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ABSTRACT Due to the limited battery capacity and computing capability of mobile users, the resource al-

location strategy in device-to-device (D2D)-assisted edge computing system with hybrid energy harvesting

is investigated in this paper. By employing magnetic induction-based wireless reverse charging technology,

mobile user can supplement extra energy from nearby users when the energy harvested from ambient radio

frequency sources is about to be exhausted. Moreover, mobile user can not only perform local computation,

but also offload computing tasks to nearby users for auxiliary computation through D2D communication

links or mobile edge computing (MEC) server under base station (BS) for edge computation. Due to the

limited computing resources of MEC server, when the computing capability of the MEC server reaches

the maximum value, an adjacent user under another nearby BS can be considered as a relay node. The

computing tasks of the remaining users under the previous BS can be transferred to the MEC server with

sufficient resources under another nearby BS by establishing D2D relay links. The objective of the resource

allocation strategy is to maximize the energy efficiency under the constraints of computation delay and

energy harvesting. The resource allocation problem is formulated as a mixed-integer nonlinear programming

problem, which is not easy to obtain the optimal solution at low computational complexity. A suboptimal

solution is obtained by adopting the quantum-behaved particle swarm optimization (QPSO) algorithm.

Simulation results show that the performance of the proposed strategy is superior to other benchmark

strategies, and QPSO algorithm can achieve higher energy efficiency than the standard particle swarm

optimization algorithm.

INDEX TERMS Hybrid energy harvesting, device-to-device communication, mobile edge computing,

resource allocation.

I. INTRODUCTION

R
ADIO frequency (RF) energy harvesting is an emerging

technology to provide power for smart mobile devices

(SMD). The limited battery capacity [2] and computing

capability [3], [4] are two shortcomings of SMD. When

the battery energy of SMD is exhausted, the service of the

SMD will be terminated. For the traditional battery-powered

equipment, this can possibly be overcome by using larger

batteries or charging the batteries repeatedly. However, us-

ing larger batteries at SMDs means not only increasing the

cost of hardware, but also inconvenient to carry. Moreover,

repeated wired charging is not conducive to the user’s ex-

perience [5]. SMDs can constantly harvest energy from the

received electromagnetic waves to resolve above issues. The

SMD offload computing tasks to edge server by exploiting

mobile edge computing (MEC) technology [6]–[8], which

can significantly reduce the energy consumption of SMD.

Meanwhile, the harvested energy can be efficiently utilized

by designing resource allocation strategy. Therefore, it is of

great significance to study the resource allocation strategy

of energy harvesting communication system combined with

MEC technology.

The resource allocation problem of energy harvesting

communication system combined with MEC has attracted
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great attention. In [9], wireless power transmitter (WPT)

and MEC technology were taken into account in the access

point (AP) in order to maximize the computational energy

efficiency of low power SMDs. The WPT was used for

energy transfer to low power SMDs in the first phase, and

in the second phase these SMDs can offload computing tasks

to MEC server for edge computation. The WPT-MEC with

partial offloading scheme was first time introduced and ana-

lyzed to overcome the computational capability and battery

limitation problems. F. Wang et al. [10] discussed the total

transmission energy consumption at the energy transmitter

(ET) over a particular finite horizon in a single-user wireless

powered MEC system. By jointly optimizing the transmis-

sion energy allocation at the ET and tasks allocation at SMD

to ensure the SMD’s successful tasks execution. Under the

energy and tasks causality constraints, the energy minimiza-

tion problem was solved through convex optimization tech-

niques. In [11], a reinforcement learning based offloading

scheme was studied for an Internet of Things device with

energy harvesting. According to the current battery level, the

previous radio transmission rate to each edge device, and

the predicted amount of the harvested energy, SMDs were

able to select the edge device and the offloading rate in order

to optimize the offloading policy. A framework for wireless

powered cognitive radio (CR)-based MEC-enabled networks

was considered in [12]. The objective was to maximize the

average calculated number of bits of SMD. The established

non-convex optimization problem was solved by using La-

grangian dual decomposition and successive pseudo-convex

approximation methods. From the perspective of tasks of-

floading, there are two main methods of tasks offloading.

For the binary offloading [13], [14], computing tasks can be

totally remained for local computation or totally offloaded.

For the partial offloading [15], [16], computing tasks can be

split into several parts, some tasks are remained for local

computation and the rest are offloaded.

Although the above studies have demonstrated the effec-

tiveness of the resource allocation strategy of RF energy

harvesting combined with MEC to improve the computation

performance of communication system, the limited com-

puting resources of MEC server is not always adequate to

support all SMDs under the coverage range of base station

(BS). To improve this situation, there have been also several

works [17]–[19] that investigate the device-to-device (D2D)-

assisted MEC system. In [17], the D2D-assisted and non-

orthogonal multiple access (NOMA)-based MEC system was

investigated to minimize the weighted sum of the energy

consumption and delay of all SMDs. A novel D2D-enabled

multi-helper MEC system was developed in [18], where

the local user could offload its computing tasks to multiple

helpers and download the results from them over an orthog-

onal pre-scheduled time slot. J. Wen et al. [19] attempt-

ed to further improve the energy-efficient communication

in MEC by proposing a D2D offloading architecture. The

aforementioned studies mainly focus on the communication

system with energy harvesting from ambient or dedicated RF

sources. However, due to the low receiving power based on

RF energy harvesting, less energy is harvested in a short peri-

od of time. Once the battery energy is exhausted, the system

performance will be seriously affected. The wireless energy

transfer technology based on magnetic induction (MI) [20]–

[22] has much higher receiving power and can obtain more

energy in a short time. Motivated by the above observation,

we integrate the MI-based wireless energy transfer and the

D2D communication into the MEC system. Therefore, we

propose a resource allocation strategy for D2D-assisted edge

computing system with hybrid energy harvesting to improve

the total energy efficiency of communication system. The

main contributions of this work are summarized as follows.

• A hybrid energy harvesting method (i.e., RF energy

harvesting and MI-based wireless energy transfer) is

developed to provide electrical energy for SMDs. By

leveraging MI-based wireless energy transfer technol-

ogy, the SMD can supplement energy from nearby other

SMDs (i.e., MI-based wireless reverse charging) when

this SMD is about to run out of the energy harvested

from ambient RF sources.

• By adopting partial offloading method, computing tasks

are split into three parts for computation. One part is

remained for local computation. Another part is offload-

ed to nearby SMDs for auxiliary computation through

establishing D2D communication links. The rest part is

offloaded to MEC server for edge computation. More-

over, when the computing capability of the MEC server

under BS achieves the maximum number of SMDs that

can be served, the remainder SMDs can consider an

adjacent SMD under another nearby BS as a relay node.

This relay node can transfer the rest tasks to the nearby

MEC server with sufficient resources under another

nearby BS for edge computation by establishing D2D

relay links.

• A resource allocation strategy for D2D-assisted edge

computing system with hybrid energy harvesting is

proposed to maximize the energy efficiency under the

constraints of computation delay and energy harvesting.

A quantum-behaved particle swarm optimization (QP-

SO) algorithm is used to obtain a suboptimal solution

to the formulated mixed-integer nonlinear programming

(MINLP) problem.

The rest of this paper is organized as follows. In Section

II, the system model is presented. The problem formulation

and solution are shown in Section III. Simulation results and

discussions are given in Section IV. Finally, the whole paper

is concluded in Section V.

II. SYSTEM MODEL

In this section, the network structure of D2D-assisted edge

computing system is presented. Then, the hybrid energy

harvesting model of mobile user is given.
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FIGURE 1. Network structure of D2D-assisted edge computing system.

A. NETWORK STRUCTURE

As depicted in Fig. 1, we consider a D2D-assisted edge

computing system that consists of two BSs and multiple

mobile users. MEC server is deployed near the BS. In order

to improve the performance of the whole communication

system, except for local computation, mobile users can al-

so offload their computing tasks to the MEC server for

edge computation, or offload to nearby users for auxiliary

computation through establishing D2D communication links.

Mobile users in D2D communication are still controlled by

BS [23], [24]. However, offloading computing tasks will

consume a certain amount of battery energy. Due to the

limited battery capacity of mobile users, if the battery en-

ergy of mobile user is about to be exhausted when this

user is offloading a computing task, this user can get a

timely energy supplement from nearby users through MI-

based wireless reverse charging to avoid the interruption of

the task offloading. We call these mobile users as common

users (CU), denoted as CU i (i = 1, 2, · · · , I), and call these

nearby users as common auxiliary users (CAU), denoted as

CAU k (k = 1, 2, · · · ,K = I−1). These CAUs actually be-

long to CUs as well. Auxiliary computation means that when

CU i performs computation, these nearby other idle common

users can assist CU i for auxiliary computation. Therefore,

these idle common users are called CAUs. Assuming that

there are (I + S) users under BS 1 that need to offload

their computing tasks to MEC server for edge computation.

Due to the limited computing resources of MEC server,

the computing resources of the MEC server under BS 1

hold only I users to offload their computing tasks for edge

computation. In other words, when the computing capability

of the MEC server under BS 1 has achieved the maximum

number of users that the MEC server can serve (i.e., I users),

the rest S users are unable to offload their computing tasks

to the MEC server under BS 1 for edge computation. At

this point, the number of users under BS 2 that close to

BS 1 is small, and the computing resources of MEC server

under BS 2 are sufficient. Therefore, these S users under BS

1 can utilize an adjacent user under BS 2 as a relay node,

and these S users can transfer their computing tasks to the

MEC server under BS 2 for edge computation by establishing

D2D relay links. We call this adjacent user as relay user

(RU). These S users under BS 1 are called transfer users

(TU), denoted as TU s (s = 1, 2, · · · , S). Moreover, TU s
can also perform local computation or offload its computing

tasks to nearby users for auxiliary computation. We call these

nearby users as transfer auxiliary users (TAU), and denoted

as TAU q (q = 1, 2, · · · , Q = S − 1).

B. HYBRID ENERGY HARVESTING MODEL OF MOBILE

USER

In this subsection, the hybrid energy harvesting model of

mobile user is shown. As shown in Fig. 2, mobile user can

harvest energy from ambient RF sources, such as television

(TV) towers and BSs. When the battery energy of mobile

user is about to exhausted, this user can supplement energy

from nearby users by leveraging MI-based wireless reverse

charging. Take CU i as an example, the energy harvested by

CU i from the ambient RF sources and CAUs is denoted as

ECH1
i and ECH2

i . We define PCH1
i,l as the power received by

CU i from the l-th ambient RF source. According to the Friis

equation [25], PCH1
i,l can be obtained by

PCH1
i,l =

PT
l GT

l G
R
i c

2

(

4πdi,lfT
l

)2 , (1)

where PT
l and GT

l denote the transmitting power and the

transmitting antenna gain of the l-th (l = 1, 2, · · · , L)
ambient RF source, L is the number of ambient RF sources,

GR
i represents the receiving antenna gain of CU i , c indicates

the propagation speed of electromagnetic wave in free space,

di,l denotes the distance between the l-th ambient RF source

and CU i, and fT
l is transmitting frequency of the l-th am-

bient RF source. In order to ensure a zero-input/zero-output

response for energy harvesting, the constant Ωi is shown as

Ωi =
1

1 + exp (aibi)
, (2)

where ai and bi are constants depending on the practical

circuit specifications. According to [26], [27], the practical

power harvested by CU i from the l-th ambient RF source is

given as

ΦCH1
i,l =

[

ΨCH1
i,l −MiΩi

]

1− Ωi

, (3)

where Mi indicates the maximal harvested power at CU i
when the energy harvesting circuit is driven to saturation.

ΨCH1
i,l represents the traditional logistic function with respect

to received power PCH1
i,l , and its expression is

ΨCH1
i,l =

Mi

1 + exp
(

−ai

(

PCH1
i,l − bi

)) . (4)

Therefore, the energy harvesting model of ECH1
i is shown as

ECH1
i =

L
∑

l=1

ΦCH1
i,l TRF, (5)

where TRF indicates the duration of harvesting energy from

ambient RF sources.
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The energy harvesting model of ECH2
i is analyzed as fol-

lows. Because CU i and CAU k are equipped with magnetic

induction coil, there exist mutual inductance between the

receiving coil in CU i and the transmitting coil in CAU k
, which is calculated as [28]

Mi,k =
µπN t

kN
r
i (a

t
k)

2
(ari)

2

2

√

(

(atk)
2
+ (dcoili,k )

2
)3

, (6)

where µ represents the permeability of free space, N t
k and N r

i

denote the turns of transmitting and receiving coils, atk and

ari are the radii of transmitting and receiving coils. Moreover,

dcoili,k is the distance between transmitting and receiving coils.

According to the material and the practical implementation

of coil, the transmitting coil resistance Rt
k and the receiving

coil resistance Rr
i should be designed to a low value to avoid

considerable energy waste, which can be obtained by
{

Rt
k = 2πN t

ka
t
kR0

Rr
i = 2πN r

i a
r
iR0

, (7)

where R0 is the resistance per unit length of the coil. More-

over, the self-induction of transmitting and receiving coils

can be derived by
{

Lt
k ≈ 1

2µπ(N
t
k)

2
atk

Lr
i ≈

1
2µπ(N

r
i )

2
ari

. (8)

In order to maximize the received power, the load

impedance is expressed as the complex conjugate of the

output impedance of the secondary loop [29]

ZL
i,k = Rr

i +
ω2M2

i,kR
t

k

Rt

k
+ω2(Lt

k
)2

+ j
(

ω3M2

i,kL
t

k

(Rt

k
)2+2ω2(Lt

k
)2

− ωLr
i

) , (9)

where ω represents the angular frequency that can be ob-

tained by ω = 2πf . Here, f indicates the system operating

frequency.

Furthermore, the induced voltage of receiving coil UM
i,k can

be derived by

UM
i,k = −jωMi,k

US
k

Rt
k + jωLt

k

, (10)

where US
k is the power supply voltage of CAU k. According

to the principle of equivalent circuit, the received power is

equal to the power consumption of ZL
i,k, i.e.,

PCR
i,k = Re











ZL
i,k

(

UM
i,k

)2

[

Re
(

ZL
i,k

)]2











. (11)

Therefore, ECH2
i can be expressed as

ECH2
i =

K
∑

k=1

ui,kP
CR
i,k TMI, (12)

where ui,k in energy harvesting case represents that the

distance decision that whether CU i can harvest energy from

FIGURE 2. Hybrid energy harvesting mode of mobile user.

CAU k. When ui,k = 1, CU i can harvest energy from

CAU k through MI-based wireless reverse charging. On the

contrary, ui,k = 0 denotes that CU i is too far away from

CAU k to harvest energy from CAU k. TMI indicates the

duration of charging. As a result, according to the expressions

of ECH1
i and ECH2

i , the total energy harvesting model of

CU i can be depicted as ECH
i = ECH1

i + ECH2
i .

Similarly, TU s can also harvest energy from ambient

RF sources and TAUs. The energy harvested by TU s from

ambient RF sources is expressed as

ETH1
s =

L
∑

l=1

ΦTH1
s,l TRF. (13)

Moreover, the energy harvested by TU s from TAUs is

denoted as

ETH2
s =

Q
∑

q=1

εs,qP
TR
s,q TMI. (14)

As a result, the total energy harvesting model of TU s can

be shown as ETH
s = ETH1

s + ETH2
s .

III. PROBLEM FORMULATION AND SUBOPTIMAL

SOLUTION

In this section, the specific resource allocation strategy is

analyzed. The optimization model of resource allocation is

given first. Then, the suboptimal solution is obtained by using

QPSO algorithm.

A. PROBLEM FORMULATION

In this subsection, the problem formulation is presented.

As mentioned earlier, mobile users under BS 1 are mainly

classified as CUs and TUs. We define Cw as the number

of central processing unit (CPU) cycles required for user

w (w = 1, 2, · · · , I + S) to perform 1-bit computation

data. By adopting partial offloading method, we assume that

computing tasks of user w are split into three parts. One part

is remained for local computation, another part is offloaded to

nearby users for auxiliary computation through establishing

D2D communication links. The rest part is offloaded to

MEC server for edge computation. The time and energy

consumption models of CU and TU are analyzed in detail

as follows.

1) Local Computation Model

4 VOLUME 4, 2016
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We suppose DCL
i and fCL

i as the computation data and the

computation capability of CU i for local computation. There-

fore, the time required for CU i to perform this computation

data DCL
i is

TCL
i =

CiD
CL
i

fCL
i

. (15)

At the same time, the energy consumption of CU i is

ECL
i = κ

(

fCL
i

)2
CiD

CL
i , (16)

where κ is the effective switched capacitance depending on

the chip architecture. In this paper, we set κ = 10−26 [30].

Similarly, the time and energy consumption of TU s for local

computation are given as follows

TTL
s =

CsD
TL
s

fTL
s

, (17)

ETL
s = κ

(

fTL
s

)2
CsD

TL
s , (18)

where DTL
s and fTL

s indicate the computation data and the

computation capability of TU s for local computation.

2) Auxiliary Computation Model

The time division duplex (TDD) scheme [31] is employed

to collect the channel state information. The collection of

uplink channel state information is mainly divided into three

parts: First, the user transmits uplink pilot signal to the

BS. The time required for this period is TO. Then, the BS

estimates the channel state information based on the received

signal. Finally, the BS feeds back the channel state infor-

mation to the user. The time required for this period is also

TO [32]. For the TDD system, due to channel reciprocity,

the downlink has the same channel state information as the

uplink. After the computing tasks are finished at the edge

server, the computing results will be fed back to the user

by downlink. Because the computing process takes some

time, the downlink channel state information will be different

from the previous uplink channel state information. There-

fore, downlink channel estimation is also needed. Similar-

ly, the collection of downlink channel state information is

also mainly divided into three parts. The BS first transmits

downlink pilot signal to the user. The time required for this

period is 3TO. Then the user estimates the channel state

information based on the received signal, and finally the

user feeds back the channel state information to the BS. The

time required for feedback process is TO [32]. Therefore,

the energy consumption for collecting uplink and downlink

channel state information are shown as

EUC = PDTO + EC + PBTO, (19)

EDC = PB3TO + EC + PDTO, (20)

where PD represents the transmitting power of users. EC

denotes the energy required to perform the channel estima-

tion process. PB indicates the transmitting power of BS. TO

is each orthogonal frequency division multiplexing (OFDM)

symbol interval.

Moreover, we adopt orthogonal frequency division mul-

tiple access method for data transmission whether auxiliary

computation or edge computation. It is assumed that the total

channel bandwidth B1 is divided into I × K sub-channels

when CUs offload their computing tasks to CAUs for aux-

iliary computation through D2D communication links. We

define α1
i,k as the sub-channel ratio coefficient of the total

channel bandwidth occupied by the data transmission from

CU i to CAU k. According to [33], the achievable uplink

data rate from CU i to CAU k is expressed as

RCU
i,k = α1

i,kB1 log2

(

1 +
PCU
i,k (h1

i,k)
2

N0

)

, (21)

where PCU
i,k represents the transmitting power of CU i of-

floading computing tasks to CAU k. h1
i,k denotes the channel

gain from CU i to CAU k. N0 indicates the Gaussian white

noise power. We suppose DCA
i,k as the computation data of

CU i offloading to CAU k for auxiliary computation. There-

fore, the time of data transmission from CU i to CAU k can

be obtained by

TCT
i,k =

ui,kD
CA
i,k

RCU
i,k

, (22)

where ui,k in offloading case denotes that the distance de-

cision that whether CU i can offload computing tasks to

CAU k for auxiliary computation. When ui,k = 1, CU i can

offload computing tasks to CAU k. On the contrary, ui,k = 0
indicates that CU i is too far away from CAU k to offload

computing tasks to CAU k for auxiliary computation.

The actual uplink time required from CU i to CAU k
depends on the greater one between the time of local com-

putation of CAU k and the time of data transmission from

CU i to CAU k [34]. In other words, CAU k can help other

users for auxiliary computation only when its own local

computing tasks has completed. We suppose DCL
k and fCL

k

as the computation data and the computation capability of

CAU k for local computation. Therefore, the actual uplink

time can be given by

TCU
i,k = max

(

TCT
i,k , TCL

k =
CkD

CL
k

fCL
k

)

. (23)

We suppose PCIR as the circuit power consumption. There-

fore, the energy consumption of CU i transmitting compu-

tation data to CAU k through D2D communication link is

shown as

ECU
i,k =

(

ui,kP
CU
i,k + PCIR

) ui,kD
CA
i,k

RCU
i,k

. (24)

After receiving the computation data of CU i offloading to

CAU k for auxiliary computation, CAU k begins to perform

this computation data. The time and energy consumption of

CAU k performing this computation data are obtained as

TCP
i,k =

ui,kCiD
CA
i,k

fCL
k

, (25)
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ECP
i,k = κ

(

fCL
k

)2
ui,kCiD

CA
i,k . (26)

After finishing computing tasks of CU i offloading to

CAU k for auxiliary computation, CAU k outputs a com-

putation result. CAU k must transmit this result to CU i.
We define α2

k,i as the sub-channel ratio coefficient of the

total channel bandwidth occupied by the computation result

feedback from CAU k to CU i. Therefore, the achievable

downlink data rate from CAU k to CU i is expressed as

RCD
k,i = α2

k,iB1 log2

(

1 +
PCD
k,i (h

2
k,i)

2

N0

)

, (27)

where PCD
k,i represents the transmitting power of CAU k

transmitting computation result to CU i. h2
k,i denotes the

channel gain from CAU k to CU i. We define φ as the

conversion coefficient between the output computation result

and the input computation data. Therefore, the downlink time

required from CAU k to CU i can be given by

TCD
k,i =

φui,kD
CA
i,k

RCD
k,i

. (28)

Moreover, the energy consumption of CAU k transmitting

computation result to CU i is shown as

ECD
k,i =

(

ui,kP
CD
k,i + PCIR

) φui,kD
CA
i,k

RCD
k,i

. (29)

According to the above analysis, the time and energy

required of CU i offloading computing tasks to CAU k for

auxiliary computation are given by

TCA
i,k = TCU

i,k + TCP
i,k + TCD

k,i , (30)

ECA
i,k = ECU

i,k + ECP
i,k + ECD

k,i . (31)

We suppose DCA
i as the total computation data of CU i of-

floading to CAUs that can be used for auxiliary computation.

Therefore, the total computation data can be shown as

DCA
i =

K
∑

k=1

ui,kD
CA
i,k . (32)

Because of the time and energy consumption of CU i offload-

ing computing tasks to each CAU for auxiliary computation

are different, for the time consumption, we only need to take

the maximum time of each computation result arrival as the

total time consumption of auxiliary computation. Therefore,

the total time consumption of CU i for auxiliary computation

is given as

TCA
i = max

(

ui,kT
CA
i,k

)

. (33)

For the energy consumption, the total energy consumption

of CU i for auxiliary computation is equal to the sum of

the energy consumption of CU i offloading computing tasks

to each CAU for auxiliary computation. Therefore, the total

energy consumption of CU i for auxiliary computation is

expressed as

ECA
i =

K
∑

k=1

(

ECA
i,k

)

. (34)

For TU, it can also offload computing tasks to nearby

TAUs for auxiliary computation. We suppose B3 as the total

channel bandwidth of TUs offloading their computing tasks

to TAUs for auxiliary computation through D2D communica-

tion links. B3 is divided into S ×Q sub-channels. We define

γ1
s,q as the sub-channel ratio coefficient of the total channel

bandwidth occupied by the data transmission from TU s to

TAU q. Therefore, the achievable uplink data rate from TU s
to TAU q is obtained by

RTU
s,q = γ1

s,qB3 log2

(

1 +
PTU
s,q (h5

s,q)
2

N0

)

, (35)

where PTU
s,q denotes the transmitting power of TU s offload-

ing computing tasks to TAU q. h5
s,q indicates the channel

gain from TU s to TAU q. We suppose DTA
s,q as the com-

putation data of TU s offloading to TAU q for auxiliary

computation. Therefore, the time of data transmission from

TU s to TAU q can be obtained by

TTT
s,q =

εs,qD
TA
s,q

RTU
s,q

, (36)

where the meaning of εs,q is similar to that of ui,k.

The actual uplink time required from TU s to TAU q
depends on the greater one between the time of local compu-

tation of TAU q and the time of data transmission from TU s
to TAU q. We suppose DTL

q and fTL
q as the computation

data and the computation capability of TAU q for local

computation. Therefore, the actual uplink time is given as

TTU
s,q = max

(

TTT
s,q , TTL

q =
CqD

TL
q

fTL
q

)

. (37)

Moreover, the energy consumption of TU s transmitting

computation data to TAU q through D2D communication

link is shown as

ETU
s,q =

(

εs,qP
TU
s,q + PCIR

) εs,qD
TA
s,q

RTU
s,q

. (38)

After receiving the computation data of TU s offloading

to TAU q for auxiliary computation, TAU q starts to perform

this computation data. The time and energy consumption of

TAU q performing this computation data are obtained as

TTP
s,q =

εs,qCsD
TA
s,q

fTL
q

, (39)

ETP
s,q = κ

(

fTL
q

)2
εs,qCsD

TA
s,q . (40)

After TAU q finishes computing tasks of TU s offloading

and outputs a computation result, TAU q must transmit this

computation result to TU s. We define γ2
q,s as the sub-

channel ratio coefficient of the total channel bandwidth oc-

cupied by the computation result feedback from TAU q to

TU s. Therefore, the achievable downlink data rate from

TAU q to TU s is expressed as

RTD
q,s = γ2

q,sB3 log2

(

1 +
PTD
q,s (h6

q,s)
2

N0

)

, (41)
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where PTD
q,s is the transmitting power of TAU q transmitting

computation result to TU s. h6
q,s represents the channel gain

from TAU q to TU s. Therefore, the downlink time required

from TAU q to TU s can be given by

TTD
q,s =

φεs,qD
TA
s,q

RTD
q,s

. (42)

Furthermore, the energy consumption of TAU q transmitting

computation result to TU s is shown as

ETD
q,s =

(

εs,qP
TD
q,s + PCIR

) φεs,qD
TA
s,q

RTD
q,s

. (43)

Finally, the time and energy consumption of TU s offload-

ing computing tasks to TAU q for auxiliary computation can

be obtained by

TTA
s,q = TTU

s,q + TTP
s,q + TTD

q,s , (44)

ETA
s,q = ETU

s,q + ETP
s,q + ETD

q,s . (45)

We suppose DTA
s as the total computation data of TU s of-

floading to TAUs that can be used for auxiliary computation.

Therefore, the total computation data can be shown as

DTA
s =

Q
∑

q=1

εs,qD
TA
s,q . (46)

Similar to CU i, TU s can also offload its computing tasks

to multiple TAUs for auxiliary computation. Therefore, the

total time and energy consumption of TU s for auxiliary

computation are given as

TTA
s = max

(

εs,qT
TA
s,q

)

, (47)

ETA
s =

Q
∑

q=1

(

ETA
s,q

)

. (48)

3) Edge Computation Model

Assuming that the total channel bandwidth B2 is divided

into I sub-channels when CUs offload their computing tasks

to MEC server under BS 1 for edge computation. We define

β1
i as the sub-channel ratio coefficient of the total channel

bandwidth occupied by the data transmission from CU i to

BS 1. Therefore, the achievable uplink data rate from CU i
to BS 1 is expressed as

RCU
i = β1

i B2 log2

(

1 +
PCU
i (h3

i )
2

N0

)

, (49)

where PCU
i represents the transmitting power of CU i of-

floading computing tasks to MEC server for edge computa-

tion. h3
i denotes the channel gain from CU i to BS 1. We

suppose DCE
i as the computation data of CU i offloading

to MEC server for edge computation. Therefore, the uplink

transmission time from CU i to BS 1 can be given by

TCU
i =

DCE
i

RCU
i

. (50)

Because computing tasks of CU i are split into three parts,

the computation data of CU i offloading to MEC server

for edge computation can be obtained by DCE
i = DCT

i −
DCL

i − DCA
i . Here, DCT

i represents the total computation

data of CU i need to be performed. Therefore, the energy

consumption of CU i transmitting computation data to MEC

server is expressed as

ECU
i =

(

PCU
i + PCIR

) DCE
i

RCU
i

. (51)

After receiving the computation data from CU i, the MEC

server starts to perform this computation data. Let fCE
i

indicates the computing resources assigned to CU i by the

MEC server under BS 1. Specially, the sum of the computing

resources assigned to all CUs by the MEC server under BS

1 is exactly equal to the total computing resources FE of the

MEC server under BS 1. In other words, the total computing

resources of the MEC server under BS 1 can only meet the

requirement of I users for edge computation, the MEC server

will overload if beyond that. Therefore, the time and energy

required for the MEC server under BS 1 to perform this

computation data are obtained as

TCP
i =

CiD
CE
i

fCE
i

, (52)

ECP
i = δDCE

i , (53)

where δ denotes the energy consumption per offloaded bit at

the MEC.

After finishing computing tasks of CU i offloading to

MEC server for edge computation, the MEC server outputs

a computation result. BS 1 must transmit the computation

result to CU i. We define β2
i as the sub-channels ratio

coefficient of the total channel bandwidth occupied by the

computation result feedback from BS 1 to CU i. Therefore,

the achievable downlink data rate from BS 1 to CU i is

expressed as

RCD
i = β2

i B2 log2

(

1 +
PE(h4

i )
2

N0

)

, (54)

where PE is the transmitting power of BS, h4
i represents the

channel gain from BS 1 to CU i. The downlink time required

from BS 1 to CU i can be given by

TCD
i =

φDCE
i

RCD
i

. (55)

Moreover, the energy consumption of BS 1 transmitting the

computation result to CU i is shown as

ECD
i =

(

PE + PCIR
) φDCE

i

RCD
i

. (56)

According to the above analysis, the total time and energy

consumption of CU i for edge computation are given by

TCE
i = TCU

i + TCP
i + TCD

i , (57)

ECE
i = ECU

i + ECP
i + ECD

i . (58)
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Because TU s cannot offload its computing tasks to the

MEC server under BS 1 for edge computation, TU s must to

utilize RU as a relay node, and transfer its computing tasks

to the MEC server under BS 2 for edge computation through

establishing D2D relay link. We consider RU to be a relay

node of decoded and forwarding type [35]. Therefore, the

actual achievable uplink data rate from TU s to BS 2 depends

on the smaller one between TU s to RU and RU to BS 2, its

expression is

RTU
s = minimum

{

RTU1
s , RTU2

s

}

, (59)

where RTU1
s and RTU2

s represent the achievable uplink data

rate from TU s to RU and from RU to BS 2, respectively.

Assuming that the total channel bandwidth B4 from TU s
to RU and from RU to BS 2 are divided into S sub-channels,

respectively. We define λ1
s as the sub-channel ratio coefficient

of the total channel bandwidth occupied by the data transmis-

sion from TU s to RU. Therefore, the achievable uplink data

rate from TU s to RU is obtained by

RTU1
s = λ1

sB4 log2

(

1 +
PTU
s (h7

s)
2

N0

)

, (60)

where PTU
s indicates the transmitting power of TU s trans-

ferring computing tasks to RU. h7
s represents the channel

gain from TU s to RU. Meanwhile, we define λ2
s as the sub-

channel ratio coefficient of the total channel bandwidth oc-

cupied by the data transmission from RU to BS 2. Therefore,

the achievable uplink data rate from RU to BS 2 is given by

RTU2
s = λ2

sB4 log2

(

1 +
PR(h8

s)
2

N0

)

, (61)

where PR is the forwarding power of RU. h8
s denotes the

channel gain from RU to BS 2. We suppose DTE
s as the

computation data of TU s offloading to MEC server under

BS 2 for edge computation. Similar to CU i, the computation

data of TU s offloading to MEC server for edge computation

can be obtained by DTE
s = DTT

s − DTL
s − DTA

s . Here,

DTT
s indicates the total computation data of TU s need to

be performed. Therefore, the time and energy consumption

of TU s transmitting computing data to MEC server are

expressed as

TTU
s =

DTE
s

RTU
s

, (62)

ETU
s =

(

PTU
s + PCIR

) DTE
s

RTU
s

. (63)

After the transmission of the computation data that TU s
offloading to the MEC server under BS 2 has completed,

the MEC server begins to perform. Let fTE
s indicates the

computing resources assigned to TU s by the MEC server

under BS 2. Therefore, the time and energy required for the

MEC server under BS 2 to perform this computation data are

obtained as

TTP
s =

CsD
TE
s

fTE
s

, (64)

ETP
s = δDTE

s . (65)

Similarly, the MEC server under BS 2 outputs a com-

putation result, and BS 2 must transmit this computation

result to TU s through D2D relay link. Therefore, the actual

achievable downlink data rate from BS 2 to TU s depends

on the smaller one between BS 2 to RU and RU to TU s, its

expression is

RTD
s = minimum

{

RTD1
s , RTD2

s

}

, (66)

where RTD1
s and RTD2

s represent the achievable downlink

data rate from BS 2 to RU and from RU to TU s, respectively.

We define λ3
s and λ4

s as the sub-channel ratio coefficient of

the total channel bandwidth B4 occupied by the data trans-

mission from BS 2 to RU and from RU to TU s, respectively.

Therefore, the achievable downlink data rate from BS 2 to

RU and from RU to TU s can be obtained by

RTD1
s = λ3

sB4 log2

(

1 +
PE(h9

s)
2

N0

)

, (67)

RTD2
s = λ4

sB4 log2

(

1 +
PR(h10

s )
2

N0

)

, (68)

where h9
s and h10

s are the channel gain from BS 2 to RU

and from RU to TU s. Therefore, the downlink time required

from BS 2 to TU s can be given by

TTD
s =

φDTE
s

RTD
s

. (69)

Moreover, the energy consumption of BS 2 transmitting the

computation result to TU s is shown as

ETD
s =

(

PE + PCIR
) φDTE

s

RTD
s

. (70)

According to the above analysis, the total time and energy

consumption of TU s for edge computation are given by

TTE
s = TTU

s + TTP
s + TTD

s , (71)

ETE
s = ETU

s + ETP
s + ETD

s . (72)

The optimization objective of the resource allocation strat-

egy is to maximize the energy efficiency [36], [37] while

satisfying several constraints. Therefore, the optimization

problem can be formulated as

maximize
ui,k,P

CU

i,k ,PCD

k,i ,PCU

i ,

εs,q,P
TU

s,q ,PTD

q,s ,PTU

s

I
∑

i=1

(

DCL

i

ECL

i

+
DCA

i

ECA

i

+
DCE

i

ECE

i

)

+
S
∑

s=1

(

DTL

s

ETL
s

+
DTA

s

ETA
s

+
DTE

s

ETE
s

)

,

(73a)

subject to

C1 : max
[

TCL
i , TCA

i , TCE
i

]

≤ TD, ∀i, (73b)

C2 : max
[

TTL
s , TTA

s , TTE
s

]

≤ TD, ∀s, (73c)
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C3 : ECL
i +

K
∑

k=1

(

ECU
i,k

)

+ ECU
i ≤ ECH

i , ∀i, (73d)

C4 : ETL
s +

Q
∑

q=1

(

ETU
s,q

)

+ ETU
s ≤ ETH

s , ∀s, (73e)

C5 : PCU
i,k , PCD

k,i , P
CU
i ≤ PMAX, ∀i, k, (73f)

C6 : PTU
s,q , PTD

q,s , PTU
s ≤ PMAX, ∀s, q, (73g)

C7 : ui,k ∈ (0, 1), ∀i, k, (73h)

C8 : εs,q ∈ (0, 1), ∀s, q. (73i)

In the above, the first and second constraints indicate that

the time consumption of CU i and TU s offloading their

computing tasks for local computation, auxiliary computa-

tion, or edge computation must be not exceed the specific to-

tal computation delay TD, respectively. The third and fourth

constraints represent that the total energy consumption of

CU i and TU s for local computation, auxiliary computation,

and edge computation have to less than or equal to the

energy harvested by CU i and TU s, respectively. The fifth

and sixth constraints specify that the maximum transmitting

power PMAX of CU i and TU s, respectively. The seventh

constraint denotes the distance decision that whether CU i
can harvest energy from CAU k and whether CU i can

offload computing tasks to CAU k for auxiliary computation.

Similar to the seventh constraint, the eighth is the constraint

of the distance decision between TU s and TAU q. It should

be noted that the independent variables PCU
i,k , PCD

k,i , PCU
i ,

PTU
s,q , PTD

q,s , and PTU
s are continuous, while ui,k and εs,q

are discrete. Meanwhile, the objective function is nonlinear.

Therefore, the above optimization problem of resource allo-

cation is MINLP problem.

B. SUBOPTIMAL SOLUTION

The main challenge in solving MINLP problem is that it is

difficult to obtain the optimal solution at low computational

complexity. Therefore, a heuristic algorithm with moderate

computational complexity can be used to obtain the subopti-

mal solution. The QPSO algorithm [38] is a kind of heuris-

tic algorithm based on particle swarm optimization (PSO),

which is suitable to solve complex optimization problems.

Inspired by the simulation of the foraging process of birds,

the PSO algorithm was developed by J. Kennedy and R.

Eberhart [39] to solve the optimization problem. Assuming

that particle space is a multidimensional space. There are

N particles in the space. For the n-th (n = 1, 2, · · · , N)
particle, its position vector Xn and velocity vector Vn are

initialized. The updating of each particle is generated by

comparing its local best position Pn and global best position

G with the previous iteration under the solution of fitness

function. The update iterative equations of velocity vector

and position vector for each particle are shown as






Vn(t+ 1) = Vn(t) + c1r1(Pn −Xn(t))
+ c2r2(G−Xn(t))

Xn(t+ 1) = Vn(t+ 1) +Xn(t)
, (74)

where t denotes the iteration number, the iteration is ter-

minated only when the number of iterations reaches the

maximal number of iterations T . c1 and c2 indicate two accel-

eration coefficients, r1 and r2 are random numbers between

0 and 1. It can be seen in (74) that the update of particle

position depends on the step size of velocity. Therefore,

the velocity of particle evolution makes particles have the

tendency to expand the search space. The particles have the

ability to detect new search fields. In order to better control

the global detection and local development capability of

PSO algorithm, Y. Shi and R. Eberhart introduce the inertial

weight m into equations in (74) and become as follows






Vn(t+ 1) = mVn(t) + c1r1(Pn −Xn(t))
+ c2r2(G−Xn(t))

Xn(t+ 1) = Vn(t+ 1) +Xn(t)
. (75)

The modified PSO algorithm is known as the standard par-

ticle swarm optimization algorithm (SPSO) [40]. However,

the movement of each particle is still described by velocity

and position in the SPSO algorithm. With the evolution of

iteration time, the trajectory of particle is constant. Mean-

while, the velocity of each particle is limited to a certain

extent, so that the search space of particles is a limited and

gradually decreasing region, which cannot cover the whole

feasible solution space. Therefore, SPSO algorithm cannot

guarantee global convergence. To deal with this issue, QPSO

algorithm is proposed based on quantum mechanics theory

and can obtain a suboptimal solution that is close to globally

optimal. The reason is that in quantum space, the aggregation

of particles is described by the binding state produced by

an attractive potential at the center of the particle’s motion.

These particles in a quantum bound state can appear at any

point in space with a certain probability density. Particles that

satisfying the aggregation property can be searched in the

whole feasible solution space, but will not diverge to infinity.

In this paper, QPSO algorithm is adopted to solve the

MINLP problem in (73). First, the original constrained op-

timization problem needs to be transformed to an uncon-

strained form by using the penalty function method. There-

fore, a fitness function that is composed of one objective

function and one penalty function is constructed as

F (A) = fobj (A)− σPpen (A) , (76)

where A represents all the independent variables ui,k, PCU
i,k ,

PCD
k,i , PCU

i , εs,q , PTU
s,q , PTD

q,s , and PTU
s in (73). fobj (A) is

the objective function, σ indicates the penalty factor, and

Ppen (A) is the penalty function that includes twelve items

Ppen (A) = P 1
pen + P 2

pen + P 3
pen + P 4

pen + P 5
pen + P 6

pen

+ P 7
pen + P 8

pen + P 9
pen + P 10

pen + P 11
pen + P 12

pen
.

(77)

They correspond to the eight constraints of the problem in

(73), which are shown as

P 1
pen =

I
∑

i=1

[

max
(

0,max
[

TCL
i , TCA

i , TCE
i

]

− TD
)]2

,

(78a)
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P 2
pen =

S
∑

s=1

[

max
(

0,max
[

TTL
s , TTA

s , TTE
s

]

− TD
)]2

,

(78b)

P 3
pen =

I
∑

i=1

[

max
(

0, ECL
i + ECO

i − ECH
i

)]2
, (78c)

P 4
pen =

S
∑

s=1

[

max
(

0, ETL
s + ETO

s − ETH
s

)]2
, (78d)

P 5
pen =

I
∑

i=1

K
∑

k=1

[

max
(

0, PCU
i,k − PMAX

)]2
, (78e)

P 6
pen =

K
∑

k=1

I
∑

i=1

[

max
(

0, PCD
k,i − PMAX

)]2
, (78f)

P 7
pen =

I
∑

i=1

[

max
(

0, PCU
i − PMAX

)]2
, (78g)

P 8
pen =

S
∑

s=1

Q
∑

q=1

[

max
(

0, PTU
s,q − PMAX

)]2
, (78h)

P 9
pen =

Q
∑

q=1

S
∑

s=1

[

max
(

0, PTD
q,s − PMAX

)]2
, (78i)

P 10
pen =

S
∑

s=1

[

max
(

0, PTU
s − PMAX

)]2
, (78j)

P 11
pen =

I
∑

i=1

K
∑

k=1

(

u2
i,k − ui,k

)2
, (78k)

P 12
pen =

S
∑

s=1

Q
∑

q=1

(

ε2s,q − εs,q
)2
, (78l)

where max(·, ·) means to return the larger one between two

numbers. In (78c) and (78d), ECO
i and ETO

s are given as

ECO
i =

K
∑

k=1

(

ECU
i,k

)

+ ECU
i , (79)

ETO
s =

Q
∑

q=1

(

ETU
s,q

)

+ ETU
s . (80)

Secondly, the particle position is defined. Assuming that

there are N particles representing the potential solution in

the search space. For the n-th particle, its position vector Xn

can be expressed as

Xn =
(

X
1
n,X

2
n, · · · ,X

w
n , · · · ,XW

n

)

, W = I + S, (81)

where Xw
n indicates optimization results of distance decision

and transmitting power for the w-th user. The specific expres-

sion of Xw
n is shown as

X
w
n = (uw,1, uw,2, · · · , uw,K ,

PCU
w,1 , P

CU
w,2 , · · · , P

CU
w,K ,

PCD
1,w , PCD

2,w , · · · , PCD
K,w, P

CU
w ), 1 ≤ w ≤ I,

(82a)

X
w
n = (εw,1, εw,2, · · · , εw,Q,

PTU
w,1 , P

TU
w,2 , · · · , P

TU
w,Q,

PTD
1,w , PTD

2,w , · · · , PTD
Q,w, P

TU
w ), I + 1 ≤ w ≤ I + S.

(82b)

It can be seen that Xw
n is a multidimensional vector. The op-

timization results of distance decision and transmitting power

for CU are given in (82a). Here, the first K elements denote

the distance decision between CU and CAU. The second K
elements indicate the transmitting power of CU offloading

computing tasks to CAU. The third K elements represent the

transmitting power of CAU transmitting computation result

to CU. The remaining elements are the transmitting power

of CU offloading computing tasks to MEC server. Similarly,

the optimization results of distance decision and transmitting

power for TU are shown in (82b).

In order to establish an attractive potential to affect the

particles in the group, the attractor vector P is defined and its

expression is P = ϕPn(t) + (1 − ϕ)G(t). Here, ϕ denotes

random number between 0 and 1. Pn(t) represents the local

best position of the n-th particle in the t-th iteration. G(t)
indicates the global best position of all the particles in the

t-th iteration. The position of each particle is updated by

{

Xn(t+ 1) = P + β |C(t)−Xn(t)| · ln(1/u), u > 0.5
Xn(t+ 1) = P − β |C(t)−Xn(t)| · ln(1/u), u ≤ 0.5

,

(83)

where u represents random number between 0 and 1. β
denotes the contraction - expansion coefficient, in the t-th
iteration, its value can be calculated by

β = 0.5
T − t

T
+ 0.5 = 1−

t

2T
. (84)

Moreover, in order to control the position of the particle

convergence in probability to the attractor, the mean best

position C(t) is defined and obtained by

C(t) =
1

N

N
∑

n=1

Pn(t). (85)

For the maximization problem in (73), the greater the ob-

jective function value is, the better the corresponding fitness

value is. Therefore, according to the fitness function in (76),

the local best position of the n-th particle can be obtained by

Pn(t+ 1) =

{

Xn(t+ 1), F [Xn(t+ 1)] > F [Pn(t)]
Pn(t), F [Xn(t+ 1)] ≤ F [Pn(t)]

.

(86)

The global best position of the group is determined by the

following equation

{

τ = arg max
1≤n≤N

{F [Pn(t)]}

G(t) = Pτ (t)
. (87)

In order to clearly illustrate the resource allocation strategy

based on QPSO, its detailed steps are shown in Algorithm 1.
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Algorithm 1 Resource allocation strategy of maximizing the

energy efficiency based on QPSO

1: Initialize N , T , and Xn(1) (n = 1, 2, · · · , N).
2: Set Pn(1) = Xn(1). Find a best position from

Pn(1) (n = 1, 2, · · · , N) as G(1).
3: Set t = 1 and n = 1.

4: while t ≤ T do

5: while n ≤ N do

6: Calculate P .

7: Calculate β based on (84).

8: Calculate C(t) based on (85).

9: Update the position of the particle based on (83).

10: Compare F [Xn(t+1)] and F [Pn(t)]. Then, give the

higher value to Pn(t+ 1).
11: Compare F [Pn(t+ 1)] and F [G(t)]. Then, give the

higher value to G(t+ 1).
12: end while

13: end while

14: Output the function value of the global best position.

C. COMPLEXITY ANALYSIS

In this subsection, the computational complexity of Algo-

rithm 1 is analyzed. The computational complexity is mainly

from Line 2 to Line 14. Line 2, which is executed once, has

a time complexity of O(1), The specific elapsed time will

depend on the function operations in (76) and (87). The time

complexity of Line 3 is also O(1). Lines 4-13 consist of two

loops: an outer loop and an inner loop. The inner loop given

by Lines 6-11 is executed TN times. The time complexity

of Lines 4-13 is O(TN). The specific elapsed time will

depend on the function operations in (85), (83), and (76). For

Line 14, it is also executed once with time complexity O(1).
Consequently, the total time complexity of Algorithm 1 is

O(TN).

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, the performance of the proposed resource al-

location strategy is analyzed by simulations. First, the related

parameter settings are given. Then, performance comparisons

are shown.

A. PARAMETER SETTINGS

In this subsection, the related parameter settings of energy

harvesting and resource allocation strategy are given. Assum-

ing that there are two TV towers and two BSs (i.e., TV 1, TV

2, BS 1, and BS 2) as ambient RF sources, their correspond-

ing coordinates at a coordinate system in unit of meter (m)

are (1800,1800), (-1800,1800), (160,-160) and (-120,-120).

The transmitting power of TV tower, BS 1 and BS 2 are 30

kW, 80 W [41] and 40 W [41]. Their transmitting antenna

gains are 15 dBi, 18 dBi [42] and 18 dBi. The frequency of

TV 1, TV 2, BS 1 and BS 2 are 558 MHz, 566 MHz, 850

MHz and 1850 MHz. All the users are distributed randomly

in a square region, the coordinates of its four vertices are

(15,15), (-15,15), (15,-15), (-15,-15), and user’s receiving

TABLE 1. Energy harvested by different users from different ambient RF

sources and MI-based wireless reverse charging (unit: J)

Users User 1 User 2 User 3 User 4 User 5

BS 1 0.4641 0.5414 0.6162 0.5365 0.5638

BS 2 0.1167 0.0944 0.0811 0.0953 0.0895

TV Tower 1 2.0571 2.0442 2.0498 2.0378 2.0629

TV Tower 2 1.9741 1.9867 1.9812 1.9933 1.9688

MI Charging 15.1472 33.3984 17.0903 32.4057 17.2495

Total Energy 19.7592 38.0651 21.8186 37.0686 21.9345

antenna gain is 0 dBi. Moreover, c = 3×108 m/s, ai = 1500,

bi = 0.0014 [43], Mi = 20 mW [43], TRF = 2000 s

[44]. Besides, the related parameters of MI energy harvesting

are set as µ = 4π × 10−7 H/m [21], N t
k = N r

i = 20,

atk = ari = 0.03 m, dcoili,k ∈ (0.06, 0.08) m, R0 = 0.01

Ω/m [21], f = 10 MHz [21], US
k = 3.7 V, TMI = 10 s. For

the resource allocation strategy, the main parameters are set

as follows, PD = 10 mW [31], EC = 0.06 µJ, PB = 1
W [31], TO = 71.4 µs [45], Cw ∈ (500, 1500) cycles/bit

[34], DCL
i , DTL

s , DCA
i,k , DTA

s,q , D
CL
k , DTL

q ∈ (0.1, 0.2) M-

bits, DCT
i , DTT

s ∈ (3, 4) Mbits [34], fTE
s = 2.5 GHz,

fCL
i , fTL

s , fCL
k , fTL

q ∈ (0.5, 2) GHz [34], FE = 80 GHz,

PCIR = 0.3 W [44], B1 = B2 = B3 = B4 = 10 MHz

[33], PR = 0.2 W [34], PE = 30 dBm, N0 = 10−9 W [33],

δ = 1 µJ/bit, TD = 10 s, σ = 1.5 [44].

B. AMOUNT OF ENERGY HARVESTED BY DIFFERENT

USERS

The amount of energy harvested by different users from

different ambient RF sources and MI-based wireless reverse

charging is presented in Table I. In this simulation, the

number of users is set as 5. We can observe that the users can

harvest more energy from TV tower than the BS. That is be-

cause the TV tower has larger transmitting power. Moreover,

the users can harvest much more energy from nearby other

multiple users through MI-based wireless reverse charging

technology than from ambient RF sources in a short time. The

reason is that the wireless energy transfer technology based

on MI has much higher receiving power and can obtain more

energy in a short time. For the energy harvested by the MI-

based wireless reverse charging, we can see that the energy

obtained by User 2 and User 4 is more than that obtained by

User 1, User 3, and User 5. That is because the number of

nearby other users that can provide charging for User 2 and

User 4 is greater than that of User 1, User 3, and User 5.

C. PERFORMANCE COMPARISONS

In this subsection, some simulation results are discussed to

analyze the performance of the proposed resource allocation

strategy. In the simulation, the performance is analyzed by

comparing different strategies. These comparison strategies

are described as follows.

1) Local-Edge-Auxiliary-Transfer represents the proposed

strategy. The computing tasks can be performed by local

computation, edge computation, auxiliary computation, and
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FIGURE 3. Relationship between energy efficiency and number of iterations.

transferring to nearby MEC server with sufficient resources

for edge computation.

2) Local-Edge-Auxiliary indicates the first benchmark s-

trategy. The computing tasks can be performed by local

computation, edge computation, and auxiliary computation.

3) Local-Edge denotes the second benchmark strategy. The

computing tasks can be performed by local computation and

edge computation.

4) Local-Auxiliary is the third benchmark strategy. The

computing tasks can be performed by local computation and

auxiliary computation.

5) Local-Only refers to the fourth benchmark strategy. The

computing tasks only performed by local computation.

Fig. 3 shows the convergence of the QPSO algorithm

between the energy efficiency and the number of iterations

under different numbers of particles. In the simulation, the

number of CUs and TUs are 30 and 10. It can be found

that the energy efficiency goes up as the number of iterations

increases. When the number of iterations reaches 500, the

energy efficiency tends to converge. Moreover, the energy

efficiency increases gradually with the growth of the number

of particles from 4 to 30, and the rising tendency is not

obvious when the number of particles is 20 and 30. The

reason is that a result closer to the optimal solution can be

obtained through searching from more particles. Therefore,

we set the numbers of iterations and particles as 500 and 30

in the following simulations.

Fig. 4 illustrates the time complexity of the QPSO algorith-

m under different numbers of particles from the perspective

of average CPU time. We can find that the average CPU

time rises up with the growth of the number of iterations.

Furthermore, the average CPU time increases as the number

of particles increases. That is because when searching in a

solution space, the more particles there are, the longer the

search time will be.

Fig. 5 depicts the relationship between the energy ef-

ficiency and the number of common users under the five

different strategies. It can be seen that the energy efficiency

increases with the growth of the number of common users.

FIGURE 4. Relationship between average CPU time and number of iterations.

FIGURE 5. Relationship between energy efficiency and number of common

users.

The reason is that each common user consumes some energy

to perform its computing tasks. The more common users

are, the more total energy consumption and the amount of

total computation data are. The growth rate of the total

energy consumption is smaller than that of the amount of

total computation data. Moreover, compared with the other

four strategies, the Local-Edge-Auxiliary-Transfer strategy

has the highest energy efficiency. That is because this strategy

is the integration of the other four strategies. All the users

can perform local computation, auxiliary computation, and

edge computation. Meanwhile, transfer users can transfer

their computing tasks to nearby MEC server for edge com-

putation through establishing D2D relay links, which greatly

improves the total energy efficiency.

Fig. 6 presents the relationship between the energy effi-

ciency and the size of bandwidth under the five different

strategies. We can observe in the first four strategies that the

number of energy efficiency goes up with the growth of the

size of bandwidth, while Local-Only strategy keeps invariant.

That is because the throughput rises up gradually as the size

of bandwidth increases. Therefore, the transmission duration

of computation data can be reduced gradually. As a result, the
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FIGURE 6. Relationship between energy efficiency and size of bandwidth.

FIGURE 7. Relationship between energy efficiency and energy consumption

per offloaded bit.

energy consumption of mobile users for edge computation

and auxiliary computation can be reduced.

Fig. 7 depicts the relationship between the energy efficien-

cy and the energy consumption per offloaded bit under the

five different strategies. It can be observed that the energy

efficiency of the first three strategies descend with the growth

of the number of energy consumption per offloaded bit. The

reason is that mobile users can offload their computing tasks

to MEC server for edge computation. The greater the energy

required by MEC server to perform per offloaded bit data,

the greater the total energy required for edge computation.

Meanwhile, the Local-Auxiliary and Local-Only strategies

do not offload computing tasks to MEC server for edge

computation. Therefore, they are not affected by the variation

in energy consumption per offloaded bit.

Fig. 8 presents the relationship between the total computa-

tion delay and the size of computation data under the five

different strategies. We can see that the total computation

delay of Local-Edge-Auxiliary-Transfer is the shortest, while

Local-Only is the longest. For the Local-Edge and Local-

Auxiliary strategies, when the size of computation data is

FIGURE 8. Relationship between total computation delay and size of

computation data.

small, the total computation delay of Local-Edge is shorter

than that of Local-Auxiliary, and Local-Edge is longer oth-

erwise. That is because when the size of computation data is

small, the computing resources of MEC server are sufficient

to perform, and the computing speed of edge computation

is faster than that of auxiliary computation. However, the

computing resources of MEC server tend to be saturated

as the size of computation data increases. Therefore, the

computing speed is gradually smaller than that of auxiliary

computation.

Fig. 9 shows the relationship between the energy efficiency

and the transmitting power of BS under the different algo-

rithm and different conversion coefficient value. We can find

that the energy efficiency decreases with the growth of the

transmitting power of BS. The reason is that the downlink

throughput rises up gradually as the transmitting power of

BS grows. However, the growth rate of transmitting power

of BS is higher than that of the downlink throughput. As

a result, the total energy consumption increases with the

growth of the transmitting power of BS. Moreover, the QPSO

algorithm outperforms SPSO algorithm. That is because the

SPSO algorithm only can obtain local suboptimal solution.

The global suboptimal solution can be obtained by using

QPSO algorithm.

Fig. 10 illustrates the relationship between the energy

efficiency and the number of transfer users under the different

algorithm and different conversion coefficient value. It can be

observed that the energy efficiency goes up as the number of

transfer users increases. The reason is that the growth rate of

the total energy consumption of transfer users is smaller than

that of the amount of total computation data. Furthermore, we

can see that the energy efficiency descends with the growth of

conversion coefficient value from 0.1 to 0.3. That is because

the greater the conversion coefficient value, the larger the

computation result outputs. Consequently, the longer the

transmission time required and the more energy is consumed.
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FIGURE 9. Relationship between energy efficiency and transmitting power of

BS.

FIGURE 10. Relationship between energy efficiency and number of transfer

users.

V. CONCLUSIONS

In this paper, aiming at the problem of the limited battery

capacity and computing capability of mobile users, a resource

allocation strategy in D2D-assisted edge computing system

with hybrid energy harvesting has been proposed to maxi-

mize the energy efficiency. By leveraging MI-based wireless

reverse charging technology, the mobile user can supplement

energy from nearby other users when the energy harvested

from ambient RF sources is insufficient. Moreover, except for

local computation, mobile user can also offload computing

tasks to MEC server for edge computation, and to nearby idle

users for auxiliary computation through establishing D2D

communication links. If the computing resources of MEC

server under BS 1 have reached saturation, the remaining

users can establish D2D relay links with RU to transfer

their computing tasks to nearby MEC server with sufficient

resources under BS 2 for edge computation. The formulated

resource allocation problem is an MINLP problem. The

QPSO algorithm is adopted to obtain the suboptimal solution.

Simulation results have shown that the proposed strategy is

superior to other benchmark strategies, and QPSO algorithm

can obtain higher energy efficiency than SPSO algorithm. We

have made some assumptions in this work. First, we assume

that there is only one RU to transfer computing tasks of TUs.

In the future work, multiple RUs can be considered to transfer

computing tasks to further improve the system performance.

Second, instead of D2D relay link with limited distance, we

will further consider smart device with wider coverage as

relay node to broaden the relay distance. Third, only the

SPSO algorithm is compared in this paper, we shall also take

more heuristic algorithms into consideration for comparison.
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