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ABSTRACT In this paper, we study the joint pilot assignment and resource allocation for system energy
efficiency (SEE) maximization in the multi-user and multi-cell massive multi-input multi-output network.
We explicitly consider the pilot contamination effect during the channel estimation in the SEE maximization
problem, which aims to optimize the power allocation, the number of activated antennas, and the pilot
assignment. To tackle the SEE maximization problem, we transform it into a subtractive form, which
can be solved more efficiently. In particular, we develop an iterative algorithm to solve the transformed
problem where optimization of power allocation and number of antennas is performed, and then pilot
assignment optimization is conducted sequentially in each iteration. To tackle the first sub-problem, we
employ a successive convex approximation (SCA) technique to attain a solvable convex optimization
problem. Moreover, we propose a novel iterative low-complexity algorithm based on the Hungarian method
to solve the pilot assignment sub-problem. We also describe how the proposed solution approach can be
useful to address the sum rate (SR) maximization problem. In addition to the algorithmic developments, we
characterize the optimal structure of both SEE and SR maximization problems. The numerical studies are
conducted to illustrate the convergence of the proposed algorithms, impacts of different parameters on the
SR and SEE, and significant performance gains of the proposed solution compared the conventional design.

INDEX TERMS Energy efficiency, massiveMIMO, multi-cell, pilot assignment, pilot contamination, power
allocation.

I. INTRODUCTION

The evolution of wireless cellular networks has strongly
relied on the advanced MIMO technology to fundamentally
enhance the wireless capacity and communications
reliability [1]. Recently, there has been an increasing interest
in the large-scale MIMO or massive MIMO technology
which is based on the deployment of a large number of
antennas at the transmitter and/or receiver sides [2]. Massive
MIMO has been shown to result in significant improvement
in network throughput and energy efficiency with poten-
tially low complexity deployment. In addition, time-division
duplexing (TDD) has beenmainly recommended formassive-
MIMO systems since it can provide the required channel state
information (CSI) with affordable cost for downlink beam-
forming and uplink detection via uplink pilot transmission
and channel estimation.
It has been shown in [2]–[5] that pilot contamination

is one of the major challenges in designing massive
MIMO networks, which presents the fundamental

performance bottleneck. Such problem comes from the fact
that a finite number of pilot sequences must be reused
over cells for the uplink channel estimation, which causes
the estimated CSI in one cell to be contaminated by other
neighboring cells. Pilot contamination indeed results in the
network throughput saturation even in the large-scale anten-
nas regime [2], [3]. This performance bottleneck occurs with
both simple and sophisticated beamforming schemes [2]–[4],
which reflects the severe impact of pilot contamination
on the system performance. It was shown in [5] that
under certain special structure of MIMO channels, employ-
ment of the minimum-mean-squared-error (MMSE) channel
estimator and a simple pilot assignment scheme can
efficiently mitigate the pilot contamination effect in the
large antenna regime. Nonetheless, it is important to inves-
tigate the design of a general MC-MU MIMO network
considering MC interference, pilot contamination, limited
bandwidth, and power, which is the target of this
paper.
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In general, efficient allocation of radio resources
(e.g., power, frequency, time, and antennas) plays a crucial
role in improving wireless network performance. This
has been indeed an active research area over the last
decades [1], [6]–[8]. In particular, different radio resource
allocation problems for the MU single-cell setting have been
investigated for both single-input single-output (SISO) and
MIMO systems considering various design objectives such as
power minimization, SR, and utility maximization. Design of
an optimal resource allocation algorithm can be challenging
in general if the underlying resource allocation problems
are non-convex. Different SCA techniques have been devel-
oped to resolve these challenges [9]–[11]. Moreover, various
efficient resource allocation algorithms have been proposed
to address joint allocation of subchannel and powers in
multi-carrier wireless systems [12]–[16], which can typically
achieve suboptimal solutions due to the mixed-integer and
non-linear nature of underlying problems.
Resource allocation for EE maximization has been also

an active area of research in recent years [17]–[19]. This
is motivated by the need to reduce the network energy
consumption, which helps lower operation costs for mobile
network operators and contributes to decrease CO2 emission
of the communications and information technology sector.
Various resource allocation algorithms for EE maximization
have been proposed under different network settings. Power
allocation for pilot and data symbols for the orthogonal
frequency division multiple access (OFDMA) cellular
network considering channel estimation errors and power
constraints was considered in [20]. Optimal beamforming
designs for maximizing the EE under power constraints in
MU-MIMO systems were studied in [21] for the uplink and
in [22] for the downlink. In addition, the EE maximization
problem in the MU massive MIMO cellular network was
considered in [23] where the authors proposed to impose
certain interference limits to manage the pilot contamina-
tion and inter-user interference. In general, it is not easy to
determine these interference limits that can guarantee good
network performance.
To the best of our knowledge, there is no existing

work that considers the joint design of pilot assignment
and resource allocation in the MU-MC massive-MIMO
environment accounting for the pilot contamination effect.
This paper aims to fill this gap in the literature where we
consider both SR and SEE optimization problems for this
setting. Specifically, we make the following contributions.

• We derive the user signal-to-interference-plus-noise
ratio (SINR) for a general reuse pattern of pilot
sequences over cells (i.e., consideration of pilot
contamination) under MMSE-based channel estimation
and maximum ratio transmission (MRT) beamforming
schemes. This derivation allows us to obtain a
closed-form rate formula as a function of transmit
power, number of activated antennas and pilot
assignment pattern based on which we can formulate the
SR and SEE maximization problems.

• We describe how to employ the fractional programming
technique to transform the SEE maximization problem
into the subtractive optimization form based on
which efficient iterative algorithms can be developed.
In addition, we characterize the optimal number of
activated antennas for these two problems. Specifically,
we prove that the SR maximization problem requires
to activate all antennas at optimality while the optimal
number of activated antennas for the SEE maximization
problem is shown to be smaller than an upper bound,
which does not scale as the number of available antennas
tends to infinity.

• We develop an iterative algorithm to solve the
transformed SEE maximization problems where we
solve two sub-problems sequentially in each iteration.
Specifically, the first sub-problem optimizes the number
of activated antennas and power allocation while the
second sub-problem optimizes the pilot assignment.
We employ the SCA technique to develop an algo-
rithm to solve the first sub-problem. Moreover, we
propose a novel method to iteratively perform pilot
assignments to users different cells. Specifically, we
reformulate the pilot assignment problem for one cell in
each iteration into the well-known job assignment prob-
lem and develop a modified Hungarian-based algorithm
to achieve an efficient and feasible pilot assignment
solution. We describe how the proposed approach can
be employed to solve the SR maximization problem.

• Numerical studies confirm the convergence of our
proposed iterative algorithms and their superior per-
formance in terms of total SR and SEE compared to
the optimal resource allocation with conventional pilot
assignment. Specifically, the SEE gain becomes larger as
the maximum transmit power Pmax, the number of users
per cell or the required minimum rate increases. In par-
ticular, the SEE gain of about 100% can be achieved
for the required minimum rate of 3 bits/s/Hz. Moreover,
the SR gain becomes more significant as the number of
available antennas is larger.

The remaining of this paper is organized as follows.
In Section II, we present the system model. In Section III,
we formulate the constrained SR and SEE optimization prob-
lems. Optimality characterization and algorithmic solutions
for the SEE and SR maximization problems with detailed
algorithm designs are presented in Section IV and Section V,
respectively. Numerical results are described in Section VI
followed by conclusion in Section VII. Some preliminary
results of this paper have been published in [24]. Throughout
the paper, we shall use the following notations. Boldface
upper-case letters denote matrices or sets, boldface
lower-case letters denote column vectors or sets, and plain
lower-case letters denote scalars. The superscripts (·)T ,
(·)∗, and (·)† denote the transpose, complex conjugate, and
Hermitian transpose, respectively. We denote In as the n× n

identity matrix, Tr (·) as the trace operator, and | · | as the
standard Euclidean norm.
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II. SYSTEM MODEL

A. RECEIVED SIGNAL MODEL

We consider the downlink of the cellular network with L cells,
i.e., {1, ...,L}. Each base station (BS) which is supported by
a large number of antennasMmax ≫ 0 is assumed to serve its
K single-antenna users. We will explicitly consider channel
estimation effects on the precoding and system performance
in a two-stage framework. In the first stage, each BS estimates
the channel coefficients between itself and the users. The
estimated CSI is then utilized to determine precoding vectors
for transmitting users’ data in the second stage. It is noted that
employing allMmax antennas at each BS to serve the users is
not always desirable because of the high energy consumption
of radio chains deployed for activated antennas. Thus, in this
paper, we are interested in optimizing the number of activated
antennas out ofMmax at each BS to optimize different design
objectives.1

Let us denote M⋆
j as the optimal number of activated

antenna for considered problems, which will be stated
shortly. In order to determine M⋆

j , we assume that each BS
j activatesMj antennas to serve all associated users.We denote
data symbols associated with the K users in cell j as
xj = [xj1, xj2, . . . , xjK ]T , where data symbols of each

user have unit average power, e.g., E

{
x∗
jkxjk

}
= 1.

We assume that data stream for the kth user in cell j
is precoded with an Mj × 1 precoding vector wjk before
transmission. Then, the received signal at the kth UE in cell j
can be given as

yjk =
L∑

l=1

√
βljkh

†
ljk

K∑

i=1

√
Pliwlixli + njk , (1)

where Pjk is the transmit power for the kth user in cell j,
njk is the additive white Gaussian noise (AWGN) at the
kth user in cell j, hljk and βljk are the Ml × 1 small-
scale fading vector and the large-scale channel coefficient
for the channel between BS l and the kth user in cell j,
respectively. Here, each fading vector is assumed to
follow a complex Gaussian distribution with zero mean
and covariance matrix Rljk , i.e., hljk ∼ CN

(
0,Rljk

)
.

We assume that the large-scale channel coefficient captures
the path-loss effect with βljk = d−α

ljk where dljk is the distance
between BS l and the kth user in cell j, and α is the path-loss
exponent. In addition, the noise power is assumed to be N0.

B. MMSE CHANNEL ESTIMATION

The precoding vector is typically designed by using the
estimated CSI available at each BS. We assume that each
BS estimates the CSI for its users based on the pilot trans-
mission in the uplink where we assume the TDD system
(i.e., uplink and downlink CSI is the same). Assume that
there is a same set of κ (K ≤ κ) orthogonal pilot sequences
{ψ1, . . . ,ψκ} that must be assigned to all users in the

1The general problem of optimizing the subset of activated antenna at each
BS is outside the scope of this paper, which will be considered in our future
works.

network where ψ i = [ψi,1, . . . , ψi,τ ]T , (κ ≤ τ ). Under the

orthogonal condition, we have ψ†
mψ i = 0,∀m 6= i and

ψ
†
i ψ i =

∣∣ψi,1
∣∣2 +

∣∣ψi,2
∣∣2 + · · · +

∣∣ψi,τ
∣∣2 = π where π is

the pilot signal power.
To optimize the pilot assignments, we introduce following

variables ρj = [ρj,1, . . . , ρj,K ]T for the K users in cell j and κ
pilot sequences. Specifically, ρj,k = mmeans that the kth user
in cell j is assigned the mth pilot sequence in the channel esti-
mation stage. To facilitate the algorithm development later,
we also define a related notation ρ̃j = [ρ̃j,1, . . . , ρ̃j,κ ]T to
present the reverse association between pilot sequences and
users in cell j where ρ̃j,m = k means that the mth pilot
sequence is assigned to the kth user in cell j, and ρ̃l,m = 0
means that the mth pilot sequence is not used by any user in
cell j. Then, during the CSI estimation stage, BS j receives the
Mj × τ signal matrix Yj whose tth column (1 ≤ t ≤ τ ) can
be expressed as

Yj,t =
L∑

l=1

K∑

k=1

√
βjlkhjlkψ

T
ρl,k ,t

+ Zj,t , (2)

where Zj,t ∈ C
Mj×1 is the AWGN vector whose element

is distributed according to CN
(
0, σ 2

)
. Similar to [5], the

MMSE estimator is employed for estimating channel fad-
ing vectors {hjjk}. Specifically, the estimated channel can be
expressed as ĥjjk =

√
βjjkRjjkQjkYjψρl,k , where

Qjk =
(
σ 2IMj + π

L∑

l=1

βjlρ̃l,ρj,k
Rjlρ̃l,ρj,k

)−1

. (3)

Note that ρ̃l,ρj,k indicates that the user in cell l is assigned the
same pilot sequences of the kth user in cell j. Moreover, we
have βjlρ̃l,ρj,k = 0 if ρ̃l,ρj,k = 0. The actual channel can be
written as the sum of the estimated channel and error term as
hjjk = ĥjjk+h̃jjk , where ĥjjk is the Gaussian vector distributed
according to CN

(
0,8jjk

)
and h̃jjk is the Gaussian vector

distributed according to CN
(
0,Rjjk −8jjk

)
. In general, we

have

8jjk = πβjjkRjjkQjkRjjk = βjjkRjjkQ̄jkRjjk , (4)

where Q̄jk =
(
1/γpIMj +

∑L
l=1 βjlρ̃l,ρj,k

Rjlρ̃l,ρj,k

)−1
and we

denote γp = π/σ 2 as the SNR of each pilot sequence.

C. ERGODIC ACHIEVABLE RATE

With the estimated CSI, we assume that the MRT beam-
forming is employed, i.e., wjk =

√
ξjk ĥjjk , where the

parameter ξjk normalizes the average transmit power such that

the term PjkE
{
w
†
jkwjk

}
is equal to Pjk , i.e.,

ξjk = 1

E

{
ĥ
†
jjk ĥjjk

} . (5)
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γjk (P,M, ρ) = PjkβjjkAjjkMj

Pjkβjjk
(
Ajjk + 1

)
+

∑
(l,i) 6=(j,k)

Pliβljk +
∑
l 6=j

Plρ̃l,ρj,k
βljk

(
BljkMl + Bljk − 1

)
+ N0

(10)

Then, the received signal at kth user in cell j can be
rewritten as

yjk =
L∑

l=1

√
βljkh

†
ljk

K∑

i=1

√
Pli(

√
ξli ĥlli)xli + njk

=
√
ξjkPjkβjjkh

†
jjk ĥjjkxjk

+
∑

(l,i)6=(j,k)

√
ξliPliβljkh

†
ljk ĥllixli + njk . (6)

The ergodic rate achieved at the kth user in cell j

with the given received signal from (6) can be
written as rjk (P,M, ρ) = log

[
1 + γjk (P,M, ρ)

]
, where

ρ = vec
(
ρ1, ρ2, . . . , ρL

)
and γjk (P,M, ρ) can be interpreted

as the achieved SINR associated with the achievable rate at
the kth user in cell j, which is given by

γjk (P,M, ρ) =
ξjkPjkβjjk

∣∣∣E
{
h
†
jjk ĥjjk

}∣∣∣
2

IN(P,M, ρ)
, (7)

where the interference-plus-noise term can be presented as

IN(P,M, ρ) = ξjkPjkβjjkVar
(
h
†
jjk ĥjjk

)

+
∑

(l,i)6=(j,k)

ξliPliβljkE

{∣∣∣h†ljk ĥlli
∣∣∣
2
}

+ N0,

(8)

where we denote Pj =
[
Pj1,Pj2, . . . ,PjK

]T
,

P = vec (P1,P2, . . . ,PL) as the transmit powers from each
BS to its users; and M = [M1,M2 . . . ,ML]T describes the
number of activated antennas at the BSs. In this paper, we
mainly concentrate on the case where Rljk = IMl while
the general case will be discussed at the end of Section IV.
We now derive the received SINR and ergodic achievable rate
in the following theorem.
Theorem 1: When the covariance matrix satisfies

Rljk = IMl , the ergodic achievable rate of the kth user in

cell j can be written as

rjk (P,M, ρ) = log2
[
1 + γjk (P,M, ρ)

]
, (9)

where γjm(P,M, ρ) is given by (10) on top of this page and

Ajjk = βjjk

1/γp+
∑L

l=1 βjlρ̃l,ρj,k

and Bljk = βljk

1/γp+
∑L

n=1 βlnρ̃n,ρj,k

.

Proof: The proof is provided in Appendix A. �

III. RESOURCE ALLOCATION PROBLEMS

A. SYSTEM ENERGY EFFICIENCY (SEE)

The total SR of the network can be expressed as

R(P,M, ρ) =
L∑

j=1

K∑

k=1

rjk (P,M, ρ), (11)

where rjk (P,M, ρ) is the ergodic achievable rate of the
kth user in cell j given by (9). To express the SEE metric,
we assume the linear BS power consumption model [25]
where the total power network consumption P(P,M) is

P(P,M) = Pc

L∑

j=1

Mj +
L∑

j=1

K∑

k=1

νPjk + P0, (12)

where Pc is the constant circuit power consumption per
antenna including the power dissipation in the transmitting
filter, mixer, frequency synthesizer, and digital-to-analog
converter which are independent from the transmit power.
Thus, the first term in (12) represents the total circuit power
consumption of all activated antennas at BSs. Moreover,
ν ≥ 1 is a constant which accounts for the inefficiency of
the power amplifier; P0 is the basic power consumed at the
BS independent of the number of active antennas. From this,
the SEE, calculated in bits/Joule,2 is defined as the ratio of
SR and the total power consumption as follows:

η(P,M, ρ) = R(P,M, ρ)

P(P,M)
. (13)

B. SR AND SEE MAXIMIZATION PROBLEMS

We consider the following two optimization problems. The
first one aims at maximizing the SR R(P,M, ρ) as follows:

maximize
P,M,ρ

R(P,M, ρ)

subject to (C1) : rjk (P,M, ρ) ≥ Rmin ∀j, k

(C2) :
K∑

k=1

Pjk ≤ Pmax; ∀j, k

(C3) : Pjk > 0, ∀j, k
(C4) : 0 < Mj ≤ Mmax ∀ j, Mj ∈ Z

+

(C5) : ρj ∈ {1, . . . ,K }, ρj 6= ρi, ∀i, j.
(14)

The second problem maximizes the SEE η(P,M, ρ)
as follows:

maximize
P,M,ρ

η(P,M, ρ)

subject to (C1), (C2), (C3), (C4), (C5). (15)

The optimization variables for both problems are P,M, ρ.
Constraint (C1) imposes the minimum data rate requirements
for all users; (C2) and (C3) describe the constraints for
transmit powers of each BS where Pmax is the BS maxi-
mum power. Moreover, (C4) captures the constraint for the

2Strictly speaking, it should be bits/Joule/Hz since the rate is calculated
for one Hz of system bandwidth.
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number of activated antennas and (C5) represents the integer
pilot assignment constraint in each BS. Because of the non-
concave objective functions and the mixed integer nature of
optimization variables, these two problems are mixed integer
non-convex programs, which are very hard to solve optimally.
In this paper, we propose low-complexity algorithms which
can achieve sub-optimal solutions for the considered
problems.
Remark 1: It is worth noting that the SR and

SEE maximization problems are not always feasible because

of the constraints (C1) and (C2). Different practical methods
can be employed to deal with this issue when these problems

are not feasible. For example, one can adaptively adjust the

required minimum rates for users or perform user removals

(some users are removed) if the system is infeasible. In this

paper, we assume that these problems are feasible, which

allows us to focus on the joint pilot assignment and resource

allocation design. We would like to address the feasibility

problem in our future works.

IV. RESOURCE ALLOCATION ALGORITHMS FOR

SEE MAXIMIZATION PROBLEM

In this section, we describe the transformation of the SEE
maximization problem into a more solvable form. Then, we
develop a novel approach to solve the transformed SEE max-
imization problems. This proposed solution approach can be
used to solve the SR problem as discussed in the next section.

A. TRANSFORMATION OF SEE MAXIMIZATION PROBLEM

The objective of the SEE optimization problem (15) is in
a fractional form, which is difficult to address. Therefore,
we transform it into a subtractive form to aid the algorithm
development. Toward this end, let us denote � as the set
of feasible solutions (P,M, ρ) of (15), we can express the
maximum SEE η⋆ as

η⋆(P⋆,M⋆, ρ⋆) = max
(P,M,ρ)∈�

R(P,M, ρ)

P(P,M)
, (16)

where (P∗,M∗, ρ∗) represents the optimal solution. The
following theorem provides the foundation based on which
the transformation of problem (15) can be performed.
Theorem 2: The maximum SEE η⋆ defined in (16) is

achieved if and only if

F(η⋆) = max
(P,M,ρ)∈�

R(P,M, ρ) − η⋆P(P,M)

= R(P⋆,M⋆, ρ⋆) − η⋆P(P⋆,M⋆) = 0, (17)

forR(P,M, ρ) ≥ 0 and P(P⋆,M⋆) > 0.
Proof: Theorem 2 can be proved by following the

similar approach in [26]. �

The results of Theorem 2 imply that the optimal value of
η⋆ ≥ 0 must satisfy F(η⋆) = 0. Thus, to deal with the
constrained optimization problem (15), we can consider the
following optimization problem

maximize
P,M,ρ

R (P,M, ρ)− ηP (P,M)

subject to (C1), (C2), (C3), (C4), (C5). (18)

Then we can address problem (15) by iteratively solving (18)
for a current value of η and updating η until we reach the
optimal η⋆ ≥ 0 satisfying F(η⋆) = 0 [26]. This problem is
a mixed integer non-convex optimization problem, which is
still very difficult to solve.

B. OPTIMALITY CHARACTERIZATION

We now describe the optimal structure of the
SEE maximization problem in the following theorem with
the support from the following proposition.
Proposition 1: For a given fixed pilot assignment ρ,

consider the following optimization problem

minimize
P,M

max
j=1,...,L

Mj

subject to (C1), (C2), (C3), (C4). (19)

Suppose there exists a feasible solution of (19) when

Mmax → ∞, then there exists a set of thresholds

Mth = {M th
1 , . . . ,M

th
j , . . . ,M

th
L } such that

(i) when Mmax � Mth, problem (19) is infeasible3 and
when Mmax ≻ Mth, problem (19) is feasible, where
Mmax = {Mmax, . . . ,Mmax}.

(ii) when Mmax ≻ Mth, the optimal solution M⋆ is

independent of Mmax.

Proof: The proof is provided in Appendix B. �

Theorem 3: If there exists a feasible solution for prob-

lem (19) then the optimal number of activated antennas M⋆
j

at any BS j for problem (18) is upper bounded by a fixed
value M0 independent of Mmax when Mmax is sufficiently

large.

Proof: The proof is provided in Appendix C. �

The results in this theorem provide interesting insights.
Specifically, from the SEE maximization perspective it is
more beneficial to utilize a moderate number of antennas at
each BS even if the number of available antennas is very large.
In the remaining of this section, we describe the proposed

algorithm to solve the transformed SEE maximization prob-
lem (18). Since we have to optimize over combinatorial sets
for ρ as well as real P and integer variables M, solving this
joint problem is very challenging. To overcome this difficulty,
we propose to decompose it into two sub-problems and solve
them sequentially in each iteration, i.e., optimization over
P,M for given ρ and optimization over ρ for given P,M.

C. SCA-BASED ALGORITHM

For a fixed ρ, we solve the sub-problem corresponding
to (18) over variables P and M. We can observe that the
objective function in (18) is a non-concave function and the
optimization variables Mj, j = 1, . . . ,L take integer values.
To address the second challenge, we relax Mj to real vari-
ables and obtain a sub-optimal solution of M̆⋆

j by rounding

it as M̆⋆
j = ⌈M⋆

j ⌉. For the first challenge, we employ the
SCA technique proposed in [9] to approximate the objective
function based on the following result

log
(
1 + ωjk

)
≥ f (ωjk , ajk , bjk ) = ajkωjk + bjk , (20)

3Here, � denotes the component-wise inequality.
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Algorithm 1 SCA-Based Algorithm to Optimize P,M
Input: Pilot assignment ρ, path-loss coefficients βljk
Output: Power and number of antenna update (P⋆,M⋆).
1: Initialize with a feasible point P(0),M(0) and set a(0) =

1, b(0) = 0, t1 = 1.
2: repeat

3: Solve (22) to obtain the solution P(t1),M(t1).
4: Compute γjk

(
P(t1),M(t1)

)
, ∀j, k and update a(t1), b(t1)

by using (21).
5: t1 = t1 + 1
6: until Convergence of P(t1),M(t1).
7: return (P⋆,M⋆) =

(
P(t1),M(t1)

)
.

for some ajk , bjk that are adaptively calculated as a function
of of each point ωjk to achieve the tightest lower bound.
In particular, for a particular value ωjk = ω̃jk , the parameters
of f (·) can be chosen as

ajk = ω̃jk

1 + ω̃jk
; bjk = log

(
1 + ω̃jk

)
− ω̃jk logωjk

1 + ω̃jk
. (21)

Motivated by the the above convexity approximation, we
employ this lower bound to approximate rjk = log

(
1 + γjk

)

where ωjk corresponds to γjk . Then, we apply the following
changes of variables P̂ = logP and M̂ = logM. Finally, we
arrive at the following approximated optimization problem

maximize
P̂,M̂,a,b

R̂(P̂, M̂, a,b) − ηP(P̂, M̂)

subject to (C1′) : r̂jk (P̂, M̂, ajk , bjk ) ≥ Rmin, ∀j, k,

(C2′) :
K∑

k=1

eP̂jk ≤ Pmax∀j,

(C3′) : M̂j ≤ logMmax, ∀j, (22)

where r̂jk (P̂, M̂, ajk , bjk ) = f (γjk (P̂, M̂), ajk , bjk ) is the
corresponding approximated rate lower-bound obtained by

using (20) and R̂(P̂, M̂, a,b) =
∑

j

∑
k r̂jk (P̂, M̂, ajk , bjk ).

Since the objective function of (22) is concave, the
problem (22) is a convex optimization problem.

Note that we only maximize a lower bound of the
objective function of (18) in the approximated problem (22).
To obtain an efficient solution for problem (18), we tighten
the bound by iteratively updating a(t1)jk and b(t1)jk as follows.
At any iteration t1 > 0, we update these parameters according
to (21) using ω̃(t1)

jk = γjk
(
P(t1),M(t1)

)
, whereP(t1),M(t1) is the

optimal solution of (22). The algorithm to find P and M by
iteratively solving problem (22) is presented in Algorithm 1
where the iteration index is denoted as t1. We state the mono-
tone increasing property of the objective function achieved
by this algorithm in the following proposition. This property
together with the upper-boundedness of the objective function
guarantee the convergence of Algorithm 1.
Proposition 2: For a given ρ, Algorithm 1 generates a

sequence of feasible solutions P(t1),M(t1) with increasing

objective value for problem (18).

Proof: The proof is given in Appendix D. �

Even through Algorithm 1 converges to a stationary point,
the resulting stationary point at convergence may not satisfy
the Karush-Kuhn-Tucker (KKT) conditions (i.e., necessary
conditions for optimality) of the original problem (18) opti-
mized over variables P and M for a fixed ρ.

D. PILOT ASSIGNMENT ALGORITHM

For fixed P and M, we notice that the SR function R(ρ) can
be rewritten as

R(ρ) =
L∑

j=1

rj,ρ̃j,1 (ρ̃1,1, ρ̃2,1, . . . , ρ̃L,1)

︸ ︷︷ ︸
weight w.r.t users assigned to the 1st pilot

+ . . .

+
L∑

j=1

rj,ρ̃j,κ (ρ̃1,κ , ρ̃2,κ , . . . , ρ̃L,κ )

︸ ︷︷ ︸
weight w.r.t users assigned to the κth pilot

, (23)

where there are κ terms in this expression, each of which
corresponds to the rate weight achieved by assigning users
in different cells to the mth pilot, which concerns variables
ρ̃1,m, ρ̃2,m, . . . , ρ̃L,m. Thus, the underlying pilot assignment
problem requires to determine an optimal matching (between
users and pilots) that achieves the maximum total weight.
In general, this problem is known as the 3-index matching
optimization problem, which is known to be NP-hard.
In what follow, we propose to decouple the original assign-

ment problem into sub-problems where in each sub-problem,
we aim at optimizing the assignment of K users to κ pilot
sequences in only one particular cell. In particular, assuming
that we desire to obtain the optimal pilot assignment to users
in cell j, i.e., ρj,k , k = 1, . . . ,K , we fix the remaining
pilot assignment variables in other L − 1 cells and transform
the reformulated sub-problem into the standard one-to-one
matching problem (says between ‘‘users’’ and ‘‘pilots’’).
To facilitate the description of the solution approach for the
pilot assignment sub-problem in each cell, we provide the fol-
lowing definition related to the one-to-onematching problem.
Definition 1 (Matching Problem): Assuming that there

are κ pilots that are to be assigned to K users (κ ≥ K).

The matching rule is that every user is assigned one pilot

sequence and every pilot sequence is assigned to at most

one user. Each possible assignment between mth pilot and

kth user is associated with a cost ck,m > 0, which is given
in Table 1. Then, the matching problem can be represented by

TABLE 1. Cost table of assigning pilot to users.
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the following optimization problem:

max
{xk,m}

∑

(k,m)

xk,mck,m

s.t.

K∑

k=1

xk,m ≤ 1, ∀ m,

κ∑

m=1

xk,m = 1, ∀ k,

xk,m ∈ {0, 1}, ∀ k,m, (24)

where xk,m ∈ {0, 1} is the binary assignment variable where
xk,m = 1means that the pilot sequence m is assigned to user k,

and xk,m = 0, otherwise.

This one-to-one matching problem can be solved optimally
in polynomial time by applying the well-known Hungarian
algorithm (i.e., [27, Algorithm 14.2.3]). Motivated by this
matching solution with the notice that if we aim at optimizing
the assignment of κ pilot sequences to K users in one partic-
ular cell j while fixing the pilot assignments for users from
other L − 1 cells, then the problem degenerates to a standard
matching problem, which can be solved by using this well-
known method. Specifically, by fixing the pilot assignments
for L − 1 cells except cell j, the pilot assignment problem for
cell j is4

maximize
ρj=ρj,1,...,ρj,K

R(ρ−j, ρj)

subject to (C1′′) : rjk (ρl) ≥ Rmin, ∀ j, k, (25)

where ρ−j describes the pilot assignment decisions for all
cells l 6= j, i.e., variables ρl for l 6= j. It is noticed that without
constraint (C1′′), this maximization problem can be solved
optimally by applying the Hungarian method to achieve the
maximum sum-weight subject to the constraints that each
user is associated with one pilot. In order to circumvent the
rate constraint (C1′′) at each user, we propose a modified
Hungarian method to maintain the QoS constraints (C1′′).
In particular, we define the weight information for user k and
cell j for the mth pilot as

w
j
k,m =

L∑

l=1

rlρ̃l,m . (26)

This weight represents the total rate achieved by users in all
cells who are assignedmth pilot. Then, we can verify whether
if each term in each w j

k,m satisfies the constraints (C1′′) or

not. If any of them violates this constraint, we replace w j
k,m

by a sufficiently small positive value ≈ 0. This is to avoid
performing infeasible pilot assignments. Finally, we apply
the Hungarian method on the modified weights for cell j as
ck,m = w

j
k,m,∀(k,m). The iterative pilot assignment algo-

rithm is summarized in Algorithm 2, which can be explained
for each iteration t2 as follows. At iteration t2, upon finding

4For a fixed solution of P and M, optimization of the objective function
of (18) is equivalent to optimizing the first term of the objective function
(i.e., the SR) since the second term related to total consumed power is fixed.

Algorithm 2 Pilot Assignment Algorithm
Input: P,M, ρ, Path-loss coefficients βljm
Output: Pilot assignment ρ⋆

1: Initialize t2 = 1
2: repeat

3: for j = 1, . . . ,L do

4: Apply modified Hungarian method to solve

subproblem-j to obtain
(
ρ⋆j,1, . . . , ρ

⋆
j,K

)
.

5: Replace
(
ρ
(t2)
j,1 , . . . , ρ

(t2)
j,K

)
=
(
ρ⋆j,1, . . . , ρ

⋆
j,K

)

6: end for

7: t2 = t2 + 1
8: until Convergence of ρ
9: return Pilot assignment ρ⋆

the solution for cell j, we update value of ρ(t2)j,1 , . . . , ρ
(t2)
j,K by the

achieved value of ρ⋆j,1, . . . , ρ
⋆
j,K . Then, we move to the next

cell and optimize its pilot assignment variables while fixing
the variables in other cells. We state the convergence of this
algorithm in the following proposition.
Proposition 3: For given P,M, Algorithm 2 converges

after a finite number of iterations.

Proof: The proposition can be proved as follows.
In each iteration, the pilot assignment is determined
according to the Hungarian method, which results in the
global optimal solution of the corresponding matching
problem. Since the total weight, which is the system SR,
is maximized in this optimization, the objective function
of problem (25) increases over each iteration. Therefore,
Algorithm 2 converges since the objection function of
problem (25) is bounded from above. �

While Proposition 3 establishes the convergence of
Algorithm 2, the resulting stationary pilot assignment solu-
tion at convergence may not necessarily satisfy the KKT con-
ditions of problem (18). Therefore, Algorithm 2 only attains
a sub-optimal solution of problem (18) in general.
Given the proposed Algorithms 1 and 2, we then

utilize them to construct the main algorithm, namely
Algorithm 3, which attains a sub-optimal joint pilot
assignment and resource allocation solution for the SEE
maximization problem. Specifically, for a given value of η,
we sequentially optimize the resource allocation and pilot
assignments in Algorithm 3 (steps 3-8). Since Algorithm 3 is
constructed based on the Dinkelbach method [23], the value
of η is updated (in steps 10-18) by using the achieved solution
from steps 3-8.
Remark 2: Convergence of an iterative algorithm based

on the Dinkelbach’s method can be attained if the joint pilot

assignment and resource allocation problem (18) for a given
value of η can be solved optimally. For the design considered

in our paper, problem (18) is a large-scale mixed-integer

and non-convex problem, which cannot be solved optimally

by algorithms with polynomial complexity algorithm. This

is the reason why we develop the sub-optimal Algorithm 3

in which we sequentially optimize the resource allocation
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Algorithm 3 Main Algorithm
Input: Maximum iteration number N , tolerance ǫ
Output: η⋆ and (P⋆,M⋆, ρ⋆)
1: Initialize arbitrary pilot assignment ρ(0), η(0) = 0,

BOOL = false and t = 1.
2: repeat

3: repeat

4: Apply Algorithm 1 to solve (22) to obtain (P⋆,M⋆)
5: Set (P,M) = (P⋆,M⋆)
6: Apply Algorithm 2 to solve (25) to obtain ρ⋆

7: Set ρ = ρ⋆

8: until Convergence of (P,M, ρ)
9: Replace

(
P(t),M(t), ρ(t)

)
= (P,M, ρ)

10: if R̂
(
P(t),M(t), ρ(t)

)
− ηP(P(t),M(t)) < ǫ then

11: Set BOOL = true

12: return η⋆ = R̂(P(t),M(t),ρ(t))
P(P(t),M(t))

13: (P⋆,M⋆, ρ⋆) := (P(t),M(t), ρ(t))
14: else

15: BOOL = false

16: return η(t) = R̂(P(t),M(t),ρ(t))
P(P(t),M(t))

17: t := t + 1
18: end if

19: until BOOL = true or t = N

(i.e., optimization of P,M using Algorithm 1) and pilot

assignment (i.e., optimization of ρ using Algorithm 2). Such

solution approach can only achieve a sub-optimal solution

for problem (18) in general. Therefore, we cannot strictly

guarantee the convergence of Algorithm 3 according to the

Dinkelbach’s method. However, we have performed extensive

numerical studies and the convergence of Algorithm 3 is

always achieved. The convergence of Algorithm 3 will be

demonstrated in Section VI.

Remark 3: Algorithm 3 can be implemented in a cen-

tralized manner via a control unit which has knowledge

of the fixed system parameters including required mini-

mum rate Rmin, maximum transmit power Pmax, number of

antennas Mmax and must collect dynamic CSI to perform the

optimization. The control unit sends the obtained solution

(P,M, ρ) to all BSs for implementation upon completing the
computation. While the fixed system parameters would not

change over the short time period, the required CSI for the

optimization process involves only long-term CSI (i.e., long-

term channel gains due to path loss βljk as can been seen

in the SINR expression in (10)). Therefore, relatively slow

estimations and updates are needed to make such reliable

long-term CSI available at the control unit. Note that even

though pilot assignments are updated iteratively for each

cell according to Algorithm 2 to achieve affordable compu-

tational complexity, these updates are all performed by the

control unit.

E. FURTHER EXTENSION

We now discuss the scenario with general channel covariance
matrices, namely Rljk = R, where R ∈ R

N×N is a real

symmetric positive definite matrix. This general model for
the channel covariance matrix reflects the potential correla-
tion among antennas. For this general model of the channel
covariance matrices, the SINR expression becomes much
more complicatedwhich in turn renders the design of efficient
resource allocation algorithms more challenging. To obtain
further insights, we consider the case where γp is sufficiently
large, in which the pilot interference dominates the noise
power in the CSI estimation process. For the case 1/γp ≪ 1,
the following approximation can be applied to any covariance
matrix 8jjk

Tr
(
8jjk

)

= Tr


βjjkR

(
1/γpI +

L∑

l=1

βjlkR

)−1

R




≃ Tr


βjjkR

(
L∑

l=1

βjlk

)−1

R−1R


 = βjjkTr (R)∑L

l=1 βjlk
. (27)

Using this approximation, we can characterize the opti-
mal number of activated antennas for the SR maximization
problem in the following theorem.
Theorem 4: When 1/γp ≪ 1, the optimal numbers of

activated antennas in the SR maximization problem in (14)
satisfy Mj = Mmax,∀j.

Proof: We prove Theorem 4 by first showing that Tr (R)
increases with the number of activated antennas. Let us con-
siderM1,M2 ∈ Z

+ such thatM1 < M2. DenoteR1 andR2 as
the correspondingM1 ×M1 andM2 ×M2 symmetric positive
definite matrices, respectively, where R2 are built by adding
more non-negative columns and rows to matrix R1. Then, we
have Tr (R2) =

∑M2
i=1 rii >

∑M1
i=1 rii = Tr (R1). Therefore,

Tr (R) increases with the number of activated antennas.
We now consider the SR maximization problem (14).

Since we can approximate Tr (8) as a function of Tr (R) for
1/γp ≃ 0 as in (27), we can conclude that Tr (8) increases
with the number of activated antennas. By repeating the same
steps as in the proof of Theorem 5, we can finally prove that
the optimal number of antennas at any BS is equal to Mmax.

�

Therefore, when 1/γp ≪ 1 we only need to optimize the
power allocation and pilot assignment for the SR optimization
problem. In addition, since we have Mj = Mmax,∀j at opti-
mality, we can re-write the SINR expression (7) in terms of
transmit powers and pilot assignment variables ρ as in (28)
on bottom of the next page. where Ãjjk = βjjk∑L

l=1 βjlρ̃l,ρj,k

and B̃ljk = βljk∑L
n=1 βlnρ̃n,ρj,k

. Then, the proposed algorithms in

the previous sub-sections can still be employed to solve the
SR maximization problem using this SINR expression.
Remark 4: For a general value of γp, it is not tractable

to express the SR as an explicit function of the number of

activated antennas. This renders the development of effi-

cient resource allocation algorithms for the SR and SEE

optimization problems difficult. One approach to overcome
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Algorithm 4 Sum Rate Maximization Algorithm
Input: Maximum iteration number N , tolerance ǫ
Output: (P⋆,M⋆, ρ⋆)
1: By Theorem 5, we set M⋆

j = Mmax, ∀j.
2: Initialize arbitrary pilot assignment ρ and t = 1.
3: repeat

4: Apply Algorithm 1 to solve (22) to obtain P where
η = 0 and M⋆

j = Mmax, ∀j, then update P.
5: Apply Algorithm 2 to solve (25) to obtain and

update ρ.
6: Set t = t + 1.
7: until Convergence of (P, ρ) or t = N .
8: return (P⋆,M⋆, ρ⋆) = (P,Mmax, ρ).

this challenge is to upper- and lower-bound Tr (8) by

corresponding functions of the number of antennas. Then,

efficient algorithms to solve SR and EE optimization problems

can be developed based on these bounds. Due to the space

constraint, we leave this design for our future works.

V. RESOURCE ALLOCATION ALGORITHMS FOR

SR MAXIMIZATION PROBLEM

In this section, we discuss the optimality characteriza-
tion and low-complexity algorithms to solve problem (14).
Specifically, we characterize the optimal number of activated
antennas at the BSs for problem (14) in the following
theorem.
Theorem 5: The optimal values M⋆

j of the SR optimization

problem in (14) satisfy M⋆
j = Mmax, ∀j.

Proof: The proof is provided in Appendix E. �

This theorem means that it is always optimal in terms of
system SR if we utilize all available antennas for transmis-
sion. Due to the results of Theorem 5, one can simply setM⋆

equal toMmax for the SRmaximization problem and one only
needs to optimize the pilot assignment and power allocation.
As can be observed, the problem (14) is equivalent to the
problem (18) for η = 0. Therefore, the SR optimization prob-
lem can be solved by Algorithm 3 using steps 3-8 only with
η = 0. We present an algorithm to solve the SRmaximization
problem in Algorithm 4.

VI. NUMERICAL RESULTS

We evaluate the performance of the proposed algorithms
in terms of achieved SEE and SR. Simulation parameters
are chosen as in Table 2, which are used to obtain
following numerical results unless stated otherwise. We will
compare the performance of the propose algorithm and
a ‘‘conventional’’ scheme where the conventional scheme

TABLE 2. System parameters.

simply allocates the kth pilot sequence to the kth user
for k = 1, 2, . . . ,K in each cell and it optimizes the
power allocation and number of activated antennas by using
Algorithm 1. The results corresponding to the proposed
algorithm and the conventional scheme are indicated as
‘‘Proposed’’ and ‘‘Conventional’’ in the following figures,
respectively. The obtained SEE in all figures are normalized
to one Hz of system bandwidth.

FIGURE 1. Convergence of the proposed algorithms for (a) SEE at
different circuit power values P0; (b) SR at different maximum number of
antennas Mmax.

Fig. 1a shows the evolution of SEE under the
proposed algorithm over iterations forMmax = 100 antennas,
P0 = 10, 15 dBW. It can be observed that the SEE converges
to a fixed value after just three iterations under the pro-
posed iterative algorithm. In addition, the proposed algorithm
achieves noticeably higher SEE compared to that of the con-
ventional pilot assignment schemewhere the SEE gains about
20% and 10% are achieved by the proposed algorithm over

γjm(P, ρ) = Pjkβjjk ÃjjkTr (R)

Pjkβjjk

(
Ãjjk+1

)
Tr(R2)

Tr(R) +
∑

(l,i)6=(j,k) PliβljkTr(R2)
Tr(R) +

∑
l 6=j

Plρ̃l,ρj,k
βljk

(
B̃ljk

Tr(R2)
Tr(R) + B̃ljkTr (R)− 1

)
+ N0

(28)
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the conventional scheme for P0 = 10, 15 dBW, respectively.
The performance gap between the two schemes reduces
as the fixed power consumption P0 increases. Similarly,
Fig. 1b shows the variations of the SRs over iterations due
to the two schemes for Pmax = 0 dB and Mmax = 100, 200
antennas. For each value of Mmax, we observe that the pro-
posed pilot assignment scheme achieves better SR than that
of the conventional pilot assignment scheme. In addition, both
schemes achieve higher SR at higher value of Mmax = 200
compared to the case with Mmax = 100.

In Fig. 2 and Fig. 3, we compare the SR achieved by
the two schemes versus the maximum number of anten-
nas Mmax and number of users per cell K , respectively.
Fig. 2 shows that the SR at Pmax = 0 dBW due
to either scheme is better than the corresponding SR at
Pmax = −50 dBW. In addition, the relative SR improvement

FIGURE 2. Achieved SR versus maximum number of antennas Mmax for
maximum powers Pmax = −50,0 dBW.

FIGURE 3. Achieved SR versus K for different maximum number of
antennas Mmax = 100,500.

as the maximum power increases from Pmax = 0 dBW to
Pmax = −50 dBW is quite moderate in the highMmax regime.
This is because if Mmax is sufficiently large, BSs tend to
utilize less power than their maximum budget Pmax to attain
themaximumSR.Moreover, this figure shows that the SR gap
between two schemes becomes larger as Mmax increases. In
addition, Fig. 3 suggests that the SR increases with the larger
number of users per cell and the performance gap between the
two schemes also becomes larger as K grows. This confirms
the effectiveness of the proposed algorithm.
In Fig. 4, we show the SEE achieved by the proposed

algorithm when it is used to solve the SEE and SR maximiza-
tion problems, whose results are indicated as ‘‘max SEE’’
(Algorithm 3) and ‘‘max SR’’ (only apply step 3 to step 8 of
Algorithm 3), respectively. It is shown that the achieved SEE
of the ‘‘max SEE’’ scheme always dominates that of the ‘‘max
SR’’ scheme under both ‘‘Conventional’’ and ‘‘Proposed’’
pilot assignment strategies. This is expected since maximiza-
tion of the system SR may indeed hurt the SEE due to the
excessive power consumption. It can also be observed that
when the maximum transmit power Pmax is sufficiently large,
the SEE of the ‘‘max SEE’’ scheme approaches a constant.
In fact, limited transmit power and number of activated
antennas are required to maximize the SEE; therefore, large
BS power does not help improve the SEE in the large power
regime. In contrast, the ‘‘max SR’’ scheme utilizes more
power and number of antennas to maximize the SR when the
maximum power Pmax is larger. This results in the decrease of
SEE for the ‘‘max SR’’ scheme as Pmax becomes sufficiently
large.

FIGURE 4. Achieved SEE versus maximum power Pmax for Mmax = 100.

Fig. 5 shows the SEE versus the required minimum
rate Rmin. We can see from this figure that the SEE
of both proposed and conventional schemes reduces as
Rmin increases. This is because as Rmin increases, larger
power and number of antennas are required to maintain
the QoS constraints, which results in the decrease of SEE.
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FIGURE 5. Achieved SEE versus required minimum rate Rmin for circuit
power Pc = 0,5 dBW.

Interestingly, the gap between the two schemes increases
quite significantly as Rmin increases. Specifically, as Rmin
reaches 3bits/s/Hz, the SEE gain of the proposed scheme over
the conventional pilot assignment scheme is about 100%. This
confirms the significance of the pilot assignment optimization
in mitigating the pilot contamination effect.

FIGURE 6. Achieved SEE versus pilot SNR γp for different
Rmin = 1,2 bits/s/Hz.

In Fig. 6 and Fig. 7, we show the variations of SEE and
SR versus the pilot SNR γp, respectively. In both figures,
we observe that the gap between the ‘‘Conventional’’ and
‘‘Proposed’’ schemes are fairly small at low γp and becomes a
constant at sufficiently high pilot SNR value, i.e., γp ≥ 5 dB.
Fig. 6 illustrates the SEE at different values of Rmin = 1,
2 bits/s/Hz where increasing the pilot SNR provides larger
SEE gain, which is more significant for higher Rmin. This is
consistent with the results demonstrated in Fig. 5. In addition,
the similar trend in the SR can be observed in Fig. 7 and
higher SR gain is achieved for higher values of Mmax.

FIGURE 7. Achieved SR versus pilot SNR γp for different Mmax = 100,200.

FIGURE 8. Highest number of activated antennas among BSs versus
circuit power P0 for different Rmin = 1,2,3 bits/s/Hz.

In Fig. 8, we show the highest number of activated antennas
among BSs versus the basic power P0 for different values of
Rmin under the SEE maximization. It can be observed that
the highest number of activated antennas tends to increase
as P0 increases. This can be interpreted as follows. When
the basic power P0 is larger, more radio resources in terms
of transmit power and number of activated antennas should
be utilized to maximize the SEE. The increase in the highest
number of activated antennas among BSs is more significant
for smaller values of Rmin. Moreover, when Rmin increases,
more BS antennas should be employed to meet the required
minimum rate.

In Fig. 9, we show the SR when the channel covari-
ance matrix Rljm = R is modeled as R = [Hkl] where
Hkl = λ|k−l|, 0 ≤ λ ≤ 1 where λ is the covariance factor
capturing antenna correlation. It can be observed that the
achieved SR decreases as λ increases. This can be
interpreted as follows. As the covariance factor λ increases,
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FIGURE 9. Achieved SR versus covariance factor λ at different
Mmax = 100,200,300.

adjacent antennas in the array are more correlated, which
in turns increases the intra-cell and inter-cell interference
and degrades the achieved SR performance. In addition,
as λ increases, the SR gap between the ‘‘Proposed’’ and
‘‘Conventional’’ schemes decreases and approaches zero at
sufficiently high λ.

VII. CONCLUSION

In this paper, we have studied the SR and SEE optimiza-
tion problems for the MU-MC massive MIMO network.
We have proposed efficient algorithms to optimize the num-
ber of activated antennas together with power allocation and
pilot assignment. Specifically, we have developed a novel
iterative algorithm to solve the considered problems where
we sequentially solve two sub-problems in each iteration,
namely the first sub-problem optimizes the power allocation
and number of activated antennas and the second sub-problem
optimizes the pilot assignments. We have developed an SCA-
based algorithm to solve the first sub-problem for a given
pilot assignment solution. Also, we have proposed to address
the pilot assignment sub-problem through solving a related
weight-based assignment problem. Numerical results have
confirmed the convergence of the proposed algorithms and
that the proposed algorithm can achieve much better perfor-
mance in terms of total SR and SEE than that due to the
conventional pilot assignment scheme.

APPENDIX A

PROOF OF THEOREM 1

We adopt the derivation in [3] to prove Theorem 1. Toward
this end, we first recall some results on the product of two
Gaussian vectors in [28], which are given in the following
proposition.
Proposition 4: Denote x ∈ C

N×1 as a complex nor-

mal random vector with zero mean and real, symmetry and

positive-definite covariance matrix 6, e.g., x ∼ CN (0,6).

Then, if A and B are two real non-stochastic RN×N square

matrices, we have the following expression

E

{(
x†Ax

) (
x†Bx

)}
= 2Tr (A6B6)+ Tr (A6)Tr (B6) .

(29)
In general, the parameter ξjk can be expressed as

ξjk = 1

E

{
ĥ
†
jjk ĥjjk

} = 1

Tr
(
8jjk

) . (30)

Thus, by applying the expression of ξjk ,∀j, k , we can manip-
ulate the numerator of (7) as follows:

ξjk

∣∣∣E
{
h
†
jjk ĥjjk

}∣∣∣
2

= 1

Tr
(
8jjk

)
∣∣Tr

(
8jjk

)∣∣2

=


 Mjβjjk

1/γp +
∑L

l=1 βjlρ̃l,ρj,k


 = MjAjjk . (31)

In addition, we can manipulate the first term in (8) as follows:

ξjkVar
(
h
†
jjk ĥjjk

)

= ξjk

(
E

{
h
†
jjk ĥjjk ĥ

†
jjkhjjk

}
− E

{
h
†
jjk ĥjjk

}2)

= ξjk

(
E

{∣∣̂hjjk
∣∣4
}

+ E

{
h̃
†
jjk ĥjjk ĥ

†
jjk h̃jjk

}
− Tr

(
8jjk

)2)

= 2ξjkTr
(
82
jjk

)
+ ξjkTr

(
(Rjjk −8jjk )8jjk

)
. (32)

Then, if Rjjk = IMl , we have

ξjkVar
(
h
†
jjk ĥjjk

)
= βjjk

1/γp +
∑L

l=1 βjlρ̃l,ρj,k

+ 1 = Ajjk + 1.

(33)

Similarly, the second term of (8) can be expressed as

ξliE

{∣∣∣h†ljk ĥlli
∣∣∣
2
}

= ξliE

{∣∣∣h†ljk
√
βlliRlliQ̄liYlψρl,i

∣∣∣
2
}

=





ξliTr
(
Rljk8lli

)
, if ρl,i 6= ρj,k

ξliE

{∣∣∣h†ljk
√
βlliRlliQ̄li

√
βljkhljk

∣∣∣
2
}

+ ξliTr
(
Rljk8lli

)

−ξliTr
(√
βlliβljkRljk8ljkQ̄liRlli

)
, if ρl,i = ρj,k .

(34)

By applying the results in Proposition 4, we can rewrite the

term ξliE

{∣∣∣h†ljk
√
βlliRlliQ̄li

√
βljkhljk

∣∣∣
2
}
in (34) as

E

{∣∣∣h†ljk
√
βlliRlliQ̄li

√
βljkhljk

∣∣∣
2
}

= E

{
βlliβljkh

†
ljkRlliQ̄lihljkh

†
ljkQ̄

†
liR

†
llihljk

}

= 2βlliβljkTr

(
RlliQ̄liRljkQ̄

†
liR

†
lliRljk

)
+
∣∣Tr

(
8ljk

)∣∣2

= 2Tr
(√
βlliβljkRljk8ljkQ̄

†
liR

†
lli

)
+
∣∣Tr

(
8ljk

)∣∣2 , (35)
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∑

(l,i)6=(j,k)

ξliPliβljkE

{∣∣∣h†ljk ĥlli
∣∣∣
2
}

=
∑

(l,i) 6=(j,k)

δ(ρl,i − ρj,k )ξliPliβljk

[
Tr

(√
βlliβljkRljk8ljkQ̄liRlli

)
+
∣∣Tr

(
8ljk

)∣∣2
]

+
∑

(l,i) 6=(j,k)

[
1 − δ(ρl,i − ρj,k )

]
ξliPliβljkTr

(
Rljk8lli

)
(36)

∑

(l,i)6=(j,k)

ξliPliβljkE

{∣∣∣h†ljk ĥlli
∣∣∣
2
}

=
∑

l 6=j

Plρ̃l,ρj,k
βljkβljk (Ml + 1)

1/γp +
∑L

n=1 βlnρ̃n,ρj,k

+
∑

(l,i) 6=(j,k)

[
1 − δ(ρl,i − ρj,k )

]
Pliβljk

=
∑

l 6=j
Plρ̃l,ρj,k

βljk (BljkMl + Bljk − 1) +
∑

(l,i)6=(j,k)

Pliβljk (37)

where we have denoted 8ljk =
√
βlliβljkRlliQ̄liRljk . Since

Rlli is a real symmetric matrix, we have R
†
lli = Rlli and

Q̄
†
li = Q̄li. Using the results in (35), the second term of (8)

can be expressed explicitly as (36), as shown at the top of this
page, where δ(x) = 1 if x = 0 and δ(x) = 0 otherwise. Then,
if Rjjk = IMl , we have the result as in (37), as shown at the
top of this page. By replacing the terms (31), (33), and (37)
into (8), we complete the proof.

APPENDIX B

PROOF OF PROPOSITION 1

We prove part (i) of Proposition 1 by first noting that for
Mmax = 0, problem (19) is infeasible or the feasible set ofM
is M0 = ∅. Therefore, we are only interested in the system
where there exists a feasible solution when Mmax is suffi-
ciently large. By denoting the feasible set ofM asMmax → ∞
asM∞ then obviously there exists a set of thresholds denoted
byMth that satisfies statement (i) of Proposition 1.
We prove part (ii) of Proposition 1 by proving that if there

exists two optimal solutions in the number of antenna M⋆,1

and M⋆,2 of problem (19) corresponding to two different
value Mmax,1 and Mmax,2, where Mmax,2 ≻ Mmax,1 ≻ Mth,
then we must have M⋆,1 = M⋆,2. The proof is completed as
follows.
Suppose that M⋆,1 6= M⋆,2. For convenience, we denote

M1 and M2 as the feasible sets of M corresponding to two
values Mmax,1 and Mmax,2, respectively. If M⋆,2 ∈ M1, we
see thatM⋆,2 is the feasible solution of (19) in setM1. Since
M⋆,1 is the optimal solution of (19) in setM1, we must have
maxjM

⋆,1
j ≤ maxjM

⋆,2
j . However, since M⋆2 ∈ M2, M⋆2 is

the optimal solution of (19) in setM2 andM⋆1 is the feasible
solution of (19) in set M2, we have maxjM⋆2

j ≤ maxjM⋆1
j .

Thus,M⋆,2 = M⋆,1.
If M⋆2 ∈ M2 \ M1, we always have maxjM⋆1

j ≤
maxjM⋆2

j . And since M⋆2 ∈ M2, M⋆2 is the optimal solu-
tion of (19) in set M2 and M⋆1 is the feasible solution
of (19) in set M2, we have maxjM⋆2

j ≤ maxjM⋆1
j . Thus,

M⋆2 = M⋆1. This completes the proof.

APPENDIX C

PROOF OF THEOREM 3

To proceed, we first introduce the following proposition.

Proposition 5: Consider function f : R → R defined as

f (x) =
∑L

i=1 log (1 + aix)− θbx. If θ <
∑

i ai
b
, then f (x) has

the following properties:

(i) f (x) achieves its maximum positive value at

certain x > 0.
(ii) There exists a unique x > 0 that satisfies f (x) = 0.

Proof: Consider the function f (x) =
∑L

i=1
log (1 + aix) − θbx. The first derivative of f (x) can be
expressed as

∂f (x)

∂x
=

L∑

i=1

ai

1 + aix
− θb. (38)

Evaluating this derivative at x = 0, we have

∂f (x)

∂x

∣∣∣∣
x=0

=
L∑

i=1

ai − θb. (39)

Since we have assumed θ <
∑

i ai
b

, the right-hand-side (RHS)
of (39) is positive at x = 0. However, as x → ∞, the RHS
of (39) is negative. Thus, there exists a solution x0 > 0 that
satisfies ∂f (x)/∂x = 0 at x = x0. Since ∂2f (x)/∂x2 =∑L

i=1
−a2i

(1+aix)2
< 0, f (x) is a concave function that takes the

maximum value at x0 > 0. This complete the proof of part (i)
of Proposition 5.
Since f (x0) > 0 (since f (0) = 0) and limx→∞ f (x) < 0,

there exists a solution x1 that satisfies f (x1) = 0. This
completes the proof for part (ii) of Proposition 5. �

Recall that the objective function (18) is equal to 0 at the
optimal solution P⋆,M⋆ and η⋆. We prove Theorem 3 by
showing that if there is at least one optimalM⋆

j equal toMmax
when Mmax ≫ 1, the objective function of (18) is different
from 0. Let us star by giving the upper bound the objective
function of (18) as

g(M⋆) = R(P⋆,M⋆, ρ⋆) − η⋆P(P⋆,M⋆)

<
∑

j,k

log

[
1 +

P⋆jkβjjkAjjkM
⋆
j

N0

]
− η⋆Pc

L∑

l=1

M⋆
l .

(40)

By denoting M̄ = maxj=1,...,L M
⋆
j , which represents the

highest value of the optimal numbers of antennas at all BSs,
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it follows that

g(M⋆) <
∑

j,k

log

[
1 +

P⋆jkβjjkAjjkM
⋆

N0

]
− η⋆Pc

L∑

l=1

M⋆
l

<
∑

j,k

log

[
1 +

P⋆jkβjjkAjjkM̄

N0

]
− η⋆PcM̄

<
∑

j,k

log

[
1 +

P⋆jkβjjkAjjkM̄

N0

]
− η̃PcM̄ , (41)

where η̃ ≤ η⋆ is a feasible SEE achieved at some fea-
sible solution of P,M. In fact, by applying the results of
Proposition 1, we can see that the feasible solution sets
of (19) and (18) are the same. Moreover, the optimal solution
of problem (19) can be chosen as the feasible solution corre-
sponding to the SEE of η̃ and this solution is also independent
of Mmax. Moreover, since η̃ > 0, there exists a sufficiently

small η0 < η̃ such that η0 <
∑

j,k Pmaxβjjk/N0

Pc
.

By denoting f (M̄ ) =
∑

j,k log
[
1 + Pmaxβjjk M̄

N0

]
− η0PcM̄ ,

we can see that f (M̄ ) has the same properties of the
function f (x) described in Proposition 5 with aj =
Pmaxβjjk/N0, b = Pc and θ = η0. Thus, f (M̄ ) < 0 when
M̄ > M0, where M0 is the solution of f (M̄ ) = 0 according
to Proposition 5. In addition, f (M̄ ) is a concave function and
positive in 0 < M̄ < M0.
Next, we prove that there is no element M⋆

j in the optimal
solution of (18) exceedingM0 by contradiction. Assume that
there is at least one M⋆

j > M0. From the optimality property,
we see that the function takes the value of 0 at optimalP⋆,M⋆.
However, we have f (M⋆

j ) < 0 for M⋆
j > M0 due to the

properties of function f (.). This contradicts to the assumption
that f (M̄ ) > g(M⋆) = 0. Thus, there not exists any M⋆

j such
that M⋆

j > M0.
In summary, we can state that each element M⋆

j of
the optimal solution M⋆ is upper bounded by M0 which
is independent of Mmax. This completes the proof of the
theorem.

APPENDIX D

PROOF OF PROPOSITION 2

Assume that the optimal solutions for problem (22) at t1th step
are (P(t1),M(t1)). We will prove that the value of the objective
function in (22) evaluated at

(
P(t1),M(t1)

)
is smaller than that

evaluated at
(
P(t1+1),M(t1+1)

)
as

Rjk

(
P(t1),M(t1)

)
− ηP

(
P(t1),M(t1)

)

= R̂jk

(
P̂(t1), M̂(t1), a(t1+1),b(t1+1)

)
− ηP

(
P̂(t1), M̂(t1)

)

≤ R̂jk

(
P̂(t1+1), M̂(t1+1), a(t1+1),b(t1+1)

)

−ηP
(
P̂(t1+1), M̂(t1+1)

)

≤ Rjk

(
P(t1+1),M(t1+1)

)
− ηP

(
P(t1+1),M(t1+1)

)
, (42)

where the first equality holds due to the fact that the
approximation is tight at the current value of

{
P̂(t1), M̂(t1),

a(t1+1),b(t1+1)
}
; the first inequality holds because the

SCA-based algorithm achieves the optimal solution at{
P̂(t1+1), M̂(t1+1)

}
. Moreover, the second inequality follows

from the nature of the logarithmic approximation. Thus, we
have completed the proof.

APPENDIX E

PROOF OF THEOREM 5

We prove Theorem 5 by using the contradiction method.
For a given fixed ρ, let the optimal solution of (14)
be P⋆,M⋆. Suppose that there is at least one element of M⋆

to be smaller than Mmax. We will prove that there exists
another feasible solution P′,M′ that improves the objective
function, so that the solution P⋆,M⋆ where there is at least
one element of M⋆ smaller than Mmax is not the optimal
solution.
Let us denote the set of BS indices whose number of

antennas according to M⋆ is equal to Mmax as J1 and the
set of other BS indices as J2. Consider the following fea-
sible power allocation solution P′

jk = P⋆jk ,∀j ∈ J1 and

P′
li = ζlP

⋆
li,∀l ∈ J2, where ζl = M⋆

l

Mmax
< 1. By denoting

Mmax = [Mmax, . . . ,Mmax]T , let us consider the potential
solution P′,Mmax. It can be easily verified that P′,Mmax
satisfies the constraints (C3) and (C4). SinceP′

jk ≤ P⋆jk , ∀j, k ,
it also satisfies constraint (C2).
We evaluate the achieved rate of the kth user in the jth cell

for j ∈ J1 as

log
[
1 + γjk (P

′,Mmax)
]

= log

[
1 +

P⋆jkMmaxAjk

F⋆J1
+ F ′

J2
+ N0

]
,

(43)

where F⋆J1
=

∑
l∈J1

(∑
i

P⋆liBli + P⋆
lρ̃l,ρj,k

MmaxCli

)
and F ′

J2
=

∑
l∈J2

(∑
i

P′
liBli + P′

lρ̃l,ρj,k
MmaxCli

)
. Since P′

li = ζlP
⋆
li,∀l ∈

J2 and M⋆
l = ζlMmax, we have F ′

J2
< F⋆J2

=
∑
l∈J2

(∑
i

P⋆liBli + P⋆
lρ̃l,ρj,k

M⋆
l Cli

)
. Therefore, we achieve

log
[
1 + γjk (P

′,Mmax)
]

> log

[
1 +

P⋆jkMmaxAjk

F⋆J1
+ F⋆J2

+ N0

]

= log
[
1 + γjm(P

⋆,M⋆)
]

≥ Rmin, j ∈ J1. (44)

Similarly, the rate for kth user in jth for j ∈ J2 can be
given as

log
[
1 + γjk (P

′,Mmax)
]

= log

[
1 +

P′
jkMmaxAjk

F⋆J1
+ F ′

J2
+ N0

]
.

(45)
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Since ζl < 1, we have P′
jkMmaxAjk = P⋆jkM

⋆
l Ajk and

F ′
J2
< F⋆J2

. Then, we have the same behavior as

log
[
1 + γjk (P

′,Mmax)
]

> log

[
1 +

P⋆jkM
⋆
j Ajk

F⋆J1
+ F⋆J2

+ N0

]

= log
[
1 + γjk (P

⋆,M⋆)
]

≥ Rmin, j ∈ J2. (46)

The results in (44) and (46) also mean that P′,Mmax satis-
fies constraint (C1) since it results in improved rate for each
user in any cell. In addition, the SR is also increased under
P′,Mmax, which contradicts the assumption that P⋆,M⋆ is
the optimal solution. Therefore, we have completed the
proof.
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