectral efficiency (i.e.,

bps/Hz) is improved by tens of times for adopting advanced modulation and cod-

ing techniques, e.g., the wide-band CDMA and MIMO. In the mean time more

radio spectrum is assigned for wireless communication in the 3G standard, hence
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the over all data rate of the 3G network is improved dramatically. However, dur-

ing the further evolution form 3G standards to the 3.5G (e.g.,LTE), nothing more

for improving the spectral efficiency is added. The better performance of LTE

is simply achieved by allowing the mobile devices to utilize more bandwidth if

possible, e.g., the scalable bandwidth technique allows the mobile devices to use

the bandwidth form 1.4MHz to 20MHz. It is noted that the improvement of the

spectral efficiency per link is approaching to the theoretical limits with 3G and

LTE [41]. However, it does not mean that the further improvement of data rate

can be only achieved by assigning more spectrum. As the radio spectrum is more

and more scarce nowadays, researchers and engineers try to find alternative ways

for improving the network capacity from a different angle. In the 4G candidate

standard, e.g., the LTE-Advance, new techniques are utilized to further improve

the performance.

1) The higher order MIMO. In 3G network, the 2× 2 MIMO has already been

used to achieve spatial multiplexing and spatial diversity, which shows a

great advantage in improving the spectral efficiency and robustness in the

LTE network. In LTE-Advanced network, the launch of 4 × 2 MIMO is

expected to give more spectral efficiency at the cost of the complexity of

network configuration.

2) The carrier aggregation. In the LTE, a single sub-band can have as much

as 20MHz bandwidth, however in the LTE-Advanced the carrier aggre-

gation is enabled to support more data-hungry services, e.g., the online

high-definition (HD) video streaming. In the 3GPP Release 12 [3], up to 5

sub-bands can be aggregated together to form a 100MHz band for ultra-high

speed transmission.

3) The heterogeneous networks. Apart from the conventional macro cell, an

other important component of HetNets is small cell, such as the micro

cell, pico-cell, and femto-cells. These small cells are either deployed by the
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operator (the micro and pico cells) or deployed by the end user (the femto-

cell). Furthermore, since the deployment of small cells is non-uniform but

demand driven, they appear in the network in a non-planned manner.

The performance of LTE-Advanced is improved from three different aspects.

The higher order MIMO further explores the spatial diversity gain brought by

the MIMO technique, which improves the spectral efficiency. However, the higher

order MIMO brings challenging work in antenna design, and increases the com-

putational complexity for both transmitter and receiver. The carrier aggregation

can be considered as an instance of the opportunistic spectrum access, and its

performance depends on scenarios: when there are only a few active mobile de-

vices in a cell, they can achieve a very high data rate through carrier aggregation,

when the cell is fully loaded with many active mobile devices, there is no idle sub-

bands available for carrier aggregation. The HetNets introduce more flexible and

smart BS deployment methodologies, which help to improve the performance by

increasing the spectral efficiency per unit area.

The concept of HetNets is a break through in the network topology of the

wireless communications networks. It opens a door and shows a new way for

improving the network performance from a new perspective. As the performance

of an isolated radio systems (i.e., a single cell) approaches information theoretic

capacity limits, the further improving of performance will be made by reducing

the distance between the BSs and the mobile devices. Hence, at the cost of

deploy a set of diverse cells in the same area, the spectral efficiency per unit area

is expected to be improved.

1.1.3 Key Features and Challenge Problems

Table 1.1 lists the key features of different cells.

We conclude that the key features of the small cells are:

a) Small coverage area.
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Table 1.1: The Comparison of Different Cells

Macro-cell Micro-cell Pico-cell Femto-cell

Coverage 2− 35km ≤ 2km ≤ 200m ≤ 50m

Tx-power 5− 40W ≤ 5W ≤ 2W ≤ 200mW

Dedicated wire Dedicated wire
Backhaul

Micro-wave Micro-wave
Internet Internet

Deployment Planned Ad-hoc Ad-hoc Ad-hoc

Spectrum usage Licensed Licensed/Shared Shared Shared

b) Low transmit power.

c) Flexible deployment.

d) Low cost backhaul connection.

In Table 1.1, the micro and pico-cells are deployed in an ad-hoc manner,

which means the deployment is not precisely planned but just based on some

roughly knowledge, such as there are coverage holes or hot spots. The femto-cell

is purchased and used by the end user, therefore the deployment totally depends

on the user. Unlike the bulky and powerful macro BS, the BSs of these small cells

(especially the pico and femto cells) are small in size and do not require special

power supply. Furthermore, the small cells cover a small area, so that the BSs

can be easily deployed in road side or inside buildings, unlike the macro BS which

needs to put on top of towers or high buildings. These properties give the small

cells more flexibilities in site acquisition.

However, introducing the small cells complicates the infrastructure of the

cellular network, and raises more problems in the radio resource allocation and

interference management. The following reasons make the optimization of the

spectrum-sharing based HetNets a challenging work.

a) The traditional cellular network is a fully BS-controlled wireless system,
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which means the macro-cell BS (on behalf of the operator) controls every-

thing of the subscribers, from the mobility management, transmit power

to sub-band allocations. However, in the HetNets with multiple co-located

cells, the subscribers are only controlled by the BS of the corresponding cell.

In this case, performing centralized control requires the macro-cell operator

(MCO) to obtain global information of all the mobile devices in its covering

area, which will introduce a huge communication overhead and generally

an intractable task. Hence it is interesting to find simple and distributed

solution to the optimization problems in the HetNets.

b) Due to the intra-macro-cell frequency reuse, the time variant wireless envi-

ronment in HetNets is more unpredictable compared to that in the tradi-

tional cellular network. For example, it is easy to assign different sub-bands

to the macro-cell subscribers by the MCO in a single cell network. How-

ever in the HetNets, if two small cells are sharing the same spectrum, the

mutual interferences between them become a main problem which degrades

the performance of both cells. Furthermore, the subscribers attached with

different cells are lack of coordination, therefore distributed interference

management and sub-band allocation algorithms are demanded to optimize

the individual performance as well as that of the entire network.

c) New problems are brought by the co-located small cells and D2D links. For

example, in a D2D-enabled network, whether to select D2D communication

or communicating via the BS is referred as the mode selection problem of

the subscribers. In small cell networks, there is an open or closed access

problem, when a subscriber of cell A travels to cell B, whether it should

be handed over to cell B. These new problems incorporate many decision

making process, and the mobile nodes are possible to make decisions instead

of executing the command of BS only.
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In this thesis, we mainly consider the spectrum-sharing based HetNets to max-

imize the possibilities of spectrum reuse. The spectrum-sharing based HetNets

can be considered as an instance of the primary-secondary network in cellular

network, where the primary user (PU) is subscriber of the MCO and the sec-

ondary user (SU) is the unlicensed subscriber. The spectrum reuse issues in the

primary-secondary networks have been inspected and concluded in [85]. There

are two ways the secondary users can access the licensed spectrum of the primary

users: a) spectrum underlay means that the SU is allowed to transmit on the

spectrum of PU simultaneously, while the PU is being protected by an interfer-

ence constraint, which is also called spectrum-sharing; b) spectrum overlay means

that the SU is able to sense the spectrum of the PU’s, and transmit whenever it

finds the spectrum is idle, which is also called opportunistically spectrum access.

However, the co-existing cells or communication links result in a compli-

cated wireless network infrastructure, and how to optimally allocate the resources

among different entities is still an open question. The centralized control method-

ology used by the traditional homogeneous cellular network can not be simply

transplanted to the HetNets for two reasons: 1) The difficulties for parameter ac-

quisition. Since lack of the central controller (e.g., the MBS), the collection of net-

work parameters for centralized optimization becomes a challenging work. 2) As

the complexity of the network topology grows, e.g., the number of heterogeneous

mobile nodes and the dimension of network tiers increases, the computational

complexity for centralized optimization becomes extremely difficult. Therefore,

it is interesting to investigate decentralized approach for network performance

optimization.

1.2 The Research Focus in This Thesis

In this thesis, we focus on the applications of dynamic games in analyzing differ-

ent issues in wireless communication networks. More specifically, the following
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research problems are investigated.

1.2.1 Resource Allocation in HetNets

One of the essential problems in HetNets is how to efficiently utilize the spectrum.

It has been concluded in [44] that there are two ways to allocate the spectrum

resources in the spectrum-sharing based wireless networks: the orthogonal and

the non-orthogonal assignments. In the orthogonal assignment, the spectrum re-

source is divided into disjoint frequency bands (e.g., in FDMA), time slots (e.g.,

in TDMA), or resource blocks (e.g., in OFDMA), and each cell obtains a distinct

portion of spectrum to support its subscribers’ transmission. This approach is

simple for implementation but at the cost of inefficient spectrum utilization. In

contrast, the non-orthogonal assignment allows multiple co-located cells to share

the same spectrum, and the overall capacity is improved due to the spectrum

reuse. However, the mutual interference constitutes the main problem which de-

grades the quality of service. Hence efficient interference management scheme

is required to solve this problem. We can brought some light from the studies

in cognitive radio about the interference management issue. In [25], energy ef-

ficiency transmission of the secondary network in a primary-secondary network

is considered. Using TDMA to avoid co-tier interfering, they resolves the trans-

mission time and beamforming vector for optimal transmission in the secondary

network.

Recently, the carrier aggregation has been proposed to support relatively large

peak data rate in LTE-A standard [29], this technique can be considered as an

instance of the spectrum underlay. The main idea of the carrier aggregation is

allowing the entities (e.g., small cells) in the HetNets to aggregate their spectrum

together, so as to obtain an ultra wide bandwidth for high-data-rate transmission.

For example, in LTE-A, the bandwidth can be expanded up to 100MHz through

carrier aggregation, which is much wider than the 20MHz bandwidth in LTE [3]

[7]. By aggregating the sub-bands from different cells, it is possible to support
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very high peak data rate when facing the data burst in some applications. This

approach further explores the intra-macro-cell spectrum reuse (comparing to the

spectrum reuse between macro-cells), and coordination is required for avoiding

the collision and fatal interferences.

We consider a scenario that multiple femto-cells are deployed in the coverage

area of a macro-cell. The spectrum is licensed to the MCO. The MCO is willing

to lease the spectrum to the co-located femto-cells to generate revenue, e.g., mon-

etary payment. The femto-cells compete for the total spectrum licensed to the

MCO. The subscribers in this network are classified into two categories: the li-

censed subscribers (LSs) and the unlicensed subscribers (ULSs). The LSs are the

macro-cell subscribers which are only under the instruction of the operator. The

ULSs are the subscribers of the femto-cells, which are controlled by the femto-cell

BSs. They can share the sub-bands occupied by the LSs of the operator under

the condition that the resulting interference should be maintained below a tol-

erable level. Furthermore, the femto-cells can aggregate their sub-bands leased

by the macro-cell together to further expand the bandwidth. In other words, the

ULSs may access multiple sub-bands, while each sub-band can be accessed by

multiple users simultaneously. We assume frequency-selective-fading in different

sub-bands, therefore the ULSs need to optimally allocate their power. We uti-

lize a game theoretical approach to map the sub-band allocation problem into

an overlapping coalition formation (OCF) game. In the OCF-game, each ULS

has an amount of resource (power) to distribute in different tasks (sub-bands),

the outcome of each task depends on not only the properties of the task (chan-

nel information) but also the action of other co-band ULSs and the MCO. We

jointly investigate the interference management and sub-band allocation prob-

lems through a hierarchical game framework. The further detail is provided in

Chapters 3 and 4.
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1.2.2 Accessing Mode Selection in HetNets

Apart form the interference management issues, there are also mobility manage-

ment issues in spectrum-sharing based HetNets. More specifically, in this thesis

we focus on the ’open or closed’ access problem of the user deployed small cells,

which investigates whether the small cell should accept the ULSs in a HetNets.

Moreover, we enable both the small cell BS and the ULSs to be a decision-maker

in the handover game, and aim at an agreement between them towards a win-win

result.

Comparing with the florescent research in the interference management in the

spectrum-sharing HetNets, limited achievement has been made in smart access

strategy selection. The benefits of open access versus closed access in cellular

networks were discussed in [68] based on the spatial distribution analysis of the

small cells. However, their work was based on the statistical model only, and

missed the participation of the BSs and mobile devices. A discontinuous game

formulation was presented in [40] with a pay-off secured solution, in which the

small cells competed for allocating their spectrum to macro-cell users (MUs) in

the coverage area. Their approach required collecting channel state information

of all MUs, as well as a centralized controller to deal with the conflict of interest.

The future mobile devices with advanced hardware will be environmentally

aware and can adapt their behavior correspondingly. They will take part in the

decision-making process in the access mode selection. We propose a Stackelberg

game in which the small cell BS acts as the leader; the ULS acts as the fol-

lower. We investigate the demand-driven behavior in the access mode selection

game. The small cell BS concerns with improving the capacity by eliminating

the interference. The MU concerns with saving the battery life while satisfying

transmission task. Only if open access is beneficial to both of them, the MU

will hand-over to the small cell. Otherwise, the small cell remains closed. This

dynamic access strategy selection is built on the ’cognition’ capability of both

small cell BS and MU. We here refer the ’open access’ to partially assigning the
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spectrum of the small cell to the MU, which means the MU being handed over

to the small cell BS is scheduled with the spectrum orthogonal to the small cell

subscribers.

To this end, we analyze the demand-driven behavior of both small cell BS and

MU, and propose one practical algorithm to cope with the self-governed nature of

small cell networks. Our approach enables the small cell BS and MUs to choose

their access strategies distributively. Both the small cell BS and MU take part in

the access strategy selection game, for the purpose of obtaining a win-win result.

Further details are discussed in Chapter 5.

1.2.3 Carrier Aggregation in Device-to-device Communi-

cations

The device-to-device communications enable the nearby mobile devices commu-

nicate directly without relaying by the BS. It is a promising technique to improve

data rate in short range transmission [21]. Driven by the demands of proximity-

based services, for example, the media sharing or social network based appli-

cations [1], and the rapidly growing of mobile devices density; the chances of

local communications within a cell range in the future network are significantly

increased. The short range D2D communication reduces the signal attenuation

caused by propagation loss, which subsequently improves the quality of the lo-

cal communication service, such as the transmission latency, the network spec-

tral/energy efficiency, and off-loads the burden of BS. However, some fundamental

problems need to be discussed when the D2D communications being enabled to

the cellular networks, for example, the D2D devices discovering problem [20], the

accessing mode selection problem [49], and also the resource allocation problem

[21].

One of the important issues in D2D communications is to efficiently assign

the spectrum resources to the D2D devices. Most of the previous work [21]

[49] [79] considered the spectrum sharing approach between cellular network and
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D2D network. In [21][49], the authors proposed the spectrum sharing approach

between the D2D devices and the cellular devices. However, these approaches

incorporated the cross-layer coordination between the D2D network and the cel-

lular network, which requires a significant cost for centralized control, especially

when the network size is large. The authors in [21] considered the D2D devices

transmit in the cellular uplink slot only to mitigate the interference, which limits

the chances for D2D transmission. In [79], spectrum sharing in both uplink and

downlink was taken into consideration, wherein the transmit powers of cellular

and D2D links were jointly optimized in both cases. In [72], the authors proposed

a carrier aggregation scheme to improve the data rate of D2D links, and mod-

eled the D2D pairing problem as a matching game. In this thesis, we propose

a scheme to let the D2D devices efficiently coordinate their spectrum resources.

We suppose the mode selection of D2D devices is achieved with the help of the

BS. Each of the D2D pairs is assigned by the BS an exclusive frequency band for

their transmission. Therefore we can neglect the interference between the LSs

and the D2D links and concentrate on the carrier aggregation pair forming prob-

lem between D2D links. In our setup, the D2D links are able to aggregate their

carriers to expand their transmission bandwidth and share the spectrum between

each other to achieve better pay-off sum. We model the D2D carrier aggregation

problem as a coalition formation game. However, due to lack of coordination be-

tween independent D2D links, it is difficult to obtain the information from other

D2D links, therefore each D2D links can only make decision based on their be-

liefs about other D2D links. In this case, a Bayesian dynamic coalition formation

game is formulated, and algorithms to update the beliefs and find stable coalition

structure are provided. More details will be discussed in Chapter 6.
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1.2.4 The Connection Among Research Topics

In this thesis, we focus on solving the technical problems in HetNets using game

theory. Although the research topics in this thesis contribute to different re-

search areas in HetNets, the consistency of our research work exhibits in both

the relationship between topics and the underlying mathematical models. The

connection of aforementioned problems are underlined as follows. In Chapter 3,

we use the Stackelberg game to model the interference management problem in a

spectrum-sharing based two-tier network, in which the ULSs compete in a non-

cooperative manner. In Chapter 4, based on the Stackelberg game for interference

control, we explore the benefit of cooperation between the ULSs by modeling an

overlapping coalition formation game (OCF-game). The problems considered in

Chapters 3 and 4 focus on the interaction between the MCO and the ULSs.

In Chapters 5, the Stakelberg game is utilized to model the open/closed access

problem, which studies the interaction between the small cell and the LSs (of

the MCO). In Chapter 6 we further extend the coalition formation game model

to a Bayesian coalition formation game, which considers the uncertainty of the

independent D2D links. Generally speaking, this thesis is outlined by the use

of Stackelberg game and coalition formation game in HetNets. The connections

among the research topics are sketched in Fig.1.2.

1.3 Major Contributions

The major contributions of this thesis are:

1) In Chapters 3 and 4, the sub-bands allocation and the power control is-

sues in the carrier-aggregation-enabled heterogeneous networks are studied.

We propose a hierarchical game framework to jointly solve the power and

sub-band allocation problems under the constraints of the power cap and

maximum tolerable interference level. The upper level Stackelberg game

regulates the transmit power of the ULSs so as to give sufficient protection
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Figure 1.2: The research focus in this thesis.
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to the LSs while optimizing the pay-off of the ULSs. The lower level non-

cooperative or OCF-game enables the ULSs to distributely perform power

allocation and sub-band selection. We have proposed a simple distributed

algorithm to let the ULSs iteratively search the the Stackelberg equilibrium

(SE) of the hierarchical game, where the transmit power and the sub-band

allocations are stable, and no players can profitably deviate from it by act-

ing alone.

The ideas presented in these two chapters deal with more complicated prob-

lem comparing to previous literature. We allow multiple users to share one

sub-band, and also allow one user to utilize multiple sub-bands simulta-

neously. In contrast, in [17], [34] and [65] the authors only consider a

wide-band spectrum to be shared by all users. Furthermore, the key differ-

ence between the proposed algorithm and that in [17] is that our solution

is provided in a distributed manner.

Furthermore, we have addressed the problem of sub-band and power alloca-

tion problem under two dimensional constraints in Chapter 4 by using over-

lapping coalition game model, while in [44] and [53] only non-overlapping

coalition was considered. We have asked the fundamental question about

the existence of a stable and Pareto optimal solution of sub-band allocation

and the power allocation by proving that the core of the OCF-based power

allocation game exists. The proposed framework can also be expanded to

more complex network with multiple BSs to cooperatively share their sub-

bands or the downlink cases that multiple LSs need to be protected.

2) In chapter 5, the choice of access strategy in small cells is investigated. We

introduce a novel demand-driven mode selection scheme. We analyze the

benefits of open mode for the overall networks, which motivates small cell

to choose open mode and MUs to join the small cells. We formulate the

interaction between the small cells and the MUs as a Stackelberg game, and

provide simple algorithms in multiple small cells multiple MU scenario. We
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propose simple algorithms that, both the small cell BSs and MUs can im-

prove their performances by making smart choices to the access strategies.

Our algorithm requires no inter-cell coordination and guarantees the over-

all network will always be benefited from choosing the open access mode.

Furthermore, the overall benefits can be flexibly balanced between the ca-

pacity gain of small cells and the energy efficiency gain of the MUs due to

the designing of algorithm. Comparing with previously literature with fixed

accessing mode [41] or using empirical model of traffic statistics to decide

the accessing mode [64], this chapter discusses the scenario that the MUs

also take part in the game.

3) In chapter 6, we investigate the application of coalition formation game in

self-organizing spectrum-sharing based D2D networks. We first model the

carrier aggregation problem of the D2D link as a coalition formation game

with perfect information, and introduce a simple algorithm which enables

the D2D links to self-organize into disjoint coalitions. We then discuss a

more general case, where the D2D links are blind with the mutual chan-

nel information and sub-band allocation of other D2D link, i.e., D2D links

knowing imperfect information. We formulate a Bayesian dynamic game to

model the decision making process of D2D link in this case. In both scenar-

ios, we give the sufficient conditions of the existence of the spectrum-sharing

structure in the core of the proposed game. Simple distributed algorithms

which lead to the solution in the core are proposed and proven to be con-

vergent and stable. Our experimental results show significant performance

improvements in both scenarios compared with the non-spectrum-sharing

case, especially when the D2D pairs are sparsely distributed. Previous liter-

ature, such as in [19] [20] [46], whose analysis are built on fixed parameters

which is assumed ready-to-be- obtained, we consider a D2D network which

is lack of central coordination. Hence, each of the D2D pairs should estab-

lish the knowledge about others’ behavior based on its own observation.



Chapter 2
Background on Game Theory & Related

Applications in HetNets

2.1 Basic Elements in Game Theory

Game theory provides the mathematical model to study the conflict and cooper-

ation between rational decision-makers [50]. A typical game model contains the

follow elements:

• Players : a set of rational decision makers.

• Strategies : the actions available to the players in the game.

• Information: the knowledge of the players about the game to make decision.

• Pay-off : a mapping from the outcome of the game to a real value.

Furthermore, in Bayesian game, there are other terms:

• Type: The type of the player specifies the pay-off functions. A player may

have a probability distribution over different types.

• Belief : The belief is held by each of the players, which is a probability

distribution over the possible types for a player.

21
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2.2 The Types of Games

The game can be classified into many categories using different criteria.

2.2.1 Static Game and Dynamic Game

• Static Game: A static game is a game model that contains only one decision

point, i.e., the players make the decisions simultaneously in the game.

• Dynamic Game: A dynamic game is a game model that the players move

sequentially. At each decision point, the players make the decision based

on the previous and current information.

2.2.2 Non-cooperative Game and Cooperative Game

• Non-cooperative Game: A non-cooperative game is a game in which the

players make decisions independently and selfishly.

• Cooperative Game: A cooperative game is a game in which the players may

form coalitions, the cooperation is enforced within a coalition, while the

competition occurs only among coalitions.

2.2.3 Non-Bayesian Game and Bayesian Game

• Non-Bayesian Game: The non-Bayesian game, which is also referred as

game with perfect information, is a game in which the players know all the

actions and pay-offs of their opponents.

• Bayesian Game: A Bayesian game is a game in which the players know

incomplete information (i.e., pay-off) about the other players. In dynamic

games, the pay-off of the players may be affected by the process of the

game (i.e., the historical information), therefore the game with imperfect

information (i.e., the game process) also falls in to the Bayesian Game.
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2.3 Solution Concepts of Games

The solution concept is defined as a formal rule to predict how the game is played,

which depends on the game structure. For example, for a game with only one

player, the solution concept is solving an optimization problem. In this thesis, we

consider two solution concepts related to non-cooperative game and cooperative

game, respectively.

2.3.1 Nash Equilibrium

A Nash equilibrium (NE) is a solution concept of a non-cooperative game involv-

ing two or more players, in which each of the player is given the strategies of

others. If a state is reached, in which no player can benefit by changing its own

strategies while the others keep their unchanged, then this state (i.e., the strategy

set of all players and the corresponding pay-offs) constitutes an NE.

Definition 2.1. Denote πis
i, s−i where the subscript −i denotes all players except

i and si denotes the strategy of player i. A strategy profile s∗ is an NE if, for

every player i, i ∈ [1, K], and s∗i , si ∈ s∗, it always holds i πi(s
∗
i , s

∗
−i) ≥ πi(s

′

i, s
∗
−i).

2.3.2 The Core

The core is the solution concept of a cooperative (i.e., coalition) game. More

specifically, in this thesis we consider the coalition formation game which aims to

find a stable coalition structure, in which no players can benefit by leaving the

current coalition and join another one. Hence we formally define the core as:

Definition 2.2. A tuple (CS ,xS) is the core of a coalition formation game G =

(K,v), if for any set of player J ⊆ K, any coalition structure CJ on J , and any

imputation yJ ∈ I(CJ ), we have πj(CJ ,yJ ) ≤ πj(CS ,xS) for some agent j ∈ J .
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2.4 The Main Game Models Used In this Thesis

We provide the basic definitions of the game models used in this thesis.

2.4.1 Stackelberg game

Definition 2.3. [9] A Stackelberg game is a game played by a leader and follow-

ers. In each round, the leader commits to a strategy based on the best responses of

the followers in previous round, and the followers observe the leaders move and

respond with the optimal actions, which maximize their pay-off accordingly.

2.4.2 Overlapping coalitional game

Definition 2.4. A coalition C is a non-empty sub-set of the set of all players

K. A coalitional game is defined by (C, v) where v = v(C) is the value function

mapping a coalition structure to a real value. Given two coalitions C1 and C2, we
say C1 and C2 are overlapping if C1 ∩ C2 6= ∅.

2.5 Application of Game Theory in HetNets

Game theory is a study of conflict. It is to provide mathematical basis for model-

ing and analyzing the decision-making problem between interactive players who

may have conflict of interests. Different from the optimization problems which

focus on maximizing the utility of one player or multiple players with the same

objective, the game theory deals with the optimal decision-making problem for

multiple-players with difference objectives. For example, in traditional large scale

homogeneous wireless network, the only player is the macro-cell BS which is the

controller of the whole network, hence its optimal strategy of resource allocation

can be answered by solving an optimization problem. However, in HetNets, due

to the heterogeneity of different types of cells, i.e., those cells or communication
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links are different in coverage, capacity, air-interface, deployment, etc., the macro-

cell is no longer the only player. The presence of other players (e.g., the small

cells or D2D links) result in a scenario that all players mutually influence each

other by their actions in a dynamical manner, which makes static information

based optimization impossible.

However, game theory may give us some light in investigating interactions of

the autonomous players. The game theory which analyzes the interaction and

decision-making process between multiple players with different kind of interests

shows great potential in applying to HetNets. The different kind of mobile nodes

in HetNets can be modeled as different players in the game, and using various

game theoretical tools we can predict the possible outcome (i.e., pay-off) of the

players and find an equilibrium in which the players satisfy the outcome and hence

their actions become stable. There are various game models available for use and

how to choose the suitable game model depends on the problem structure.

2.5.1 The application of non-cooperative game

The non-cooperative game model is usually used to model the problems of com-

petition for limited resources. In a non-cooperative game, the players are selfish

and only cares about their own profits. The actions which can maximize players’

own pay-off functions are regarded as optimal and will be adopted. The outcome

of such games is called NE which is formally defined in Section 2.1.

In [66], the authors point out that usually the efficiency of the NE would be

degraded by the competition among players. Hence, they suggested ways which

could help to improve the performance of non-cooperative game. A variety of

non-cooperative game approaches for distributed interference control have been

proposed to solve the above interference management problems. Usually the

pricing scheme is utilized to trade-off between the power consumption and the

data rate improvement. For example, the linear pricing scheme was used in [17]

and non linear pricing function was proposed in [34].
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Using the Stackelberg game model to handle the interference control problem

was first proposed in [4]. The sub-band price was introduced to regulate the re-

ceiving power at the base station (BS) in code division multiple access (CDMA)

network. The author designed a mechanism which minimized the information

exchange during the power control process between the BS and the mobile nodes.

Similar game model has been applied in [38], the authors extended the prob-

lem to a femto-cell network where the LS and ULS shared a common spectrum.

They modeled the distributed interference control problem as a non-cooperative

game. They proposed two different pricing schemes and discussed the impact

to the pay-offs using different pricing schemes. They studied two scenarios in

which the femto-cells are sparsely and densely deployed respectively. In [69], the

authors considered the setup that the spectrum is divided into sub-bands, and

they proposed a non-cooperative game model to enable the ULS join the sub-

bands sequentially while the interference to the MCO was controlled by pricing.

However, the selfish-behaved subscriber may cause inefficient equilibrium in the

non-cooperative game. Moreover, the Stackelberg game can be also utilized to

study the traffic control game between the macro-cell and the femto-cell. In [22],

how the pricing strategy will influence the choice of mobile subscribers between

macro or femto-cell are studied. By varying the conditions on frequency, opera-

tion cost, and femto-cell coverage, the authors give an comprehensive study on

the trad-off in a two-tier network which helps the operator in optimal network

planning.

2.5.2 The application of cooperative game

The efficiency of the whole system may be degraded by competition in non-

cooperative game. In some problems, exploring the benefits gained by cooperation

among the players may improve the performance of the wireless communication

systems. In cooperative game, the players are no longer behave selfishly but care

about the overall performance of the whole system. A widely used cooperative
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game model in the study of wireless communications is the coalitional game.

The coalitional game is usually utilized to investigate the cooperative behav-

iors and interactions among the nodes in the wireless communication systems,

where the mobile subscribers seek to form coalitions in case they can make more

profits than acting alone. In [57], three kinds of coalitional games and their appli-

cations in wireless communications have been summarized. More specifically, a

special kind of coalitional game - the coalition formation game drives attention in

analyzing the self-organizing mobile nodes in HetNets. In [31], the coalition for-

mation game had been used to model the cooperation between the mobile nodes

at different locations in a cell. The authors proposed a mechanism that the mo-

bile nodes located near the BS can help to improve the QoS of the mobile nodes

at the cell boundary. Coalition was formed between them and the overall per-

formance of the network was improved. In [42], the rate allocation problems for

Gaussian multiple access channels was investigated using coalitional game model,

the authors proposed a transferable utility (TU) game therefore the mobile nodes

can cooperate to improve the sum rate while improving its own performance. In

[71] the authors considered a coalition formation game among the secondary users

in the cognitive network. The ULSs formed disjoint coalitions to cooperatively

utilize the spectrum. Together with the Stackelberg game between the MCO and

ULSs, the authors provided a hierarchical game framework towards the solution

to jointly optimize the resource allocation problem in cognitive networks.

2.5.3 The game with imperfect information

The information in the game refers to the actions or pay-offs of other players,

which is used by the player in the game to predict its pay-off and take certain

action. Sometimes this information is not perfectly known by the player, or is

not deterministic. For example, in a non-cooperative game the independent mo-

bile nodes may not know the pay-off of other players, or may not have precise

observation about others’ actions. In this case, each of the players should keep
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a private information about other players. We formally define the private infor-

mation about the players as types. When one player takes actions, it may receive

different pay-offs when facing different players. If a player wants to determine its

action to maximize its pay-off, it should first make a prediction about the type of

the other players. Hence, a player must have its private knowledge about types of

other players, which is formally defined as beliefs. The belief can be considered

as a probability distribution over the types of other players, but is not necessarily

to be the true type. More specifically, the player needs to establish an initial belief

about the types of other players, and may update the beliefs based on the Bayes’

rule during the play takes part in the game. Therefore, we call this kind of game

the Bayesian game. In Bayesian game, the player evaluates its benefit by the

expected pay-off which averages out the beliefs, i.e., E(π) =
∑

bi∈B
π(a|bi)p(bi),

where bi is a belief about the other player’s types, and a is the action. The so-

lution concept related to this kind of game is the Bayesian equilibrium, which is

obtained based on the expected pay-off instead of the pay-offs in obtaining NE.

We assume that in future wireless communication networks the mobile nodes

are intelligent and have the ability to observe and adapt to the radio environ-

ment. Hence, the Bayesian game can be applied to model the interactive behavior

between mobile nodes when complete information is not available. Each mobile

node keeps a belief which can be updated dynamically based on learning during

the game play process. The objective of them is to find a Bayesian Equilibrium

in which their beliefs approach the true types of other players, and the expected

pay-off is optimal based on this belief.

The Bayesian game has been used in study of the wireless communications

problems in recent years. In [46], the Bayesian learning was used to investigate

the dynamic spectrum access problem in cognitive radios. The mobile nodes using

learning scheme to get knowledge about the transmit behavior of others, there-

fore they can take best strategies to maximize the pay-off. In [28] the Bayesian

game was used to model the resource allocation problems in a fading multiple
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access channels among selfish users, and the proof of the Bayesian NE and sub-

optimal algorithm are given to optimize the sum rate of the network. In [76],

the authors studied the application of Bayesian bargaining game in a primary-

secondary cognitive network. The primary users shared their spectrum with the

secondary users while the latter helps the former for their transmission in return.

The authors design an non-cooperative bargaining game model to study the di-

vision of capacity gain between the primary and secondary networks. They show

that using their model, the game between the primary and secondary users reach

the equilibrium and achieve a win-win situation. In [72], the authors proposed a

Bayesian coalition formation game to model the carrier aggregation problem in

D2D communications. The author proposed a scenario that the D2D links first

chose the mobile operator to access and then opportunistically performed car-

rier aggregation among D2D links accessing the same operator. The D2D carrier

aggregation was modeled as a coalition formation game. Each of the D2D links

kept a private preference order about the operators, but did not know the prefer-

ence of others. During the game play process, each of the D2D links updated its

preference order about the operators to maximize its pay-off, based on the belief

about other D2D links’ preference order. Furthermore, the D2D links would also

update its belief about other D2D links’ preference order based on its observation

using the Bayesian learning. The author proved that their approach converged to

a stable coalition formation structure where no D2D links will deviate it solely.





Chapter 3
Resource Allocation using

Non-Cooperative Game

3.1 Introduction

We consider the resources allocation issues in a spectrum-sharing based two-tier

Network, where the femto-cell subscribers act as the secondary user to access the

spectrum owned by the MCO. The femto-cell technology has been proposed to

improve the QoS of indoor mobile users by the deployment of home base station

(HBS) [16]. The HBS connects to the core network using the IP network (e.g.,

DSL or home broadband ) as backhaul, thus it is cost efficient to deploy.

Two rapidly growing demands driving the research in femto-cell networks

are, 1) providing faster connections for mobile internet devices, 2) improving the

coverage and releasing the burden of macro-cells. Under the spectrum-sharing

model, a variety of game theoretical approaches based on pricing have been pro-

posed [17], [37], [82]. By imposing the interference price as a policy to regulate

the actions of unlicensed subscribers (ULS), the spectrum owner, i.e., the MCO,

protects its licensed subscribers (LS) from harmful interference. Under this pol-

icy, both the MCO and the ULS sought to improve their pay-offs. Although these

reported works utilized different game models and considered different trade-off

31
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Figure 3.1: Illustration of a femto-cell network.

The spectrum sharing based two-tier femto-cell network contains a macro-cell

and two femto-cell providing in-door service.

pairs, they shared the same concept that both the MCO and the ULS participate

in the game.

In this chapter, we consider a scenario that the macro-cell partially shares

its sub-bands with femto-cells, while being protected by the interference tem-

perature constraint applied in each sub-band. We assume that each ULS can

access multiple sub-bands to maximize the data rate. Furthermore, each sub-

band can be shared by multiple users to further improve the overall network

capacity by spectrum reuse. We formulate the resource allocation problem in
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this scenario as a Stackelberg game, in which the players (ULSs) act individually

to maximize their own utilities without any coordination. To the best of the au-

thor’s knowledge, this is the first game model which considers the multiple-user

multiple-access problem in the femto-cell networks. We establish the connection

between the game leader (the MCO) and the followers (the ULSs) by embedding

the pricing term into the pay-off functions to follow the same line as [4] [38] [82]

[71]. The pricing function is taken as a penalty to the ULSs for interfering the

MCO. Therefore the leader can interact with the followers by adjusting the price.

We will also prove the existence and uniqueness of Nash Equilibrium (NE), and

provide distributed algorithm converging to the NE. With the help of the pricing

function, the ULSs allocate their transmit powers considering both the channel

gain and the interference to MCO.

3.2 System Setup

Table 3.1: The Notations

πSk
pay-off function of ULS Sk

πmo pay-off function of MCO

γm
Sk

receving SINR of ULS Sk

lSk
sub-band allocation vector of ULS Sk

µm interference price in sub-band m

hm
Sk

channel gain from ULS Sk to macro-cell BS in sub-band m

pmSk
transmit power of ULS Sk in sub-band m

gmSk,k
the channel gain between ULS Sk and BS k

λm
Sk

the pay-off division factor for ULS Sk in sub-band m

P the power allocation matrix of all ULSs

We consider a two-tier network that constitutes a macro-cell and K femto-

cells. The spectrum is owned by the MCO and divided into sub-bands. The



34 Chapter 3. Resource Allocation using Non-Cooperative Game

macro-cell shares K sub-bands with the femto-cells, where the shared sub-band

set is denoted by K. We take frequency selective fading channel into considera-

tion and one sub-band refers to a frequency bin. In the rest of the section, we

interchangeably use the term ’channel’ and ’sub-band’ for the same meaning. The

additive noise is assumed to be white Gaussian with variance σ2. We denote gmSk,k

as the channel gain between ULS Sk i and HBS k via sub-band l. We denote

hm
Sk

as the channel gain between ULS transmitter i and the MCO receiver via

sub-band m. We assume gmSk,k
and hm

Sk
are time-invariant in one time slot, i.e.,

hm
Sk
(t) = hm

Sk
. We consider uplink channel while the femto-cells and macro-cell

are assumed to be synchronized, i.e., they are in the same transmit or receive

mode.

Figure 3.1 illustrates the proposed two-layers networks where the femto-cells

underlay the macro-cell. In this research, we set up the game with perfect infor-

mation, i.e., we assume that, 1) both the MCO and ULSs can precisely measure

the noise-plus-interference levels at their receivers in each channel, 2) each ULS

can estimate the channel gains in both signal link and interfering link, 3) the

ULSs can receive the instantaneous price broadcast by the MCO. For simplicity,

we assume that at each time slot there is only one active user in a femto-cell.

The ULSs are mobile devices, therefore the transmit power is bounded by the

hardware limitation. Without loss of generality, we assume that for each ULS,

there is a power cap constraint applied,

M∑

m=1

pmSk
≤ p, (3.1)

where pmSk
is the transmit power of user Sk on sub-band m and p is the total

power. For the sake of fairness, we assume that all ULSs have the same total

transmit power constraint.

On the other hand, the LSs of the MCO should be protected. More specifically,

we apply an interference power constraint in each sub-band at the MCO receiver
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to guarantee the QoS of the LSs,

K∑

k=1

pmSk
hm
Sk

≤ Q, (3.2)

where pmSk
hm
Sk

is the interference from Sk in sub-band m.

Because each ULS is assumed to access arbitrary sub-bands and transmit

over multiple sub-bands simultaneously, the power allocation over each sub-band

is supposed to be efficient. In another word, we face a joint sub-band and power

allocation problem. The ULS should not only choose suitable set of sub-bands to

access but also need to properly allocate the transmit power over these sub-bands.

Traditional power allocation problems such as the water-filling solution usually

consider the power cap constraint only. When applying to the spectrum-sharing

based wireless network, a spectral mask constraint Pmask is imposed to limit the

interference in a single sub-band [60]. However, the spectrum mask constraint

is uniformly applied to each sub-band which does not consider the difference in

channel gains. Here we use the interference power constraint which is aware of

the fact that the ULSs may have different ’abilities’ to interfere the MCO due to

different spatial distributions and fading states.

3.3 Problem Formulation

In this section, we focus on developing fully distributed resource allocation scheme

to avoid the information exchange among ULSs.

The Stackelberg game is a game type which can be classified as extensive game

[53] [52]. The leader and the follower in the Stackelberg game move sequentially,

and they can study the situation change and modify the decision to optimally

adapt to this change. Subsequently, the Stackelberg equilibrium (SE) is equivalent

to the subgame perfect equilibrium of the Stackelberg game. Formally, we refer

the definition the Stackelberg game in Chapter 2.3 and define the SE as follows,

Definition 3.1. A Stackelberg equilibrium is a solution of a Stackelberg game,
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in which the leader is making the best decision given the the followers’ optimal

actions, and the followers are making the optimal actions taking into account the

leader’s decision. Neither the leader nor the followers can benefit by deviating

from the current action while the others remain unchanged.

Particularly, the Stakelberg game model for interference management is de-

scribed as follows,

• Player : The MCO (Leader) and the femto-cells (Follower).

• Actions :

– Action of the leader is to decide the interference prices in each sub-

bands, which is given by µ = [µ1, µ2, ..., µM ].

– Action of follower Sk is to select sub-bands to transmit from K, which

is given by the power allocation vector pSk
= [p1Sk

, p2Sk
, ..., pMSk

]T .

• Pay-offs :

– Pay-off of the leader is the payment collected from all the followers.

– Pay-off of the follower Sk is the transmit rate rSk
minus the payment

cSk
submitted to the leader.

As we mentioned in previous section, the LSs are given sufficient protection by the

interference power constraint. It is more preferred to allow the less interfering ULS

to transmit with priority. However, the instantaneous aggregated interference at

the MCO receiver is difficult to be obtained by the ULSs, therefore the pricing

scheme is utilized to regulate the transmission of the ULSs. The payment of Sk

for using m is a positive valued function given by cmSk
(µm, hm

Sk
pmSk

), which means

that the ULS is penalized for interfering the MCO. Furthermore, cmSk
(µm, hm

Sk
pmSk

)

should increase with the interference hm
Sk
pmSk

, because the ULSs who bring heavy

interference are not welcomed by the MCO.
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We define the pay-off functions of the MCO as,

πmo(p,µ) =
K∑

k=1

cSk
, (3.3)

where the cSk
denotes the payment collected from Sk.

We define the pay-off functions of the ULS Sk as,

πSk
(pSk

,µ) = rSk
− cSk

, (3.4)

where rSk
is the revenue gained by Sk for transmission.

We seek a stable operation point (i.e., an equilibrium point) as the solution

of the aforementioned game model. Once the equilibrium point is reached, both

the MCO and the femto-cells have no incentive to leave. This equilibrium is the

SE of the proposed Stackelberg game, which is formally defined as,

Definition 3.2. The price vector µ∗ = [µ1∗, µ2∗, ..., µM∗] and the power allocation

matrix P ∗ = [p∗
S1
,p∗

S2
, ...,p∗

SK
] together form an SE if the constraints in (3.1) and

(3.2) are satisfied, while

µ∗ = arg max
µm≥0

πmo(p,µ), (3.5)

and

p∗
Sk

= arg max
pm
Sk

≥0
πSk

(pSk
,p∗

−Sk
,µ). (3.6)

3.4 Game Theoretical Analysis

In this section, we provide the solutions to the problems defined in Section II. We

will show that if we define the cost function using linear pricing, and the revenue

function using the Shannon capacity, the proposed game model will achieve a

stable and unique sub-band allocation, and the SE is unique and optimal. Fur-

thermore, we provide simple algorithm to achieve the SE of the game in certain

condition.
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3.4.1 The Individual Pay-off of ULSs

We define the revenue function of the Sk as the Shannon Capacity,

rSk
=

M∑

m=1

log
(
1 + γm

Sk

)
. (3.7)

To the signal to interference and noise ratio (SINR) in a multiple access channel

contains two parts, the additive white noise and the interference come from co-

channel subscribers, therefore the SINR γm
Sk

is given by,

γm
Sk

=
gmSk

pmSk

σ2 + gmS0,k
pmS0

+
∑K

l=1,l 6=k g
m
Sl,k

pmSl

, (3.8)

where S0 denotes the LS of the operator and Sl is other ULSs, gSl,k is the channel

gain between ULS Sl to femto-cell base station k.

In our system setup, the noise variance σ2 is constant, and the LS is protected

by the fixed interference constraint. So the LS can always transmit using the

optimal power. Hence we only need to consider the power allocation of the ULSs.

Using the linear pricing scheme, we take the payment to be proportional to the

interference level. Hence we have the cost function,

cSk
=

M∑

m=1

µmhm
Sk
pmSk

. (3.9)

Subsequently the pay-off function of Sk is defined as,

πSk
(pSk

,p−Sk
) =

M∑

m=1

[
log
(
1 + 1 + SINRm

Sk

)
− µmhm

Sk
pmSk

]
. (3.10)

With the explicit expression of the pay-off function defined above, the ULS
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Sk is to individually solve the following optimization problem, while being con-

strained by the power cap constraint p and interference power constraint Q.

max πSk
(pSk

,P−Sk
) (3.11)

s.t.
M∑

m=1

pmSk
≤ p, (3.12)

K∑

k=1

pmSk
hm
Sk

≤ Q. (3.13)

pmSk
≥ 0. (3.14)

The above problem is a maximization problem with multiple linear inequality

constraints. However, (3.13) requires the knowledge of the transmit power and

channel gain of other players which is difficult to be obtained by Sk. Furthermore,

in the pay-off function (3.10), P−Sk
is also unknown by the Sk since lack of coor-

dination with peers. Therefore distributed approaches avoiding the information

exchange among ULSs is desired.

Fortunately, the proposed game model design can successfully avoid the prob-

lem of obtaining the global information, Firstly, the participation of the MCO

as the game leader can be a ’bridge’ among the independent ULSs to help them

make decision. More specifically, if the adjustment of the interference price in

each sub-band is related to the interference level, then the information of inter-

ference is actually embedded in the pricing factor µm. Hence, through properly

adjusting the µm in each sub-band, the MCO can regulate the transmit behavior

of the ULSs by two means, 1) control the interference at a safe level, 2) implicitly

inform the ULSs about the interference level in each sub-band. Therefore, all the

ULSs only need to optimize their power allocation based on µm broadcast by the

MCO, and (3.13) is automatically satisfied. This is an exciting result that we

can hence remove (3.13) from above problem. Secondly, although the interfer-

ence components are written separately in (3.8), The Sk actually does not need to

identify which is the interference source and how much interference it contributes.

It can simply ask the femto-cell BS k to measure the aggregated interference at
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its receiver, then take it as noise to allocate the power by using conventional

approach such as water-filling. Based on above two facts, the problem (3.14) is

reduced to:

max πSk
(pSk

,P−Sk
) (3.15)

s.t.
M∑

m=1

pmSk
≤ p, (3.16)

pmSk
≥ 0. (3.17)

which can be totally solved locally by each Sk itself using standard convex op-

timization technique. The detailed solution step is omitted and here we only

provide the result. The best power allocation strategy for Sk is a water-filling

alike solution, which is,

pmSk
= max (0,Wm −Nm

−Sk
). (3.18)

In (3.18),

Wm =
1

βSk
+ µmhm

Sk

, (3.19)

which is the water-level, and βSk
is chosen to satisfy the power cap constraint

(3.1).

Nm
−Sk

=
σ2 + gmS0,k

pmS0
+
∑K

l=1,l 6=k g
m
Sl,k

pmSl

gmSk

, (3.20)

which is the ratio of the interference plus noise level to the channel gain at the

receiver of femto-cell BS k.

In the following paragraphs we give some analysis on (3.18). The water-

filling is only a one-time solution with the given interference status. The optimal

power allocation at time t may not be optimal at time t + 1 in the multiple

access scenario, since the interference may change. Therefore, the ULSs should

adjust its transmit strategy frequently to catch the dynamics of interference.

Since the optimal solution for power allocation requires an exhaustive search
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and is generally mathematically intractable, low cost sub-optimal solutions have

been proposed in [80] [60] [62]. These solutions can be classified as variations

of the iterative water-filling (IWF) algorithm. As the name suggests, the IWF

algorithm aims to solve the power allocation problem in multiple access channel

by performing the water-filling procedure iteratively. The IWF extended the

standard water-filling methods to the multiple access channel, and the mutual

interferences therein are considered as noise.

However, the key difference between our setup and the scenario where conven-

tional IWF algorithm applied in is the presence of the spectrum owner. Hence,

the power allocation of ULSs will not only be affected by the channel gain and

mutual interference, but also the interference constraints to protect the macro-

cell subscribers. As a result, the water-filling like solution in (3.18) contains the

channel dependent factor µmhm
Sk
. The term µmhm

Sk
changes the water level in each

channel, resulting in a non-uniform water-level comparing to the uniform water

level in conventional IWF algorithms. The reason is that the cost term added

to the pay-off function makes the ULSs not only to consider the noise level, but

also care about the interference to the MCO while allocating the power in each

channel.

The power allocation of ULSs is modeled as a non-cooperative game, in which

each player Sk treats the measured Nm
−Sk

and received µm as the information of

other player’s action. Then it takes the best response towards this observation,

saying B(P−Sk
), which is actually the water-filling solution for Nm

−Sk
and µm,

respectively. If such a game has an NE, the following equation will be satisfied,

p∗
Sk

= B(P ∗
−Sk

), (3.21)

where p∗
Sk

and P ∗
−Sk

represent the power allocations of player Sk and other players,

respectively. Equation (3.21) indicates that each player’s best response to other

players’ action is also the optimal action. In this case, no player is willing to

deviate from the NE point solely, since this is the best choice if other users do

not change their strategies [26].
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3.4.2 The Pay-off Sum of ULSs

Based on the individual pay-off optimization problem defined in (3.17), we discuss

maximizing the sum pay-off of all the ULSs,

Problem 3.4.1.

max
K∑

k=1

πSk
(pSk

,P−Sk
) (3.22)

s.t.
M∑

m=1

pmSk
≤ p, k = 1, 2, ..., K. (3.23)

pmSk
≥ 0.k = 1, 2, ..., K. (3.24)

Theorem 3.1. In the proposed K ULSs M sub-bands multiple access channel,

pSk
is an optimal solution to the pay-off sum maximization problem (3.4.1) if and

only if pSk
is the water-filling solution vector when taking the interference sum

as noise in each sub-band.

Proof:

1) The if part can be obtained directly from the problem structure of the

(3.4.1). As shown in (3.18), the solution of an individual subscriber is given

by

pmSk
=

(
1

βSk
+ µmhm

Sk

−
σ2 + gmS0,k

pmS0
+
∑K

l=1,l 6=k g
m
Sl,k

pmSl

hm
Sk

)+

. (3.25)

The solution structure is exactly the same as the single subscriber scenario

except an additive interference term gmS0,k
pmS0

+
∑K

l=1,l 6=k g
m
Sl,k

pmSl
. Hence,

if we consider the interference as noise, there are no correlation between

the optimal power allocation of each ULS. Then problem (3.4.1) is just a

linear combination of a series of individual pay-off maximization problem,

i.e., max
P

∑K

k=1 πSk
= max

pS1

πS1
+, ... +max

pSK

πSK
. Therefore if each of the pSk

optimizes πSk
, then the collection of pS1

,pS2
, ...pSK

will optimize
∑K

k=1 πSk
.
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2) Then we proof the only if part. Suppose at the optimum of the pay-off sum

in which all the ULSs allocate their power optimally, there exists a ULSs Sk,

and its power allocation p
′

Sk
is equal to the one-time water-filling solution

of (3.17). Since it is the optimum point and all other ULSs have fixed their

power allocation, then the interference term in (3.17) becomes constant.

Subsequently, we take the interference as noise and the optimal solution of

problem (3.17) is given by p∗
Sk
, which is the water-filling solution, and will

satisfy p∗
Sk

> p
′

Sk
. Hence, it contradicts with our assumption. Therefore the

power allocation of Sk should be the water-filling solution if the interference

sum is taken as noise.

3.4.3 The Pay-off of MCO

As shown in previous section, the pay-off sum function of the MCO is simply

defined as the payment collecting from all the ULSs in all sub-bands, hence the

maximization problem is given by,

Problem 3.4.2.

max
µ

M∑

m=1

µm

K∑

k=1

hm
Sk
pmSk

, (3.26)

s.t.
K∑

k=1

hm
Sk
pmSk

≤ p,m = 1, 2, ...,M. (3.27)

Proposition 3.1. The problem (3.4.2) can be decomposed into a series of indi-

vidual problems which are to maximize the pay-off in each sub-band. The problem

in sub-band m is given by,
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Problem 3.4.3.

max
µm

µm

K∑

k=1

hm
Sk
pmSk

, (3.28)

s.t.
K∑

k=1

hm
Sk
pmSk

≤ Q. (3.29)

Proof: In each time slot, for given hm
Sk

and m
Sk
, the MCO tries to find optimal

µm to maximize the pay-off. Since the power allocation of the ULSs is determined

by themselves, the channel gains are the fixed physical parameters, and the in-

terference prices in all sub-bands are independent with each other. Hence, the

pay-off sum function (3.27) is actually the summation of a series of individual pay-

off functions with independent variables. Such that max
µ

∑M

m=1 µ
m
∑K

k=1 h
m
Sk
pmSk

=

max
µ1

µ1
∑K

k=1 h
1
Sk
p1Sk

+, ...,+max
µM

µM
∑K

k=1 h
M
Sk
pMSk

.

We rewrite the result of (3.25) as,

pm∗
Sk

=

(
1

βSk
+ µmhm

Sk

− ImSk

gmSk

)+

, (3.30)

where ImSk
= σ2+gmS0,k

pmS0
+
∑K

l=1,l 6=k g
m
Sl,k

pmSl
represents the interference plus noise.

Then we substitute the result of (3.30) into problem (3.4.2) and obtain the

following problem.

Problem 3.4.4.

max
µm

µm

K∑

k=1

hm
Sk

(
1

βSk
+ µmhm

Sk

− ImSk

gmSk

)+

, (3.31)

s.t.
K∑

k=1

hm
Sk

(
1

βSk
+ µmhm

Sk

− ImSk

gmSk

)+

≤ Q. (3.32)

The centralized optimization of problem (3.4.4) requires the global informa-

tion (i.e., βSk
, hm

Sk
, pmSk

), and can be obtained by standard optimization process. In

this section we are interested in developing fast algorithm to achieve the optimal

solution. From problem 3.4.4, we can derive the following proposition,
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Proposition 3.2. The objective function of problem 3.4.4 monotonically de-

creases with µm in the range µm ∈ [µm′

,+∞) if µm′

satisfies,

K∑

k=1

[
µm′
Sk
βSk

(µm′

hm
Sk

+ βSk
)2

− ImSk

gmSk

]
< 0. (3.33)

K∑

k=1

hm
Sk

(
1

µm′

hm
Sk

+ βSk

− ImSk

gmSk

)
= Q. (3.34)

In the following paragraph we will give analysis of problem 3.4.4 and the proof

of proposition 3.2.

It is easy to verify that, (3.3) (which we briefly write as πmo(µ
m)) is concave

function of µm since,

∂2πmo(µ
m)

∂µm2
= −2

K∑

k=1

hm2
Sk

βSk

µmhm
Sk

+ βSk

< 0. (3.35)

Therefore, the objective function (3.3) is maximized without the constraint

when the first-order derivation equations to zero, hence the optimal µm∗ satisfies,

K∑

k=1

hm
Sk
βSk

(µm∗hm
Sk

+ βSk
)2

=
K∑

k=1

hm
Sk
ImSk

gmSk

. (3.36)

Then we look at the constraint (3.32). Obviously (3.32) is a monotonically

decreasing function of µm, we assume (3.32) takes equality when µm = µm′

, i.e.,

K∑

k=1

hm
Sk

1

µm′

hm
Sk

+ βSk

−
K∑

k=1

hm
Sk
ImSk

gmSk

= Q. (3.37)

In the following we only consider the case that µm′

> 0 and µm∗ > 0 are

feasible since the price should be positive, otherwise it is only a trivial result that

µm = 0. Substitute (3.36) into (3.37) and after some derivations, we have,

K∑

k=1

hm
Sk
βSk

(µm′

hm
Sk

+ βSk
)2

+
K∑

k=1

µm′

hm2
Sk

(µm′

hm
Sk

+ βSk
)2

=
K∑

k=1

hm
Sk
βSk

(µm∗hm
Sk

+ βSk
)2

+Q. (3.38)
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Since (3.3) is concave, it is a decreasing function when µm ∈ [µm∗,+∞).

Hence, it also decrease in [µm′

,+∞) if µm′ ≥ µm∗. Considering the case µm′ ≥
µm∗, we can derive the following inequality from (3.38),

K∑

k=1

µm′

hm2
Sk

(µm′

hm
Sk

+ βSk
)2

≥ Q. (3.39)

Substitute (3.37) into (3.39), we obtain,

K∑

k=1

[
µm′
Sk
βSk

(µm′

hm
Sk

+ βSk
)2

− ImSk

gmSk

]
< 0. (3.40)

which directly leads to the proposition 3.2, which is very useful in algorithm

design. When the conditions in proposition 3.2 are satisfied, we can make use of

the monotone property of the pay-off function of MCO, such that, the MCO can

just maximize his pay-off by simply decreasing the interference price µm from a

large value without obtaining any information from the ULSs.

3.5 Distributed Algorithm

In this section, we provide our algorithm for solving problem (3.17). We will prove

that the proposed algorithm will converge to the SE. Furthermore, the proposed

algorithm gives the optimal solution under proposition 3.2 and is sub-optimal

otherwise.

In the previous section, a non-cooperative game of femto-cell resource alloca-

tion is formulated. We are interested in developing a fully distributed algorithm

which converges to the NE of the resource allocation game. We will prove that

for any given Qm and Pmax pair, the existence and uniqueness of NE coincide

with the convergence of the proposed algorithm.

The proposed algorithm contains two-layered loops, the inner loop is a price

based IWF algorithm. Different from the conventional water-filling updating

function, here theWF (p−i, µ
m) is time-varying due to the time-varying µm. Thus

the convergence proof of traditional IWF based on the contract-mapping theorem
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Algorithm 3.1: Two-Layer Iterative Water-Filling Algorithm

1 Consider a K-user system with M sub-bands, we denote the power cap

constraint as p and the interference power constraint as Q. We denote ǫ, δ,

η and ζ as small constants and u as a unit vector of length M .

2 Initialization:

3 P = p, µm = µ0.

4 WHILE ∀m,Qm > Q

5 WHILE ‖µ(t+ 1)− µ(t)‖ ≤ ζ

6 WHILE ‖pi(t+ 1)− pi(t)‖ ≤ ǫ

7 FOR i = 1 to N ,

8 FOR m = 1 to K,

9 Nm
−i(t) =

∑N

j=1,j 6=i p
m
j (t− 1)Hm

ji + σ2

10 pmi (t) = WF (Nm
−i(t), µ

m(t− 1)),

11 Qm(t) =
∑N

i=1 g
m
i0p

m
i (t).

12 END.

13 If Qm(t) > Q

14 Set µm(t) = µm(t− 1) ∗ (1− δ),

15 ELSE IF Qm(t) < Q− ǫ Set µm(t) = µm(t− 1) ∗ (1 + δ),

16 END.

17 If µm does not converge in a limited iterations.

18 Set p = p− η

19 END.
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[10] can not be directly applied. However, the simulation results still support the

convergence.

The outer loop controls the pricing factor and the amount of transmit power

per-user. At first, the MCO admits the initial power of ULSs and adjusts the

sub-band price µm to balance the interference in each of the sub-bands. If
∑M

m=1 p
m
Sk
hm
Sk

≥ Q, the sub-band m is overloaded and the MCO increases the

price µm to push the ULSs away to allocate their powers to other sub-bands. On

the other hand, the MCO decreases µm if sub-band m is not fully loaded. How-

ever, if only considering the inner-loop, adjusting price µm only makes the ULS

to allocate different portion of total power in different sub-bands, which does not

affect the total transmit power. If the initial power is too large, no mater how the

MCO adjusts the interference price, the interference will not meet the constraint.

In this case, a positive power allocation satisfying the interference constraint is

infeasible. To avoid this situation, we should also adjust the amount of trans-

mit power for each user so as to fit the interference constraint. It is observed

in simulation that if a power allocation based on given Pmax and Q is feasible,

the price factor µ will converge in just a few iterations, as shown in figure 3.2.

If the price does not converge in a limited number of iterations, the MCO will

consider the positive power allocation not being obtained with the current total

power constraint. Then the MCO informs the ULSs to reduce the total transmit

power in order to obtain a feasible power allocation. The step-size η can be set

as a constant or user-dependent. For example, setting ηi proportional to the in-

terference caused by ith user results in heavier penalty to the stronger interfering

user.

Theorem 3.2. For a given interference and power constraint pair, and an initial

price vector µ, the power allocation calculated by the proposed algorithm will

converge to a fixed point.

Lemma 3.1. For any given fixed linear pricing function, the water-filling updat-

ing function WF (p−i, µ
m) converges to a fixed point if the channel gain of the
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interfering channel gain gmSl,k
, l 6= k, is sufficiently weak compared with the signal

channel gain gmSk,k
. More specifically, it is given by,

∑

k=1,k 6=k′

max
m∈lSk

∩lk′

{
gmSk,k′

gmSk,k

}
≤ 1, ∀k′ ∈ N , (3.41)

∑

k′=1,k′6=k

max
m∈lSk

∩lk′

{
gmSk,k′

gmSk,k

}
≤ 1., ∀k ∈ N (3.42)

Proof: From the convergence proof in [60], we can see that adding a linear

pricing function with a fixed price does not affect the convergence [67]. There-

fore if the time-varying price controlled by the outer loop is to be fixed over a

few iterations, then the convergence proof can be applied again. Going through

various sufficient conditions for the convergence of IWF in [80], [62] and [60], we

can summarize that, if the interfering channel gain gmSl,k
, j 6= i is, sufficiently

weak compared to the signal channel gain hm
Sk,k

, or if the SINR at receiver is

sufficiently small, the IWF algorithm will converge. This conclusion is useful in

the femto-cell network, since the ULSs always have good channel condition with

its nearby HBS, while experiencing serious path loss and penetration loss to other

base stations.

Lemma 3.2. The interference price µm always converges to a non-negative value

if a non-negative power allocation for a given Pmax and Q pair exists.

Proof: The MCO adjusts the channel price µm according to the measured

interference in channel l. If the interference level is below the threshold, the

MCO keeps decreasing the price until the channel is fully loaded or the price is

decreased to zero. Conversely, if the interference level exceeds the threshold, the

MCO keeps increasing the price to scare away the ULSs to other channels until

approaching the upper bound. So there are only two cases that the MCO will

stop adjusting the channel price, 1) the interference in the channel approaches

the upper bound, 2) the price is reduced to zero.
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From lemma 3.2 we conclude that, for any given Pmax and Qm, the proposed

algorithm will converge to a fixed NE. Simulations in next section also support

this conclusion.

Algorithm 3.1 can be implemented in a distributed manner. The MCO does

not need to know exactly the interfering link gain hm
Sk

and corresponding transmit

power pmSk
. It just measures the aggregated interference in each channel and then

adjusts the price accordingly and broadcasts it. The price µm together with the

local information Nm
−i and hm

Sk
are enough for them to perform the self-updating

procedure. hm
Sk

can also be calculated using some empirical path loss model if

real-time estimation value is not valid. Note that femto-cell’s coverage is very

small compared to the macro-cell, we consider the HBS and its active ULS at the

same point in the macro-cell map. The position of HBS is easy to obtain by the

mobile service provider since its deployment is fixed.

The complexity of the propose algorithm in each iteration is linearly scaled

with the number of ULSs within the macro-cell. Since each ULS will only mea-

sures the interference by itself and there are only one MCO and N ULSs in total,

therefore the complexity is given by O(N).

3.6 Numerical Results

We set the number of users N = 4 and the number of shared sub-bands K = 8.

The signal channel gain hm
ii is in the range of [0.5, 1], and the interfering channel

gain gmi0 , h
m
i,j, i 6= j is in [0.01, 0.06]. The setup is reasonable to femto-cell network,

since the HBS is from the corresponding ULS while the other base stations are far

away. We assume the maximum transmit power due to the hardware limitation

of a mobile device is Pmax = 50, where ULS is not necessarily transmitted on

that level. The initial channel price µm = 0.

Figure 3.2 shows an example of the convergence of the prices in each of the

eight channels, with Pmax = 50 and Q = 0.85. We can observe that the prices
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Figure 3.2: Convergence performance of the interference prices.

the eight curves illustrate the converging prices in eight channels. p = 50,

Q = 0.85.
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Figure 3.3: The impacts of interference constraint on price.

Average price µ decreases with Q.

converge in a few iterations. Note that the price directly affects the power alloca-

tion on all sub-bands, hence the oscillation of interference price in one sub-band

will also prevent the prices in other sub-bands to converge. Another observation

is that the prices converge to different values, which means the price is adjusted

by MCO according to the total interference, such that it is channel dependent.

Figures 3.3 and 3.4 illustrate the choice of Q against the average price over all

sub-bands µ̄ and sum rate of femto-cell networks R. The average price µ̄ decreases

with Q, as shown in Figure 3.3. This interesting observation can be explained

by an economics point of view, Q here is the amount of goods the MCO holds.

If the amount of goods is small, it can be sold at a high price. Otherwise, if the

vendor has a lot of goods to sell, he tends to sell them at a cheap price. Figure

3.4 shows the increasing trend of R with Q. The slope of R decreases gradually

and then converges. When Q is small, the amount of transmit power is limited by
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Figure 3.4: The impacts of interference constraint on sum rate.

Sum rate R increases with Q.



54 Chapter 3. Resource Allocation using Non-Cooperative Game

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

T
o
ta
l
T
ra
n
sm

it
P
o
w
er

o
f
E
a
ch

U
L
S
s

Interference Constraint Q

 

 

p = 20

p = 40

p = 80

Figure 3.5: The impacts of interference constraint on sum rate.

Sum rate R increases with Q.

the interference constraint, resulting in the sum rate increases with Q. When Q

is high enough, the transmit rate will only be limited by the maximum transmit

power constraint.

Figure 3.5 shows the actual power consumption versus the interference power

constraint Q. We can see that from the beginning to Q = 0.4, the total transmit

power increases with Q. In this range the power allocation is jointly determined

by the two constraints. When 0.4 ≤ Q < 0.7, the curves of p = 40 and p = 80

keep increasing but the curve of p = 20 keeps at a constant, which means the

main limitation when p = 20 is determined by the total power constraint. When

Q ≥ 0.7, only the curve of p = 80 increases while those of p = 20 and p = 40

remain to be constant. This figure gives a straightforward view about how the

two power constraints jointly affect the transmit power.

Figure 3.6 shows the convergence curves of the total interference at MCO.

We can see that when Q = 0.2 and Q = 0.4, the corresponding curves reach the
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interference after a few rounds of fluctuation. However when Q = 1 the corre-

sponding curve converges to a value which is slightly smaller than the constraint.

This observation indicates that if Q is not stringent or the ULSs are far away

from MCO, they can transmit with their maximum power but still satisfying the

interference constraint. In this case, the resulted interference will not reach the

upper bound.

Figure 3.7 compares the proposed algorithm with two other schemes as well

as the benchmark in [19]. The first one is the narrow-band spectrum-sharing

(NBSS) which is similar to [37]. In NBSS, multiple ULSs may share one common

sub-band, however one ULS can access only one sub-band at the same time.

The other one is the orthogonal spectrum allocation (OSA), in which each of the

ULS exclusively occupies a sub-band for transmission. In all three scenarios the

spectrum is shared by the MCO, while a common interference constraint Q is

applied to protect the LSs. We fix Q while increasing the p. We can see that the

OSA has the worst performance since it totally loses the spectral efficiency gained

by the spectrum reuse among ULSs. The NBSS performs better than OSA all the

way. The NBSS performs similarly to the proposed scheme but it is outperformed

by the proposed scheme when p becomes large. Because the proposed scheme can

use more power to transmit on more sub-bands.

The proposed scheme can be simply implemented. For the information ex-

change between the MCO and the ULSs, there is a need for only one dedicated

channel for the MOC to broadcast the interferences prices. A time frame for data

transmission can be divided into two phases: the power control phase and the

data transmission phase. In the power control phase, the time is divided into

several time slots, which corresponds to an iteration in the proposed interference

control algorithm. In each time slot, the MCO first measures the interference it

is suffering, then adjusts the interference prices in each sub-band. Upon receiving

the interference prices, the ULSs re-allocate their power in each sub-band based

on the prices and the measured mutual interference. After several iterations when
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Figure 3.6: The convergence of average interference in each channel Qavg.

Qavg may not approaching the Q if the power cap p is tight.
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Figure 3.7: The comparison between OSA, NBSS and proposed scheme.
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Figure 3.8: A time frame of proposed algorithm.

the prices and power allocation are stable, each of the ULSs uses its power allo-

cation in the last time slot to perform data transmission. Suppose the price and

power allocation will converge after L time slots, each time slot duration is τ ,

and the data transmission time is t, then the overhead of the proposed algorithm

should be t
Kτ+t

. The implementation is illustrated in Figure 3.8.

3.7 Conclusion

In this chapter, we have studied the resource allocation issues for spectrum-

sharing based femto-cell networks on a multiple users multiple sub-bands basis.

Different from previous literature which limited the spectrum-sharing in a narrow

band, we have proposed a multiple ULS multiple sub-band spectrum-sharing

scheme to further improve the spectrum efficiency. While the LS of MCO is

protected by the interference power constraint, the resource allocation among

the ULSs is formulated as a price-based Stackelberg game, and the existence

and uniqueness of NE have been proved. A fully distributed algorithm which

converges to the NE has been proposed. Experimental results show that the
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proposed algorithm outperforms the conventional OSA scheme all the way, and

performs better than the NBSS scheme when there is spare power to transmit

on more sub-bands. The proposed algorithm can be implemented with a low

complexity in a distributed manner. It is shown to be a practical way of dealing

with the interference issues in spectrum-sharing based two-tier networks without

cooperation and centralized control.

The limitation of the proposed scheme is that it requires sparse spacing of the

ULSs, otherwise the proposed algorithm would not converge. Furthermore, the

proposed algorithm it is not always guaranteed to be optimal, and the optimality

depends on the power and interference constraints.



Chapter 4
Resource Allocation Using Hierarchical

Game

4.1 Introduction

A heterogeneous network is a multiple tier network consisting of co-located macro-

cells, micro-cells and femto-cells, which is illustrated in Figure 4.1. It has been

included in Long Term Evolution Advanced (LTE-A) standard as a part of the

next generation mobile technology. One of the main motivations driving the de-

velopment of HetNets is to improve the spectrum utilization efficiency by reusing

the existing frequency band. With rapid growth of the popularity of mobile de-

vices and multimedia contents in data services, there is an urgent need for mobile

networks of a large capacity. Due to the scarcity of radio resources, it is impor-

tant to seek an efficient way to improve the network capacity with the limited

radio resources.

Recently, the carrier aggregation is proposed to support relatively large peak

data rate in LTE-A standard [29], which is an instance of spectrum-sharing in

practice. The carrier aggregation [73] [74] technique is introduced in the emerg-

ing LTE-A standard. It refers to the process of aggregating different blocks of

spectrum to form larger transmission bandwidths to support high data rate. The

59
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technical challenges in the implementation issues of carrier aggregation are dis-

cussed in [81]. In [82], the spectrum shared by the MCO is divided into sub-bands,

and frequency-selective-fading is considered. The authors proposed a heuristic

algorithm to achieve the Nash equilibrium of the proposed game. The game the-

oretical based resource allocation has also been used to study the HetNets [77],

[8], the authors therein consider the interference management issues and focus on

the distributed intra-operator resource allocation schemes.

As the deployment of the femto-cells has been made by the end-user, central-

ized control is generally difficulty to achieve. Game theory provides useful tools

to study the distributed optimization for multi-user network systems. Various

game theoretical models have been proposed to solve power control problems in

spectrum-sharing networks[17], [38]. For instance, using the Stackelberg game

model to handle the interference control problem was first proposed in [4]. The

sub-band price is introduced to regulate the receiving power at the BS in CDMA

network. Similar game model has been applied in [38], the authors modeled the

distributed interference control problem as a non-cooperative game and discussed

the impact to the pay-offs using different pricing schemes in a scenario that the

LS and ULSs sharing a common spectrum. However they assumed that all ULSs

can only access one communication channel with flat-fading, which is not always

held in practical scenario. In [69], the authors considered the setup that the

spectrum is divided into sub-bands, and they proposed a non-cooperative game

model to enable the ULS to join the sub-bands sequentially while the interference

to the MCO is controlled by pricing.

However, in crowded place where the spacing of small cells are close, simply

spectrum sharing using non-cooperative model will cause inefficiency pay-off due

to serious mutual interference. Hence we seek cooperation between nearby ULSs

by cooperatively transmit and receive signals.

To release the potential benefit gained from the cooperation in the mobile

network, the coalitional game was introduced to investigate the behavior and
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interactions among the nodes in the wireless communication systems [57]. In

this game the subscribers can form coalitions if they can make more profits than

acting along. In [31], the coalition between the cellular subscribers located at

the middle and boundary of each cell was formed to improve the performance of

the network. In [42], the rate allocation problem for Gaussian multiple access

channels was investigated using coalitional game model. In [71] the authors con-

sidered a coalitional game among the secondary users in the cognitive network.

The ULSs form disjoint coalitions to cooperatively utilize the spectrum.

Although the coalitional game has been widely used to study the problems

in wireless communications, most of the game model only considers forming dis-

joint coalitions. In other words, denoting Cj as a coalition, then C1 and C2 are

disjoint coalitions if C1 ∩C2 = ∅. In contrast, C1 and C2 are overlapping coalitions

if C1 ∩ C2 6= ∅. In practical communication systems, enabling the overlapping

of coalitions may further improve the performance. For example, one user Dk

forms coalition with Dj to cooperatively transmit in sub-band m. If Dk still has

spare power, it may cooperative with Di on the sub-band l to support more data

rate. However, so far only some limited works have been reported for overlapping

coalitional game. In [84], the authors considers the small cells form overlapping

coalitions to coordinate their transmission, and they aimed to find a stable coali-

tion structure.

In this chapter, we consider a scenario that the spectrum is licensed to the

MCO and can be shared to the co-located femto-cells with payment. The femto-

cells compete with each other for spectrum licensed to the MCO. The macro-

cell subscribers are LSs who have been controlled by the operator. The femto-

cell subscribers are ULSs who are controlled by the femto-cell BSs. The ULSs

can share the sub-bands occupied by the LSs on condition that the resulting

interference should be maintained below a tolerable level. Upon obtaining the

spectrum from the MCO, the femto-cells can aggregate their sub-bands together

to further expand the bandwidth. In other words, the ULSs may access multiple
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sub-bands, while each sub-band can be accessed by multiple users simultaneously.

We utilize a game theoretical approach to map the sub-band allocation problem

into an OCF-game. In the proposed game, each ULS has an amount of power

resource to distribute in different sub-bands, and the achieved data rate depends

on the parameters of the sub-bands and the transmit strategies of other ULSs.

We establish a hierarchical game framework to investigate the interaction

between the MCO and the ULS. To the best of the author’s knowledge, this is

the first work which applies hierarchical game model in the analysis of HetNets.

Furthermore, we further extend the hierarchical game model introduced in [71] by

allowing ULSs to access multiple sub-bands simultaneously, and each sub-band

can be shared by multiple ULSs. Hence the sub-band allocation problem in this

new scenario can be modeled as an OCF-game, in which the ULSs in the same

sub-bands act cooperatively to maximize the pay-off sum. The most important

issue in the proposed OCF-game is to find an optimal coalition structure to

maximize the pay-off sum of the femto-cell network.

On the other hand, the essential problem in a spectrum-sharing based network

is to give sufficient protection to the LS of the MCO. The maximum tolerable

interference level constraint or interference power constraint [32] is usually applied

to regulate the transmit of the spectrum occupier, and the Stackelberg game is

a useful tool to model the interaction between the MCO and the ULSs [38] [4] .

The MCO acts as the leader to control the game play and the ULSs as followers

play the best response to the leader’s action.

The main contributions of this chapter are summarized follows.

1) We first consider a spectrum-sharing model in which the MCO share its

spectrum to multiple ULSs. In contrast, the former works [71] [38] set that

the spectrum to be accessed by only one ULS.

2) We first apply the OCF-game model to study the scenario that the coop-

erative ULSs can dedicate their power resources to multiple sub-bands. To

the best of the author’s knowledge, this is among the first few works which
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introduce the overlapping coalition formation game into the HetNets.

3) We prove that the proposed OCF-game is 2n-finite and hence the existence

of the core of the game is presented, which makes finding the optimal coali-

tion formation structure possible.

4.2 System Setup

Table 4.1: The Notations

πSk
(pSk

,µ) pay-off function of ULS Sk

v(pm, µm) value function of partial coalition m

lSk
sub-band allocation vector of ULS Sk

µ interference price vector

hm
Sk

channel gain from ULS Sk to macro-cell BS in sub-band m

pmSk
transmit power of ULS Sk in sub-band m

gmi,j the ratio of the channel gain between ULS i and BS j

to the interference power at k in sub-band m

λm
Sk

the pay-off division factor for ULS Sk in sub-band m

P the power allocation matrix of all ULSs

Consider an orthogonal frequency-division multiple access (OFDMA) based

two-tier network where the spectrum owned by MCO is divided into M sub-

bands, each of which can be accessed by one of the K femto-cells. We denote

the set of sub-bands as B and the set of femto-cells as K. Here the concept

of underlay borrowed from the cognitive radio means that the secondary user

(i.e., ULS) is allowed to transmit on the spectrum of primary user (i.e., LS)

simultaneously, while the latter is being protected by an interference constraint

[85]. The frequency selective fading is considered in this chapter, i.e., channel

fading in different sub-bands is independent. We assume the channel state is time-

invariant in each time block. The additive noise in each sub-band is assumed to
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Figure 4.1: A spectrum sharing multi-tiers heterogeneous network.

The spectrum is owned by the macro cell and shared to other tiers.

be white Gaussian. We further assume that the mobile devices are equipped with

multiple antennas, therefore it is capable to transmit over multiple sub-bands

simultaneously. Furthermore, multiple ULSs are allowed to share the same sub-

band in order to fully utilize the spectrum. Each femto-cell can apply multiple

sub-bands to support the services of its subscriber, i.e., the same portion of sub-

bands can be reused by more than one femto-cell.

We assume that in each time slot there is only one active subscriber Sk in

femto-cell k. Note that this assumption is just adopted to simplify the analysis, in

fact there are no difference in applying the proposed scheme in multi-subscribers

case. The reason is the follows: if we assume that the small cell multiplexes the

ULSs using TDMA, then it can be always considered that there is virtually only

one active user in one time slot in the small cell. If there are n ULSs in a small
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cell which are multiplexed using OFDMA, then it is equivalent to virtually n

small cells with a single ULS.

Let hm
k be the channel gain between Sk and the macro-cell BS receiver in

sub-band m, and gmkj be the channel gain between Sk and jth femto-cell BS. Let

pSk
= [p1Sk

, ..., pMSk
] be the power allocation vector of small cell subscribers, where

pmSk
= 0 implies that sub-band m is not used by Sk.

On the other hand, multiple femto-cells can apply for the same sub-band at

the same time. We denote the set of femto-cells utilizing the same sub-band m

as Lm, i.e., Lm = {k : pmSk
> 0}. Lm = ∅ means no ULS uses sub-band m,

Lm = Sk means sub-band m is exclusively occupied by femto-cell k, |Lm| ≥ 2

means sub-band m has been shared by two or more femto-cells.

Different from the previous works which consider the non-cooperative spectrum-

sharing scheme [82], the ULSs can cooperatively transmit the signal with co-

channel peers to improve their pay-offs. Since the femto-cells may be deployed

in an area without the coverage of the macro-cell, they are given the chance to

aggregate their spectrum. The ULSs of different femto-cells in one sub-band m

can cooperate by forming a virtual |Lm|-input |Lm|-output MIMO channel [47].

More specifically, at the beginning of each time slot, a portion of time is assigned

for the ULSs to obtain the channel state information. When ULSs in the same

coalition forms a virtual MIMO channel, Sk needs to estimate the channel gains

of all the femto-cell BSs in the same coalition.

We follow the same line as [27] and consider the following two power con-

straints applied in the proposed system.

1) Interference power constraint of each sub-band,

K∑

k=1

pmSk
hm
Sk

≤ Q, (4.1)

where the maximum tolerable interference Q is introduced to protect the

LS.
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2) The power cap of the mobile devices,

M∑

m=1

pmSk
≤ p, (4.2)

where pmSk
is the transmit power of Sk on sub-bandm and p is the power cap.

This constraint specifies the maximum transmit power of each subscriber,

due to the hardware limitation and the battery life. Similar setup consid-

ering both the total power and per-band power constraints is investigated

in [27].

Remark : These two power constraints together limit the number of ULSs ac-

cessing each sub-band. How they jointly affect the sub-band and power allocation

of the ULSs depends on the particular network realization. For example, if p and

hm
Sk

are large, ULS Sk may cause interference that is close to Q, then it will be the

only active ULS in sub-band m. On the other hand, if p and hm
Sk

are small, multi-

ple ULSs can simultaneously transmit at the same sub-band, and the aggregated

interference is still below Q. The number of sub-bands used by an individual ULS

is affected by the power cap given in (4.2), but the total number of the active

ULSs in each sub-band is limited by the maximum tolerable interference level

constraint (4.1).

The maximum tolerable interference level constraint reflects the fact that the

randomly distributed ULSs usually cause different levels of interference to the

macro-cell BS. Due to the frequency selective fading, even the interferences from

the same ULS could be different in different sub-bands. Hence the ULSs are

preferred to transmit in those frequency bands with weak channel gains between

the ULSs and the macro-cell BS.

An important problem is how ULSs can smartly form the overlapping coali-

tions to maximize their pay-off. We propose an overlapping coalition formation

game to study this problem. In this game, a group of ULSs can form coalitions, in

which they behave cooperatively to coordinate their actions. Hence the coalition
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formation game focuses on two questions: 1) How the coalition members coordi-

nate with each other, 2) How a coalition formation structure can be established

among ULSs.

To answer the first question, we introduce the virtual MIMO technique as

the cooperation scheme among the ULSs in the same coalition. We choose the

virtual MIMO as the cooperation strategy for two reasons: 1) it is shown to

achieve the upper-bound of the rate for a multiple access channel [64], 2) it is

shown to satisfy the proportional fairness [71]. More specifically, the ULSs in the

same sub-band m form a coalition to transmit and receive signal cooperatively.

Using the virtual MIMO technique, we can convert the communication within

one coalition into a virtual Lm-input Lm-output channel following the same line

as [64] and [71]. Therefore we obtain that the capacity sum of all ULSs in the

virtual MIMO channel m as,

∑

Sk∈Lm

rSk
=
∑

Sk∈Lm

log (1 + λm
Sk
pmSk

), (4.3)

where λm
Sk

is the kth non-zero eigenvalue of matrixGT
{Sk∈Lm}G{Sk∈Lm}, andG{Sk∈Lm}

is the channel gain matrix of ULSs in the same sub-band. For example, if

{S1, ..., Sn} are in the same sub-band m, then the matrix is given by

G{Sk∈Lm} =




gm11 gm12 ... gm1n

gm21 gm22 ... gm2n

. . . .

. . . .

gmn1 gmn2 ... gmnn




. (4.4)

In above matrix, gmjk is the ratio of the channel gain between ULS Sj and femto-

cell BS k to the received interference power at k in sub-band mSk
. We will

give analysis and propose distributed algorithm to answer the second question in

section 4.4.

To simplify the analysis, we consider the uplink transmission. In the uplink,

the receiver of macro-cell BS is interfered by the signal from ULSs, therefore there
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is only one leader when it applies price-based interference control. However, our

model can be directly extended into the downlink scenario. In that case randomly

distributed LSs act as a group of leaders and decide the sub-band prices of the sub-

bands cooperatively. The main objective of this chapter is to solve the following

problems:

1) Power control problem: we investigate the schemes to give sufficient protec-

tion to the LSs of the MCO.

2) Sub-band allocation problem: we investigate the strategies of ULSs for sub-

band accessing.

3) Coalition formation problem: we investigate how the ULSs form overlapping

coalitions to improve the data rate.

We formulate the first problem as an Stackelberg game and the second and

third problems as an OCF-game, which together form a hierarchical game.

4.3 The Hierarchical Game Formulation

The Stackelberg game between the LSs and ULSs is a multiple leaders game. The

cooperation among the leaders is investigated in [71]. The femto-cell and macro

cell are assumed to be synchronized, i.e., they are in the same transmit or receive

mode in each time slot.

Our goal is to jointly solve the protection problem of the LSs and resource

allocation problems of the ULSs. Firstly, there is a trade-off between the sum

capacity of the femto-cell network and quality of service (QoS) of the macro cell.

If the ULSs transmit at high/low power to get high data rate, the interference

to the macro-cell BS is large/small. Since sufficient protection to the LSs should

be guaranteed in the first place, the MCO is the ruler who imposes the policy to

regulate the behavior of the ULSs. Therefore, this is an power control problem

between the MCO and ULSs. Secondly, given the limited spectrum and power



4.3 The Hierarchical Game Formulation 69

resources, we should consider how the ULSs can behavior cooperatively to allocate

the sub-band and power. This results in the resource allocation problem among

the ULSs.

We model a hierarchical game in which the two sub games respectively deal

with the above mentioned problems. In the proposed game model, the macro-cell

operator and femto-cell BSs are the players, which refer to the participators of the

game. The way the players play the game is defined as actions. In the proposed

game model, the action of the MCO is to decide the interference prices, and the

actions of the ULSs are to decide which sub-bands to access and how much power

they allocate in these sub-bands.

We use the Stackelberg game to formulate the power control problem between

the macro-cell and the femto-cells. In the proposed Stackelberg game, the leader

is the MCO and the followers are the femto-cell BSs who control the ULSs. We

follow a commonly adopted game theoretic setup [38] [70] [54] to define the pay-

off functions of the ULSs, in which the benefit is the data rate and the cost is

the payment for the interference. Both the follower and leader are selfish and

try to maximize their pay-off. We denote µm as the unit price of interference in

sub-band m. The price in all sub-bands is denoted by vector µ = [µ1, µ2, ..., µM ].

We adopt linear pricing scheme hence the payment from Sk for interfering the

macro-cell BS receiver in sub-band m is proportional to the received interference

power, say µmhm
Sk
pmSk

. The ULS is benefited from transmitting on the sub-bands

shared by the macro-cell, and the resulting data rate contributes to the profit

term in the pay-off function, while the payment to MCO contributes to the cost

term. We can hence rewrite the pay-off of Sk as,

πSk
(pSk

,µ) = rSk
(pSk

)− cSk
(pSk

,µ), (4.5)

where cSk
(pSk,µ) =

∑M

m=1 µ
mhm

Sk
pmSk

is the cost function. Furthermore, since Sk

can transmit in multiple sub-bands at the same time, it aims to maximize the

sum of the pay-offs obtained from all the active sub-band, under the constraints

given in (4.2) and (4.1).
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Figure 4.2: The hierarchical game structure.

The MCO collects the payment from all the ULSs occupying the sub-bands

and only cares about the aggregated revenue. From these points we define the

pay-off functions of the MCO as,

πMCO(pSk
,µ) =

Sk∑

k=1

cSk
(pSk

,µ). (4.6)

The SE of our proposed Stackelberg game is defined as follows.

Definition 4.1. Let µ∗ be the interference price vector and p∗
Sk

be the power

allocation vector of ULS Sk. Then, the point (µ∗,P ∗) is an SE for the proposed

Stackelberg game if for any non-negative (µ,P ), the following conditions are

satisfied,

πSk
(p∗

Sk
,µ∗) ≥ πSk

(pSk
,µ∗), (4.7)

πMCO(P
∗,µ∗) ≥ πMCO(P

∗,µ). (4.8)

The structure of the hierarchical Game is shown in figure 4.2. On the MCO

side, the price is adjusted to maximize the pay-off in (4.6). In the analysis in

Section 4.3.2 we will show that the maximization of the pay-off can be achieved by

catching the dynamic of the aggregated interferences in each sub-band, therefore

the task of obtaining global information for centralized optimization is avoided.

On the femto-cells side, they cooperate and self-organize into coalitions based on

the interference prices given by the MCO. The member subscribers in the same
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coalition coordinate their transmission to improve the sum of pay-off. The details

will be provided in Section 4.4.

4.3.1 The pay-off of ULS

We start from introducing the pay-off functions of the proposed hierarchical game.

Assuming that the overlapping coalition formation structure is fixed, i.e., each Sk

already obtained a fixed λSk
, then each ULS, i.e., Sk, will obtain a pay-off defined

by,

πm
Sk
(pmSk,

, µm, λm
Sk
) = log (1 + λm

Sk
pSk

)− µmhm
Sk
pmSk

(4.9)

The optimal power allocation of Sk is obtained by solving the following max-

imization problem,

Problem 4.3.1.

max
p

πSk
(pSk

,µ,λSk
)

=
M∑

m=1

(
log (1 + λm

Sk
pSk

)− µmhm
Sk
pmSk

)
, (4.10)

s.t.
M∑

m=1

pmSk
≤ p.

In the proposed Stackelberg game framework, the maximum tolerable interfer-

ence in (4.2) is omitted in problem 4.3.1 because it is embedded in the interference

µm and thus is autonomously satisfied. Hence we only need to consider constraint

in (4.1). Note that we can not directly apply (4.1) to problem 4.3.1 to obtain the

power allocation using water-filling solution. Because the power value does not

satisfy the requirement to form a virtual MIMO channel.
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To deal with the above mentioned problem, we first solve problem 4.3.1 indi-

vidually in each sub-band,

p
m†
Sk

= argmax
p

πm
Sk
(pmSk,

, µm, λm
Sk
), (4.11)

=

(
1

µmhm
Sk

− 1

λm
Sk

)+

. (4.12)

The power allocated by each ULS Sk in each sub-band m should be given by p
m†
Sk

only. In other words, if Sk decides to access sub-band m, it can only transmit at

the power p
m†
Sk
, or it will cause the failure of the coalition. Then the sub-bands

accessed by Sk are chosen to satisfy the constraint in (4.1).

For m = [1, 2, ...,M ], we have p
†
Sk

= [p1†Sk
, p

2†
Sk
, ..., p

m†
Sk
]. Due to the power cap

constraint in (4.1), the final power allocation will fall into the following two cases.

Case 4.1.
∑M

m=1 p
m†
Sk

≤ p. In this case, Sk can access all sub-bands without

violentting in (4.1). The power allocation of Sk is purely decided by constraint

(4.2). Hence we can removed (4.1) and the power allocation of the ULS solely

depends on the sub-band prices. Each of the ULSs tries to solve (4.24) for the

optimal power allocation and obtain p
m†
Sk

to maximize the pay-off.

Case 4.2.
∑M

m=1 p
m†
Sk

> p̄. In this case, only selected sub-bands can be utilized

by the ULS Sk. More specifically, the solution is achieved by searching a sub-set

Ni ⊂ M such that the following conditions are satisfied:





∑
m∈Ni

p
m†
Sk

≤ p

∑
m∈Ni

π(pm†
Sk
) ≥ ∑

n∈Nj ,j 6=i

π(pn†Sk
),

(4.13)

where {Nj} denote all other sub-sets of M other than Ni. This case implies that,

once the price is fixed, the number of sub-bands accessed by one ULS is bounded

by the power cap constraint.

We conclude from case 4.1 and 4.2 that, the optimal power allocation of Sk is
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given by,

p∗
Sk

= {pm∗
Sk

,m = 1, 2, ...,M.},

pm∗
Sk

=





pm†, if m ∈ Ni

0, otherwise.
(4.14)

The corresponding sub-band allocation indicator is,

l∗Sk
= {lm∗

Sk
,m = 1, 2, ...,M.},

lm∗
Sk

=





1, if l∗Sk
> 0,

0, otherwise.
(4.15)

From the results above we see that the optimal solution of the transmit power

in pi only depends on the sub-band prices µm and λm
Sk
, which are two key outcomes

of the proposed hierarchical game. The prices are decided by the MCO through

the Stackelberg game, and the λm
Sk

is obtained from the coalitional game between

ULSs. In the following subsection we consider how to obtain optimal µm and λm
Sk
.

4.3.2 The Pay-off of the MCO

The MCO controls the interference in each sub-band by simply adjusting the

interference price µ, and the ULSs only need to care about the interference prices.

We will show that the MCO can maximize its pay-off by adjusting the prices

based on the dynamic of the aggregated interference at the macro-cell BS receiver.

Hence the proposed algorithm greatly reduces the communication overhead and

makes the distributed power allocation approach possible.

The revenue gained by the MCO by sharing sub-band m is given by,

πMCO(p
m, µm) = µm

K∑

k=1

hm
Sk
pmSk

. (4.16)

Hence the MCO is to find the optimal sub-band price to maximize its revenue

in each sub-band under the maximum tolerable interference constraint.
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Problem 4.3.2.

max
µm

πMCO(p
m, µm) (4.17)

s.t.
K∑

k=1

pmSk
hm
Sk

≤ Q, (4.18)

pmSk
≥ 0. (4.19)

Substitute (4.12) into problem 4.3.2, we obtain,

Problem 4.3.3.

max
µ

K∑

k=1

(
1

hm
Sk

− µm

λm
Sk

)+

hm
Sk

(4.20)

s.t.
K∑

k=1

(
1

µmhm
Sk

− 1

λm
Sk

)+

hm
Sk

≤ Q. (4.21)

The optimal µm can be obtained by solving above problem using standard

convex optimization approach. However, it requires MCO to obtain the transmit

power and channel gains of the ULSs. Fortunately, problem 4.3.3 has a nice

property which enables us to search the optimal µm using fast numerical method.

The objective and constraint functions both monotonically decrease with µm,

hence the objective function will be maximized when the constraint in (4.21)

takes equality. Note that the left side of (4.21) corresponds to the aggregated

interference at the macro-cell BS receiver in sub-band m. Therefore the MCO

can simply keep decreasing the price from a large value, and stops when observing

that the interference approaches Q.

Based on the analysis in subsection 4.3, we notice that the Stackelberg game

model enables simple and distributed pay-off optimizations. The MCO optimizes

price µm by simply catching the dynamic of interferences, while the femto-cells

negotiate with each other to form overlapping coalitions and adjust the transmit

power adapting to the price.
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4.4 Coalition Formation Game Analysis

Our main contribution is presented in this section. We first present formal defi-

nitions of the coalition and imputation.

Definition 4.2 ([51], chapter 9). Denote the set of all players as K, we define a

coalition C is a non-empty sub-set of K, i.e., C ⊆ K. Specially, K is referred as

the grand coalition. A coalitional game is defined as (C, v) where v is the value

function mapping a coalition structure C to a real value v(C). If for any two

disjoint coalitions C1 and C2 in a coalition game, C1 ∩ C2 = ∅, C1andC2 ⊂ K, we

have,

v(C1 ∪ C2) ≥ v(C1) + v(C2), (4.22)

then we say this game satisfies the super-additive property. Given two coalitions

C1 and C2, we say C1 and C2 overlaps if C1 ∩ C2 6= ∅.

Definition 4.3. We define an imputation as a pay-off vector satisfying both group

and individual rationalities. A pay-off vector π is a division of the value v(C) to
all the coalition members, i.e., π = [πS1

, · · · , πSK
]. We say π is group rational if

∑K

k=1 πSk
= v(C) and individual rational if πSk

≥ v({Sk}), ∀Sk ∈ C.

If a coalitional game satisfies the super-additive condition, then the grand

coalition is formed, and the game focuses on finding the optimal imputation to

form the grand coalition. However if the super-additive condition does not hold,

then the game focuses on finding optimal partition of the grand coalition. In

this case, a core of the coalitional game is defined as a set of stable coalition

formation structures in which no player can profitably deviate from them. This

is different from the one defined in the coalitional game which is a set of imputa-

tions stabilizing the grand coalition. In the proposed OCF-game, given the fixed

interference price, we focus on finding optimal coalition formation structure, i.e.,

we investigate the optimal coalition partitioning of the grand coalition.

When overlapping is enabled among coalitions, the coalitions are no longer
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disjoint sub sets of the player set as defined in a non-overlapping coalitional game.

In the OCF-game, the concept partial coalition is utilized:

Definition 4.4. The partial coalition is defined on a vector pm = (pmS1
, pmS2

, ..., pmSK
),

where pmSk
is the fractional resource of Sk dedicated to coalition m. Note that

pmSk
= 0 means Sk not being in this coalition. A coalition structure is a collection

P = (p1, ...,pM ) of partial coalitions.

Remark 4.1. In a non-overlapping coalition formation game, a coalition is just

a subset of the player set. For a player set of size N , the number of coalition

formation structure is given by the Bell number BN , where BN =
∑N−1

k=0

(
N−1
k

)
Bk

is the possible number of coalition structures and Bk is the number of ways to

partition the set into k items.

For example, given the player set {S1, S2}, the coalitions set is {{S1}, {S2}, {S1, S2}},
hence the resulting coalition structure is {S1, S2} or {{S1}, {S2}}. However, in

OCF-game the concept of partial coalition not only shows who joins the coalition,

but also indicates how much resource each player contributes to this coalition. If

the resource is continuous, there are generally infinite number of partial coali-

tions. For example, for players set {S1, S2}, the set of partial coalitions may

be {{0, 1}, {0.2, 0.3}, {1, 1}, {0.5, 0}, ...}. It means that the concept of coalition is

considered as a special case of the partial coalition, where each player join only

one coalition with all its resource.

Definition 4.5. An OCF-game is denoted by G = (K,M,P ,v), where

- K = {1, 2, ..., K} is the set of players which are the femto-cells.

- M = {1, 2, ...,M} is the set of sub-bands.

- P is the power allocation matrix, which the row pSk
= (p1Sk

, p2Sk
, ..., pMSk

)

represents how player Sk assign its power on different sub-bands, and the

column pm = (pmS1
, pmS2

, ..., pmSK
) represent the power each player spends on

sub-band m. pm = (pmS1
, pmS2

, ..., pmSK
) also corresponds to a partial coalition.
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- v(Cm) : Rn −→ R
+ is the value function, which represents the total pay-off

of a partial coalition Cm.

Definition 4.6. We define a game to be U-finite if for any coalition structure

that arises in this game, the number of all possible partial coalitions is bounded

by U .

Figure 4.3 illustrates one example of the overlapping coalition formation of our

model. The spectrum of the MCO is divided into six sub-bands {1, 2, 3, 4, 5, 6}
which can be allocated to three mobile devices {M1,M2,M3}. A coalition is

formed on the sub-band if it is accessed by two or more mobile devices. Each

mobile device may belong to multiple coalitions, since it may access multiple

sub-bands at the same time. We say the coalitions containing a common member

player are overlapping. For example, in figure 4.3, we denote the coalition formed

by the devices accessing sub-band k as Ck, Then we have, C1 = {M1}, C2 =

{M1,M3}, C3 = {M3}, C4 = {M1,M2,M3}, C6 = {M2,M3}, C5 = ∅. Hence,

C1, C2, C4 are overlapping since C1 ∩ C2 ∩ C4 = M1, C3, C4, C6 are overlapping since

C3 ∩ C4 ∩ C6 = M2, C2, C4andC6 are overlapping since C2 ∩ C4 ∩ C6 = M3.

The sum rate achieved by forming coalition is given by (4.3), and the pay-off

sum of a ULS equals to the sum rate minus payment to the MCO. Hence the value

function of the partial coalition pm is defined as the pay-off sum on sub-band m.

Given the fixed price vector µ, the value function of the partial coalition pm is

given by,

v(pm,λm) =
∑

Sk∈Lm

rSk
−
∑

Sk∈Lm

µmhm
Sk
pmSk

. (4.23)

It is proved in [71] that the pay-off division among coalition members satisfies

the proportional fairness [39], if the benefit allocated to each member equals to

its contribution to the overall rate in sub-band m, i.e.,

rmSk
= log (1 + λm

Sk
pmSk

). (4.24)
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Figure 4.3: The illustration of the overlapping coalitions in our proposed game.

The solution of the optimal power vector pmSk
of Sk is given in (4.14), which is

jointly decided by λm
Sk

and µm. Since µ is maintained by the MCO, the ULSs can

optimize the pay-off sum by choosing λm
Sk

only. Furthermore, since λm
Sk

depends

on the coalition structure, then finding optimal λm
Sk

is equivalent to choosing an

optimal coalition structure. Therefore, the power allocation of the ULS side can

be equivalently achieved by the coalition formation game.

There are two actions of the players in an OCF-game, which are the coalitional

action and the overlapping action. The former defines how the resource being

allocated among the member players in one coalition, and the latter defines how

resource being allocated between players in the overlapping parts of multiple

coalitions. These are the key features to differentiate the OCF-game from the

non-overlapping coalition formation game.

In the proposed system setup, the femto-cell subscribers accessing the same

sub-band form a coalition. The cooperation among the member players is achieved
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by forming a virtual MIMO channel. The pay-off division relies on assigning λ to

the players, which can be considered as the contribution of each coalition mem-

ber to the sum rate. Since the ULSs can join multiple coalitions, the proposed

game becomes an OCF-game. As the resources of a ULS is the total transmit

power, the profit is the pay-off sum obtained from all coalitions. The ULSs need

to distribute the resources in each sub-band properly to maximize the pay-off.

For the proposed OCF-game, we have the following definition.

Definition 4.7. For a set of ULSs S, a coalition structure on S is a finite list of

vectors (partial coalitions) P = (p1, ...,pM ) that satisfies (i)
∑K

k=1 h
m
Sk
pmSk

≤ Q,

(ii) suppm ⊆ S for all m = 1, ...,M , and (iii)
∑M

m=1 p
m
Sk

≤ p for all j ∈ S.

The power allocation matrix also indicates the utilization status of sub-bands.

The constraint (i) states that the transmit power of ULS in each sub-band is

bounded, (ii) states that the overlapping coalition is a sub set of the grand

coalition, and (iii) states that the sum of transmit power is upper bounded.

Proposition 4.1. The proposed OCF-game is 2n-finite.

Proof: Suppose the a partial coalition pm∗ = {pm∗
Sk

: k = 1, 2, ...K} is formed

on sub-band m, in which the positive power pm∗
Sk

is given by (4.14), i.e.,

pm∗ = argmax
pm

π(pm). (4.25)

We define the support of pm∗ as,

supp(pm∗) = {Sk : p
m∗
Sk

> 0, k = 1, 2, ...K}m, (4.26)

which defines a coalition of ULSs regardless the resource distribution. Hence, for

any other partial coalition pm′

with the support supp(pm∗), we have

π(pm∗) ≥ π(pm′

), (4.27)

i.e., the partial coalition pm∗ blocks all other partial coalitions formed on sub-band

m which involves with supp(pm∗).
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Therefore, we can say that the partial coalition pm∗ in our proposed game is

one-to-one correspondent to the coalition {Sk : pm∗
Sk

> 0, k = 1, 2, ...K}m formed

on sub-band m. Since {Sk}m ⊆ K, i.e., {Sk}m is a subset of K, the number of all

possible partial coalitions equals to the number of subset of K, which is given by,

K∑

n=1

(
K

n

)
= 2n − 1. (4.28)

Hence the proposed game is 2n-finite.

This is a significant result since the coalition structure is reduced to a finite set,

which enables us to find the core of the proposed game. In traditional coalitional

game which studies the grand coalition which is a finite set of all players, the

core is a set of imputations, i.e., efficient pay-off division vectors which satisfy

individually rationality, which stabilizes the grand coalition. However, many

practice problems are naturally inefficient with the cooperation of all players. We

are interested in investigating a stable coalition structure which optimizes the

pay-off sum, i.e., to find an optimal partitioning of the grand coalition. Following

the same line in [14], we define the core of the OCF-game for the sub-bands

allocation,

Definition 4.8. For a set of player I ⊆ K, a tuple (PI ,πI) is the core of an

OCF-game G = (K,v). If for any other set of player J ⊆ K, any coalition

structure PJ on J , and any imputation yJ , we have pj(CJ ,yJ ) ≤ pi(CI ,πI) for

some player j ∈ J .

Theorem 4.1. [14] Given an OCF-game G = (K,v), if v is continuous bounded,

monotone and U-finite for some U ∈ N, then an outcome (CS ,π) is in the core

of (K,v) iff ∀S ∈ N ,

∑

j∈S

pj(CS ,π) ≤ v∗(S), (4.29)

where v∗(S) is the least upper bound on the value that the members of S can

achieve by forming the coalition.
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Proposition 4.2. The proposed OCF-game of sub-band allocation has non-empty

core.

Proof:

1) Continuous: The value function in (4.23) is the difference between a log

function and a linear function, which is obviously continuous.

2) Monotone: The interference power constraint in (4.2) limits the total trans-

mit power in sub-band m indirectly by pricing in the Stackelberg game.

Hence the power allocated in sub-band m by Sk is bounded by pm∗
Sk

. Since

the pay-off function of Sk π(pmSk
) is concave, then for any π(pm

′

Sk
) ∈ [0, pm∗

Sk
]

we have π(pm
′

Sk
) ≤ π(pm∗

Sk
). Therefore for any pm′

, pm∗, such that pm
′

Sk
≤ pm∗

Sk
,

we have v(pm′

) ≤ v(pm∗), i.e., the value function is monotone.

3) Bounded: According to the proof of in 2), the value function is bounded by

v(pm∗), where pm∗ = (pmS1
, pmS2

, ..., pmSK
) satisfies

∑K

k=1 h
m
Sk
pmSk

= Q.

4) U-finite: The proof can be referred to proposition 4.1.

5) The equality: The equality of (4.29) is always taken in the proposed game

since the value function is the summation of individual pay-off of the mem-

ber players.

Because enabling the overlapping in the coalition formation game will greatly

increase the complexity of the game, hence the overlapping coalition structure

is sometimes unstable as there may exist cycles in the game play. For example,

suppose three players S1, S2 and S3, and two available sub-bands l1 and l2.

We denote πSj
[m|Si] as the pay-off obtained by Sj when it forms a coalition

with Si on sub-band m, and πSj
[m|∅] is the pay-off obtained by Sj when it

exclusively occupies m. Initially ,since πS1
[l1|∅] > πS1

[l2|∅], πS2
[l2|∅] > πS2

[l1|∅]
and πS3

[l2|∅] > πS3
[l1|∅], S1 joins l1, S2 and S3 join l2. However, if we assume
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the following statements respectively hold for the three devices, 1) πS1
[l2|S2] >

πS1
[l1|S3] and πS1

[l1|S2] > πS1
[l2|S3], 2) πS2

[l1|S3] > πS2
[l2|S2] and πS2

[l2|S3] >

πS2
[l1|S2], 3)πS3

[l1|S1] > πS3
[l2|S2], πS3

[l2|S1] > πS3
[l1|S2], then we can easily

illustrate that the game play of the coalition formation will be stuck in a cycle. To

avoid this situation, a history of the coalition structure is maintained in proposed

algorithm. If the rotation is detected, it will be removed from the coalition

formation flow.

4.5 Algorithm

In this section, we discuss the algorithms which can reach the coalition structure

in the core of the coalition formation game and the SE of the hierarchical game.

To reduce the number of iterations, we can use the similar way to that in [71] to

drive the feasible region of the sub-band price µj, which is given by µj ∈ [0, µ].

Given v be the upper bound of vSk
and h be the lower bound of |hjk|2 where

µ = v
h
.

In each iteration, each of the ULSs will at most negotiate with K − 1 other

ULSs in a single sub-band, and there are K ULSs and M sub-bands, therefore

the complexity is O((K − 1)KM).

Algorithms 4.1 and 4.2 are proposed to find the SE of the hierarchical game,

For any given Q, p pair and the channel gains, the algorithms achieve the SE

which contains a stable overlapping coalition structure, and an optimized power

allocation of each ULS. We have the following proposition about the SE of the

game.

Proposition 4.3. The interference price µm always converges to a non-negative

value if a non-negative power allocation for a given p and Q pair exists.

Proof: It is proved in previous section that finding µm∗ = argmax
µm

πMCO(p
∗, µm)

is equivalent to solving
∑K

k=1

(
1

µm∗hm
Sk

− 1
λm
Sk

)+

hm
Sk

= Q. Hence the pay-off max-

imizing for MCO is equivalently achieved by adjusting the price to control the
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Algorithm 4.1: OCF Algorithm for Sub-band Allocation

1 1)Initialization:

a) The ULSs sequentially send the pilot signal to obtain the channel

information. Upon receiving the interference prices in all available

sub-bands from the MCO, they can estimate their pay-offs in each of the

sub-bands when the sub-bands are exclusively used by Sk.

b) Each ULS Sk broadcasts the sub-band combination l∗Sk
that maximizes its

pay-off sum,

l∗Sk
= [l

(1)
Sk
, l

(2)
Sk
, ..., l

(n)
Sk

], (4.30)

Let R∗ = {l∗Sk
: k ∈ {1, ..., K}}.

2) Negotiating:

- a) The active ULSs in the same sub-bands, i.e., all the active ULSs in R∗

must negotiate with each other about the pay-off division factor λm
Sk
.

- b) After negotiation, each ULS Sk obtains a set of λm
Sk

corresponding to

each sub-bands. Sk solves problem (4.3.1) and obtains a new sub-band

allocation which maximizes its pay-off. All the Sk update and broadcast

their optimal sub-bands allocation. Step 2) is repeated until no ULS

wants to change its occupied sub-bands.
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Algorithm 4.2: Distributed Interference Control Algorithm

1 Definitions: At iteration t, let

- µm(t) be the pricing coefficient in sub-band m,

1) Initialization:

- Set µm ≥ µ, ∀m ∈ {1, 2, ...,M}.

- Set ǫ > 0 to be a small positive constant.

2) Price Adjustment:

a) At iteration t, MCO updates and broadcasts µ(t) = (1− ǫ)µ(t− 1).

b) Each Sk senses the sub-bands and negotiates with other active ULSs in

the same sub-bands to determine the sub-band allocation lm∗(t) and

power allocation pm∗(t).

c) All active ULSs repeat Step 2-b) to update their optimal sub-bands, and

the outcome is a coalition structure Pm(t).

d) The MCO monitors the aggregated interference in each sub-band. If

Nj > Q, the price adjustment in sub-band j stops. If Nj ≤ Q, go to Step

2a).

3) Termination:

The algorithm ends with solution µ∗ = µ(t− 1),P ∗ = P (t− 1) in which

the element p(m∗)Sk
(µm∗) is given by (4.14).
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interference approaching Q. In other words, therefore only two cases that the

MCO will stop adjusting the channel price, 1)
∑K

k=1 p
m
Sk
hm
Sk

≤ Q and 2) µm = 0.

Hence the interference price µm always converges to a fixed price.

From propositions 4.2 and 4.3 we conclude that, for any given p̄ and Q, the

proposed algorithm will converge to the SE of the hierarchical game. The simu-

lation results provided in section IV support this claim.

Remark 4.2. The hierarchical game works in this way. During each iteration

two games are played. At the beginning of iteration, the MCO (leader) starts a

Stackelberg game by broadcasting the interference price µ. Based on µ, the ULSs

(followers) start to play an OCF-game of which the outcome is an optimal coali-

tion structure (i.e., power allocation matrix) P . Subsequently, the interference

brought by P is considered as the followers’ move in the Stackelberg game, the

MCO will adjust the price based on the interference. Then go to the next iteration.

The proposed algorithms can be implemented in a distributed manner. On the

MCO side, it does not need to inquire any information from the ULSs, e.g., the

interfering link gain hm
Sk

or corresponding transmit power pmSk
. It just measures the

aggregated interference at its receiver in each channel, and adjusts and broadcasts

the price accordingly. On the ULSs side, with the channel price and the link gain

information measured with in a coalition, they can easily derive the potential

pay-off gained by joining different coalitions. Therefore each of them can choose

the best profited coalition combination to take part in.

4.6 Numerical Results

In this section we follow the setup up described above to investigate the per-

formance of the proposed hierarchical game framework in the spectrum-sharing

based femto-cell network. To better illustrate that the proposed algorithm adapts

to various network environment, we test on different sets of interference and power

constraints, as well as different number of ULSs K and available sub-bands M
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combinations. The result shows that the proposed algorithm can automatically

fit the constraints, no matter which one dominates or both of them jointly apply.

From Figure 4.4 to 4.6 we show an instance of the convergence performance of

the sub-band prices as well as the pay-offs of the MCO and ULSs network. The

test network contains 8 ULSs and 16 sub-bands, with p = 100 and Q = 6. In

Figure 4.4 the trend of the curve shows that the prices converge quickly in a few

iterations. Furthermore, it is noted that the prices converge in similar speeds.

This is because the sub-band prices directly control the power allocation, so the

price in each sub-band will be affected by other oscillating prices, i.e., no one

can converge solely. However, an interesting observation is that some of the price

curves oscillate and have sharp turning, because the coalition structure changes

(which means a big change on the value of λm
Sk
). Therefore the interference level

has a sudden change in the sub-bands. At last, the price converges to different

values since they are channel dependent, which coincides with the definition in

(4.19).

Figure 4.5 shows the pay-offs of the MCO and the ULSs versus the interference

and power constraints. Assuming the channel coefficients are fixed, we increase

one constraint while fixing the other one. It is observed that at the beginning

the pay-offs will increase with the constraint before they become steady. The

reason for this phenomenon is that initially the varying constraint is much tighter,

which becomes the main limitation of the transmit power. However, when the

varying constraint becomes larger, the transmit power is then jointly limited by

the two constraints. At last when the varying constraint becomes very loose, the

transmit power is limited by the fixed constraint, so the system performance will

not change.

Figure 4.6 illustrates the choice of interference Q against the average price

µ over all sub-bands. The average price µ̄ generally reflects the willingness of

the MCO to sell its interference quota. It is observed that the sub-band prices

decrease with the interference constraint. This interesting observation can be
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Figure 4.4: Convergence performance of the price.

explained by an economics point of view: Q here is the amount of goods the

MCO holds. If the amount of goods is small, it can be sold at a high price.

Otherwise, if the vendor has a lot of goods to sell, he tends to sell them at a

cheap price.

Figure 4.7 to 4.10 show the impact of the number of available sub-bands to

the propose game. Figure 4.7 and 4.8 show the number of active ULSs and

the number of coalitions versus the number of sub-bands. We can see that the

active ULSs are always lower than the total number of ULSs, since if the channels

gains of some ULSs are highly correlated, the ULSs with low pay-off is forced to

leave the coalition. From Figure 4.7 we illustrate that, the larger the value of

Q the more active ULSs. Since larger Q enables more chances for the ULS to

transmit. From Figure 4.8 we can see that the number of coalition formed by

proposed algorithm increases with the number of available sub-bands, because

when overlapping is enabled, the only limitation for the number of coalitions is
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the pay-off sum increases with Q.
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Figure 4.7: Comparison 1A of Q = 10 and Q = 50.

No. of active ULSs versus No. of sub-bands.

the number of sub-bands.

Figure 4.9 and 4.10 show the average number of coalitions each ULS joins

and the average sub-band prices of sub-bands, versus the number of sub-bands.

From Figure 4.9 we can see that the ULS tends to join more coalitions when the

number of available sub-bands increases, since in this case the players with lower

pay-off in a crowded coalition may better-off if joining a new coalition. From

Figure 4.10 we can see that the sub-band prices tend to decrease with number of

available sub-bands. When the ULSs spread their power across more sub-bands,

the aggregated interference in a single sub-band will be lower, which resulting a

lower sub-band prices. Another observation is that the price at Q = 10 is higher

than that at Q = 50, this is because the tolerated interference is ’rarer’ when Q

is smaller, so the price is accordingly larger.

Note that the actually price depends on the following parameters: (1) the
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No. of coalitions versus No. of sub-bands.
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The average No. of coalitions one ULS join versus No. of sub-bands.



4.7 Conclusion 93

channel gains between the ULSs and BSs, and among the ULSs. (2) the coalition

formation structure. Increasing or decreasing the number of sub-bands will lead

to a totally different coalition structure. Since in the simulation presented in

Figure 4.9 we generate random channel gain matrix when simulating different

number of sub-bands. In general, it can be observed that there is a trend that the

interference price decreases with upper bound of interference power constraint.

However, since it is sensitive to the channel gains as well as the interactively

actions among the players, it observes a fluctuation when the number of channels

increases with a small amount (14.28% from 70 to 80).

The increasing of number of sub-bands only gives a probability of new choice.

Generally speaking, if the condition of the added sub-bands is better than the

previous ones, the ULS will certainly try to assign power to the new sub-bands

which will cause the interference price drops in the previous bands. On the other

hand, if the condition of added sub-bands is much worse than the previous ones,

the ULS will choose to stay in the previous sub-bands. Since the number of

total sub-bands increases, the average interference price in each sub-band will

still decrease. The plot in Figure 4.11 shows the result in this case.

Figure 4.12 compares the proposed OCF algorithm with the coalition forma-

tion (CF) without overlapping. It is illustrated directly in the figure that the

improvement of data rate by enabling overlapping. When the power available for

transmit goes high, the ULSs in OCF scheme are benefited by exploring more

chances to transmit on multiple sub-bands while in the CF schemes each of the

ULS can only access a single sub-band.

4.7 Conclusion

The sub-bands allocation and the power control issues in the carrier-aggregation-

enabled heterogeneous networks are studied in this chapter. We proposed a hi-

erarchical game framework to jointly solve the power and sub-band allocation
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Figure 4.11: Comparison 2C of Q = 10 and Q = 50.

The average sub-band prices versus No. of sub-bands, the channel coefficients of
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Figure 4.12: The comparison between CF and OCF schemes.

problems under the constraints of the power cap and maximum tolerable inter-

ference level. The upper level Stackelberg game regulates the transmit power of

the ULSs so as to give sufficient protection to the LSs while optimizing the pay-off

of the ULSs. The lower level OCF-game enables the ULSs to self-organize into

overlapping coalitions, and the ULSs in the same coalition transmit cooperatively

to improve the performance. We have proposed a simple two-layer algorithm to

let the ULSs iteratively search for the optimal coalition structure and the power

allocations, under the dynamic prices adjusted by the macro cell. It was proved

that the proposed algorithm can always achieve the SE of hierarchical game,

where the transmit power and the sub-band allocations are stable, and no play-

ers can profitably deviate from it by acting alone. Furthermore, by allowing the

overlapping coalitions, we have addressed the problem of sub-band and power al-

location problem under two dimension constraints. The proposed framework can

also be expanded to more complex network with multiple BSs to cooperatively
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share their sub-bands or the downlink cases that multiple LSs need to be pro-

tected. The experimental result shows that enabling overlapping among coalition

can further increase the performance.

Note that the propose scheme only applies to the scenario in which the trans-

mitting and/or receiving nodes of the cooperative ULSs are near with each other,

otherwise there is no cooperation gain by forming virtual-MIMO channel.





Chapter 5
Dynamic Access Mode Selection in Small

Cell Network

5.1 Introduction

In previous sections, we have investigated the application of both cooperative

and non-cooperative game models to solve the resource allocation problems in

a spectrum sharing based mobile network. In other words, we investigate how

the macro-cells share their resources with small cells to help improve the service

quality of the unlicensed subscribers. On the other hand, the small cells can also

help the macro-cell users (MU) with their transmission in particular scenarios.

For instance, a MU in an area with weak coverage by the macro-cell BS may seek

the help from nearby small cells to improve the performance. More specifically, we

investigate an open/closed accessing mode selection problem in this chapter from

the game theory perspective view. Generally speaking, a user-deployed small cell

(e.g., femto-cell) can operate in two modes.

• open access - The small cell BS allows any mobile subscriber who travels

into its coverage area to access.

• closed access - The small cell BS only grants its service to the registered

99
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mobile subscribers.

The small cell operating in closed access mode has the risks of the harmful inter-

ferences from the nearby macro-cell subscribers in the uplink or to which in the

downlink. To avoid the transmission failure caused by the cross-tier interference,

previous studies have considered the frequency assignment [30] [45] [18], power

control [17] [78] [35] [36], and spectrum sensing approach [43] [65]. An alternative

way to avoid the cross-tier interference is that the small cell BS allows the nearby

co-channel mobile subscribers to access. The small cell BS schedules the unregis-

tered subscribers as its own subscribers, at the expense of the its radio spectrum

(i.e., frequency-band or time slot) and bandwidth resources (i.e., backhaul con-

nection). The benefits of open access versus closed access in cellular networks

are discussed in [68] based on the spatial distribution analysis of the small cells.

However, their work is only based on the statistical model, thus missing the par-

ticipation of the base stations (BS) and mobile devices. A discontinuous game

formulation is presented in [40] with a pay-off secured solution, in which the small

cells compete for allocating their spectrum to MUs in the coverage area. How-

ever, their approach requires collecting channel state information of all MUs, and

a centralized controller to deal with the conflict of interests.

Today’s mobile devices with advanced hardware make the application of cog-

nitive radio possible. The cognitive devices can observe the radio environments

and adjust their behaviors. Therefore they are given chances to take part in the

access strategy selection. We propose a Stackelberg game in which the small

cell BS acts as the leader and the MU as the follower. We are interested in

mining their motivations to support their actions. The small cell BS concerns

with improving the capacity by eliminating the interference. The MU concerns

with saving the battery life while doing transmission task. Only if open access is

beneficial to both of them, the MU will be handed over to the small cell. Oth-

erwise, the small cell remains closed. This dynamic access strategy selection is

built on the ’cognition’ capability of both small cell BS and MU. We here refer
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the ’open access’ to partially assigning the spectrum of the small cell to the MU,

which means the MU being handed over to the small cell BS is scheduled with

the spectrum orthogonal to the small cell subscribers.

To this end, we analyze the demand-driven behavior of both small cell BS and

MU, and propose one practical algorithm to cope with the self-governed nature of

small cell networks. We are interested in investigating two fundamental problems

in the access mode selection problem of the small cell: 1) When it should allow

the unregistered subscribers to access, 2) How many unregistered subscribers it

should take. We propose a Stackelberg game based approach, which enables

the small cell BS and MU to improve their performances by establishing direct

links. The designed approach enables the small cell BS and MU to choose their

access strategies distributively, which copes with the distributed nature of the

user-deployed small cell networks, and requires no inter-cell coordination. Both

the small cell BS and MU take part in the access strategy selection game, for the

purpose to obtain a win-win result. Experimental results show that the proposed

approach can guarantee the capacity gain of the small cells, while improving the

energy efficiency of the MUs. Furthermore, by adjusting the objective function,

the benefits of open access can be balanced between the capacity gain of small

cells and the energy efficiency improvement of the MUs. Therefore it can be

applied flexibly for various design purposes.

5.2 System Setup and Problem Formulation

In this section, we first describe the system setup and then formulate the mode

selection problem following a game theoretical way. We define the related game

model and provide formal mathematical descriptions of the problem. The analysis

of the problem will be provided in the next section.
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5.2.1 System Setup

Suppose we have a spectrum-sharing based two-tier network wherein several users

deploying small cells are underlying with a macro-cell. The small cell shifts

between the open and closed access modes: it may allow the MUs in its coverage

area to link to it directly if the resulting pay-off is higher.

We assume that the orthogonal frequency-division multiple access (OFDMA)

is adopted by the network, where the basic medium for transmission is sub-bands.

We denote the set of BS as B = {B0, B1, ..., BN} and |B| = N . Specifically, B0

stands for the macro-cell BS and Bi, i 6= 0 stand for the set of small cell BSs. We

denote the set of macro-cell subscribers as U = {U0, U1, ..., UK}, where |U| = K.

We assume slow fading channel here, i.e., the fading state will not change in a

time slot. The noise power variance is assumed to be σ2. The spectrum-sharing

based two-tier network is implemented by letting each small cell utilizes a fraction

of the spectrum shared by the macro-cell, i.e., a sub-set of the spectrum of the

macro-cell. Each of the MUs is also assigned with a set of sub-bands which are

not necessarily the same with that of the small cell’s. Therefore, the spectrum of

MU and small cell may overlap when some of the sub-bands are simultaneously

used by each other. In this case, serious interference could be generated if the

MU travels into the coverage area of a co-channel small cell.

For the single small cell BS/single MU case, it can be assumed that the over-

lapped portion of spectrum is λ, but remaining 1 − λ portion is interference

free, where λ ∈ [0, 1]. This assumption is realistic for the modern cellular net-

works, since both LTE and LTE-advanced standards have adopted the scalable

bandwidth and carrier aggregation for mobile devices to meet various wireless

service demands [61]. Therefore, it is reasonable to consider the general case that

the shared spectrum may be partially rather than entirely overlapped. This is

consistent with the scenario discussed in [45].

The notations used in the following sections are listed in Table 5.1.

Assumptions : (1) The mobile devices have the capability to estimate the
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channel gain. (2) There is a dedicated channel for information exchange between

the MUs and the small cell BS. (3) The small cell BS receiver can monitor the

interference level in each sub-band.

5.2.2 Problem Formulation

In a spectrum-sharing based two-tier network, the MUs may mutually interfere

with the nearby small cell BSs if they share the same radio resources. In the

uplink, the transmission of the MUs will interfere the small cell BSs. In the

downlink, the signal from the macro-cell BS may interfere the subscribers of the

small cells. Hence, an MU is a potential ’loud neighbor’ of nearby small cell BSs

if their spectra are overlapped or partially overlapped. We consider a scenario

that the small cell BSs can opportunistically select the accessing mode between

open or closed. Hence there are the following cases:

- If no co-band MU is presented, the small cell will work in the closed mode,

i.e., the access permissions are exclusively granted to their own subscribers.

- If a co-band MU is presented nearby, however the interference caused is

tolerable to the small cell BS, the small cell will also choose to close. This

Table 5.1: The Notations

gki channel gain between Uk and Bi

hji channel gain between Bj’s subscriber to Bi

pck transmit power per unit bandwidth of Uk in closed access mode

pok transmit power per unit bandwidth of Uk in open access mode

pi transmit power per unit bandwidth of Bi’s subscriber

pk0 total transmit power per unit bandwidth of Uk

λk
i overlapped portion of spectrum between Uk and Bi

ρki spectrum assigned to the Uk by Bi in open access mode

Ii aggregated interference at the BS receivers
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case usually occurs if the portion of overlapped spectrum is small or the

MUs transmit at low power.

- If a co-band MU is presented nearby, and cause harmful interference which

is intolerable to the small cell BS, it will shift to open mode, i.e., it will

admit the MU to the small cell network temporarily, so as to schedule them

as its own subscribers to avoid the interferences.

In the last case listed above, the small cell benefits from open mode due to

the elimination of interference. On the other hand, the MU also has the potential

to benefit from hand-over to the small cell. In practice, the coverage area of

the user deployed small cell is usually at indoor area, so the MUs in the same

area usually experience penetration loss which results in weak link gains with its

home network BS. Therefore, they usually have to transmit high power to fulfill

the rate requirements. In this case, The MU may potentially reduce the power

consumption if it hands over to a nearby small cell BS.

We assume that both the MU and the small cell BS are rational, that is, they

will make decisions only if it is profitable. Hence the open access mode will be

triggered on only if both the MU and small cell are benefited. The small cell BS

directly experience the interference from a nearby MU, then it makes decision to

choose the accessing mode. After the small cell’s move, the MU is acknowledged

to have chance to hand-over to the small cell network. It will subsequently make

the decision to hand-over or not. Therefore the model of Stackelberg game which

investigates the interaction between leader and followers is a suitable tool for

analyzing the access strategy selection of both small cell BS and the MU, where

small cell BS is the leader and the MU is the follower.

We formally define the proposed Stackelberg game for accessing mode selection

as follows.

Definition 5.1. A Stackelberg game is denoted by G = (L,F ,A,π), where the

formulation of the game is given as follows.
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- Leaders. L = [1, 2, ..., N ] is the set of leaders which are small cell BSs.

- Followers. F = [1, 2, ..., K] is the set of followers which are MUs.

- Actions. The action space A can be divided into two subspace correspond-

ing to the leaders and followers, respectively.

AL = {A1
L×· · ·×AM

L } denotes the action spaces of the leaders. Ai
L = {0, ρi}

of the small cell BS i denotes its possible actions - 0 for remaining in closed

mode and ρi for opt to open mode, and offer an amount of ρi radio resources

to the MUs.

AF = {A1
F × · · · × AK

F } denotes the action spaces of the followers. The

action Ak
F = {0, i} of MU Uk corresponds to the decision of not hand-over

to a small cell, or hand-over to small cell i.

- Pay-offs. The pay-offs are also defined differently to leaders and followers.

The pay-off of the leader is the increase of capacity by shift to the open

access mode, which is defined as:

πBi
= C

open
Bi

− Cclose
Bi

, (5.1)

where Copen
Bi

and Cclose
Bi

are the Shannon capacity in open and closed mode,

respectively.

The pay-off of the follower is defined as the improvement of energy efficiency.

In the setup of this chapter, we assume that each of the MU Uk maintains

a target rate RT
Uk
, hence the improvement is reflected as the decrease of

power consumption.

πUk
= pck − pok − ǫ, (5.2)

where ǫ is a small constant which can be considered as a cost term. We will

discuss about ǫ in the next section.
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5.3 Game Theoretical Analysis

In this section, we will start from a single small cell and a single MU case to discuss

the interaction between the leader and follower in the proposed game model. We

give the explicit form of both pay-off functions and show the existence of the

equilibrium.

5.3.1 The Pay-off of the Small Cell BS

We denote γ0
Bi

and γk
Bi

as the SINR at the small cell BS receiver when no presence

of the MU and a co-band MU Uk is presented, respectively.

γ0
Bi

=
pihii

σ2 +
∑

j∈N\i pjhji

, (5.3)

γk
Bi

=
pihii

σ2 + pk0g0i +
∑

j∈N\i pjhji

. (5.4)

For simplicity, we assume the small cell schedules its subscribers using time-

division-duplex, hence in each time slot there is only one active subscriber in

each small cell. In closed access mode, the capacity of ith small cell is,

Cclose
Bi

= λk
i log2

(
1 + γk

Bi

)
+ (1− λk

i ) log2
(
1 + γ0

Bi

)
, (5.5)

where Cclose
i is monotonically decreasing with pk0. As we consider flat fading

channels, the transmit power spreads equally over the spectrum.

For open access with a sharing of ρki portion of radio resources to the MU,

the capacity of ith small cell BS becomes (in this case the interference from MU

disappears):

C
open
i = (1− ρki ) log2

(
1 + γ0

Bi

)
. (5.6)

Note that Copen
i is the achievable data rate of the small cell’s own subscriber and

excludes that of the accepted MU. The transmit power pi and channel gain hii
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are well known by the corresponding small cell BS. We define the pay-off function

of the small cell as the difference of capacity in open and closed modes,

πBi
= C

open
Bi

− Cclose
Bi

. (5.7)

If πBi
≥ 0, the small cell has a capacity gain going to open mode. In this case,

the small cell BS is willing to accept the MU for the positive reward. Hence the

range of ρki is given by:

0 ≤ ρki ≤ ρtotali , (5.8)

where ρtotali = λk

[
1− log2 (1+γk

i )
log

2 (1+γ0

i )

]
. This inequality implies that, given the current

transmit power of the MU, the small cell BS can always get a non-negative reward

by sharing ρki portion of spectrum. We have two observations from (5.7):

1. The πBi
monotonically increases with λk

i . Large λ
k
i indicates large interfer-

ence from the MU, so the small cell BS is more likely to choose open access

in this situation.

2. πBi
monotonically decreases with ρki . However, if current ρ

k
i can not improve

MU’s pay-off, the MU does not hand-over. Then the small cell BS offers

larger ρki . After a few rounds of negotiations, they will make or break a

contract when hitting the upper bound of ρki .

The illustration of the negotiation between one MU and one small cell BS is

shown in Figure 5.1. Note that the motivation of small cell BS to accept an MU

is to improve its own pay-off, and it does not know at which point the MU will

agree to join it. However, the bottom line is that the capacity of open access

mode should not be less than closed mode. In Figure 5.1, the horizontal axis is

the amount of radio resources the small cell BS offers to the MU. We assume

that the MU will agree to join the small cell if the offer reaches ρc. Hence the

pay-off of small cell BS remains the same until ρki reaches the critical point ρc,

which is the point MU chosen to join the small cell. Then the pay-off of small
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Figure 5.1: Small cell capacity versus ρki .

A sample plot illustrating the relationship between ρki and capacity of small cell.

At ρc the SBS and MU make the agreement of open access and the capacity

reaches the maximum.

cell will drop if ρki continuously increases, since the data rate of its owe subscriber

decreases with ρki in open access mode. Therefore, the best strategy for small cell

BS is to terminate at ρc.

5.3.2 The pay-off of the MU

The mobile devices have two main targets: (1) meeting certain wireless service

requirement, (2) slowing down the battery draining, which leads to a rate con-

strained energy saving problem.

When MU does not hand over to the nearby small cell BS, the transmit power

should satisfy:

RT
Uk

= log2

(
1 +

pckhk0

σ2 + I0

)
, (5.9)
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where RT
Uk

is the target rate. Here I0 is the aggregated interference at the macro-

cell receiver.

On the other hand, if the MU is informed that it can join the small cell,

it will evaluate the performance gain after hand-over. Assuming that the tar-

get rate keeps unchanged when accessing certain service, the estimated power

consumption pok should satisfy:

RT
Uk

= ρki log2

(
1 +

pokhki

σ2 + Ii

)
, (5.10)

where Ii is the potential aggregated interference at the small cells BS Bi. Ob-

viously, pok(ρ
k
i ) is a decreasing function of ρki . If Ii is bounded and known as a

prior, the MU can estimate the transmit power paired with the target rate af-

ter hand-over. Hence the energy consumptions before and after hand-over are

obtained.

The definition of the MU’s pay-off is either purely based on the transmit power

level or combined with other efficient functions, such as the one proposed in [59].

About the real time implementation, we just take the energy consumption into

consideration. The pay-off function formulation is given by:

πUk
= pck − pok − ǫ, (5.11)

where pck and pok represent the power consumption of user i to maintain the target

rate in closed or open access mode, respectively and ǫ is a small constant.

Based on equation (5.11), the MU will make a decision of two corresponding

actions: (1) Accept the offer of ρki if πUk
≥ 0, (2) Reject if πUk

< 0.

Remark : ǫ here can be considered as the compensation for cost of the energy

consumption during the hand-over and the negotiation procedure. When the

transmission time T → ∞, this energy cost can be ignored, so we can set ǫ = 0.

From another angle of view, since ǫ impacts the breaking of the deal, i.e., the

value ρc, it can be set as a parameter to adjust the pay-off gains distributed

between the small cell and the MU. If setting ǫ = 0, the capacity improvement

of small cell is maximized and the MU has no energy efficiency gain. Also it is
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easy to verify that when ǫ = pck − pok(ρ
total
i ) the MU gets the most improvement

of battery saving. Only if ǫ is set in this range, a successful deal between the kth

MU and ith small cell BS is enabled.

5.3.3 Discussion on Parameters

It is observed that the interference value of I0 and Ii are two key parameters

for MU to evaluate the performance before and after hand-over. However, in

practice it is trivial to measure I0. Since the MU knows its currently transmit

power, and whether the target rate Rk
T is reached can be directly obtained by the

feedback from the macro-cell BS, then the exact transmit power paired with the

target rate is ready to be obtained. Hence only Ii is needed for the MU to obtain

the expected power consumption after joining the small cell. Assume that Ii is

a random variable, and the aims to optimize the long term pay-off. Rewriting

(5.10) and taking the expectation we obtain,

E[pok(Ii)] = E[
(exp

Rk
T

ρk
i −1)(σ2 + Ii)

hki

] (5.12)

=
(exp

Rk
T

ρk
i −1)(σ2 + E[Ii])

hki

,

where E[·] denotes the expectation. Hence, the value of E[Ii] can be obtained

from statistic information, which can be approximately considered as the average

interference of small cell that Bi experiences. This value is maintained by each of

the small cell, and will be broadcast to the MUs together with the offered amount

of radio resources ρk.
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5.4 Multiple Small Cell BSs and Multiple MUs

Case

In previous section we analyzed the single BS single MU scenario. In practice we

face the communication systems that contain multiple small cells and multiple

MUs. For example, in the Scenario 2 of LTE release 12 networks [2], multiple

small cells are deployed densely in an area. In this case, the cross-tier interferences

at the small cell BS receivers are contributed by multiple users. However, a useful

assumption can be made is that no MUs co-exist in the same spectrum in the

mean time, which is based on the fact that most of modern mobile communication

standards assigns orthogonal frequency band to users.

The capacity of the ith small cell BS in closed access mode interfered by

multiple MUs is given by:

Cclose
i =

∑

k

λk
i log2

(
1 + γk

i

)
+ (1−

∑

k

λk
i ) log2

(
1 + γ0

i

)
, (5.13)

where λk
i is the portion of spectrum overlapped with kth MU. Thus

∑
k λ

k
i ∈ [0, 1]

and λk
i ≥ 0, the case λk

i = 0 implies there is no spectrum overlapping and no

interference is generated. The BS can easily obtain the portion of interfered radio

spectrum by counting the number of interfered resource blocks in an OFDMA

based communication system.

5.4.1 A Two-Sided Many-to-One Matching Market

In the multiple small cells multiple MUs scenario, each small cell BS temporarily

admits the MU as its subscriber to eliminate the interference. This problem can

be modeled as the two-sided many-to-one matching market, which is also known

as the stable admission market. In this market, a set of students (or, in our model,

the MUs) applies for a set of universities (or, in our model, the small cells), each

of the MUs can choose only one small cell to join and each of the small cells only

has limited vacancies, or quota. Note that in our model, the quota is not a fixed
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number but a portion of spectrum ρk which changes with the network topology.

This means if one interfering MU presents or leaves, the value of ρk should be

updated correspondingly.

Definition 5.2. The small cell selection market is defined as (two sided many-

to-one) matching market GM1 = {U ,B,≻}, in which U is a set of MUs, B is a

set of small cell BSs, and ≻ is the preference of each MU (or small cell BS) over

the small cell BS (or MU).

In above definition, the M(·) denotes ’be matched to’. For example, M(i)

denotes all the MUs access the small cell BS i. An important property of a

matching M is the stability. We refer the term ’m-stable’ as the stability of a

matching. In other parts of the thesis there are concepts of stability in coalition

game, and the meanings are essentially different from that in matching, so here

we use the specified term m-stable to describe the stability concept in matching.

Definition 5.3. A matching M between U and B is said to be m-stable if it can

not be strictly improved by any of the player or pair.

The above definition implies that, if we say a matching between an MU Uk and

a small cell i is stable, then Ui or Bi can not improve their pay-offs by matching

to another partner Bi′ or Uk′ .

Each of the members in U should build a preference order towards B, and
vice versa. We denote the preference order of the MUs as R

b = Rb
k, k ∈ U ,

and the preference order of the small cell BS as R
u = Ru

i , i ∈ B. The rank in

preference Rb
k is determined by the interference level caused by the MUs. The

rank in preference Ru
i is determined by the amount of spectrum the small cell BS

will to share. For MU Uk, its preference is a rank of the small cells, we denote

riUk
as the label of rank order, then we have,

Rb
k =< r1k, ..., r

N
k > (5.14)

For example, if r1U1
= B2, r

2
U1

= B1, then we say B2 is preferred to B1 by U1, and

B2 is the most preferred small cell.
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We design a matching algorithm to pair the small cell and the MUs.

Algorithm 5.1: A Matching Algorithm

1 Initialization:

a) Each small cell BS i measures λk
i and γk

i , to calculate ρki . For a small

constant δ, calculate ρk′i = (1− δ)ρki , as well as the corresponding

preference Ru
i .

b) Each MU Uk inquires the ρk′i from the small cell i to calculate its pay-off

πUk
followed up by the preference Rb

k.

WHILE: at least one MU has not been admitted by a small cell,

a) Denote the set of MUs who prefer to access BS i as {Ũ1, · · · , Ũn}, i.e.,
r1
Ũ1

= · · · = r1
Ũn

= i, and Ũ1 ≻i · · · ≻i Ũn. The corresponding radio

resources are written as {ρ̃1i , · · · , ρ̃ni }. Suppose there is a positive number

m satisfying 1 ≤ m < n,
∑m

j=1 ρ̃
j
i ≤ ρtotali and

∑m+1
j=1 ρ̃

j
i > ρtotali . Then the

small cell picks the first m MUs according to the preference order Ru
i , and

rejects the rest.

a) Each of the MUs Uk received a reject acknowledgment removes i from its

preference list Rb
k, then goes to step 2-a).

The proposed algorithm is a modified version of the deferred acceptance al-

gorithm in [55], which gives the stable and optimal solution of the matching. We

sketch the proof of this property as follows: Suppose a small cell i accepts a set

of MUs ni in the matching results. According to the step in proposed algorithm,

any of the MUs Uk in ni should be strictly preferred by the small cell i than any

other MU Uk′ which is not in ni. Otherwise the match between small cell BS i

and the MU Uk will not be stable. Therefore, we say that there are no more MUs

other than ni that is preferred by the small cell BS i. On the other hand, there
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is no more other small cell BS j which is preferred by the MU Uk than small cell

BS i, otherwise, the MU Uk will send the request to small cell BS j other than

small cell BS i. From the two points listed above, we can say that the matching

result obtained by the proposed algorithm is m− stable.

The implementation of the deferred acceptance algorithm requires a time block

for the MU admission. In each iteration, each MU will at most send K applica-

tions to the small cell BSs, in case that before it is rejected by the N − 1 BSs

before being admitted; and in worst case, each MU will send request to N − 1

BSs and be rejected by all of them, hence for total K MUs the complexity of the

proposed algorithm is given by O(KN).

5.4.2 A Sequentially Joining Algorithm

A two-sided one-to-one matching market model requires each of the players at

both sides to collect the global information. Furthermore, as illustrated in Figure

5.1, the small cell may not necessarily assign ρki to the MU Uk, since the MU may

agree to join small cell i at a point ρki which satisfies ρki ≤ ρki . If we assume that

each small cell BS is rational and selfish, then we can easily illustrate that every

small cell expects other small cells to accept the interfering MUs, since in this

case the interference is eliminated and it will not cost its own radio resources.

In the small cell and MU matching algorithm in subsection 5.4.1, to build the

preference order Ru
k over the MUs, the small cell BS i should contact each of the

MU Uk to obtain λk
i and γk

i , and the MU Uk needs to inquire ρki from each of the

small cell BS i. However sometimes it is impractical for the small cell to find the

exact interference sources.

In this subsection, we propose an algorithm that enables the MUs to make the

decision autonomously on selecting the small cell. The framework of the proposed

algorithm builds on the Stackelberg game, in which the small cell BS avoids to

gather the global information. Furthermore, as the leader of the game, the small

cell BSs control the game play and try to maximize their own pay-offs. Let us
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impose the following policies to the proposed algorithm first:

a) The MUs join the small cells sequentially. Since once an MU leaves its home

network and joins a small cell, the network topology as well as other param-

eters (e.g., the resulting interference, the amount of bandwidth each small

cell wants to share) are changed, hence an updating of these information is

required.

b) The MUs who make the decision to join a small cell will not change their

decision until it leaves this small cell. The MU always chooses the small

cell whose offer maximizes its pay-off, and its target data rate is satisfied,

so it does not have any motivation to change the decision.

c) The MUs can not hand-over from one small cell to another small cell, i.e.,

they first leave the current small cell and go back to its home network, then

join other small cells if necessary. This is because the MU is controlled

by the BS of its home network, hence each move will be approved by the

macro-cell BS.

The implementation of the sequential joining algorithm requires a dedicated

channel for the broadcast of current bandwidth offer, which will not scale with

the number of mobile nodes. In each iteration, there are at most N BSs should

be coordinated to broadcast the bandwidth offer, and there are at most K MUs

are accepted in each iteration, therefore the complexity is O(KN).

Since the network status changes when MUs sequentially join the small cell,

the resulting algorithm works in an iterative manner. In each iteration, the

problem becomes one MU to pick the favorable one to join from many candidate

small cells. Hence, we propose a parallel updating algorithm that directly solves

this problem based on matching theory [55]. The proposed algorithm is designed

based on the following propositions.

Proposition 5.1. : The small cell can always provide a ’clean’ spectrum for the
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accepted MU, and the shared spectrum only depends on the parameters of the MUs

being considered. Here ’clean’ stands for no interference from other MUs.

Proof: When the offered ρki is from the clean spectrum, the maximum

spectrum for establishing the agreement between small cell BS and lth MU satisfies

C
open
i = Cclose

i , which means:

∑

k

λk
i log2

(
1 + γk

i

)
+ (1−

∑

k

λk
i ) log2

(
1 + γ0

i

)
(5.15)

=
∑

k∈K\l

λk
i log2

(
1 + γk

i

)
+ (1−

∑

k∈K\l

λk
i − ρli) log2

(
1 + γ0

i

)
,

which can be simplified as:

−λl
i log2

(
1 + γ0

i

)
+ ρki log2

(
1 + γk

i

)
+ λl

i log2
(
1 + γk

i

)
= 0, (5.16)

therefore, we obtain the maximum portion of spectrum resource that can be

shared to lth MU,

ρli = λl
i

[
1− log2

(
1 + γl

i

)

log2 (1 + γ0
i )

]
. (5.17)

It is obvious that γ0
i ≥ γk

i > 0 such that 0 < 1 − log
2 (1+γl

i)
log2 (1+γ0

i )
< 1, which implies

ρli < λl
i. When the lth MU shifts from the macro-cell to the small cell, the λl

i

spectrum of the small cell is no longer being interfered. Therefore, the small

cell BS can always provide enough ’clean’ spectrum to the accepted MUs, which

completes our proof.

Proposition 5.2. The total available spectrum resource ρtotali can be calculated

directly by the small cell BS, without separately considering each MU’s interfer-

ence in each sub-band.

Proof: The maximum possible ρtotali offered by the small cell BS should

satisfy the following equation, where all the interfering MUs are assumed to be
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accepted by the current small cell BS:

∑

k

λk
i log2

(
1 + γk

i

)
+ (1−

∑

k

λk
i ) log2

(
1 + γ0

i

)
(5.18)

= (1− ρtotali ) log2
(
1 + γ0

i

)
,

which is followed by:

ρtotali =
∑

k

[
λk
i

(
1− log2

(
1 + γk

i

)

log2 (1 + γ0
i )

)]
. (5.19)

Recall the result of equation (5.17), we obtain:

ρtotali =
∑

l

ρli. (5.20)

Therefore, instead of considering the MUs one by one, it is equivalent to calculate

the overall possibly offered spectrum directly.

Now we are ready to develop our dynamic access strategy selection algorithm

for the general case. Figure. 5.1 implies that the small cell BS may potentially

get a better pay-off if it increases ρ from a small value. Proposition 5.1 and 5.2

show that the small cell BS can determine its maximum amount of resources to

share without regard the individual MU. Hence, we can design an algorithm that,

the small cell BS Bi gradually increases and broadcasts the amount of resources

ρi it is willing to share, and the MUs who satisfy with the offer sequentially join

the small cells.

Let us provide Algorithm 5.2 as follows.

The Algorithm 5.2 update the ρ in a synchronized manner, i.e., the small cell

BSs offer the same ρ at the same time. This ensures the fairness between the

BS, while ensures the MU to always join its most preferred BS if available. If

the increasing of ρ is small enough, there will be at most one MU with pay-off

improvement joining one of the small cells in an iteration. Once an MU joins a

small cell, it will no longer be considered for succeeding iterations. Therefore,

the convergence of the proposed algorithm is guaranteed. However, ρ may be set
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Algorithm 5.2: Dynamic Access Strategy Selection Algorithm

1 Initialization:

a) Set the offer of spectrum as ρ = 0.

b) Set ζ to be a small positive constant.

WHILE at least one MU are not admitted by the small cells

a) At iteration t, the small cell BSs update spectrum budget

ρi(t)
total = 1− Ri(t)

log2 1+γ0

i

.

b) All small cell BSs broadcast current offer ρ(t). If current offer

ρ(t) > ρtotali (t). The ith small cell BS is kicked out.

c) MUs perceive ρ and calculate πUk
(Bi). If πUk

(Bi) > 0, and

πUk
(Bi) > πUl

(Bj). ∀k, l ∈ K, l 6= k and i, j ∈ N , j 6= i then let Uk connect

with Bi.

d) Update network topology and ρ(t+ 1) = ρ(t) + ζ. If ∀i, ρ(t) > ρtotali (t)

BREAK
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larger to reduce the interaction times. In this case the macro-cell BS may choose

multiple MUs based on its preference order.

In standard Stackelberg game, the leader is assumed to know the pay-off

functions of all followers. It decides the best action in advance by predicting

the reactions of the followers. However, in the two-tier network, there is limited

information from the MUs. Therefore, small cell BSs consider the MUs with

equal possibilities to accept or reject it. It is worthless to discuss the latter case

since no change occurs. For the former case, the small cell achieves a pay-off gain

πi
SBS(ρ), which is decreasing with ρ. Therefore by backward deduction, the small

cell BS is willing to choose the smallest amount under the current budget. Then

an iterative way of increasing ρ for it to find the deal point is a good choice. It

starts betting from a small value of ρ, then increases it gradually until accepted

by one MU. It keeps increasing the offer to attract more MUs unless running out

of the budget. This is the motivation of using an iterative way in algorithm 5.2.

It helps reducing the complexity especially when there are many small cell BSs

and MUs.

5.5 Numerical Results

In this section, the increasing trend of the interference level against the amount of

spectrum the small cell BS granted is shown under the single small cell BS/single

MU scenario, followed by the multiple small cell BSs/multiple MUs case which

illustrates how the proposed approach can be beneficial to both the small cell and

MUs.

The simulation carries out on a system contains of 3 small cell BS and 6 MUs.

The target rates of MUs are set between [0.1, 0.5]. The link gain between the

corresponding SU and small cell BS is hii = 1, between the kth MU and macro-

cell BS is gk0 = 0.01 and the link gain between the MUs and nearby small cell BSs

are set in the range of [0.6, 1.0]. The overlapped portion of spectrum satisfies
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∑
k λ

k
i ≤ 1, λk

i ≥ 0. The background noise variance is σ2 = 1. The cross/co-

tier interferences power at the macro-cell BS and ith small cell BS receivers are

assumed to be bounded to 1.

Here the choice of parameter follows these assumptions: (1) the channel gain

between the MCU and the HBS is much better than which between the MCU

and the MBS. (2) the spectrum utilized by the MCU overlaps with the small cell.

Hence, in any of the following scenarios the dynamic accessing mode selection

is not needed: (1) the MCU travels into the small cell using a totally difference

sub-band, hence it won’t hurt the performance of the small cell and the small cell

has no willing to let it hand-off. (2) the MCU satisfies with the receiving SNR

to the MBS, which implies its channel gain to the MBS is not much worse than

that to the HBS.

Figure 5.2 shows the performance of the two-sided matching algorithm. We

vary the value of δ to investigate the impact of the pay-off to the coalition for-

mation. It is observed that, when δ is zero, the MU achieves its best pay-off,

since the small cells give their best offer about ρki . However, the pay-off sum of

the small cell network is not zero. This observation reflects an interesting fact

that, when MU Uk is admitted by the small cell i, the small cell i is at least not

worse-off, and other small cells {−i : j ∈ −k, λk
j 6= 0} will be better-off. Further-

more, we see that when δ goes large, the pay-off sum of the small cells increases

while that of the MUs decreases. Therefore we can conclude that algorithm 5.1

maximize the pay-off of MUs without the parameter δ. However, we can assign

more pay-off to the small cells by introducing δ.

Figure 5.3 shows the increasing trend of the agreed ρki against the target rate

of the MU. On one hand, higher target rate requires the small cell to offer more

spectrum, and on the other hand, higher target rate makes the MU transmitting

at a larger power, which results in a larger interference to the small cell BS

receiver. Therefore the small cell is willing to offer more spectrum to compensate

for the capacity loss, which coincides with the common sense.
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Figure 5.2: The pay-offs against δ.

δ adjusts the pay-offs of small cells and MUs.
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Figure 5.4: The dynamic of algorithm 5.2.

As the amount of offered spectrum
∑

ρki grows, more interfering MUs would

like to join the small cell BS while the sum capacity of small cells increases for

elimination of interference sources.

Figure 5.4 shows the dynamic of the sequentially joining algorithm. As the

offered
∑

ρki grows, the candidate MUs sequentially join the small cells, while

the sum capacity of small cells increases. As shown in the blue solid curve, the

number of MUs linking to the macro-cell BS decreases with
∑

ρki . Meanwhile,

the sum capacity of small cells increases, as illustrated by the red star curve. The

dash line as a comparison is the small cell BS’s capacity under closed access mode.

Obviously, the proposed algorithm guarantees that the sum capacity gained by

the small cell BSs is improved by smartly choosing the open access mode. It can

be observed that there is a great capacity increase for open access in an multiple

small cell BSs/multiple MUs scenario. Because in this scenario, one MU may

interfere multiple small cell BSs, therefore eliminating one interfering MU may

be beneficial to multiple small cells.
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Figure 5.5: A trade-off between small cells and MUs.

ǫ adjusts the pay-offs of small cells and MUs.

Figure 5.5 shows how ǫ affects the pay-offs of small cells and MUs. The pay-off

sum of small cells decreases with ǫ while the pay-off sum of MUs increases with

ǫ. Hence, apart from compensating the energy consumption for cooperation due

to signaling and communicating, the ǫ can also act as a parameter which controls

the trade-off between the small cells and the MUs.

5.6 Conclusion

In this chapter, the choice of access strategy in small cells is investigated. Based

on the Stackelberg game formulation, both the small cells and MUs can improve

their performances by making smart choices to the access strategies. Our simple

distributed algorithm requires no inter-cell coordination. The proposed approach

guarantees the capacity gain of the user-deployed small cell in open access mode.

Furthermore, the overall benefits can be flexibly balanced between the capacity

gain of small cells and the energy efficiency gain of the MU devices by adjusting

the objective functions. It is also worth considering in the future that if there is
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information available to determine the probability of MU to join the small cell

with respect to the amount of spectrum the small cell is willing to grant, which

will result in a different algorithm design.

The analysis of proposed schemes is based on the assumption that, all the

small cell BSs update the bandwidth offer in a synchronized manner. However,

if no coordinator presents to synchronize the bandwidth offer, i.e., each of the

small cell BSs update their bandwidth offer asynchronously, the sequential joining

algorithm are invalid due to the fact that the MUs may will to wait for better

offer. In this case only the two-side matching algorithm can be used.





Chapter 6
Coalition Formation Game for D2D

Carrier Aggregation

6.1 Introduction

The device-to-device communications which enable the nearby mobile devices

communicate directly without relaying by the BS, is a promising technique for

improving the capacity of the mobile networks [21]. Nowadays the demand for

proximity communications, for example, the media sharing or social network

based applications [1], grows fast. The driving force behind this phenomenon is

the rapidly growing density of mobile devices , which increases the chances of local

communications within a cell range. The short range D2D communications reduce

the signal attenuation due to propagation loss, which subsequently improves the

quality of service, such as the transmission latency, the network spectral/energy

efficiency, and traffic load of the BS. However, some fundamental problems occur

when the D2D communications are enabled in the cellular networks.

- The D2D devices discovering problem. [20]

- The accessing mode selection problem. [49]

- The resource allocation problem. [21]

127
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In [21][49], the authors proposed a spectrum sharing model between the D2D

network and the cellular network. These approaches incorporated the cross-layer

coordination between the D2D network and the cellular network, which required

centralized control at a significant cost when the network size becomes large. The

authors in [21] considered that the D2D devices transmitted in the cellular uplink

slot only to avoid the interference to nearby cellular devices. However, their ap-

proach limited the chances of D2D transmission since the spectrum reuse among

D2D links is missing. In [79], spectrum sharing in both uplink and downlink was

taken into consideration, wherein the transmit powers of cellular and D2D links

are jointly optimized. However, precise synchronization is required in their con-

sidered Time-Division Duplex (TDD) based cellular network, and the D2D device

should jointly perform the optimization with BS and cellular devices, which in-

troduces considerable communication overhead for information exchange. Most

of the previous work [21] [49] [79] considered the spectrum sharing between the

cellular and D2D networks. An alternative way is to separate the spectrum of

the cellular and D2D network to avoid the cross-tier interference, but seek for

the spectrum reuse between the D2D links. Since the D2D communications are

occurred randomly, static spectrum assignment may not be efficient. Therefore,

dynamic model using game theoretical tools to deal with D2D communication

problems has been proposed in [63]. They expand the D2D communication con-

cept to two categories: from direct link (D2D-direct) to D2D local area network

(D2D-LAN), and analyze the two categories using Stackelberg/Auction game and

coalitional game respectively.

The spectrum allocation scheme should catch the dynamic of D2D communi-

cations to avoid the inefficient allocation. The study of D2D communication can

also be applied for content distribution between end users. In [83], the authors

proposed a social-aware D2D network for multiple media content distribution.

They establish the physical layer model based on exploring the social behavior

of individual users and make the highly active users be the agent to help to
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distribute the content, which achieves the goal of off-loading the burden of the

cellular network.

There are some similarities between the D2D networks and the ad-hoc wireless

networks, which have been well studied in literature [24][75]. However, the devices

in the ad-hoc networks are totally isolated with each other, therefore they behave

non-cooperatively. In contrast, the D2D devices are also cellular subscribers of

the BS, it is natural for them to be coordinated via the cellular infrastructure.

The D2D devices are cellular subscribers when they transmit via the BS, or they

are the D2D users when they communicate directly.

Essentially, the demand for D2D communication is to further improve the

spectrum efficiency. Hence the spectrum usage becomes a key issue in this topic.

The D2D communications can occur in a dedicated spectrum, which is subtracted

from the cellular spectrum to avoid cross-tier interference to cellular users; or it

will use a shared spectrum together with the cellular user. In the first case, the

devices paired for D2D communications compete for limited spectrum resources,

hence it can be modeled as a multiple accessing problem. In the second case, to

address the interference towards the cellular user is an significant problem. For

both cases, we can get some light from the previous literature which consider the

multiple accessing and interference management in mobile ad-hoc networks and

cognitive radio.

The concept of mobile ad-hoc networks has been developed for a couple of

years and has been applied in various techniques, such as the Bluetooth, NFC

and WiFi. There are many similarities between the mobile ad-hoc network and

the D2D communications. (1) The links between devices are both established on

demand. (2) The link between devices are established autonomously. (3) The

devices communicate with each other directly without central stations. However,

they are also different in many aspects. (1) The existing technique requires man-

ually triggering to start communication, such as the pairing in Bluetooth. The
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D2D communications are aided by the base station under certain network proto-

cols, which is usually transparent to users. (2) The mobile ad-hoc network usually

operates on the unlicensed spectrum while the D2D communications operates on

the cellular spectrum. (3) The D2D communications can provide services with

much more distances (in-cell communication up to 1km comparing with less than

100m of mobile ad-hoc services).

In current cellular networks, the communications between mobile devices are

fully controlled by the BSs. Enabling the D2D communications sacrifices the cen-

tralized coordination in exchanging better performance. However, it may cause

unpredictable interference and collision between the cellular users and the D2D

users. Further more, it is more interesting to investigate that the nearby D2D

devices can coordinate their radio resources to achieve better performance.

In this chapter, we focus on improving the spectral efficiency in D2D com-

munications. In fact, it is worth to consider that the D2D links would further

extend their transmit rate by performing the carrier aggregation (CA). The CA

is a technique which enables two or more sub-bands to be aggregated for high

data transmission, which already has been used in LTE-Advanced between the

cellular subscribers. In the proposed scenario here we assume that the D2D links

can also benefit from the performance improvement by carrier aggregation. After

carrier aggregation, the spectrum bandwidths of D2D links are widening and the

cooperation can be further achieved by cooperatively sending and receiving sig-

nals. We shall utilized the coalitional game to study the cooperative interaction

between the D2D links. In a coalitional game, the D2D links are players who

seek to improve their performance by forming coalitions. The coalition formation

process contains a series of decision making and negotiation steps based on the

channel information and the interactive actions among D2D links.

However, whether a coalition can be successfully formed relies on whether

the D2D links satisfy with the pay-offs they obtain from this coalition. The

pay-off depends not only on channel information but also the action of other
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players. Some times the behavior of another D2D link is not well known or

predictable. For example, the request for cooperation may be rejected by other

D2D links or other D2D links in the same coalition behaves maliciously. In

other words, the D2D links only have limited knowledge about other D2D links,

which is referred as imperfect information. The imperfect information will cause

uncertainties when D2D links make their decisions. Generally speaking, there

are two kinds of uncertainties, 1) the internal uncertainty means the D2D links is

uncertain about its own action, 2) the external uncertainty means the D2D link

is uncertain about other one’s action [15]. It is tricky for the D2D links to predict

their pay-offs under these uncertainties. In [12] [13], the authors introduce the

coalition formation game built on the imperfect information. In the Bayesian

coalition formation, each of the player maintains a belief about other players,

based on this belief they take optimal actions to maximize the expected pay-

off. To the best of the authors’ knowledge, this is the first work considering the

carrier aggregation between D2D links via the Bayesian coalition formation game

approach.

6.2 System Setup

We consider a cellular network where the D2D communication is enabled, as illus-

trated in figure 6.1. The mobile devices are enabled with the D2D communication

abilities, which means they can shift between the cellular and D2D modes. In

cellular mode, the source and destination nodes of a transmission pair transmit

and receive signal through the BS. In D2D mode, they communicate directly with

each other. In this chapter, we assume the D2D link has already been established,

i.e., the source node has already selected the D2D mode and handshake with the

destination node. Then we only consider the transmission control problems, i.e.,

we consider the resource allocation and performance improvement problems.

We denote the set of D2D links as D = {D1, D2, ..., DK} and its cardinality is
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Table 6.1: The Notations

C a coalition

bk the belief vector of D2D link Dk

τk the probability of Dk requesting help form others

ςk the probability of Dk refusing to help others

Rk,k′ the sum rate of carrier aggregation members Dk and Dk′

rk the target rate of Dk when performing high-data rate task

rk the lower bound of the average data rate

E[rk,k′ ] the expected rate of Dk when aggregating carriers with Dk′

δk the degree of dissatisfaction of Dk with current coalition

ηk probability of Dk to experimentally leave current coalition

αk the memory parameter

b̃(t)k,k′ the estimated belief in time slot t

g̃k,k′ the channel gain of source node of Dk to the destination node of Dk′

λSk
the pay-off division factor for ULS Sk in sub-band m

πk,k′ the pay-off obtained by Dk when aggregating carriers with Dk′

Figure 6.1: A cellular network with the D2D communication enabled.
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|D| = K. One D2D link contains two mobile devices who communicate directly

with each other. We assume that the radio resource has been orthogonally di-

vided between the cellular and the D2D network, hence the interference issues are

omitted. The problem falls into how to efficiently coordinate the radio resources

among the D2D links. Each of the D2D links is assigned by the BS an exclusive

spectrum for transmission. The radio resource could be in the form of frequency

bands or resource blocks, depending on the multiplex mode. We disregard the

frequency selective fading so the D2D links have the uniform preference towards

different frequency bands. The duplex mode of this D2D link is assumed to be

TDD. Thus in one time slot, there is only single direction transmission within a

D2D link.

We consider the cooperation between the D2D links is performed pair-wisely

and without the help of the BS, which means the D2D links autonomously iden-

tify and negotiate with the potential collaborator to form the coalition. The

improvement in performance using coalition formation is promising. With the

help of carrier aggregation, the available bandwidth for each cooperative D2D

link is increased. Furthermore, by forming virtual MIMO channel, the sum rate

is further improved to the theoretical limit [64]. To achieve effective cooperation,

the basic information such as the mutual channel gain should be measured by the

D2D link via signaling. However, for the non-predictable and measurable param-

eter, such as the transmitting behavior, each of the D2D links maintains a belief

- which can be considered as a private measure of the statistical distribution of

the transmitting behavior - about the other D2D links. The belief of Dk towards

other D2D links is defined as:

bk = [bk,1, bk,2, ..., bk,K ], (6.1)

where bk,j is the probability that the D2D links Dk ’believes’ Dj will refuse to

cooperation with him.
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6.3 Problem Formulation and Analysis

Each D2D link Dk is assigned an exclusively occupied sub-band ρk and we allow

the D2D links to aggregate their spectrum for better performance. We define

the D2D links who aggregate their carriers as a coalition, and hence the carrier

aggregation problem becomes a coalitional game. We first give the definition

about the coalitional game.

Definition 6.1 ([51], chapter 9). A coalition C is a non-empty sub-set of the set

of all players K, i.e., C ⊆ K. A coalition of all players is referred as the grand

coalition K A coalitional game is defined by (C, v) where v is the value function

mapping a coalition structure C to a real value v(C). A coalitional game is said

to be super-additive if for any two disjoint coalitions C1 and C2, C1 ∩ C2 = ∅ and

C1, C2 ⊂ K, we have,

v(C1 ∪ C2) ≥ v(C1) + v(C2). (6.2)

Given two coalitions C1 and C2, we say C1 and C2 overlaps if C1 ∩ C2 6= ∅.

Obviously, the supper additive condition is not always feasible in the proposed

problem. For example, as discussed in [58] and [71], the cost for coalition would

increase when the distance between mobile devices increased, therefore the grand

coalition formed by all D2D links are naturally not stable. Hence, in this chapter,

we focus on a special coalitional game which is the coalition formation game. In

such a game we focus on finding the stable partition of the grand coalition, i.e., a

stable coalition formation structure. More specifically, we assume that the D2D

links perform simple pair-wise cooperation because lack of central coordinator,

which means each of the coalitions contains at most two member players. The

disjoint coalition is denoted as Cl with cardinality |Cl| ≤ 2, which satisfies Cl ∩
Cn = ∅, ∀l 6= n and

⋃L

l=1 Cl = D. The number of coalitions L depends on the

coalition structure. Given the total number K of D2D links, there are in total
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BN possible divisions of the grand coalition, where:

BN =
2∑

k=0

(
N − 1

k

)
Bk. (6.3)

6.3.1 Coalition Formation Game

In practical system, the data rate requirement of the D2D linksDk is not constant,

which may change from time to time. More specifically, we assume that the D2D

links are occasionally transmit in high data rate, in this case it will request the

help from the peer in same coalition for the transmission.

1) Low data rate. In this case, both D2D links transmit at low data rates.

The sum rate achieved by carrier aggregation is equally divided between

the two D2D links.

2) High data rate. In this case, one or two D2D links transmit at high data

rate. The D2D link who demands high rate will request for help from the

peer player in the same coalition. We denote the demanded high data rate

of Dk as rk.

However, the high data rate request may not always be approved by the peer

player due to miss-behavior (i.e., refused to help) or conflict request (i.e., the peer

player also request high data rate). We denote the probabilities that Dkrequests

for help as τk and refuses to help the other player as ςk. We assume that Dk and

Dk′ are in the same coalition. Hence the sum rate achieved by virtual MIMO is

given by,

Rk,k′ = (ρk + ρk′)
∑

i=k,k′

log (1 + λipi). (6.4)

Considering the pay-off of Dk, there are the following cases.

1) Dk and Dk′ both run low data rate task. The achieved data rate of Dk is,

π1
k =

1

2
Rk,k′ . (6.5)
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2) Dk′ runs high data rate task and requests the help from Dk.

π2
k =

ςk

2
Rk,k′ + (1− ςk)(Rk,k′ − rk′). (6.6)

3) Dk runs high data rate task and requests the help from Dk′ .

π3
k =

ςk′

2
Rk,k′ + (1− ςk′)rk. (6.7)

4) Both Dk and Dk′ request help from each other, and collision occurs.

π4
k =

1

2
Rk,k′ . (6.8)

Note that in the above cases rk > 1
2
Rk,k′ , otherwise Dk or Dk′ does not need

to request any help since simply equally divide the achieved data rate can fulfill

their rate demand.

Then the expected data rate of Dk cooperate with Dk′ is given by,

E[rk,k′ ] = (1− τk)(1− τk′)π
1
k + (1− τk)τk′π

2
k + τk(1− τk′)π

3
k + τkτk′π

4
k. (6.9)

To calculate the expected pay-off in (6.9), the D2D link Dk must know the

probability of being refused ςk′ . However, this is a private parameter which can

only be estimated by others. We formally define the proposed Bayesian coalition

formation game as follows:

Definition 6.2. A Bayesian coalition formation game is denoted by G = (K, T ,B,v),

- Players: D = {D1, D2, ..., DK} is the set of players which are the D2D links.

- Types: The type set T = {T1, T2, ..., TK} specifies the transmission behavior

of the D2D links. Tk corresponds to real value {τk : 0 ≤ τk < 1}, which is

the probability that Dk refuses to help with others for their transmission.

- Belief: The set B = {b1, b2, ..., bK}. bk = [bk,1, bk,2, ..., bk,3] is the belief of

Dk about the types of other players.
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- Value: The real valued function v(C) defines the worth of a coalition C, and
the pay-off of the member players is a division of the value.

We assume that the D2D links are rational players, i.e., they try to choose

the optimal coalition to maximize their pay-offs. The cooperation between the

D2D links is achieved by the virtual MIMO technique, as it is shown to be the

upper bound of the capacity of the multiple access channel [64]. Note that the

virtual-MIMO requests the mutual information between the sources or between

the destinations is much higher than that between the sources and destinations

[71], i.e., the channel gains between the sources should be higher than the channel

gains between the sources and destinations. Furthermore, for distant nodes, the

high coalition cost tends to prevent them from forming coalitions [56].

We consider an equivalent 2-input 2-output channel which is constructed fol-

lowing the same line as [64]. We denote the channel gain of source node of D2D

link Dk to the destination node of D2D link Dk′ as g̃k,k′ , and the received inter-

ference power variance at Dk′ as σ2. We define gk,k′ as:

gk,k′ =
g̃k,Dk′

σ2
. (6.10)

The channel gain matrix of this 2× 2 virtual-MIMO channel is given by:

G{Ck∈Lm} =


 gk,k gk,k′

gk′,k gk′,k′


 . (6.11)

We denote the two non-zero eigenvalues of matrix defined in equation (6.11) as

λk and λk and λk ≥ λk.

The value of the coalition formed by two cooperative D2D links equals to the

sum rate in (6.4). It is proved in [71] that the pay-off division among coalition

members satisfies the proportional fairness [39], if the benefit allocated to each

member equals to its contribution to the overall rate, i.e.,

rk = (ρk + ρk′) log (1 + λkpk). (6.12)
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In this chapter, we focus on the analysis of the coalition formation and assume

that the transmit power of D2D links is constant. Hence the maximizing of the

sum rate relies on choosing the optimal λm
Sk
, i.e., choosing the optimal coalition

structure. Note that the transmit power can also be optimized based on some

criteria, for example the energy efficiency [48] [34] or interference constraint [37]

[82]. The Bayesian coalition formation game proposed in this chapter can be

easily extended to a hierarchical game to cover the power optimization problem,

which could be the future work.

6.3.2 Problem Analysis

The D2D links form coalitions to achieve high data rate transmission, hence

they has an expectation about the achieved data rate. This expectation can be

considered as a lower bound of the average data rate, which is denoted as rk. In

the other words, if a D2D link Dk requests for carrier aggregation, the rate after

forming the coalition should satisfy,

E(rk) ≥ rk. (6.13)

There may be multiple coalitions which satisfy (6.13). Hence Dk will choose

the most preferred to join, i.e., Dk evaluates its interest toward the potential

coalitions based on its preference order.

Definition 6.3. A preference ≻Dk
specifies a preference order of Dk towards two

coalitions, i.e., if C1 ≻Dk
C2, we say C1 is preferred to C2 by Dk.

The D2D link will choose the coalition following the best reply rule, which

means the preference order over different coalitions is evaluated by the expected

pay-offs obtained from these coalitions.

C = arg max
mathcalC

πDk
(C). (6.14)

Furthermore, we assume that the D2D links can do experiment to leave cur-

rent coalition and join a new one, even if the predicted expected pay-off after
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joining the new coalition is smaller. Enabling the experiment during the coali-

tion formation gives each D2D link more chances to contact others, hence it helps

them to build more reliable beliefs. We call this modified best reply rule as best

reply with experiment. However, introducing the experiment will increase the con-

vergence time of the belief updating process. In one time slot Dk can leave and

join only one coalition, hence it only updates the belief about only one D2D link.

When the number of D2D links increases, the convergence time of the Bayesian

updating algorithm grows exponentially.To accelerate the convergence of coalition

formation, we define the degree of dissatisfaction (DoD) δk which characterizes

the possibility that Dk leaves the current coalition. The degree of dissatisfaction

is constructed as,

δk = er
H−E(rk). (6.15)

We define the probability of doing experiment ηk as a function of δk,

ηk =





δk, if δk ≥ ǫ

0, otherwise.
(6.16)

The ǫ is a small constant. The above equation implies that if the DoD is less than

ǫ, then the D2D links is considered as ’fully’ satisfied and will not perform any

experiment. Furthermore, the possibility of doing experiments if the achieved

data rate is high.

Each D2D link maintains a belief vector of other D2D links about the prob-

ability of requesting high data rate. We denote an indicator xk′,k(t) ∈ {0, 1},
where xk′,k(t) = 0 means Dk′ agrees to help Dk at time t, while xk′,k(t) = 1

stands for refuse. We assume that the D2D links are myopic so they just consider

the current state and the belief is obtained using the following equation,

b̃k,k′ =

∑
u∈1,...,t xk′,k(u)

t
, (6.17)

where
∑

u∈1,...,t xk′,k(u) is the number of times Dk′ refused to help Dk in the

previous t time slots. Then the belief is updated as follows,

bk(t) = αkbk,k′(t− 1) + (1− αk)b̃k,k′. (6.18)
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The estimation of individual pay-off requires the knowledge of the existing

coalition structure. The D2D device communicates with the D2D coordinator

to obtain the current coalition structure S. The D2D links need to know the

utilities in every possible coalition to make a decision to join or not. Furthermore

, we assume the D2D links are individual rational, therefore they will only join a

coalition to improve their own pay-offs.

By considering the power consumption on the sensing and negotiation during

the coalition formation, we define the pay-off function of a D2D link as follows,

πk,k′ = E[rk,k′ ]− ϑpTd
n
k,k′ , (6.19)

where ϑ is the cost factor, ptd is the receiving power threshold for decoding the

information exchange data package, and dk,k′ is the distance between the source

nodes of Dk and Dk′ . The cost function reflects the fact that, the extra power

consumption for cooperation increases with the distance between two member

players. Since ptd is fixed, then the transmit power ps for interference exchange

depends on channel condition. In most of the cases, the channel gain is a de-

creasing function of distance dk,k′ . If taking the simplest path-loss model, say

ptd = ps
dk,k′

, where n is the path-loss component, we get the cost term in (6.19).

Obviously, bad channel condition of the signaling channel will prohibit signaling

or make it consume much power. Under the path-loss model, the power con-

sumption cost can be mapped to the distance between the D2D pairs, and the

geolocation information can be obtained with the assistance of base station.

Here the cost for coalition depends on the distance ϑdk,k′ . This kind of linear

cost functions are also adopted in [6] [58]. The establishment of (6.19) reflects

an interesting trade-off of joining in a coalition for D2D links. The cost function

directly reflects the extra power consumption for coalition. Suppose there is a

threshold pT of receiving power to decode the information exchange data package,

then the transmit power ps of the signal varies with channel conditions. If taking

the simplest path-loss model, say pT = ps
dn
, where d is the distance between

the transmission nodes of D2D pairs and n the path-loss component, then the
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transmit power is a decreasing function of the distance. Obviously, bad channel

condition of the signaling channel will prohibit signaling or make it consume much

power. Under the simple path-loss model, the power consumption cost can be

mapped to the distance between the D2D pairs, and the geolocation information

can be obtained with the assistance of base station.

6.4 The Coalition Formation Algorithm

6.4.1 Coalition Formation Rule

In previous section, we have utilized the Virtual-MIMO technique to achieve the

cooperation between D2D pairs. Moreover, the parameter λk specifies how the

pay-off is divided between players in the coalition. Note that we seek to improve

both the sum pay-off of the coalition and the individual pay-off of the coalition

members. Hence, we say that if a player Dj prefers coalition C1 to C2, then its

pay-off will be strictly improved when joining C1 comparing to C2; and any other

players Di in C2 will at least maintain a pay-off better than the value before

Dj joining C2. Follow this rule, the preference order of Dj will follow the Pareto

efficient which is defined in[26]; i.e., there is no agreement that is better for player

Di and at least as good as any other player Dj. Mathematically, we define the

preference order based on Parato efficiency as follows:

Ck ≻i C
′

k ⇔





ui(Ck) > ui(C
′

k), ∀Di ∈ Ck,

uk′(Ck) ≥ uk′(C
′

k), ∀Dk′ ∈ Ck, i 6= j.

(6.20)

Following such order, whenever a player chooses to switch, it improves its

individual pay-off without hurting other players in the target coalition. This

assumption is practical in wireless network, since a larger spectrum may benefit

to all the D2D links. The switch rule is defined as:

Switch: Given a disjoint partition S = {S1, S2, ..., SL} of the set N , any D2D

link i ∈ N leaves his current coalition Sm and join another coalition Sn if and
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only if Sn ≻i Sm, ∀n,m ∈ {1, 2, ..., l}, n 6= m. Hence, {Sm, Sn} → {Sm\{i}, Sn ∪
{i}}. Our goal is to find a self-organizing approach wherein the D2D links form

the coalitions distributively. The framework of such a coalition formation game

includes three key ingredients: (1) the preference orders for comparing between

coalitions, (2) rules for either joining or leaving coalitions, (3) notions for accessing

the stability of a partition [5].

6.4.2 Coalition Formation Algorithm

The coalition forming coalition algorithm is presented and the convergence of

proposed algorithm is shown as follows.

Firstly, if given an infinitive number of iterations, obviously the belief will

converge to the true behavior. However, it is inefficient and unnecessary to make

the beliefs reach the exact value. Because the belief updating itself consumes

time, energy and bandwidth; too much belief updating overhead will dramatically

degrade the overall performance. Hence, in this chapter, we design the belief

updating algorithm allows the D2D pairs to build a big picture about the true

behaviors of others in a limited number of iterations, and how precise of their

estimations can be controlled by varying the value of DoD. More specifically, the

D2D pairs are more likely to settle down after a few iterations when DoD is set

high; and more likely to experiment more when DoD is set low.

Suppose there are K D2D pairs, and we consider the kth D2D pair Dk on its

belief updating. Initially the Dk keeps a uniform belief about the type of other

ones. After a few iterations, say iteration t, Dk will have a rough belief vector

b1(t), ..., bK(t). Now it chooses the one giving him the best pay-off, say D′
k, and

fortunately it is also preferred by Dk. Furthermore, the DoD is satisfied, then Dk

does not seek any opportunity to cooperate with anyone else. Hence, at last Dk

only obtains accurate belief about D′
k (and vice versa.), but avoids the burden to

obtain the accurate belief about all other D2D pairs.

Moreover, we have the following theorem.
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Algorithm 6.1: D2D Carrier Aggregation Algorithm

1 1) Sensing:

a) The D2D link Dk randomly choose a nearby Dk′ . Then it will sense the

necessary parameters (i.e., gk,j) to estimate the coefficients of

Virtual-MIMO channel.

b) After obtaining the parameters, Dk use (6.13) to validate if Dk′ worth to

pair. If (6.13) is true, go to Step 1-a), if false, go to Step 2-a).

2) Trial:

a) At time t, both the D2D links update the belief bk,j(t) using (6.18) based

on the knowledge that whether Dk′ helps to do transmission.

b) Then algorithm go to Step 1) in the following cases: a) If the result gives

that the expected pay-off π ≤ rH , then the corresponding D2D pair will

leave the coalition and make new trials. b) If the result gives that the

expected pay-off π ≥ rH , the D2D pair still has small chance η to do

experiment to leave the current coalition.

c) Step 2-b) is repeated until the |b(t)− b(t− 1)| ≤ ǫ and the coalition

formation structure is stable.
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Theorem 6.1. Suppose the belief of the D2D link converges, then the proposed

algorithm will converge to a final state containing a number of disjoint coalitions,

using the algorithm proposed in the previous subsection.

Proof : Given a fixed belief vector, the expected pay-off of any coalition is

readily to be obtained. Based on the switch rule, for any D2D linkDk, each switch

operation will strictly improve its pay-off by the definition of the switch order,

therefore, it has no incentive to revisit any of the coalition it has experienced

before. However, since each D2D link makes the choice independently, other

players’ switch operation may result in that Di revisiting an old coalition. In this

case, evenDi leaves this coalition again, it still has the risk to be brought back, i.e.

a risk to be trapped in a loop. Therefore we let the D2D link to keep the history

set of the visited coalitions for revisit prevention. Therefore it is guaranteed that

every switch operation of any player will lead to a new coalition status. Since

the number of partitions is finite and given by the Bell number, the proposed

algorithm will always reach a final partition after a number of turns.

The stability of a partition can be accessed by the concept of Nash-stable [11]:

Given a set of disjoint coalitions {Cl,∪lCl = D.}, which is a partition of the set

of all D2D links. If ∀Dk ∈ D, Ci≻Dk
Cj, then this partition is Nash-stable. This

definition implies that, in a Nash-stable partition, none of the D2D links has the

incentive to leave current coalition.

Proposition 6.1. The final partition result from the coalition formation algo-

rithm is Nash-stable.

Proof : Suppose that the final partition Sf is not Nash-stable, therefore there

exists a D2D link Di ∈ N and a coalition Ck ∈ S that satisfies Ck ∪ {i} ≻ SS(i).

Hence, a switch operation is available for Di, which contradicts to Theorem 6.1.

Consequently, any final partition resulted from the proposed coalition formation

algorithm is Nash-stable.

The implementation of the D2D carrier aggregation does not require a central

coordinator, since it is carried out based on pair-wise negotiation. If considering
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Figure 6.2: The capacity of the D2D network against the coalition cost δ.

there are no effective transmission during coalition formation, then the overhead

is contributed by the power consumption of information exchange when D2D pairs

negotiate with each other. However, because the exact time for belief convergence

can not be specified, we provide the complexity of the algorithm to illustrate the

possible overhead brought by the belief updating and coalition formation. In each

iteration of algorithm 6.1, each of the D2D pair will at most contact K1 others

for possible cooperation. There are hence the complexity of each iteration will

be O(K(K − 1)).

6.5 Numerical results

In this section, we present some experimental results to better illustrate the pro-

posed idea. In the setup, we assume that the D2D links are uniformly distributed.

Each of the D2D link constitutes a source node and a destination node. Since

D2D communications can be only performed between nearby nodes, we assume

the destination node locates randomly in a circle with a fixed radius (e.g., 100m)
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around the source node. The channel gain between two D2D direct links is as-

sumed to be g̃k,j =
g0
k,j√
dn
k,j

where g0k,j is the channel fading coefficient and n is the

path-loss exponent. We investigate the following three scenarios to illustrate the

performance of the proposed algorithm:

- Random pairing. The D2D links randomly chooses the peer to form the

coalitions.

- Bayesian coalition formation. The D2D links know imperfect informatioand

use the proposed algorithm for coalition formation.

- Non-cooperating. The D2D links do not perform carrier aggregation.

In figure 6.2, the curves show the pay-off sum of the D2D network in a fixed

area against the number of D2D links. The benchmark is the coalition formation

with perfect information. We observe that the trends of all three curves are

increasing, since the more D2D users the more chances they form the virtual

MIMO channels. The red line corresponds to the non-coalition case, here for

simplification we assume the transmit power and bandwidth are uniform for all

D2D links, so increasing the number of D2D links result in an linear growing of

sum rate. However, since the random paring scheme does not achieve the optimal

coalition formation structure, the resulting pay-off is relatively low compared with

the other two schemes. In contrast, we see that both the optimal and Bayesian

coalition formation schemes have achieved a high data-rate.

In figure 6.3, we investigate the impact of the coalition cost coefficient in the

proposed algorithm. We consider a D2D link acts alone as a singleton coalition

(i.e., a coalition which has only on member player). Therefore in figure 6.2, a

constant green line corresponds to the non-cooperative scenario, which can be

considered as a special case where all the D2D links form singleton coalitions.

Obviously ϑ has no effort on this scenario. In contrast, we observe a significant

increasing trend of the number of coalitions in the cooperative case when ϑ goes

large - which reflects the fact that, when the cost for cooperation ϑ goes high,
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the D2D links tend to not form coalitions. At the end we see that an extreme

high cost ϑ will prevent any coalitions other than the singleton coalitions to be

formed.

In figure 6.4 we compare the convergence performances of the proposed algo-

rithm with respect to different numbers of D2D links in a fixed area. It is shown

that the convergence time grows with the density of the D2D links. When the

density of D2D links grows, each D2D link may has more neighbors. Therefore,

it needs to spend more time to negotiate with others and learning their types.

6.6 Conclusion

In this chapter, we have proposed a Bayesian coalition formation game for D2D

carrier aggregation. We have developed distributed algorithm for the D2D links to
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optimally form pair-wise coalitions. The proposed algorithm requires no central-

ized control since the negotiation only happens between D2D links. Furthermore,

we investigate impact of the density of D2D links and the coalition cost to the

coalition formation process. The convergence and stability of the proposed al-

gorithm were proved. Furthermore, a significant performance improvement was

shown in the numerical result, especially when the D2D links were sparsely dis-

tributed. One of the limitations of this work is that the transmission power of

the D2D link is assumed to be constant, and in future work a joint framework for

both coalition formation and transmit power optimization will be presented. It

is also interesting to investigate more details about the connection between the

coalition cost δ and the physical parameters(e.g. power, spatial distribution) of

the D2D links. Furthermore, enabling the coalition to be overlapped is a more

challenging work.

The limitation of this work is that it only considers an isolated D2D network
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which avoids to deal with the interference management issue when considering the

spectrum sharing with cellular network. Furthermore, the proposed D2D carrier

aggregation scheme is suitable for the scenario that the status of D2D network

does change rapidly. For example, the multimedia content sharing among D2D

nodes in which the duration for data transmission are considerably longer than

the belief updating. In cased that the network status changes fast, especially

when the duration of mobile nodes staying in D2D mode is short, the belief

updating based algorithm will bringing unbearable overhead.





Chapter 7
Conclusion and Future Works

7.1 Conclusion

In this thesis, we have studied the applications of game theoretical tools to the

resource allocation and mobility management problems in heterogeneous wireless

networks. We have reviewed several game models, such as the Stackelberg game,

the coalitional game, and Bayesian dynamic game. We introduced the properties

of these game models and highlighted their useful features in solving various

problems in HetNets.

Firstly, we started from using non-cooperative game to investigate the com-

petition for limited spectrum resources among the ULSs in a spectrum-sharing

based two-tier network. Compared to most of the previous work for the scenario

in which each ULS could only access one single frequency band, we proposed a

new system setup in Chapter 3, in which multiple ULSs can access multiple sub-

bands at the same time. The proposed scenario could be equivalently considered

as a multiple-access channel with the presence of the spectrum owner. We have

used Stackelberg game to model the interactions between the MCO and the ULSs.

To solve the proposed resource allocation problem under the power constraints,

we defined the pay-off of the ULSs as a revenue-cost function and introduced the

interference price to regulate the transmission behavior of the ULSs. We proved

151
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that the existence of the SE that can be achieved by the proposed algorithm. A

fully distributed algorithm which requires no information acquisition of the MCO

is proposed, and is proved to be optimal under certain condition. The proposed

multiple access model shows great improvements towards the conventional model

which only allows the ULS to access a single sub-band.

Secondly, we have explored using cooperative game to model and analyze the

cooperative behavior in resource allocation problem in HetNets. More specifi-

cally, we have proposed a novel hierarchical game framework which constitutes

a Stackelberg game between the MCO and the ULSs, and an OCF-game among

the ULSs. To the best of the author’s knowledge, this is the first OCF-embedded

hierarchical game model applied to study the cooperatively resource utilizing in

HetNets. We use the virtual-MIMO as the policy of cooperation among the ULSs.

We have proved that the proposed OCF-game is 2n-finite, which subsequently lead

to the existence of the core. Then we have proved that the SE of the hierarchical

game exists and proposed a distributed algorithm which converges to the SE. We

have showed that enabling the overlapping in the proposed coalition formation

game achieves a great capacity gain of the whole network.

Then we apply the Stackelberg game to study the access mode selection

problem in a user-deployed small cell network. We have focused on the inter-

actively decision making of small cells about whether to admit the nearby MUs

to help improving their performance. More specifically, we have investigated the

open/closed model selection game from a demand-driven perspective. We assume

a spectrum-sharing based two-tier network in which the spectrum utilized by the

small cells and the MUs may partially overlap, which gives the motivation of the

small cell BS to admit the nearby MU for eliminating the interfering source. We

have found that sometimes choosing the open access mode would improve the

performance of both small cells and MUs. We have establish a Stackelberg game

in which the small cell BSs are leaders and the MUs are followers. The pay-off of

the small cells is defined as the improvement on capacity, and the pay-off of the
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MUs is defined as the improvement on energy efficiency. We start from the single

small cell single MU case to illustrate how they interact with each other in the

proposed game. Then we extend the single small cell single MU case to the more

general case to consider multiple small cells and multiple MUs. Two algorithms

are proposed to respectively maximize the pay-off of small cells and the MUs.

Furthermore, the proposed algorithms could flexibly balance in performances of

the small cells and the MUs by adjusting the embedded trade-off parameter in

the pay-off functions. The simulation results provided solid supports to our con-

clusions that the small cells and MUs can obtain a win-win result by properly

selecting the accessing strategies.

The four techniques discussed focus on different aspects in HetNets. It is

possible to be jointly applied to benefit the performance of HetNets from different

aspects. However, more policies should be applied when these techniques are used

together to avoid collision on either power control or resource usage.

Firstly, the techniques proposed in chapters 3 and 4 are intended to solve the

power control problem. Generally speaking, the technique in chapter 3 focuses on

spectrum reuse between ’far-away’ mobile devices, while the technique in chapter

4 focuses on in-band cooperation between ’near-by’ mobile devices. Hence, it

is possible to utilize both techniques in a HetNet. However, it should be noted

that, these two techniques are both built on iterative algorithms to achieve the

dynamically power control. Hence, it could not be applied to one mobile device

in the mean time. For example, supposing there are three mobile nodes m1, m2

and m3, m1 and m2 qualify to perform the spectrum-sharing while m2 and m3

qualify to perform in-band cooperation, then m2 should either choose m1 or m3.

A possible way to deal with this scenario is as follows: suppose m2 chooses m3,

then these two nodes can be virtually considered as one node m′
4. Hence, we

can apply the spectrum sharing algorithm between m′
4 and m1. However, jointly

applying these techniques does not guaranteed much gain as the performance

depends on scenarios.
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Secondly, the technique proposed in Chapter 5 is based on a assumption that

the transmission power and sub-band allocation of the femto-cell networks are

fixed. However, in previous chapters the transmission power of the femto-cell

subscribers is dynamically adjusted by the MCO. Hence, if applied them to-

gether, the amount of spectrum provided by the SBS should also be calculated

dynamically as it is affected by the transmit power of the small cell subscribers.

This would make the proposed algorithms invalid.

At last, the technique of the proposed D2D carrier aggregation scheme in

the chapter 6 can be directly applied upon the techniques proposed in previous

chapters. Since in this chapter, we assume that the nodes perform D2D commu-

nication have been already decided and a dedicated spectrum has been already

assigned to them for communication. Hence the analysis of the performance gain

is based on a isolated D2D network. However, in practice, how to optimally trade-

off the spectrum assignment between D2D network and the cellular network is

also an important issue.

7.2 Future Works

There still remain many new frontiers to be explored in HetNets. Here we list

several problems arising in our previous study which to be further studied in the

future.

- Hybrid mode small cell networks

As an emerging technique which has been standardized into the LTE-

Advanced network. The HetNets show a bright way towards high data rate

transmission. In our previous work, we focused on the spectrum-sharing

model which operates on the frequency bands of the mobile networks (i.e.,

400MHz to 3GHz). However, the purely spectrum-sharing based model

may not meet the rapidly growing demands for the deployment of small

cells. Hence higher frequency bands which are suitable for short range
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communications have been considered. Recently, in the 3GPP Release 12,

the 3.5GHz band is considered as the dedicated spectrum for small cells

to enable large-scale commercial implementation. However, to further ex-

pand the capacity of the future generation wireless networks, it is worth to

discuss about the small cells operating in hybrid mode. The hybrid mode

small cells can shift between both the licensed/unlicensed band dynami-

cally. The basic idea is, the small cell can monitor the transmit behavior of

nearby macro cell subscribers. Based on the observation, the small cell can

help to improve the network capacity by the following two means: 1) The

small cell and the macro-cell can mutually help each other by a spectrum

leasing mechanism: if the macro-cell has a high traffic load the small cell

may lease its spectrum to the macro-cell, and if the small cell is idle, it can

help with the macro-cell subscribers to improve the performance, 2) The

spectrum reuse and carrier aggregation can be performed in the dedicated

frequency bands of small cells, hence the spectrum efficiency can be further

improved. The hybrid small cell suggests a flexible way to keep a balance

between the spectrum efficiency and the quality of service.

- D2D carrier aggregation with shared spectrum

In this thesis we have considered the carrier aggregation problem in the

D2D communications with exclusive spectrum occupancy. However, it is

more challenging to investigate the D2D communications operating in the

spectrum-sharing mode (i.e., the spectrum is shared with the cellular user)

or hybrid mode (i.e., share or exclusively occupy the spectrum opportunis-

tically). Furthermore, in previous work we have assumed the D2D carrier

aggregation is performed pair-wisely. However, considering the carrier ag-

gregation among more than two D2D links with imperfect information is a

more challenging problem. In this case, we still need to consider the belief-

based Bayesian dynamic game model, but the impacts of member players’

actions to each other are more difficult to analyze. How the D2D link
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evaluates the expected pay-off efficiently for decision-making depends on

the learning speed about the beliefs, which will be dramatically decreased

when the size of the coalition is large.

- Long term pay-off evaluation in coalition formation game

Our previous works about the applications of coalition formation game in

HetNets were based on the acquisition and analysis of instantaneous in-

formation. We assumed the parameters remained unchanged in each time

slot and the transmission behaviors of the mobile nodes were consistent. In

a practical time-varying system, those assumptions may not always hold.

Hence it may require frequently changing of the coalition structure. In

the future, we will study the coalition formation game from the perspec-

tive of long term pay-off. More specifically, we consider the time varying

transmit behavior of the mobile nodes in a coalition. Considering as a

whole, a coalition will be in different states when the actions of the member

players change. The state transition of the coalition can be modeled as

a continuous-time Markov process, and by exploring the properties of the

corresponding discrete-time Markov chain (DTMC), the long term perfor-

mance of a coalition can be obtained. Hence, instead of considering the

instantaneous pay-off in the coalition formation game, we evaluate the long

term performance of coalition, which can be applied to the scenario in which

the real-time information updating is not available.
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