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ABSTRACT Recently, information-centric wireless networks (ICWNs) have become a promising Internet

architecture of the next generation, which allows network nodes to have computing and caching capabilities

and adapt to the growing mobile data traffic in 5G high-speed communication networks. However, the design

of ICWN is still faced with various challenges with respect to capacity and traffic. Therefore, mobile edge

computing (MEC) and device-to-device (D2D) communications can be employed to aid offloading the core

networks. This paper investigates the optimal policy for resource allocation in ICWNs by maximizing the

spectrum efficiency and system capacity of the overall network. Due to unknown and stochastic properties of

the wireless channel environment, this problem was modeled as a Markov decision process. In continuous-

valued state and action variables, the policy gradient approach was employed to learn the optimal policy

through interactions with the environment. We first recognized the communication mode according to the

location of the cached content, considering whether it is D2D mode or cellular mode. Then, we adopt the

Gaussian distribution as the parameterization strategy to generate continuous stochastic actions to select

power. In addition, we use softmax to output channel selection to maximize system capacity and spectrum

efficiency while avoiding interference to cellular users. The numerical experiments show that our learning

method performs well in a D2D-enabled MEC system.

INDEX TERMS ICWN, MEC, D2D, resource allocation.

I. INTRODUCTION

In addition to advances in information and communica-

tions technology, the proliferation of smart mobile devices is

undergoing unprecedented growth [1]. Mobile applications in

devices such as face recognition, natural language processing,

and augmented reality are emerging constantly, resulting in

ever-increasing data traffic [2]. Therefore, data services are

expected to become information-centric communications to

meet multimedia file sharing and video transmission [3] in

future fifth-generation (5G) networks. However, traditional

The associate editor coordinating the review of this article and approving
it for publication was Balázs Sonkoly.

wireless cellular networks have gradually become incapable

of meeting the strong demands not only in high network

capacity but also in high computational capabilities [4]. Con-

sequently, a network with a flexible structure is desirable.

Information-centric wireless networking (ICWN) is a

promising next-Internet architecture that has better scala-

bility and robustness. The goal is to evolve the Internet

infrastructure to directly support information distribution by

introducing uniquely named data as a core Internet princi-

ple [5]. ICWN enables network nodes to have computation

and caching capabilities to accommodate the increasingly

growing traffic of mobile data in the 5G high-speed com-

munication networks [6]. Recently, the ICWN approach has
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been explored by a number of researchers. Compared with

traditional networks, ICWN provides network node caching

capabilities in many implementations to further improve the

network performance. However, the technical issues and

challenges created by the ICWN network require in-depth

research and thinking, such as the high and variable latency

of transmitted high-volume quantities of data to the cloud for

data processing. Thus, this approach causes a heavy burden

on the network, while network congestion and high network

demands need to be considered, such as computing, caching

and communicating (3C).

Designing ICWNs face various challenges related to the

capacity and traffic. To address the above issues, one preva-

lent method is to employ mobile edge computing (MEC) and

device-to-device (D2D) communications, which can offload

the core network and increase the capacity of the network [7].

In the recent ICWN paradigm, the D2D-enabled MEC can

collaborate with cached popular contents on various nearby

devices, helping to improve spectrum efficiency and decrease

traffic congestion [8].

The emerging MEC is a promising approach for moving

a portion of the data/computation to the edge of the network

instead of sending it to the cloud datacenters [9]. MEC pro-

vides mobile users (MUE) with highly reliable, low-latency

computing and communication services. In addition, D2D

communications have been applied in MEC systems. D2D

communications can be beneficial to MEC in two aspects:

using the terminal device for content caching, and using the

D2D link to aid the MEC node in performing service data

transmission [10], which can efficiently reduce the high cost

of base station (BS) transmission, reduce users’ download

time and improve users’ QoE. Hence, efficiently allocating

limited communication resources and optimizing the policy

of power control and resource allocation in communication

is still an urgent issue in integrating these two techniques in

ICWN. In the D2D-enabled MEC system, our motivation to

study efficient resource allocation and power control algo-

rithms is two-fold. First, because of the continuous establish-

ment of D2D links, MEC and D2D user collaborative content

caching will improve cache efficiency in ICWNs, but spec-

trum reuse may cause serious inter-user interference [11].

Second, communication resource allocation directly affects

the quality of communication links. Therefore, the problem of

reasonably establishing links and allocating communication

resources cannot be ignored.

In this paper, we consider a multiuser D2D-enabled MEC

system in ICWN, as shown in Fig. 1. There are numerous

small cells. The MEC servers and MUE are deployed in

cells. When considering the communication resource alloca-

tion of D2D-enabled MEC in an ICWN, we employ a novel

deep reinforcement learning (DRL) approach to automati-

cally optimize resource allocation and power control deci-

sions. The contributions of this paper are as follows:

(1) We first introduce the system model and optimization

goal. We determine the communication mode based on

the location of the cached content, whether it is the

D2D communication mode or cellular communication

mode.

(2) Then, a resource allocation with a policy gradient

method is proposed, which is a joint resource allocation

and power control algorithm for a D2D-enabled MEC.

(3) Optimization is a two-objective problem. We use the

Gaussian distribution as a parameterization strategy to

generate continuous stochastic actions to select power.

Moreover, we use a softmax output channel selection

to maximize system capacity and spectrum efficiency

while minimizing interference.
The remainder of this paper is organized as follows.

Section 2 briefly introduces the related work of resource allo-

cation and power control for D2D-enabled MEC in ICWNs.

Next, we describe the system model and optimization goal in

section 3. Then, we propose themethod of resource allocation

and power control with DRL in section 4. In section 5,

the performance of the proposed algorithm is verified by

experiments. Finally, section 6 concludes the paper.

II. RELATED WORK

In this section, we investigate the recent work in ICWNs.

To address the challenges caused by combining resource

allocation and power adaptation in ICWN, a number of novel

research technologies have been proposed in ICWN. Most

recently, several approaches based on edge service frame-

works have been the popular research topic in ICWNs. Con-

siderable work has been performed on integrating wireless

networks and information-centric networking. For instance,

Liang et al. in [6] proposed an ICWN virtualization archi-

tecture for integrating wireless network virtualization with

information-centric networking (ICN) and developed the key

components of this architecture. TalebiFard et al. in [12] pro-

vided a framework for supporting service-centric networks,

while they considered that the interaction service latency,

customization, and contextualization will be at the network

edge.

Moreover, to fully develop the potential of ICWNs, exploit-

ing MEC, in-network caching, and D2D communication has

become a popular research area. In-network caching is one

of the key features of ICWN. He et al. in [13] consid-

ered the allocation of resources in trust-based MSNs with

MEC, caching and D2D when the conditions of the network

resources vary with time. In addition, a paper studied a novel

device-to-device (D2D)-enabled multihelper MEC system in

which a local user solicits its nearby WDs, serving as helpers

for cooperative computation [14]. They primarily provided

a joint task assignment and resource allocation for D2D-

enabled mobile edge computing.

In the ICWN, since the wireless spectrum is still a bot-

tleneck resource, the research on D2D-enabled MEC is sig-

nificant for efficient wireless access. Specifically, when the

communication resource allocation is resolved in the D2D-

enabled MEC, it is necessary to consider the interference

problem existing in D2D communication. Thus far, D2D

interferencemanagement in traditional D2D communications
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FIGURE 1. A multiuser D2D-enabled MEC system in ICWNs. (The R-LINK is the radio link,
the M-LINK is the connection link of edge server and the C-LINK is the caching link.)

has received much attention. There are three main aspects:

mode selection, resource allocation, and power selection.

To address the issues above, increasingly new methods

have been proposed to reduce communication interference in

D2D communication. In addition to traditional optimization

methods, game theory and RL methods have been become

prevalent methods to address interference management prob-

lem in wireless communication, especially the distributed

decision-making problem and networking management [15],

[16]. Zhang et al. [17] developed a coalitional game with

transferable utility in which each user had the incentive

to cooperate with other users to form a strengthened user

group to increase the opportunity to win their preferred spec-

trum resources. Furthermore, the RL method has been used

to achieve resource allocation, mode selection and power

control by modeling these problems as Markov decision

processes (MDPs). Qiu et al. [18] developed a joint mode

selection and power adaptation approach using a multiagent

Q-learning algorithm based on conjecture. Zhao et al. [19]

proposed power control for D2D communication, which uses

multiagent reinforcement learning (MARL) to maximize sys-

tem throughput by adjusting the transmit power of each D2D

user.

To summarize, there is still a demand to explore and inves-

tigate the proposed communication resource allocation algo-

rithms for D2D-enabled MEC systems in ICWNs. In contrast

to all existing works, in this paper, we focus on communi-

cation resource allocation with deep reinforcement learning

(DRL) in D2D-enabled MEC, enabling mobile users to auto-

matically learn allocation policies based only on their cached

content and channel information.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, the system model used in this paper is

described. We first illustrate the network model description.

Then, we briefly introduce theMEC, in-network caching, and

D2D communications model in ICWN. Finally, we formulate

the optimization problem in detail.

A. NETWORK MODEL

As shown in Fig. 1, the network model consists of N small

cells. The cells are connected to the Internet through the

core network of the cellular communication system [2]. MEC

servers are placed in the BS to provide data services to the

MUE. The set of small cells is denoted byN = {1, 2, . . . ,N },

and we set Mn = {1, 2, . . . ,Mn} to represent the number

of BS and MEC servers. We assume that a BS is associated

with the Kn MUE and an MEC server. The Kn is defined as

Kn = {1, 2, . . . ,Kn}, and Kn refers to the kth MUE in nth

cell.

The D2D-enabled MEC system provides an offloading

method for the core of the cellular network. It can handle tasks

as far away as possible from the core network.We assume that

distributed MEC nodes can cooperate with content caching

in ICWNs and allow D2D communication. In this scenario,

both theMEC server and theMUE deployed on the BS have a

content caching capability. EachMUE can offload the cached

content by selecting a communication mode, including cellu-

lar mode andD2Dmode. The D2Dmode can be implemented

by D2D communication, and it can perform tasks without

involving a cellular network [7].

In the communication network architecture, when anMUE

requests data content, it can usually be implemented in two

communication modes. 1) D2D mode: the D2D user in the

communication range has buffered the requested content and

then directly transmits it to the requesting user through the

D2D link. 2) Cellular mode: the local cell’s MEC server

buffer has the requested content and can then be sent to the

user. Generally, the MUE sends a request by broadcast to

determine whether the local MUE has cached the content.

D2D communication mode achieves low latency, reduces the

traffic load through the network, and improves the coopera-

tion of MUE at the edge of the network.
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FIGURE 2. The communication mode of the D2D-enabled MEC system. ((a) D2D communication mode (b) cellular
communication mode.)

B. SYSTEM MODEL

In this work, we focus on the communication model, con-

sidering a joint channel and power allocation algorithm with

DRL, which can be used to solve the resource allocation prob-

lem in the D2D-enabled MEC system. Specifically, we con-

sider resource allocation in the D2D communication mode

and the cellular communicationmode. As illustrated in Fig. 2,

we describe the scenario of two communication modes. Each

mode includes aD2D link, a cache link, a communication link

and an interference link. In each cell, we assume that there are

Kn MUE, denoted asKn = {1, 2, . . . ,Kn}. These MUEs can

choose whether to become a D2D transmission user depend-

ing on the content cache. Fig. 2(a) is the D2D communication

mode, and Fig. 2(b) is a cellular communication mode. When

an MUE requests data content, it can usually be implemented

in two communication modes. We describe these modes as

follows:

1) CELLULAR MODE

Mobile user equipment communicates with another MUE

through the BS. In this mode, the local cell’s MEC server

buffer has the requested content and can then be sent to the

user.

2) D2D MODE

Mobile user equipment communicates directly with another

MUE through direct traffic [20]. In this mode, the D2D user in

the communication range has buffered the requested content

and then directly transmits it to the requesting user through

the D2D link.

Moreover, we assume that 1) in D2D communication,

cellular users utilize the downlink (DL) resources of the

cell, while D2D pairs reuse the downlink resources non-

orthogonally; 2) a cellular user and D2D pairs share the

same resource block and each resource block is allocated to

one cellular user and shared with multiple D2D pairs. Here,

we assume that D2D pairs reuse the downlink resource in

the central cell. Therefore, there are three types of interfer-

ence: D2D-to-cellular interference, cellular-to-D2D interfer-

ence and D2D-to-D2D interference [21].

C. PROBLEM FORMULATION

We assume that the BS can use the resource scheduler to

allocate D2D users to different channels and that the user

can select different powers to avoid interference. Let B

denote the channel bandwidth of the D2D-enabled MEC

system, which can be divided into H PRBs. Each PRB is

expressed as = B

H
, ∈ {1, 2, . . . ,H}. In this scenario,

we consider the problem of choosing a mode. Let V =

{ c, d } denote the communication mode of MUE. Next,

we refer to one assumption for mode selection [22]. The

data center provides H different contents, denoted as C =

{c1, c2, . . . , cL}. The content caching matrix is defined as

X = {xk,f ∈ (0, 1) |uk ∈ U, cf ∈ C}. xk,f = 1 indicates

that the content cf is cached in the MUE and xk,f = 0

indicates that the content cf is cached in the local MEC

server. When a mobile user sends a content request, we first

need to determine if it is satisfied by the D2D user or theMEC

service.

In addition, in D2D communication mode, we assume that

a D2D pair can reuse multiple channels to ensure successful

transmission of packets while meeting the QoS requirements

of the entire communication system with minimum power

consumption. We assume that there are mobile users

choosing to become D2D users and mobile users choos-

ing to became cellular users. Let γ denote the interference

plus noise ratio (SINR) of the cellular user. For successful

transmission, the SINR is higher than γ ∗:

γ > γ ∗, ∀ ∈ N (1)

where γ ∗ is a threshold of SINR to maintain communication.

Generally, the SINR of the ℓth cellular user on the th channel
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is denoted as:

γℓ =
Pil · hℓ

I +
∑m

=1
P

ℓ,
· h

ℓ,

(2)

where Pℓ is the transmission power of the ℓth cellular user

of the th channel, and hℓ is the link gain of the ℓth cellular

user. Here, we denote hℓ = · d− , is the pathloss, and

is the constant. Pℓ
,
denotes the transmission power of the

th D2D user that reuses the th channel. The link gain of

the D2D user is denoted as hℓ
,

= · d− , and is the

pathloss, is the constant. Here, I represents the power of

the additive white Gaussian noise (AWGN). We assume that

there is no interference from neighboring cells because we

assume that the neighboring cells use channel resources of

different bandwidths. Let the SINR of the th D2D links on

the th channel be:

γ =
Pi

ℓ,
hi
ℓ,

I + (Pℓ · hℓ +
∑

′
6=

′
∈

P ′
,

· h ′
,
)

(3)

where h
ℓ,

is the link gain of the th D2D user reusing the

th channel, hℓ is the link gain of the ℓth cellular user in ith

channel, and P
ℓ,

is the transmission power of the th D2D

user. P ′
,
is the transmission power of the

′
th D2D user of

the th channel, and Pℓ is the transmission power of the ℓth

cellular user of the th channel. Similarly, I denotes the power

of the AWGN. In a communication system, we define the

capacity of a cellular user in the D2D-enabled MEC system

as follows:

Cc = log2
(

1 + γℓ

)

(4)

In addition, the capacity of D2D users is given by

Cd = log2
(

1 + γ
)

(5)

The total system capacity of MUE is defined as:

C = Cc + Cd (6)

Therefore, in both modes of communication, our optimiza-

tion goal is to make allocation decisions based on chan-

nel quality between mobile users and BSs and interference

between D2D users while maximizing total system capacity.

IV. RESOURCE ALLOCATION ALGORITHM

In the previous section, we formulated the optimization prob-

lem in the communication mode of the D2D-enabled MEC

system. Here, we devise a resource allocation method based

on a policy gradient algorithm to address the proposed prob-

lem. We divided the method into two subtasks as follows.

1) In the first subtask, we design the selection mechanism

of the communication mode according to the cache

matrix. When there is cached content in the MUE,

the MUE selects the D2D communication mode. Oth-

erwise, the cellular communication mode is selected.

2) In the second subtask, when the mobile users select

the D2D communication mode, the D2D users aid

the mobile user in offloading content. Here, since

D2D users reuse channels, the increase in transmission

power causes more interference for cellular users. We

design each D2D pair to adaptively learn multichan-

nel selection and power control strategies to maximize

the capacity of the system and minimize interference.

When the cached content is on the MEC server side,

our optimization goal is also to optimize the system

capacity of mobile cellular users.

A. DEEP REINFORCEMENT LEARNING

We use Markov decision processes (MDP) to model the opti-

mization problem mentioned in the previous section. Gener-

ally, an MDP can be defined as a tuple {S,A,P,R, ϒ} where

S is a state space, A is an action space, P is a state transition

probability, R is a reward function, and ϒ is a discount factor.

In MUE environments, the state transition probabilities and

expected rewards for all states are usually unknown. Hence,

we formulate that the resource allocation problem in a D2D-

enabled MEC system is a model-free reinforcement frame-

work in which the MDP has a continuous state and action

space. The target of MDP is to find the optimal policy and

then solve the decision-making problem to maximize the

expected reward. In a reinforcement framework, the agent

learns policy by interacting with the environment. We define

the state and action of the environment as st ∈ S, at ∈ A,

respectively. Generally, the agent takes action at from the

current state st to a new state st+1 ∈ S and obtains an

immediate reward rt ∈ R.

In this paper, we mainly adopt policy-based reinforcement

learning. The method is considered to learn a parameterized

policy rather than selecting actions by consulting value func-

tions. Value functions are mainly used for policy parameter

learning, not for action selection [23]. In the process, the goal

of the agent is to choose a policy to maximize the expected

reward. The policy is defined as πθ (a |s ) = P(at = a |st =

s, θt = θ ) ≈ π (a |s ). In the decision-making epoch, data are

generated through the interaction between the agent and the

environment to optimize the policy. Generally, the long-term

expected reward is expressed as:

Gt = rt+1+ϒrt+2 + · · ·=
∑∞

k=0
ϒkrt+k+1, (r∈R) (7)

where γ ∈ [0, 1] denotes the discount factor. In the policy

gradient method, the optimization goal is defined as follows:

J (θ) = Vπθ (s) = Eπθ (Gt) (8)

where Vπθ (s) is the value function of πθ , the policy deter-

mined by θ . Here, the goal is to maximize the reward under

this distribution J (θ):

J (θ) =
1

N

N
∑

i=1

[(
∑T

t=0
logπθ (ai,t |st ))(

∑T

t=0
r(st , at ))]

(9)
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FIGURE 3. The policy gradient learning for D2D-enabled MEC
communication networks.

Furthermore, the agent learns an optimal policy π∗, which

is denoted as:

π∗ = argmaxEτ∼πθ (Gt) (10)

where the τ represents a trace obtained by using a policy inter-

action. Generally, the sample approximation to the gradient is

given by

∇θJ(θ)=
1

N

∑N

i=1
[(

T
∑

t=0

∇θ logπθ (ai,t |st ))(
∑T

t=0
r(st , at ))]

(11)

where ∇θ logπθ (ai,t |st ) is the score function. The gradient

is a partial derivative of J (θ) about θ . The above equation

provides us with an unbiased gradient calculation formula.

However, it may have a large difference, so we employ the

gradient with a baseline as follows:

∇θJ (θ) =
1

N

∑N

i=1
[(

T
∑

t=0

∇θ logπθ (ai,t |st ))

× (
∑T

t=0
r (st , at) − bt )] (12)

where the bt is a baseline. The bt is varied in the environ-

ment state during the learning process. We use a network to

estimate its value. The learning rule of RL is also known

as the reinforce rule [24], and it can adjust the parameters

of the agent to reinforce the action with high cumulative

reward [25]. Therefore, there is a high baseline to acquire

higher valued actions under the reinforce rule. Conversely,

the baselines of low-value actions are low [26].

B. RESOURCE ALLOCATION AND POWER CONTROL

METHOD

The DRL framework of the D2D-enabled MEC system is

illustrated in Fig. 2. There are many MUE and D2D users

in one cell. During the interaction between agents and the

environment, the D2D transmitter takes action, including the

select channel and power level. Next, the state, action space,

reward function and update rule of channel allocation and

power control problem are described in detail.

Agent: Here, each active D2D link is designed as an agent.

The agent learns and makes decisions by interacting with the

environment.

State: The system states mainly include three components:

the communication mode of MUE Mm,i, the channel state

Cc,i, the power level Pp,i, and i refers to ith subchannel.

Therefore, the system state is defined as a matrix:

S (t) = {Mm,i (t) ,Cc,i (t) ,Pp,i (t)} (13)

where the vectors Mm,i, Cc,i, Pp,i are explained in detail as

follows. Mm is defined as Mm(t) = [MD(t),MC (t)], and

MD ∈ {0, 1}, MC (t) ∈ {0, 1}. If the MUE selects the D2D

mode, MD (t) = 1, MC (t) = 0, otherwise MD (t) = 0,

MC (t) = 1. Cc,i(t) is defined as:

Cc,i (t) =







C1,1 (t) · · · C1,K (t)
...

. . .
...

CM ,1 (t) · · · CM ,K (t)






(14)

Here, Cc,i (t) indicates whether the channel is used by

MUE. If yes Cc,i (t) = 1; otherwise, Cc,i (t) = 0. In addi-

tion, Pp,i (t) ǫ[0, 24 dB] represents the power level in the ith

subchannel, which is a continuous variable. It is defined as:

Pp,i (t) =







P1,1 (t) · · · P1,K (t)
...

. . .
...

PM ,1 (t) · · · PM ,K (t)






(15)

Action: In each learning process, there are two actions that

are defined as:

A(t) = {A1(t),A2(t)} (16)

where A1(t) selects a channel, and A2(t) represents selecting

the power level. The actions depend on the interaction with

the environment. More specifically, in our learning model,

the action is two-objective. The channel selection uses a

softmax output. In addition, the action of power selection

is chosen stochastically from a distribution parameterized at

time t by the network. Here, we adopt a Gaussian distribution.

Reward Function: Generally, the agent receives an imme-

diate reward rt+1 and a new environment state st+1. In our

work, there are D2D communicationmodes and cellular com-

munication modes. However, in these communication modes,

the reward function can be given as:

rt =

{

1, if the constraints are satisfied

0, otherwise.
(17)

Here, the proposed approach is based on different cached

content types C of users to guarantee their communica-

tion requests and meet the QoS demands of cellular users.

We define the constraints as follows:










γ > γ ∗,

Wc,i ≥ Wc,s,

WD,i ≥ WD,s,

(18)

where γ is the SINR of the cellular user, andγ ∗ is the

threshold of SINR. To ensure the communication quality
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of the cellular link, we consider the impact on the cellular

user SINR when a D2D user reuses the spectrum resource.

When the SINR is greater than a threshold γ ∗, the maximum

power at this time is set to the transmit power of the D2D user.

The Wc represents the transmission rate requirements of the

different cached contents. It is defined as:

Wc,i = bi · log2(1 + γmi ) (19)

In addition, the transmission rate of a D2D user is given by

WD,i = bi · log2(1 + γ ni ) (20)

The demand for data rate is different when the requirement

arrives at each time. Therefore, the agent will learn how

many subchannels and how much power should be allocated

to the D2D user. Our approach not only ensures the normal

communication of cellular users but also maximizes the reuse

of channel resources and optimizes system capacity. When

the above conditions are met, the reward is 1; otherwise, a

penalty is given.

C. TRAINING ALGORITHM

We adopt a policy gradient algorithm to learn resource allo-

cation and power control. In the policy gradient algorithm,

the policy parameters are updated sequentially. The deep

neural network is used to train data. In the D2D-enabledMEC

system, the D2D transmitter is set as an agent. The agent

interacts with the environment and then takes action. Dur-

ing the learning process, the agent continuously updates the

policy according to the policy gradient algorithm until the

optimal strategy is learned. Our approach first determines

the communication mode and then combines the channel

selection and power selection where the agent has two dif-

ferent actions to achieve a goal. Training the core network is

illustrated in Fig. 3. We define the number of hidden layers as

2 and the number of neurons as 256. The state S (t) is the input

of the network, and the output is the probability distribution

over all possible actions of channel selection and power

selection. The mode selection is a two-label classification

problem according to different contents. When the content

cache xk,f = 1, the content is cached in the MUE where the

agent selects the D2Dmode. In addition, the xk,f = 0 denotes

that the content cf is cached in the local MEC server, and the

agent selects the cellular mode. In each episode, themain goal

of the agent is to learn the policies of the channel selection and

power selection. In the training process, the optimal actions

are unknown, and the good or bad learning result is provided

via the reward. Furthermore, there are three loss functions,

and the loss of the baseline is given by

Lb =
1

2

∑N

i=1

∑Tn

t=0
[bit − r it ]

2
(21)

where bit is the estimated value of the reward, and r it repre-

sents the one-step reward. N denotes the number of samples,

T represents the length of the trace, and i denotes the ith trace.

The loss function of channel selection is

Lc =
1

N

∑N

i=1

∑Tn

t=0
π i
1,t [a

i
t

∣

∣

∣
sit ]r

i
t (22)

where π i
1,t denotes the probability of selecting a channel,

and r it is the one-step reward. The loss function of the power

selection is

Lp =
1

N

∑N

i=1

∑Tn

t=0
π i
2,t [a

i
t

∣

∣

∣
sit ]r

i
t (23)

where π i
2,t denotes the probability of selecting a power. The

total loss is given by

L = Lb + Lc + Lp (24)

We optimize the cross-entropy loss to train the action network

and backpropagate the gradients through the core network.

The update rules are shown in Algorithm 1 and Algorithm 2.

Algorithm 1 shows the procedure of resource allocation and

power control. Algorithm 2 mainly describes the update steps

of the policy gradient. In Algorithm 1, we run Algorithm 2 to

learn channel selection and power control policies. The D2D

user’s method of selecting the channel and power can ensure

the edged cache of the MUE and avoid the interference of the

D2D-enabled MEC system.

V. EXPERIMENT AND EVALUATION

In this section, we present experiments to evaluate our pro-

posed joint channel selection and power control method. The

experiments are conducted in an Ubuntu operating system

(CPU Intel core i7-4790 3.6 GHz; memory 16GB, GPU

NVIDIA Quadro K2200, which contains 640 CUDA com-

puting core units and 4GB graphics memory).

As illustrated in Fig. 2, we consider a cell where the

MUEs are deployed based on the spatial Poisson process.

The D2D mode and cellular mode are selected among the

active mobile devices, and each MUE can construct one D2D

link or cellular link. In addition, we adopt the Manhattan case

detailed in 3GPP TR 36.885 to set the simulation [27]. In one

time-slot (0.5 ms), the radio resource is organized in a number

of downlink RBs with 180 kHz per RB. In addition, we set

FIGURE 4. The convergence performance of different learning rate.
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Algorithm 1 Channel Allocation and Power Control

Method

begin
Initialization:

For t = 0, t = (t1, ..., tN )

Randomly create a state matrix: S (t)

Create an action matrix: A (t) = 0

Initialize D2D-enabled MEC system model

parameter

Determine the communication mode of MUE

according to cached content

D2D mode (if xk,f = 1)

Cellular mode (if xk,f = 0)

D2D user randomly select a first channel and

power level

End for

Processing:

Loop:

For t in T , do

(1) Selected channel C and power P

(2) Calculate:

γℓ of the ith channel of the cellular user

γ of the ith D2D pair

System capacity

(3) Check SINR to guarantee QoS of users

according to Constraints

(4) Run Algorithm 2, learning channel and

power selection policy

(5) If the D2D transmission restarts in this time

slot

End if

End for

Set t = t + 1

Create a new potential state matrix: S (t + 1)

End loop
end

the number of PRBs to 10. Generally, there are two types of

D2D communication, namely, in-band or out-band commu-

nication. In all simulations, we set the D2D communication

distance to 50m. Hence, the type of D2D communication

is in-band communication. In addition, the D2D communi-

cation connections are supported through cellular (Uu) and

sidelink radio interfaces, respectively. In this experiment,

the deep neural network for each agent consists of 2 hidden

layers, whose number of neurons is 256. In our D2D-enabled

MEC system, the MEC mainly performs content caching and

content forwarding. The MEC server is mainly deployed in

the base station and provides various functions through the

mobile edge computing application. The MEC server here

is mainly a multi-user single server because only one MEC

edge server is arranged after each cell base station. The main

simulation parameters are presented in Table 1. We evaluate

our approach on the above parameter settings.

Algorithm 2 Learning Algorithm of the Policy Gradient

begin
Initialization:

t = 0, the network parameter θ

At is the action of D2D user, St is the

environment state

for i in N do
Observe St , and initialize D2D transmitter

power

For t = 0, . . . ,Tn do

Select channel according π i
1,t [a

i
t

∣

∣sit ]

Select power according π i
2,t [a

i
t

∣

∣sit ]

Obtain the trace r it and observe state s
i
t+1

according to system capacity

Repeat this process for next state st+1

End
end

Calculate loss Lb,Lc,Lp

Calculate total loss L

Use a gradient descent to update parameter θ

and

minimize loss L
end

TABLE 1. The parameter of the simulation [28].

First, we carry out numerical experiments under various

settings of learning rates to validate the proposed work.

We set that the number of MUEs to 5. According to the cache

requirement, one MUE is selected to become a D2D user,

which reuses the channel of one cellular user. We assume that

the power level is in the range of (0, 24) (dB). As shown

in Fig. 4, we study the convergence performance of the
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FIGURE 5. The convergence performance of different batch size.

proposed algorithm at different learning rates. The learning

rates are 0.01, 0.001, 0.0001, and 0.0001. It can be seen

that there is a similar trend in Fig. 4. When the MUE is

in the D2D communication mode, the figure shows that the

learning rate causes the algorithm to converge to an optimum.

The convergence time is different in different learning rates.

As seen from the figure, when the learning rate is 0.0001,

the convergence performance is the best. Hence, in the fol-

lowing simulations, we set the learning rate to 0.0001 because

its convergence performance is better than the others. In this

figure, the initially expected reward is low because the agent

explores the optimal strategy, and then all curves gradually

rise and tend to stabilize.

As shown in Fig. 5, we compare the expected rewards of

users in four batch sizes. We set the learning rate to 0.0001,

and the batch sizes to 20, 50, 100, and 200, respectively.

It is shown in the figure that the expected reward on dif-

ferent batch sizes is increased. However, the small or large

batch size does not regularly affect the expected reward.

Additionally, under these conditions, the convergence time

is different. Since a different batch size requires different

training duration and convergence speed, we adopt the batch

size (= 50) in the following experiment because under this

batch, the expected reward is the largest, and it consumes less

time.

Fig. 6 depicts the cross-entropy loss function L of our

policy gradient network. Here, we set the learning rate is

0.0001 and the batch size is 50. In the figure, we enable to

observe the simulated variations in the loss function defined

as in (24), which reveals that the convergence of our proposed

algorithm can be ensured. When the learning network first

started training, the value of the loss was relatively large, and

the network was in the update phase. As the number of train-

ing processes increases, the value of loss gradually decreases.

Specifically, the training loss L gradually decreases and sta-

bilizes after training 200 interactions, whose fluctuation is

mainly due to the random sampling of training data. It means

that our algorithm automatically updates its decision policy

and converge to the new optimal value. The figure shows

FIGURE 6. The training loss of the policy gradient network.

FIGURE 7. The system capacity of different algorithms.

that the policy gradient method has good convergence in joint

resource allocation and power selection, and the convergence

time is short.

In Fig. 7, we further show the system capacity in different

resource allocation algorithms s at each step in the same

episode. Two algorithms are also simulated for comparison.

They are the proposed policy gradient algorithm and the

deep Q-network (DQN) algorithm. Here, we set the learning

rate to 0.0001. In our proposed algorithm, the batch sizes

are 20, 50, 100, 200. By making a comparison between

our proposed algorithm and the DQN algorithm in the same

conditions, it can be found that the performance of former

outperforms the latter. Our method shows its effectiveness

on maximizing the system capacity faced with dynamic and

complex wireless environments because our power selection

method is a decision made in a continuous state space, but

DQN is a choice made on discrete power. Hence, our method

can learn more power control strategies. We observe that

even though the proposed method has a batch size of 200,

resulting in the lowest system capacity, it achieves better

performance than DQN. It demonstrates that our approach

allows to significantly reinforce policy learning when the

agent interacts actively with the environment. Furthermore,
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the Gaussian distribution is used as the parameterized policy

to generate stochastic actions of power selection, and softmax

is used to perform channel selection. In continuous value

states and action variables, we use a policy-gradient approach

to learn the optimal policy through interacting with the

environment.

The experiments prove that cellular communication and

D2D communication can coexist and share RBs for their

data transmissions. The proposed joint resource allocation

and power selection method can maximize system capacity

while avoiding interference. During the learning process,

the agent continuously updates the strategy to learn how to

allocate resources and select power. Based on the simula-

tion results, each agent can learn how to meet the cellular

communication constraints while avoiding interference with

D2D-enabled MEC communications and maximizing the

total system capacity.

VI. CONCLUSION

Information-centric wireless networking (ICWN) has

become one of the most important networking paradigms in

future 5G wireless networks. In the recent ICWN paradigm,

D2D-enabled MECs can collaboratively cache popular con-

tent on a variety of nearby devices, which helps to improve

spectral efficiency and reduce traffic congestion. This paper

introduced a novel resource allocation and power control

method with the policy gradient in a comprehensive D2D-

enabled MEC system of IWCN. Specifically, we have mod-

eled this problem as model-free reinforcement learning.

In addition, due to the unknown channel environment and

ever-changing transmission power, we updated the parame-

ters with the regular policy gradient method. The Gaussian

distribution was used as the parameterized policy to generate

stochastic actions of power selection, and softmax was used

to perform channel selection. Numerical results show that the

method has good convergence.
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