
 Open access Proceedings Article DOI:10.1109/CLOUD.2017.96

Resource Allocation in the Cloud: From Simulation to Experimental Validation
— Source link

Pieter-Jan Maenhaut, Hendrik Moens, Bruno Volckaert, Veerle Ongenae ...+1 more authors

Institutions: Ghent University

Published on: 01 Jun 2017 - International Conference on Cloud Computing

Topics: Cloud computing, Cloud testing, Resource allocation, Resource management and Scalability

Related papers:

 Comparative study of simulators for cloud computing

 Simulating Cloud Deployment Options for Software Migration Support

 Simulation, Modeling, and Performance Evaluation Tools for Cloud Applications

 Early Prediction of the Cost of HPC Application Execution in the Cloud

 Design of a new cloud computing simulation platform

Share this paper:

View more about this paper here: https://typeset.io/papers/resource-allocation-in-the-cloud-from-simulation-to-
3o9jdjxwg9

https://typeset.io/
https://www.doi.org/10.1109/CLOUD.2017.96
https://typeset.io/papers/resource-allocation-in-the-cloud-from-simulation-to-3o9jdjxwg9
https://typeset.io/authors/pieter-jan-maenhaut-2er3qv31ul
https://typeset.io/authors/hendrik-moens-iyl86mtg3n
https://typeset.io/authors/bruno-volckaert-3irzhhctxn
https://typeset.io/authors/veerle-ongenae-2s84ps3ujv
https://typeset.io/institutions/ghent-university-14limu0t
https://typeset.io/conferences/international-conference-on-cloud-computing-1ddr0ded
https://typeset.io/topics/cloud-computing-23j8n0mk
https://typeset.io/topics/cloud-testing-he5cumx2
https://typeset.io/topics/resource-allocation-3696qy02
https://typeset.io/topics/resource-management-3nr2bzdl
https://typeset.io/topics/scalability-239v0xhx
https://typeset.io/papers/comparative-study-of-simulators-for-cloud-computing-45sphbn4xb
https://typeset.io/papers/simulating-cloud-deployment-options-for-software-migration-58zn8pmcu1
https://typeset.io/papers/simulation-modeling-and-performance-evaluation-tools-for-hic53nm1ge
https://typeset.io/papers/early-prediction-of-the-cost-of-hpc-application-execution-in-1rnxiiyvz0
https://typeset.io/papers/design-of-a-new-cloud-computing-simulation-platform-121w1gzc3d
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/resource-allocation-in-the-cloud-from-simulation-to-3o9jdjxwg9
https://twitter.com/intent/tweet?text=Resource%20Allocation%20in%20the%20Cloud:%20From%20Simulation%20to%20Experimental%20Validation&url=https://typeset.io/papers/resource-allocation-in-the-cloud-from-simulation-to-3o9jdjxwg9
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/resource-allocation-in-the-cloud-from-simulation-to-3o9jdjxwg9
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/resource-allocation-in-the-cloud-from-simulation-to-3o9jdjxwg9
https://typeset.io/papers/resource-allocation-in-the-cloud-from-simulation-to-3o9jdjxwg9

Resource Allocation in the Cloud:

From Simulation to Experimental Validation

Pieter-Jan Maenhaut∗†, Hendrik Moens†, Bruno Volckaert†, Veerle Ongenae∗ and Filip De Turck†

∗Ghent University, Faculty of Engineering and Architecture, Dept. of Information Technology

Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
†Ghent University – imec, IDLab, Dept. of Information Technology, iGent

Technologiepark-Zwijnaarde 15, 9052 Ghent, Belgium

Email: pieterjan.maenhaut@ugent.be

Abstract—With cloud computing, the efficient management of
resources is of great importance as an increased utilization of the
available resources can result in higher scalability and significant
energy and cost reductions. Experimental validation of novel
resource management strategies is costly and time consuming,
and often requires in-depth knowledge of and control over the
underlying cloud platform. As a result, many novel strategies
are only evaluated by means of simulations, in which the whole
cloud computing environment is modelled and simulated.

Nonetheless, experimental validation should also be considered
during the validation, as these types of experiments can often
result in new insights or they can be used to fine-tune some
specific parameters. In this paper we present a general approach
for the experimental validation of cloud resource management
strategies, together with the introduction of a cloud testbed
adapter which was designed to facilitate the step from simulations
towards experimental validation on physical cloud testbeds. We
illustrate our solution by means of two case studies, focusing
on two different types of testbeds. The adapter mainly acts as
a dispatcher towards specific services of the evaluated cloud
setup, and allows researchers to easily validate their ideas without
having to dive deep into the complex details of the underlying
cloud platform.

I. INTRODUCTION

Within the context of cloud computing, efficient manage-

ment of available resources is of great importance as it can not

only result in higher scalability, but also in significant energy

and cost reductions. In recent years, a lot of research has been

done regarding the efficient allocation of cloud resources [1],

[2]. This is often done by consolidating the required virtual

machines or containers on few physical hosts. Novel resource

allocation strategies however are often only evaluated by

means of simulations, for example by using CloudSim [3], a

mature framework for the modelling and simulation of cloud

computing environments.

Apart from these simulations, experimental evaluation using

a cloud testbed should also be considered, as these types of

experiments can often result in new insights, or they can

be used to fine-tune the developed algorithms. Furthermore,

simulations are not standardized, and the applicability of the

simulation is depending on the design of a good data set which

corresponds to real world usage, making validation chal-

lenging. Every simulation framework also has its limitations,

for example when using CloudSim, custom extensions such

as CloudSimSDN [4] are required for validating SDN-based

strategies. Unfortunately, experiments are both expensive and

time consuming, and require an in-depth knowledge of the

underlying cloud infrastructure. Cloud resource allocation

strategies also often aim at resource management on the

physical hardware level, and with some cloud platforms this

level of access is simply impossible. Failing of experiments,

for example due to unforeseen hardware constraints or a faulty

algorithm, should be avoided when using large testbeds, as

access to these testbeds is often limited in time.

In this paper, we present an approach for the experimental

validation of novel strategies and the design of a generic

cloud testbed adapter. The adapter is designed to facilitate

the step towards experimental evaluation, without the need for

diving deep into the complex details of the available testbeds.

We present the general architecture of the adapter, together

with two proof of concepts based on different types of cloud

testbeds. The remainder of this paper is structured as follows.

In the next section we discuss related work within the field. In

Section III we briefly describe the process for developing novel

resource management strategies and illustrate the importance

of the presented cloud testbed adapter in Section IV. In

Section V we illustrate how the adapter can be implemented

on top of two different testbeds, followed by a short discussion

in Section VI. Finally, in Section VII we state our conclusions

and discuss avenues for future research.

II. RELATED WORK

In recent years, a lot of research has been done regarding

the efficient management of resources in cloud environments,

resulting in multiple novel resource allocation strategies [1],

[2]. In [5] for example, the authors present a solution for

virtual machine consolidation in the cloud to reduce energy

consumption. The presented solution is evaluated by means

of simulations using workload traces from two real-world

publicly available workloads. According to the authors the

approach is very effective compared to the state of art,

but they however do not provide experimental results using

real hardware. In [6] several algorithms for virtual machine

packing in the cloud are introduced. Although the authors

note that the evaluation is based on an extensive set of

experiments, the evaluation results are also solely based on

simulations. CoolCloud [7] is a dynamic virtual machine

ValidationDesign

Design Implementation Simulation

(Small-scale)

Experimental

evaluation

(Large-scale)

Experimental

evaluation

Time

1 2 3 4

days months to years

$ $$$Cost

Fig. 1. General workflow for the design, implementation and validation of
cloud resource allocation strategies.

placement framework for data centres. The framework also

focuses on energy savings by consolidating virtual machines

on physical servers. The authors evaluate the framework using

both simulations and small-scale experiments on a VMWare-

based testbed consisting of four physical servers.

As can be seen, most novel strategies are evaluated using

only simulations. The adapter presented in this paper can

facilitate the step towards experimental validation by providing

an easy-to-use interface towards different types of experi-

mental testbeds, from small-scale private clusters to larger

research cloud environments. Within our research group, we

have also been actively working on the design of new resource

allocation strategies. Our research ranges from network-aware

resource allocation algorithms in the cloud [8] to the efficient

management of storage resources [9], and our evaluations are

also often only based on simulations, for example by using the

custom simulator tool presented in [10]. The testbed adapter

presented in this paper will be used for experimental validation

of these strategies on physical hardware.

III. VALIDATION PROCESS

Figure 1 summarizes the general steps for the design, imple-

mentation and validation of cloud resource allocation strate-

gies. Initially, a new resource allocation strategy is designed

and implemented. This can be an iterative process, as during

the implementation some new constraints may be introduced,

requiring modifications to the original design (arrow 1 in

the figure). Once the implementation is finished, the strategy

should be validated by mean of simulations, experimental

evaluation on a cloud testbed, or ideally a combination of

both. Simulations are often a good start, as these are less

costly and less time consuming than experimental evaluations.

They can vary from simple unit tests or batch scripts to full

simulations of a cloud environment, for example by using

CloudSim [3]. During the simulations, new optimizations

can be discovered, or unforeseen limitations, again requiring

changes to the implementation or design (arrow 2).

Experimental evaluation using real hardware should also be

considered as these experiments often result in new insights

(arrow 3). The evaluated setup could for example introduce

Large-scale

cloud testbed

Monitor

testbed

Start / Control

experiments

on testbed

Raspberry Pi

testbed

Small-scale

private cloud

testbed

Adapter Node

providing API

towards different

cloud testbeds

HTTP POST

HTTP GET

Fig. 2. Architecture of the cloud testbed adapter, providing easy access
towards the different types of cloud testbeds.

additional hardware constraints which were not taken into

account during the design or the experimental results could

be used to more accurately tune the configurable parameters.

Experiments on physical hardware however are both costly

and time-consuming. This is especially true for the design and

fine-tuning of new resource allocation strategies, as these often

require multiple incremental iterations of experiments using

multiple cloud instances. When the executed experiments fail

during the execution, for example due to hardware constraints

or a faulty algorithm, these experiments can become very

costly. Therefore, experiments on relative small-scale testbeds,

such as the evaluation setup described in [7], are initially

preferred before doing large-scale experiments.

Academic emulation environments, e.g. the iLab.t Virtual

Wall [11], are developed in order to support experimentation in

a wide variety of research domains and with increased realism

compared to simulations. Although these environments allow

for large-scale system validation and offer valuable tool sets

for experimentation, they have limited infrastructure resource

availability and considerable software and hardware mainte-

nance costs. Typically, such testbeds are used for large and

mature validation tests and are less suited for small, repetitive

tests with highly frequent updates (arrow 4). Furthermore, such

environments are rack-mounted and therefore not suitable for

off-premise demonstration purposes.

The adapter presented in the remainder of this paper is

designed to facilitate the step towards experimental evaluation.

By using the adapter, the developed algorithms can be easily

plugged into small-scale testbeds, e.g. a Raspberry Pi cluster

or a couple of Linux based VMs, and larger environments

such as a private OpenStack environment, without having to

dive deep into the complex details of these advanced cloud

platforms.

IV. CLOUD TESTBED ADAPTER

The cloud testbed adapter is designed as an easy-to-use

REST API for validation of cloud resource management

TABLE I
OVERVIEW OF MAIN API METHODS

Method Path Description

GET /info Overview of configured clusters

GET /{c}/ping Check if selected cluster is online
/{c}/info General information about cluster

GET /{c}/{n}/ping Check if selected node is online
/{c}/{n}/all Returns all resource utilization
/{c}/{n}/usage/cpu Current CPU utilization
/{c}/{n}/usage/memory Current RAM utilization
/{c}/{n}/usage/disk Current disk utilization
/{c}/{n}/usage/network Current network utilization

POST /{c}/add Provision additional node
/{c}/start Start distributed task on cluster
/{c}/stop Stop task
/{c}/restart Restart task

POST /{c}/{n}/remove Deprovision selected node
/{c}/{n}/start Start task on individual node
/{c}/{n}/stop Stop task
/{c}/{n}/restart Restart task

strategies, and supports 2 types of operations as illustrated in

Figure 2. GET requests are used to retrieve information about

the testbed environment, for example the current resource

usage or the number of instances currently active. POST

requests on the other hand are used to start and/or control

tasks on the testbed. The API can be used to either get or

send information from/towards the testbed as a whole (e.g. to

provision an additional instance or to get the current number of

instances), or from/towards an individual node (e.g. to retrieve

the current CPU usage of the selected node).

Table I summarizes the available methods of the REST

API. In the given path, {c} should be replaced by the cluster

identifier, whereas {n} corresponds to a node identifier. Each

cluster, and every node inside the cluster should have an

unique identifier. All GET requests return a JSON object

containing the requested information. Before retrieving infor-

mation about the cluster or individual nodes, the ping method

should be used first to determine if the cluster or node is

online. This method is very lightweight and only returns the

value 1 if the node is accessible. The POST requests are used

to start/stop/restart experiments on the selected cluster or node

and to (de-)provision additional nodes. For this to work, a

simple control script (e.g. a bash or python script) should be

deployed onto the individual nodes implementing the different

operations. Details about the task are added to the body of the

POST request, which in turn are passed as parameters to the

control script on the node.

V. PROOF OF CONCEPT

As a proof of concept, we are implementing the cloud

testbed adapter on two different testbeds. The first testbed

is a Raspberry Pi cluster, consisting of 30 Raspberry Pi 3

nodes grouped into small sub clusters. The second testbed

is a medium-scale private OpenStack cloud, running on 10

physical blade servers.

Adapter API

adapter node
UserUser

CMS

master node {c}

GET /{c}/info

CAS

worker node {n}

GET /info

cluster info (JSON)

GET /{c}/{n}/all
GET /{n}/all

 GET /all

node resource

usage (JSON)

Fig. 3. Interaction between the cloud testbed adapter and the Raspberry Pi
cluster for two sample API calls.

A. Raspberry Pi Cluster

The Raspberry Pi cluster testbed consists of multiple Rasp-

berry Pi 3 worker nodes, aggregated in small clusters of around

5 nodes. Every worker node in the cluster is interconnected,

and there is one master node managing the whole testbed. This

master node can either be a Raspberry Pi or any device such

as a laptop or desktop computer running a Linux distribution

and the required management services (such as routing, DHCP,

DNS, TFTP and/or NFS). We have developed two custom

Node.js services for the Raspberry Pi Cluster. The Cluster

Management Service (CMS) is deployed on the master node

and is used to manage the whole testbed, for example to get

the status of individual worker nodes or to (de-)provision ad-

ditional nodes. The Cluster Agent Service (CAS) is deployed

on all worker nodes and communicates directly with the OS

of the worker node to retrieve the current resource usage and

to control tasks. Both services provide a REST API similar to

the main API presented in Table I, and are developed using a

combination of Node.js, Python, HTML, JavaScript and Bash

scripting. The services can be easily deployed onto any Linux-

based system.

Figure 3 illustrates the interaction between the different

components for 2 example API calls. Information about the

cluster can be retrieved from the CMS, whereas information

about an individual node is retrieved from the CAS of this

node. For this Proof of Concept, the cloud testbed adapter

only dispatches requests towards the correspondent services

of the Raspberry Pi cluster.

B. OpenStack Private Cloud

Our second testbed is a medium-scale OpenStack private

cloud, deployed on top of 10 physical blade servers. The Open-

Stack platform consists of interrelated components controlling

the different aspects of the cloud, such as OpenStack Compute

(Nova) for managing the computational resources and Open-

Stack Networking (Neutron) managing the internal network.

Most components already provide a REST API, which can be

used for the implementation of the GET operations listed in

Table I. For these operations, the adapter translates incoming

requests to the relevant API’s of the different components,

aggregates the results and sends them back to the client.

Some operations, e.g. most POST operations used for con-

trolling tasks on the worker nodes, can not be implemented

by using only the API of the OpenStack components. In

order to support those operations, a custom version of the

CAS introduced in the previous case study can be deployed

on the instantiated OpenStack nodes. The service can be

preconfigured in the main image which is used to deploy new

virtual machines.

VI. DISCUSSION

During the design of the adapter, we wanted to keep the

interface compact and intuitive, but providing sufficient oper-

ations for a broad range of experiments. We illustrate the usage

of the adapter using a simple sample strategy. In this example,

we focus on the execution of CPU-intensive tasks on a cloud

testbed. When we want to allocate resources for a new task,

we first retrieve general information about the cluster (e.g. an

overview of provisioned nodes) using the GET /{c}/info
method call. Once we have retrieved the list of provisioned

nodes for our cluster, we can get the current CPU utiliza-

tion for each node using GET /{c}/{n}/usage/cpu.

We can now either start the task on one of the ex-

isting nodes (POST /{c}/{n}/start) or provision an

additional node and assign the task to this new node

(POST /{c}/add followed by POST /{c}/{n}/start).

During the execution, we can monitor the node using

GET /{c}/{n}/usage/cpu.

Although in this paper we implemented the adapter on top

of two specific types of cloud testbeds, the developed services

can be easily modified to support other types of testbeds. The

services developed for the Raspberry Pi cluster for example

can be executed on any Linux-based operating system with

Node.js, python and bash installed. Furthermore, the API

of the adapter node can be further extended, for example

to monitor the current GPU utilization of the nodes, or to

include other types of hardware resources. The adapter can

also be used to manage multiple testbeds at once, as long

as an implementation is provided for every distinct testbed

type, which can be very useful for the validation of strategies

focusing on resource management in heterogeneous cloud

environments.

The source code for the adapter will be made available

to the general public through GitHub12, together with the

implementation for both testbeds described in this paper. We

encourage fellow researchers within the field to try out and

customize or extend the code for their own research projects.

VII. CONCLUSIONS AND FUTURE WORK

With cloud computing, efficient resource management is

of great importance as it can result in higher scalability and

significant energy and cost reductions. Although simulations

1https://github.com/IBCNServices/RPiaaS
2https://github.com/IBCNServices/cloud-adapter

are a great tool for the development of new resource allocation

strategies, experimental validation using physical hardware

should also be considered as these types of experiments will

often result in new insights. Experimental validation however

is both costly and time-consuming, especially during the initial

design phase.

In this paper, we presented a general workflow for the

design, implementation and validation of cloud resource al-

location strategies, together with the introduction of the cloud

testbed adapter. The adapter was designed to facilitate the step

towards experimental validation, by providing a convenient

and compact REST API towards the user. As a proof of

concept, we implemented the adapter on top of two different

types of cloud testbeds. The implementation can be easily

extended or customized, for example to include other types

of hardware resources or to support other testbed types. In

the near future we will use the adapter for the experimental

validation of the cloud resource allocation strategies developed

within our research group.

REFERENCES

[1] Z. Lu, S. Takashige, Y. Sugita, T. Morimura, and Y. Kudo, “An
analysis and comparison of cloud data center energy-efficient resource
management technology,” International Journal of Services Computing

(IJSC), vol. 2, no. 4, pp. 32 – 51, 2014.

[2] B. Jennings and R. Stadler, “Resource management in clouds: Survey
and research challenges,” Journal of Network and Systems Management,
vol. 23, no. 3, pp. 567 – 619, 2015.

[3] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose, and
R. Buyya, “Cloudsim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algo-
rithms,” Software: Practice and Experience, vol. 41, no. 1, pp. 23– 50,
2011.

[4] J. Son, A. V. Dastjerdi, R. N. Calheiros, X. Ji, Y. Yoon, and R. Buyya,
“Cloudsimsdn: Modeling and simulation of software-defined cloud data
centers,” in 2015 15th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing, May 2015, pp. 475–484.

[5] N. T. Hieu, M. D. Francesco, and A. Yl-Jski, “Virtual machine consol-
idation with usage prediction for energy-efficient cloud data centers,”
in 2015 IEEE 8th International Conference on Cloud Computing, June
2015, pp. 750 – 757.

[6] S. Rampersaud and D. Grosu, “Sharing-aware online algorithms for
virtual machine packing in cloud environments,” in 2015 IEEE 8th

International Conference on Cloud Computing, June 2015, pp. 718 –
725.

[7] Z. Zhang, C.-C. Hsu, and M. Chang, “Coolcloud: A practical dynamic
virtual machine placement framework for energy aware data centers,”
in 2015 IEEE 8th International Conference on Cloud Computing, June
2015, pp. 758 – 765.

[8] H. Moens, B. Hanssens, B. Dhoedt, and F. D. Turck, “Hierarchical
network-aware placement of service oriented applications in clouds,” in
2014 IEEE Network Operations and Management Symposium (NOMS),
May 2014, pp. 1–8.

[9] P.-J. Maenhaut, H. Moens, B. Volckaert, V. Ongenae, and F. D. Turck,
“Design of a hierarchical software-defined storage system for data-
intensive multi-tenant cloud applications,” in 2015 11th International

Conference on Network and Service Management (CNSM), November
2015, pp. 22–28.

[10] P.-J. Maenhaut, H. Moens, B. Volckaert, V. Ongenae, and F. D. Turck, “A
simulation tool for evaluating the constraint-based allocation of storage
resources for multi-tenant cloud applications,” in 2016 IEEE/IFIP Net-

work Operations and Management Symposium (NOMS 2016), Istanbul,
Turkey, April 2016, pp. 1017–1018.

[11] iMinds iLab.t Virtual Wall. [Online]. Available:
http://ilabt.iminds.be/iminds-virtualwall-overview

