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Abstract: Under just-in-time production, this paper studies a single machine common due-window
(denoted by CONW) assignment scheduling problem with position-dependent weights and resource
allocations. A job’s actual processing time can be determined by the resource assigned to the job. A
resource allocation model is divided into linear and convex resource allocations. Under the linear
and convex resource allocation models, our goal is to find an optimal due-window location, job
sequence and resource allocation. We prove that the weighted sum of scheduling cost (including
general earliness–tardiness penalties with positional-dependent weights) and resource consumption
cost minimization is polynomially solvable. In addition, under the convex resource allocation, we
show that scheduling (resp. resource consumption) cost minimization is solvable in polynomial time
subject to the resource consumption (resp. scheduling) cost being bounded.

Keywords: scheduling; assignment problem; resource allocation; positional-dependent weights;
earliness–tardiness
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1. Introduction

In scheduling models and problems, a due-window assignment has attracted grow-
ing attention, particularly in just-in-time (JIT) philosophy (Yin et al. [1]; Janiak et al. [2];
Liu [3]; Liu et al. [4]; Rolim and Nagano [5]; Qian and Zhan [6]). More recently, Wang
et al. [7] studied a single machine production scheduling with the due-window assignment.
The objective is to minimize the total cost, which is a weighted sum function of earliness,
tardiness, due-window starting time, and due-window size, where the weights only de-
pend on their position in a sequence (i.e., position-dependent weights, Wang et al. [8]
and Wang et al. [9]). Sun et al. [10] and Qian and Han [11] investigated a proportionate
flow shop with the CONW and slack due-window (denoted by SLKW) assignments.
The objective is to minimize the generalized weighted sum of numbers of early and late
jobs, earliness–tardiness penalties and due-window assignment cost, where the weights are
the position-dependent weights. Yue and Zhou [12] studied single machine scheduling
with the due-window assignment and stochastic processing times. Wang [13] considered
single machine scheduling with past-sequence-dependent setup times. Under common,
slack and different due-date assignments, he proved that a general earliness–tardiness cost
minimization can be solved in polynomial time. Shabtay et al. [14] explored the single
machine scheduling problem with common due-date/due-window assignments. They
proved that a non-regular objective cost minimization can be solved in polynomial time
under some conditions. They also showed that the problem is NP-hard when the length of
the due-window is bounded. Jiang et al. [15] scrutinized the seru scheduling problem with
a learning effect. Under multiple due-window assignments, they showed that some cases
of the problem are polynomially solvable. Liu et al. [16] considered the single machine due-
window assignment scheduling with past-sequence-dependent setup times. Under three
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due-window assignment models, the objective is to minimize a non-regular cost func-
tion (including the weighted sum of earliness–tardiness, number of early and tardy jobs,
due-window assignment cost). They proved that this problem is polynomially solvable.

Recently, Wang et al. [17] explored single-machine problems with due-window as-
signment and positional-dependent weights. Under common and slack due-window
assignments, the goal is to minimize the weighted sum of the number of early and late jobs,
earliness–tardiness and due-window assignment costs, where the weights are positional-
dependent weights. They demonstrated that some versions of common and slack due-
window assignments are polynomially solvable. However, in real-world production pro-
cesses, job processing times are complicated, which are controlled by allocating additional
resources (e.g., fuel and gas, et al., see Shabtay and Steiner [18], Liu et al. [19], Lu et al. [20],
Wang et al. [21], Zhao [22], Lu et al. [23], and Yan et al. [24]). Hence, in this investigation,
we extend the results of Wang et al. [17] by considering resource allocation that includes the
one given in Wang et al. [17] as a special case. We summarize the contributions as follows:
(1) We investigate single machine scheduling with resource allocation and CONW due-
window assignment; (2) Under linear resource allocation, we provide an analysis for the
weighted sum of scheduling cost (including generalized earliness–tardiness penalties with
positional-dependent weights) and resource consumption costs; (3) Under convex resource
allocation, we give a bicriteria analysis for scheduling costs and resource consumption
costs; (4) We derive the structural properties of an optimal solution and demonstrate that
the problem remains polynomially solvable. This article is organized as follows. Section 2
presents a description of the problem. In Section 3, we first give two lemmas, then we
prove that four problems are polynomially solvable. In Section 4, a case study is given.
In Section 5, conclusions are presented.

2. Problem Formulation

There are n independent non-preemptive jobs J = {J1, J2, . . . , Jn} that are to be pro-
cessed on a single-machine, and all jobs are available at time zero. The machine can only
process one job at a time. Let pA

j be the actual processing time of job Jj; under a linear
resource allocation, we have

pA
j = p̄j − bjuj,

where p̄j (resp. bj) is the normal processing time (resp. compression rate) of job Jj, uj is the

resource amount of job Jj, 0 ≤ uj ≤ ūj <
p̄j
bj

and ūj is the upper bound of uj. For a convex
resource allocation, we have

pA
j =

( p̄j
uj

)k
,

where k > 0 is a constant. In this paper, all the jobs are subject to a common due-window
[d1, d2] (d1 ≤ d2), where d1 is the due-window starting time and d2 is the due-window
finishing (completion) time; then, the due-window size is D = d2 − d1. Let Cj be the
completion time of job Jj, the number of early (Uj) and tardy jobs (Vj) that are given as:

Uj =

{
1, if d1 > Cj
0, otherwise

and

Vj =

{
1, if d2 < Cj
0, otherwise.

Let Ej = max{d1 − Cj, 0} (resp. Tj = max{Cj − d2, 0}) be the earliness (tardiness)
of job Jj (j = 1, 2, . . . , n). Let [j] be the job that is placed in the jth position; the goal is
to determine the optimal job sequence π, d1 and D (such as d2) that minimizes the total
cost. Formally, the resource consumption (resp. scheduling) cost is ∑n

j=1 vjuj (∑n
j=1(αjU[j] +

β jV[j]+ ηjE[j]+ δjT[j]+ θd1 +λD)). For the linear (resp. convex) resource allocation, the first
(second) problem (denoted by P1 and P2 respectively) is to
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Z =
n

∑
j=1

(
αjU[j] + β jV[j] + ηjE[j] + δjT[j] + θd1 + λD

)
+ ρ

n

∑
j=1

v[j]u[j], (1)

where αj, β j, ηj and δj are positional-dependent weights (penalty factors) for the one-time
penalties for earliness, tardiness and the unit time of earliness, tardiness, respectively; θ and
λ are the unit time weight (penalty) for the due-window starting time d1 and size D, ρ is the
weight of resource costs and vj is the unit cost of processing job Jj. For the convex resource
allocation, the third (resp. fourth) problem (denoted by P3 and P4, respectively) is to
minimize scheduling cost ∑n

j=1

(
αjU[j] + β jV[j] + ηjE[j] + δjT[j] + θd1 + λD

)
(resource cost

∑n
j=1 vjuj) subject to ∑n

j=1 vjuj ≤ Û (∑n
j=1

(
αjU[j] + β jV[j] + ηjE[j] + δjT[j] + θd1 + λD

)
≤

V̂), where Û (V̂) is a given constant.

Remark 1 (Liu et al. [16]). considered the single machine scheduling with past-sequence-dependent
setup times, i.e., for the common due-window assignment; the objective function is to minimize

∑n
j=1

(
α̃jUj + β̃ jVj + η̃E[j] + δ̃T[j] + θd1 + λD

)
, where α̃j (β̃ j) is the weight of job Jj (i.e., job-

dependent weight), and η̃ and δ̃ are given constants. They also addressed the slack and unrestricted
due-window assignments.

3. Method

From Wang et al. [17], for the problems P1–P4, there exists an optimal sequence π such
that all jobs are processed at time 0, and there is no idle time during consecutive processing.

Lemma 1. For the problems P1-P4 , there exists an optimal sequence π such that
(1) The optimal d1 is equal to C[m] (i.e., d1 = C[m]) and the optimal d2 is equal to C[w] (i.e.,
d2 = C[w]), where 1 ≤ m ≤ w ≤ n;
(2) d1 = C[m], where ∑m−1

j=1 ηj ≤ n(λ− θ), d2 = C[w], where ∑n
j=w+1 ηj ≤ nλ.

Proof. Similar to the proof of Wang et al. [17].

3.1. Problem P1

From Lemma 1, for any given sequence, d1, d2 and D can be calculated as follows:
d1 = C[m] = ∑m

l=1 pA
[l], d2 = C[w] = ∑n

l=1 pA
[l], D = C[w] − C[m] = ∑w

l=m+1 pA
[l]. Hence, it

follows that

Z =
n

∑
j=1

(
αjU[j] + β jV[j] + ηjE[j] + δjT[j] + θd1 + λD

)
+ ρ

n

∑
j=1

v[j]u[j]

=
m−1

∑
j=1

αj +
n

∑
j=w+1

β j +
m−1

∑
j=1

ηjE[j] +
n

∑
j=w+1

δjT[j] + nθd1 + nλD + ρ
n

∑
j=1

v[j]u[j]

=
m−1

∑
j=1

αj +
n

∑
j=w+1

β j +
m−1

∑
j=1

ηj

(
d1 − C[j]

)
+

n

∑
j=w+1

δj

(
C[j] − d2

)
+ nθd1 + nλD

+ρ
n

∑
j=1

v[j]u[j]

=
m−1

∑
j=1

αj +
n

∑
j=w+1

β j +
m−1

∑
j=1

ηj

(
m

∑
l=1

pA
[l] −

j

∑
l=1

pA
[l]

)
+

n

∑
j=w+1

δj

(
j

∑
l=1

pA
[l] −

w

∑
l=1

pA
[l]

)

+nθ
m

∑
l=1

pA
[l] + nλ

w

∑
l=m+1

pA
[l] + ρ

n

∑
j=1

v[j]u[j]

=
m−1

∑
j=1

αj +
n

∑
j=w+1

β j +
n

∑
j=1

Φ̃j pA
[j] + ρ

n

∑
j=1

v[j]u[j], (2)
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where

Φ̃j =


∑

j−1
l=1 ηl + nθ, j = 1, 2, . . . , m,

nλ, j = m + 1, m + 2, . . . , w
∑n

l=j δl , j = w + 1, w + 2, . . . , n.
(3)

When pA
j = p̄j − bjuj, we have

Z = ∑m−1
j=1 αj + ∑n

j=w+1 β j + ∑n
j=1 Φ̃j( p̄[j] − b[j]u[j]) + ρ ∑n

j=1 v[j]u[j]

= ∑m−1
j=1 αj + ∑n

j=w+1 β j + ∑n
j=1 Φ̃j p̄[j] + ∑n

j=1

(
ρv[j] − b[j]Φ̃j

)
u[j]

(4)

Let u∗[j](1 ≤ j ≤ n) be the optimal resource allocation of the jth position; we have

u∗[j] =


ū[j], ρv[j] − b[j]Φ̃j < 0

u[j] ∈
[
0, ū[j]

]
, ρv[j] − b[j]Φ̃j = 0

0, ρv[j] − b[j]Φ̃j > 0
(5)

From (2) and (3), if m and w are given, let xjr = 1; if job Jj is placed in the rth position
and xjr = 0 otherwise, then the optimal job sequence π of the problem P1 can be formulated
as the following assignment problem:

min Z =
n

∑
j=1

n

∑
r=1

τjrxjr (6)

s.t.


∑n

j=1 xjr = 1, r = 1, 2, . . . , n,
∑n

r=1 xjr = 1, j = 1, 2, . . . , n,
xjr = 0 or 1,

(7)

in which

τjr =

{
vr + χr p̄[j], ρv[j] − b[j]χr ≥ 0

vr + χr p̄[j] +
(

ρv[j] − b[j]χr

)
ū[j], ρv[j] − b[j]χr < 0

(8)

χr =

 ∑r−1
l=1 ηl + nθ, r = 1, 2, . . . , m

nλ, r = m + 1, m + 2, . . . , w
∑n

l=r δl , r = w + 1, w + 2, . . . , n
(9)

and

vr =


αr, r = 1, 2, . . . , m− 1
0, r = m, m + 1, . . . , w
βr, r = w + 1, w + 2, . . . , n.

(10)

Based on the above analysis, the problem P1 can be solved by following Algorithm 1:

Algorithm 1: The problem P1.
Input: p̄j, bj, ūj, vj, αj, β j, ηj, δj (j = 1, 2, . . . , n), n, θ, λ, ρ
Output: The optimal sequence π∗, Z∗, u∗j , d1

∗, D∗

Step 1. From Lemma 1, calculate the range of m and w.
Step 2. For each pair of m and w (m = 1, 2, . . . , n, w = 1, 2, . . . , n, m ≤ w), calculate τjr
(see (8)–(10)), to solve the assignment problems (6) and (7).

Step 3. For each pair of m and w, a suboptimal sequence π(m, w) and value Z(m, w)
can be obtained.

Step 4. The global optimal sequence π∗ is the one with the minimum value
Z∗ = min{Z(m, w), where 1 ≤ m ≤ w ≤ n}.

Step 5. Calculate u∗j by using Equation (5).
Step 6. Calculate d∗1 = C[m] and D∗ = C[w] − C[m].
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Theorem 1. The problem P1 can be solved by Algorithm 1 in O(n5) time.

Proof. The correctness of Algorithm 1 follows the above analysis. Steps 1 and 3–6 need
O(n) time; in Step 2, for each pair of m and w, solving the assignment problem requires
O(n3) time; m and w are less than n. Hence, the time complexity of Algorithm 1 is O(n5).

3.2. Problem P2

Similar to Section 3.1, for the problem P2, under pA
j =

( p̄j
uj

)k
, we have

Z =
m−1

∑
j=1

αj +
n

∑
j=w+1

β j +
n

∑
j=1

Φ̃j

(
p̄[j]
u[j]

)k

+ ρ
n

∑
j=1

v[j]u[j]. (11)

Lemma 2. The optimal resource allocation of the problem P2 is:

u∗[j] =

(
kΦ̃j

) 1
k+1
(

p̄[j]
) k

k+1

(
ρv[j]

) k
k+1

, j = 1, 2, . . . n. (12)

Proof. Taking a partial derivative of (11) with respect to u[j] and making it equal to 0,
we have

ρv[j] − kΦ̃j

(
p̄[j]
)k

(
u[j]

)k+1 = 0, (13)

and the result (12) can be obtained.

Substituting Equation (12) into Equation (11), we have

Z =
(

k−
k

k+1 + k
1

k+1

)
ρ

k
k+1

n

∑
j=1

(
v[j] p̄[j]

) k
k+1 Φ̃

1
k+1
j +

m−1

∑
j=1

αj +
n

∑
j=w+1

β j. (14)

Similarly, from Equation (14), if m and w are given, then the optimal job sequence π of
the problem P2 can be formulated as the following assignment problem:

min Z =
n

∑
j=1

n

∑
r=1

τjrxjr (15)

s.t.


∑n

r=1 xjr = 1, j = 1, 2, . . . , n,
∑n

j=1 xjr = 1, r = 1, 2, . . . , n,
xjr = 0 or 1,

(16)

in which

τjr =



(
k−

k
k+1 + k

1
k+1

)
ρ

k
k+1 χ

1
k+1
r
(
vj p̄j

) k
k+1 + αr, r = 1, 2 . . . m− 1(

k−
k

k+1 + k
1

k+1

)
ρ

k
k+1 χ

1
k+1
r
(
vj p̄j

) k
k+1 , r = m, m + 1, . . . , w,(

k−
k

k+1 + k
1

k+1

)
ρ

k
k+1 χ

1
k+1
r
(
vj p̄j

) k
k+1 + βr, r = w + 1, w + 2, . . . , n,

(17)

and χr is given by Equation (10).
Based on the above analysis, the problem P2 can be solved by following Algorithm 2:
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Algorithm 2: The problem P2.
Input: p̄j, vj, αj, β j, ηj, δj (j = 1, 2, . . . , n), n, k, θ, λ, ρ
Output: The optimal sequence π∗, Z∗, u∗j , d1

∗, D∗

Step 1. From Lemma 1, calculate the range of m and w.
Step 2. For each pair of m and w (m = 1, 2, . . . , n, w = 1, 2, . . . , n, m ≤ w), calculate τjr
(see (17)), to solve the assignment problems (15) and (16).

Step 3. For each pair of m and w, a suboptimal sequence π(m, w) and value Z(m, w)
(see (15) and (16) ) can be obtained.

Step 4. The global optimal sequence π∗ is the one with the minimum value
Z∗ = min{Z(m, w), where 1 ≤ m ≤ w ≤ n}.

Step 5. Calculate u∗j by using Equation (12).
Step 6. Calculate d∗1 = C[m] and D∗ = C[w] − C[m].

Theorem 2. The problem P2 can be solved by Algorithm 2 in O(n5) time.

3.3. Problem P3

In this subsection, we consider the problem P3, i.e.,

min Z =
m−1

∑
j=1

αj +
n

∑
j=w+1

β j +
n

∑
j=1

Φ̃j pA
[j] =

m−1

∑
j=1

αj +
n

∑
j=w+1

β j +
n

∑
j=1

Φ̃j

(
p̄[j]
u[j]

)k

(18)

subject to ∑n
j=1 v[j]u[j] ≤ Û.

Lemma 3. The optimal resource allocation of the problem P3 is:

u∗[j] =

(
Φ̃j

(
p̄[j]
)k
) 1

k+1

(
v[j]
) 1

k+1
∑n

j=1

(
v[j] p̄[j]

) k
k+1 (Φ̃j

) 1
k+1

× Û, j = 1, 2, . . . , n (19)

Proof. For any given job sequence, by the Lagrange multiplier method, we have

L
(

u[j], µ
)
= ∑m−1

j=1 αj + ∑n
j=w+1 β j + ∑n

j=1 Φ̃j

( p̄j
uj

)k
+ µ

(
∑n

j=1 v[j]u[j] − Û
)

, (20)

where µ is the Lagrangian multiplier, µ ≥ 0. Taking the partial derivative of u[j] and µ,
we have

∂L(u, µ)

∂u[j]
= µv[j] − kΦ̃j

(
p̄[j]
)k

(
u[j]

)k+1 = 0 (21)

u[j] =

(
kΦ̃j

(
p̄[j]
)k
)1/k+1

(
µv[j]

)1/k+1 (22)

∂L(u, µ)

∂µ
=

n

∑
j=1

v[j]u[j] − Û = 0 (23)

µ1/k+1 =
∑n

j=1
(
kΦ̃j

)1/k+1
(

v[j] p̄[j]
)k/k+1

Û
. (24)

Substituting Equation (24) into Equation (22), Equation (19) can be obtained.
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Putting u∗[j] (i.e., Equation (19)) in Equation (18), we have

Z =

(
∑n

j=1(v[j] p̄[j])
k

k+1 Φ̃
1

k+1
j

)k+1

Ûk + ∑m−1
j=1 αj + ∑n

j=w+1 β j.
(25)

If m and w are given, then ∑m−1
j=1 αj + ∑n

j=w+1 β j is a constant number. Hence, it can

be obtained that solving problem P3 is equal to minimizing ∑n
j=1

(
v[j] p̄[j]

) k
k+1 Φ̃

1
k+1
j and this

term can be minimized by the HLP rule (see Hardy et al. [25]).
Based on the above analysis, the problem P3 can be solved by following Algorithm 3:

Algorithm 3: The problem P3.

Input: p̄j, vj, αj, β j, ηj, δj (j = 1, 2, . . . , n), n, k, θ, λ, Û
Output: The optimal sequence π∗, Z∗, u∗j , d1

∗, D∗

Step 1. From Lemma 1, calculate the range of m and w.
Step 2. For each pair of m and w, a suboptimal sequence π(m, w) and value Z(m, w)
(see Equation (25)) can be obtained by the HLP rule, i.e., by matching the largest

(vj p̄j)
k

k+1 with the smallest Φ̃
1

k+1
j , the second largest (vj p̄j)

k
k+1 matches the second

smallest Φ̃
1

k+1
j , and so on.

Step 3. The global optimal sequence π∗ is the one with the minimum value
Z∗ = min{Z(m, w), where 1 ≤ m ≤ w ≤ n}.

Step 4. Calculate u∗j by using Equation (19).
Step 5. Calculate d∗1 = C[m] and D∗ = C[w] − C[m].

Theorem 3. The problem P3 can be solved by Algorithm 3 in O(n5) time.

3.4. Problem P4

Similar to Section 3.3, we have:

Lemma 4. The optimal resource allocation of the problem P4 is:

u∗[j] =

Φ̃
1

k+1
j

(
p̄[j]
) k

k+1

(
∑n

j=1
(
Φ̃j
) 1

k+1
(

v[j] p̄[j]
) k

k+1

) 1
k

(
v[j]
) 1

k+1
(

V̂ −∑m−1
j=1 αj −∑n

j=w+1 β j

) 1
k

, j = 1, 2, . . . , n (26)

Proof. For any given job sequence, we have:

L
(

u[j], µ
)
= ∑n

j=1 v[j]u[j] + µ

(
∑m−1

j=1 αj + ∑n
j=w+1 β j + ∑n

j=1 Φ̃j

( p̄[j]
u[j]

)k
− V̂

)
, (27)

where µ is the Lagrangian multiplier, µ ≥ 0, we have:

∂L(u[j], µ)

∂u[j]
= v[j] − µkΦ̃j

(
p̄[j]
)k

(
u[j]

)k+1 = 0 (28)

u[j] =

(
µkΦ̃j

(
p̄[j]
)k
)1/k+1

(
v[j]
) 1

k+1
(29)
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∂L(u[j], µ)

∂µ
=

m−1

∑
j=1

αj +
n

∑
j=w+1

β j +
n

∑
j=1

Φ̃j

(
p̄[j]
u[j]

)k

− V̂ = 0 (30)

(kµ)
1

k+1 =

(
∑n

j=1
(
Φ̃j
) 1

k+1
(

v[j] p̄[j]
) k

k+1

) 1
k

(
V̂ −∑m−1

j=1 αj −∑n
j=w+1 β j

) 1
k

. (31)

Substituting Equation (31) into Equation (29), Equation (26) can be obtained.

Substituting Equation (26) into ∑n
j=1 vjuj, we have:

Z =
n

∑
j=1

v[j]u[j]

=
n

∑
j=1

v[j]


Φ̃

1
k+1
j

(
p̄[j]
) k

k+1

(
∑n

j=1
(
Φ̃j
) 1

k+1
(

v[j] p̄[j]
) k

k+1

) 1
k

(
v[j]
) 1

k+1
(

V −∑m−1
j=1 αj −∑n

j=w+1 β j

) 1
k



=

(
∑n

j=1
(
Φ̃j
) 1

k+1
(

v[j] p̄[j]
) k

k+1

) 1+k
k

(
V̂ −∑m−1

j=1 αj −∑n
j=w+1 β j

) 1
k

. (32)

Similar to Section 3.3, the problem P4 can be solved by following Algorithm 4:

Algorithm 4: The problem P4.

Input: p̄j, vj, αj, β j, ηj, δj (j = 1, 2, . . . , n), n, k, θ, λ, V̂
Output: The optimal sequence π∗, Z∗, u∗j , d1

∗, D∗

Step 1. From Lemma 1, calculate the range of m and w.
Step 2. For each pair of m and w, a suboptimal sequence π(m, w) and value Z(m, w)
(see Equation (32)) can be obtained by the HLP rule, i.e., by matching the largest

(vj p̄j)
k

k+1 with the smallest Φ̃
1

k+1
j , the second largest (vj p̄j)

k
k+1 matches the second

smallest Φ̃
1

k+1
j , and so on.

Step 3. The global optimal sequence π∗ is the one with the minimum value
Z∗ = min{Z(m, w), where 1 ≤ m ≤ w ≤ n}.

Step 4. Calculate u∗j by using Equation (26).
Step 5. Calculate d∗1 = C[m] and D∗ = C[w] − C[m].

Theorem 4. The problem P4 can be solved by Algorithm 4 in O(n5) time.

4. A Case Study

In this section, we present a case study to illustrate how the proposed algorithms works.

Example 1. Consider a five-job problem, where k = 2, θ = 3, λ = 4, ρ = 6, Û = 100, V̂ = 1000;
the parameters of job Jj (j = 1, 2, . . . , 5) are given in Table 1. The parameters of position-dependent
weights (i.e., αj, β j, ηj and δj, where j = 1, 2, . . . , 5) are given in Table 2.
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Table 1. Values of job-dependent parameters.

j = 1 j = 2 j = 3 j = 4 j = 5

p̄j 13 12 14 15 17
bj 2 2 3 1 1
ūj 5 4 3 11 7
vj 3 5 4 1 6

Table 2. Values of position-dependent weights.

j = 1 j = 2 j = 3 j = 4 j = 5

αj 4 8 7 6 5
β j 8 7 3 2 6
ηj 2 4 6 10 7
δj 2 5 4 3 6

For the problem P1, from Algorithm 1, m = 1, 2, w = 3, 4, 5, and all results are shown
in Table 3. From Table 3, the optimal sequence π∗(2, 3) is J3 → J4 → J1 → J2 → J5, u∗3 = 3,
u∗4 = 11, u∗1 = 5, u∗2 = 4, u∗5 = 0, Z∗(2, 3) = 653, d∗1 = C[2] = 9, and D∗ = C[3] − C[2] = 3.
When m = 2 and w = 3, the values Φ̃1 = 15, Φ̃2 = 17, Φ̃3 = 20, Φ̃4 = 9, Φ̃5 = 6 (see
Equation (3)), τjr (see Equation (8)) are given in Table 4, and the optimal solution of the
assignment problem is given by Table 4.

Table 3. Results of problem P1 (bold numbers are the optimal solution).

m w π(m, w) Z(m, w)

1 3 (J3, J4, J1, J2, J5) 661
1 4 (J3, J2, J1, J4, J5) 751
1 5 (J5, J1, J2, J3, J4) 923
2 3 (J3, J4, J1, J2, J5) 653
2 4 (J3, J4, J2, J1, J5) 743
2 5 (J5, J3, J1, J4, J2) 912

Table 4. Values τjr for m = 2 and w = 3 (bold numbers are the optimal solution).

r = 1 r = 2 r = 3 r = 4 r = 5

J1 139 141 150 119 84
J2 184 188 200 110 78
J3 151 157 172 119 90
J4 130 134 146 104 96
J5 259 289 340 155 108

Similarly, for the problem P2 from Algorithm 2, the results are shown in Table 5.
From Table 5, the optimal sequence π∗(2, 3) is J3 → J1 → J4 → J2 → J5, u∗3 = 2.169,
u∗1 = 2.608, u∗4 = 6.230, u∗2 = 1.423, u∗5 = 1.388, Z∗(2, 3) = 971.297, d∗1 = C[2] = 66.505 and
D∗ = C[3] − C[2] = 5.797.

Table 5. Results of problem P2 (bold numbers are the optimal solution).

m w π(m, w) Z(m, w)

1 3 (J3, J4, J1, J2, J5) 977.570
1 4 (J2, J4, J1, J3, J5) 1035.169
1 5 (J5, J1, J3, J4, J2) 1141.332
2 3 (J3, J1, J4, J2, J5) 971.297
2 4 (J2, J3, J1, J4, J5) 1026.095
2 5 (J5, J2, J1, J4, J3) 1131.643
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Similarly, for problem P3, from Algorithm 3, the results are shown in Table 6. From
Table 6, the optimal sequence π∗(2, 3) is J3 → J1 → J4 → J2 → J5, u∗3 = 5.871, u∗1 = 6.412,
u∗4 = 10.740, u∗2 = 4.148, u∗5 = 4.301, Z∗(2, 3) = 375.290, d∗1 = C[2] = 9.798, and
D∗ = C[3] − C[2] = 1.951.

Table 6. Results of problem P3 (bold numbers are the optimal solution).

m w π(m, w) Z(m, w)

1 3 (J3, J4, J1, J2, J5) 383.086
1 4 (J2, J4, J1, J3, J5) 454.595
1 5 (J5, J4, J1, J3, J2) 611.830
2 3 (J3, J1, J4, J2, J5) 375.290
2 4 (J2, J3, J4, J1, J5) 441.715
2 5 (J5, J2, J4, J1, J3) 594.076

Similarly, for problem P4, from Algorithm 4, the results are shown in Table 7. From
Table 7, the optimal sequence is π∗(2, 3) = J3 → J1 → J4 → J2 → J5, u∗3 = 3.563,
u∗1 = 3.892, u∗4 = 6.519, u∗2 = 2.518, u∗5 = 2.611, Z∗(2, 3) = 60.516, d∗1 = C[2] = 26.596, and
D∗ = C[3] − C[2] = 5.295.

Table 7. Results of problem P4 (bold numbers are the optimal solution).

m w π(m, w) Z(m, w)

1 3 (J3, J4, J1, J2, J5) 61.491
1 4 (J2, J4, J1, J3, J5) 67.180
1 5 (J5, J4, J1, J3, J2) 78.220
2 3 (J3, J1, J4, J2, J5) 60.516
2 4 (J2, J3, J4, J1, J5) 66.036
2 5 (J5, J2, J4, J1, J3) 76.971

5. Conclusions

This article explored resource allocation scheduling with general position-dependent
weights and common due-window assignment. The resource allocation can be divided
into linear and convex resource allocations. Under some combination of general earliness–
tardiness cost and resource consumption cost, we showed that four versions of the problem
are polynomially solvable. Future research and investigation will consider the scheduling
under flow shop settings, or extending our model from resource allocation to general
deterioration effects.
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