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Abstract

This paper studies multi-user wireless powered communication networks, where energy constrained

users charge their energy storages by scavenging energy of the radio frequency signals radiated from a

hybrid access point (H-AP). The energy is then utilized for the users’ uplink information transmission

to the H-AP in time division multiple access mode. In this system, we aim to maximize the uplink

sum rate performance by jointly optimizing energy and time resource allocation for multiple users in

both infinite capacity and finite capacity energy storage cases. First, when the users are equipped with

the infinite capacity energy storages, we derive the optimal downlink energy transmission policy at the

H-AP. Based on this result, analytical resource allocation solutions are obtained. Next, we propose the

optimal energy and time allocation algorithm for the case where each user has finite capacity energy

storage. Simulation results confirm that the proposed algorithms offer about 30 % average sum rate

performance gain over conventional schemes.

I. INTRODUCTION

Recently, radio frequency (RF) signals have been considered as a new energy source for

electronic equipments [1] [2]. Unlike energy harvesting (EH) techniques based on natural energy

sources such as solar or wind, the RF signal based EH systems can charge energy demanding
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devices whenever it is necessary. In wireless communication networks, several researches in

[3]–[7] have exploited the RF signals for both wireless information transmission (WIT) and

wireless energy transfer (WET), and provided simultaneous wireless information and power

transfer (SWIPT) protocols in various system configurations. In the SWIPT systems, most works

were confined to downlink networks, and aimed to maximize both system performance (e.g. data

rate) and the harvested energy.

Wireless powered communication network (WPCN) [8]–[15] is another technique which adopts

the WET concept in traditional wireless communication systems. In general, the WPCN systems

consist of two phases. First, in a downlink phase, devices charge their energy storages such as

rechargeable batteries or supercapacitor [16] by collecting the energy of the RF signal radiated

from an access point (AP). Second, in an uplink phase, the devices transmit their information

signals to the AP by utilizing the energy saved in the energy storages.

In [8], the WPCN protocol was proposed for a single antenna system where a hybrid-AP

(H-AP) broadcasts the energy signal to multiple users in the downlink phase and decodes the

information in the uplink phase. To facilitate multi-user detection at the H-AP, the authors in

[8] employed a dynamic time division multiple access (TDMA) approach where time slots are

optimally allocated to each user for maximizing the uplink throughput. By applying multiple

antenna techniques [17]–[20] to the WPCN systems, the optimal WET and WIT beamforming

vectors were derived in [9] to maximize the minimum throughput among all users. In [10], a

large scale multiple antenna H-AP scenario was considered in the WPCN under an imperfect

channel estimation assumption. Also, the WPCN with full duplex H-AP protocol was presented

in [11] and [12], where the downlink WET and the uplink WIT are performed at the same time to

enhance the system performance. The authors in [11] proposed joint energy and time allocation

algorithms for maximizing the uplink sum rate for both perfect and imperfect self interference

cancellation (SIC) scenarios. With infinite capacity energy storages at all users, [11] considered a

non-causal energy system which assumes that the energy to be harvested in the future is available

at the current time slot. However, this non-causal energy system may not be practical if users

have finite capacity energy storages, since the energy would be insufficient for the users’ uplink

transmission. Furthermore, for the case of small devices such as sensor nodes which typically

store the harvested energy in supercapacitors, the non-causal energy scenario is difficult to realize

due to the supercapacitor’s high self discharge property [12] [16]. To overcome this issue, [12]
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investigated a causal energy system for full-duplex WPCN assuming the perfect SIC and the

infinite capacity energy storage scenarios. The authors in [12] optimized time allocation for

the sum rate maximization and total transmission time minimization problems under uniform

power allocation. For a single-user WPCN with an orthogonal frequency division multiple access

technique, the optimal downlink and the uplink power allocation were obtained in [14].

In this paper, we study resource allocation problems in the multi-user WPCN where a H-

AP broadcasts the energy RF signal to users in the downlink, and receives the users’ uplink

information signals by applying a dynamic TDMA approach. Unlike the conventional scheme in

the non-causal energy WPCN [11], this paper considers practical causal energy systems where

the users can utilize only the energy harvested at the past time slots for their uplink transmissions.

In this configuration, we generalize the equal power allocation scheme in [12], and propose joint

energy and time allocation methods which maximize the uplink sum rate performance in both

the infinite and the finite capacity energy storage cases.

First, for the case where each user is equipped with an infinite capacity energy storage, we

present an optimal downlink energy transmission policy at the H-AP. In this policy, the H-AP

transfers the RF signals with the maximum power for the first few time slots, and then is turned

off for the remaining time slots. Based on this result, an analytical solution for the optimal energy

and time allocation is obtained. Simulation results confirm that the proposed joint optimal energy

and time allocation method offers a significant performance gain compared to the equal power

allocation scheme in [12] which optimizes only the time durations. Also, we show that the

proposed method which exploits the casual energy achieves almost identical average sum rate

performance to the ideal non-causal energy system [11].

Next, we consider a practical finite capacity energy storage case where the existing methods

for the infinite energy storage case in [11] and [12] cannot be directly applied due to energy

overflows at users. In this case, we propose an optimal resource algorithm which jointly computes

the energy and time allocation. From simulation results, it is verified that the proposed optimal

algorithm substantially improves the uplink sum rate performance compared to a conventional

equal resource allocation scheme.

The paper is organized as follows: In Section II, we introduce the system model and formulate

the problem for multi-user WPCN. Section III provides an analytical energy and time allocation

solution for the infinite energy storage case. Also, for the finite energy storage case, the optimal
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Fig. 1. Schematic diagram for multi-user WPCN

resource allocation algorithm is provided in Section IV. Section V evaluates the average sum

rate performance of the proposed algorithms through numerical simulations. Finally, the paper

is terminated with conclusions in Section VI.

II. SYSTEM MODEL

We consider a K-user WPCN in Figure 1 where a H-AP transfers the wireless energy to

single antenna users in the downlink, and at the same time, receives the users’ information

signals in the uplink. The H-AP has two antennas, each of which is dedicated for the downlink

WET and for the uplink WIT, respectively. It is assumed that the downlink WET and the uplink

WIT are scheduled over orthogonal frequency bands, i.e., the WET and the WIT signals do

not interfere with each other as in [12] and [14]. In this configuration, the H-AP has a stable

and fixed energy supply with average and peak power constraint PA and PP , respectively,1

while user i (i = 1, · · · , K) is powered by an energy storage with capacity Bi which is empty

before transmission. To communicate with the H-AP, users first charge their energy storages by

collecting the energy of the RF signal radiated from the H-AP in the downlink, and then utilize

it for their uplink information transmission.

1Throughout this paper, we assume that the peak power constraint at the H-AP is larger than the average power constraint,

i.e., PP > PA, without loss of generality.
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Fig. 2. Frame structure for K-user WPCN

The frame structure for the K-user WPCN systems is illustrated in Figure 2. For convenience,

we assume that the total duration of the frame is equal to 1 without loss of generality. The frame

is divided into K + 1 time slots. During all the K + 1 time slots, the H-AP keeps broadcasting

the RF signal to charge the users’ energy storages in the downlink. For the uplink WIT, the

TDMA approach is employed such that user i transmits its information to the H-AP in the i-th

time slot of duration τi for i = 1, · · · , K. Since the 0-th time slot of duration τ0 is not scheduled

to any user, it is dedicated for the downlink WET. In this setting, we consider the causal energy

scenario [12] where user i can only use the energy of the RF signal received at the past time

slots, i.e., the time slots 0 ≤ j ≤ i− 1, since the energy of the future RF signals is not available

at the current time slot.

Assuming frequency-flat fading, the downlink and uplink channel coefficients between the H-

AP and user i are respectively defined as hD,i and hU,i for i = 1, · · · , K, which are assumed to be

constant during the transmission frame. In addition, we assume that all the channel coefficients

are perfectly known at the H-AP. The received signal yi,j at user i in the j-th time slot with

j 6= i is expressed as

yi,j =
√
pD,jhD,ixj + ni,j,

where pD,j represents the downlink transmit power of the H-AP at the j-th time slot, xj stands



6

for the energy symbol with E[|xj |2] = 1, and ni,j ∼ CN (0, ς2i,j) indicates the additive Gaussian

noise at user i.

Then, the harvested energy from the signal yi,j in the j-th time slot is given by

Ei,j = ηiE[|yi,j|2] = ηigD,ipD,jτj , (1)

where ηi ∈ [0, 1] denotes the energy harvesting efficiency of user i, and gD,i = |hD,i|2 is the

downlink channel gain. In (1), we ignore the noise power since it is practically much smaller

compared to the signal power [3].

In the uplink information transfer, at the i-th time slot, only user i transmits its information

symbol si ∼ CN (0, 1) to the H-AP by using the energy charged in the energy storage. The

received signal at the H-AP ri in the i-th time slot can be written as

ri =
√
pU,ihU,isi + zi, (2)

where pU,i represents the uplink transmit power of user i and zi ∼ CN (0, σ2
i ) indicates the

additive Gaussian noise.

Due to the energy storage constraint at user i, the uplink power pU,i is upper bounded by

pU,i ≤
Bi

τi
. (3)

Also, since a user can only utilize the energy harvested during the past time slots, it follows

pU,i ≤
1

τi

i−1
∑

j=0

Ei,j =
ηigD,i

τi

i−1
∑

j=0

pD,jτj . (4)

Let us define the downlink and uplink transmit energy as εD,i = τipD,i and εU,i = τipU,i,

respectively. Then, the achievable rate of user i is obtained as

Ri = τi log

(

1 +
gU,i
σ2
i

εU,i
τi

)

,

where gU,i = |hU,i|2 is the uplink channel gain.

In this paper, we investigate the optimal energy and time allocation which maximizes the
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uplink sum rate. The uplink sum rate maximization problem can be formulated as

max
{τi},{εD,i},{εU,i}

K
∑

i=1

Ri (5)

subject to

K
∑

i=0

εD,i ≤ PA, (6)

εD,i ≤ τiPP , i = 0, · · · , K, (7)

K
∑

i=0

τi ≤ 1, (8)

εU,i ≤ Bi, i = 1, · · · , K, (9)

εU,i ≤ ηigD,i

i−1
∑

j=0

εD,j, i = 1, · · · , K, (10)

where (6) and (7) stand for the average and peak power constraint at the H-AP, respectively,

and (8) denotes the total time constraint, and constraint (9) and (10) come from (3) and (4),

respectively.

It is worth noting that the authors in [12] considered a uniform downlink power allocation

pD,i = εD,i/τi = PA, ∀i, with the infinite capacity energy storage Bi = ∞, ∀i, for the casual

energy WPCN systems. Also, [11] studied joint energy and time allocation for the infinite

capacity energy storage case in the non-casual systems, i.e., constraints (9) and (10) were not

considered. Therefore, existing resource allocation methods in [11] and [12] cannot be directly

employed to solve problem (5). In the following sections, we provide the optimal methods to

solve (5) in two different cases. First, for the infinite capacity energy storage case, an analytical

solution will be obtained. Second, we consider the practical finite capacity energy storage case,

and propose an algorithm to solve (5) optimally.

III. INFINITE CAPACITY ENERGY STORAGE CASE

In this section, we investigate the optimal solution of (5) with infinite capacity energy storages

at all users. By setting Bi = ∞ in problem (5), the energy storage constraint (9) is removed.

Since the uplink rate Ri increases with εU,i, the optimal uplink energy ε⋆U,i for i = 1, · · · , K is

given by the maximum in (10) as

ε⋆U,i = ηigD,i

i−1
∑

j=0

ε⋆D,j,
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where ε⋆D,i indicates the optimal downlink energy allocation.

Substituting this into (5), the problem can be recast to

max
{τi},{εD,i}

K
∑

i=1

τi log

(

1 + γi

∑i−1
j=0 εD,j

τi

)

(11)

subject to

K
∑

i=0

εD,i ≤ PA,

K
∑

i=0

τi ≤ 1,

εD,i ≤ τiPP , i = 0, · · · , K,

where γi = ηigD,igU,i/σ
2
i . Before solving problem (11), we present the following lemma which

is useful for identifying an analytical solution for (11).

Lemma 1: The optimally allocated time {τ ⋆i }Ki=0 for problem (11) is always greater than 0,

i.e., τ ⋆i > 0 for i = 0, · · · , K.

Proof: See Appendix A

By using Lemma 1, we first address the optimal downlink energy allocation policy {ε⋆D,i}Ki=0

in Section III-A. Next, the computation of the optimal time allocation {τ ⋆i }Ki=0 will be given in

Section III-B.

A. Optimal Downlink Energy Allocation

In order to obtain {ε⋆D,i}Ki=0, we introduce auxiliary variables Ai =
∑i

j=0 εD,j for i = 0, · · · , K
in problem (11), which represent the transmitted energy until the i-th time slot. Then, problem

(11) can be rewritten as

max
{τi},{Ai}

K
∑

i=1

log

(

1 + γi
Ai−1

τi

)

(12)

subject to

K
∑

i=0

τi ≤ 1,

Ai − Ai−1 ≤ τiPP , i = 0, · · · , K,

Ai−1 ≤ Ai, i = 0, · · · , K + 1, (13)

where A−1 , 0, AK+1 , PA, and constraint (13) is added due to the definition of Ai.

Since the objective in (12) is an increasing function of Ai, the optimal A⋆
i for problem (12)

is determined by its maximum value as

A⋆
i = max{A⋆

i+1, A
⋆
i−1 + τ ⋆i PP}, (14)
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where A⋆
−1 , 0 and A⋆

K+1 , PA. Based on (14), we provide the following theorem on the

optimal downlink energy allocation solution in the infinite capacity energy storage case.

Theorem 1: For an arbitrarily given L ∈ [0, K], the optimal downlink energy allocation of

problem (11) is expressed as

ε⋆D,i =























τ ⋆i PP , for i = 0, 1, · · · , L− 1, (15)

PA − PP

L−1
∑

j=0

τ ⋆j , for i = L, (16)

0, for i = L+ 1, · · · , K, (17)

where L indicates the largest time slot index satisfying ε⋆D,L > 0. The computation of the optimal

value of L will be addressed later in Section III-B.

Proof: By subtracting A⋆
i−1 in both sides of (14), it follows

ε⋆D,i = max{ε⋆D,i + ε⋆D,i+1, τ
⋆
i PP}. (18)

By using this result, we will prove (15), (17), and (16) sequentially. Consider an arbitrary time

slot index S such that the optimal downlink energy is positive, i.e., ε⋆D,S > 0. Then, we first

show ε⋆D,i = τ ⋆i PP for i = 0, · · · , S−1 by contradiction. From (18), the optimal ε⋆D,S−1 is given

by either ε⋆D,S−1 + ε⋆D,S or τ ⋆S−1PP . If ε⋆D,S−1 = ε⋆D,S−1 + ε⋆D,S, then we have ε⋆D,S = 0, which

contradicts the fact ε⋆D,S > 0. Therefore, the optimal energy for the (S−1)-th slot is obtained as

ε⋆D,S−1 = τ ⋆S−1PP . Utilizing this result, it is easy to prove ε⋆D,i = τ ⋆i PP for i = 0, 1, · · · , S − 2,

because the optimal τ ⋆i is positive as presented in Lemma 1.

Next, suppose an arbitrary time slot index M (M ≤ K) satisfying ε⋆D,M = 0. Then, we now

show ε⋆D,i = 0 for i = M + 1,M + 2, · · · , K. From (18), it follows min{ε⋆D,M+1, τ
⋆
MPP} = 0.

Since this condition must be fulfilled with any positive τ ⋆M , the optimal downlink energy at the

(M +1)-th time slot is zero. Thus, it can be shown that ε⋆D,i = 0 for i = M +2,M +3, · · · , K.

Since the optimal downlink energy ε⋆D,i for i = 0, 1, · · · , L− 1 is always positive, the time slot

index M must be larger than L, i.e., M ≥ L+ 1. Then, by setting S = L and M = L+ 1, we

verify (15) and (17).

Now, the remaining part is to prove (16). One can check that
∑K

i=0 ε
⋆
D,i = PA is true since

the objective function is non-decreasing with respect to individual {εD,i}Ki=0. In other words, if
∑K

i=0 εD,i < PA, then a larger uplink sum rate can be achieved by increasing some εD,i. Hence,

to satisfy the equality
∑K

i=0 ε
⋆
D,i = PA with (15) and (17), we have (16). Theorem 1 is finally

proved.
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Fig. 3. Optimal and suboptimal downlink energy allocation policies with infinite capacity energy storage

Theorem 1 implies that for the first i = 0, 1, · · · , L− 1 time slots, the H-AP should transmit

the energy RF signal with the maximum energy ε⋆D,i = τ ⋆i PP , and for the L-th time slot, the

remaining energy PA−PP

∑L−1
j=0 τ ⋆j is utilized. Then, the H-AP is turned off until the end of the

frame. This result can be explained as follows: Due to the energy causality assumption, users can

only leverage the energy harvested in the past time slots. Therefore, as shown in Figure 3 (a), it

is beneficial for the H-AP to consume all available energy PA as soon as possible so that more

energy can be transferred to users. Otherwise, the overall harvested energy of all users decreases

as illustrated in Figure 3 (b), and thus the sum rate performance would be degraded. Thanks

to Theorem 1, we can obtain the optimal energy allocation for an arbitrarily given L. In the

following, we proceed to determine the optimal time allocation {τ ⋆i } and the optimal time slot

index L⋆.

B. Optimal Time Allocation

Based on Theorem 1, the problem in (11) for a given L can be reformulated as

RL , max
{τi}

L
∑

i=1

τi log

(

1 + γiPP

∑i−1
j=0 τj

τi

)

+
K
∑

i=L+1

τi log

(

1 + γi
PA

τi

)

(19)

subject to

K
∑

i=0

τi ≤ 1,

where RL indicates the optimal value of problem (19). To solve the problem efficiently, we

introduce an auxiliary variable T which splits the total time constraint in (19) into
∑L

i=0 τi ≤ T
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and
∑K

i=L+1 τi ≤ 1− T .

With given T and L, the above problem can be decoupled into the following two subproblems:

R(1)
L (T ) , max

{τi}

L
∑

i=1

τi log

(

1 + γiPP

∑i−1
j=0 τj

τi

)

(20)

subject to

L
∑

i=0

τi ≤ T,

and

R(2)
L (T ) , max

{τi}

K
∑

i=L+1

τi log

(

1 + γi
PA

τi

)

(21)

subject to

K
∑

i=L+1

τi ≤ 1− T,

where R(1)
L (T ) and R(2)

L (T ) denote the optimal values of problems (20) and (21), respectively.

Then, the optimal T ⋆ and L⋆ are obtained by the maximum point of R(1)
L (T )+R(2)

L (T ). Hence,

we should first investigate R(1)
L (T ) and R(2)

L (T ) for given T and L, and then the optimal T ⋆

and L⋆ will be determined.

1) Optimal Solutions for (20) and (21): We first present a solution for subproblem (20). One

can show that the optimal solution of (20) is given by [12]

τ ⋆i =
T −∑L

j=i+1 τ
⋆
j

1 + xi

, for i = 0, · · · , L. (22)

It is worth noting that τ ⋆i in (22) is only affected by its future values {τ ⋆j }Lj=i+1, and thus it can

be calculated in the reverse order. Here, xi for i = 0, 1, · · · , L is defined as

xi =







0, for i = 0,

1
γiPP

(

γiPP−1
wi

− 1
)

, for i = 1, · · · , L,
(23)

where wi = W
(

(γiPP−1) exp(−1−∑i−1
j=1

γjPP

1+γjPP xj
)
)

and W(·) represents the Lambert W func-

tion [21]. Since xi only depends on the previous values {xj}i−1
j=1, we can calculate x1, x2, · · · , xL

sequentially.

Next, we solve the second subproblem (21). The optimal time allocation {τ ⋆i }Ki=L+1 satisfies

the following condition [8]:

γL+1

τ ⋆L+1

=
γL+2

τ ⋆L+2

= · · · = γK
τ ⋆K

= C, (24)
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where the constant C is obtained as C =
∑K

j=L+1
γj

1−T
since the equality

∑K

i=L+1 τ
⋆
i = 1−T always

holds [8]. Combining this and (24), the optimal solution for (21) is written by

τ ⋆i =
(1− T )γi
∑K

j=L+1 γj
, for i = L+ 1, · · · , K. (25)

2) Optimal T ⋆ and L⋆: For solving the original problem (11), we need to find the optimal

T ⋆ and L⋆, which maximize R(1)
L (T ) + R(2)

L (T ). By substituting the optimal time allocation

solutions (22) and (25) into the objective functions of (20) and (21), respectively, we have

R(1)
L (T ) = aLT and R(2)

L (T ) = (1− T ) log
(

1 +
PA

∑K
i=L+1 γi

1− T

)

,

where

aL =
L
∑

i=1

∏L
j=i+1 xj

∏L
j=i(1 + xj)

log(1 + γiPPxi).

It is easy to verify that R(1)
L (T )+R(2)

L (T ) is a concave function with respect to T , and thus the

optimal T ⋆ can be determined from the stationary point T̃ , which is computed as

T̃ =
PA

∑K
i=L+1 γi

1/W(− exp(−1 − aL)) + 1
+ 1.

Now, we check the feasible region of T with a given L. Due to the fact T =
∑L

i=0 τ
⋆
i , we

can rewrite ε⋆D,L in (16) as ε⋆D,L = PA − PP (T − τ ⋆L). Since ε⋆D,L is positive, it follows

T ≤ PA

PP

+ τ ⋆L =
PA

PP

(

1 +
1

xL

)

.

Also, from the peak power constraint ε⋆D,L ≤ τ ⋆LPP , T should be lower bounded by T ≥ PA/PP .

Therefore, a closed-form expression for T ⋆ is calculated by

T ⋆ =



















PA

PP
, if T̃ < PA

PP
,

PA

PP

(

1 + 1
xL

)

, if T̃ > PA

PP

(

1 + 1
xL

)

,

T̃ , otherwise,

= min

{

max
{

T̃ ,
PA

PP

}

,
PA

PP

(

1 +
1

xL

)

}

. (26)

For a given L, we can attain the optimal value RL of problem (19) as RL = R(1)
L (T ⋆) +

R(2)
L (T ⋆). Then, the optimal time slot index L⋆ is determined as

L⋆ = arg max
0≤L≤K

RL. (27)
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Note that in order to compute Rl for l = 0, · · · , K, we only need {xi}Ki=1 in (23), which can

be calculated in advance. After we obtain L⋆ and the corresponding T ⋆, the optimal resource

allocation solution {τ ⋆i , ε⋆D,i}Ki=0 can be obtained from (15)-(17), (22) and (25). An algorithm for

solving the uplink sum rate maximization problem in (11) is summarized below.

Algorithm 1: Optimal algorithm with infinite capacity energy storage

Compute {xi}Ki=1 from (23).

Obtain L⋆ from (27) and the corresponding T ⋆ from (26).

Compute {τ ⋆i }Ki=0 from (22) and (25) with T = T ⋆ and L = L⋆.

Compute {ε⋆D,i}Ki=0 from (15)-(17) with T = T ⋆ and L = L⋆.

IV. FINITE CAPACITY ENERGY STORAGE CASE

In this section, we propose the optimal energy and time allocation algorithm for the practical

finite energy storage capacity scenario, i.e., Bi < ∞, ∀i, by investigating the original problem

in (5). It is worth noting that problem (5) is convex and satisfies the Slater’s condition, and

thus the duality gap is zero. As a result, we can apply the Lagrange duality method to solve (5)

optimally. The Lagrangian of (5) is expressed as

J =

K
∑

i=1

τi log

(

1 +
gU,i
σ2
i

εU,i
τi

)

+ ν

(

PA −
K
∑

i=0

εD,i

)

+ λ

(

1−
K
∑

i=0

τi

)

+

K
∑

i=1

βi

(

ηigD,i

i−1
∑

j=0

εD,j − εU,i

)

,

where ν, λ, and {βi}Ki=1 represent the dual variables corresponding to the constraint (6), (8), and

(10), respectively.

Then, the dual function G(ν, λ, {βi}Ki=1) is given by

G(ν, λ, {βi}Ki=1) = max
{τi},{εD,i},{εU,i}

J (28)

subject to 0 ≤ εD,i ≤ τiPP , i = 0, · · · , K,

0 ≤ εU,i ≤ Bi, i = 1, · · · , K.

Therefore, to solve the dual problem of (5), which is defined as minν,λ,{βi} G(ν, λ, {βi}Ki=1), we

first consider the maximization problem in (28) with the given dual variables. Then, the optimal

dual solutions ν⋆, λ⋆, and {β⋆
i }Ki=1 can be obtained by solving the dual problem.
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It is worthwhile to note that the Lagrangian J can be rewritten by J =
∑K

i=0 Ji + λ+ νPA,

where

Ji =















−λτ0 +

(

∑K
i=1 ηigD,iβi − ν

)

εD,0, for i = 0,

τi log

(

1 +
gU,i

σ2
i

εU,i

τi

)

− λτi +

(

∑K
j=i+1 ηjgD,jβj − ν

)

εD,i − βiεU,i, for i = 1, · · · , K.

Since Ji depends only on τi, εD,i, and εU,i, problem (28) can be decomposed into K + 1

independent optimization problems. The i-th problem for i = 0, · · · , K is given by

max
τi,εD,i,εU,i

Ji (29)

subject to 0 ≤ εD,i ≤ τiPP ,

0 ≤ εU,i ≤ Bi.

In the following lemma, we provide solutions of problem (29) {τ̃i}Ki=0, {ε̃D,i}Ki=0, and {ε̃U,i}Ki=1

which maximize the Lagrangians Ji for i = 0, · · · , K.

Lemma 2: With given ν, λ, and {βi}Ki=1, the solutions {τ̃i}Ki=0, {ε̃D,i}Ki=0, and {ε̃U,i}Ki=1 which

maximize the Lagrangian is expressed by

τ̃i =























1, for i = 0 and PP ζ0 − λ > 0,

0, for i = 0 and PP ζ0 − λ ≤ 0,

−gU,i/σ
2
i

1/bi + 1
ε̃U,i, for i = 1 · · · , K,

(30)

ε̃D,i =







τ̃iPP , if ζi > 0,

0, otherwise ,
(31)

ε̃U,i =



















Bi, if βi = 0 or βi < −gU,ibi/σ
2
i ,

0, if βi = gU,i/σ
2
i or βi > −gU,ibi/σ

2
i ,

zi, otherwise,

(32)

where bi , W(− exp(−1− λ+ PP ζi)) for i = 1, · · · , K, ζi , (
∑K

j=i+1 ηjgD,jβj − ν)+ for

i = 0, · · · , K with (x)+ , max{0, x}, and zi ≤ Bi for i = 1, · · · , K is a non-negative number

which will be determined later. Also, to guarantee feasible τ̃i and ε̃U,i, we should satisfy the

dual constraint PP ζi − λ ≤ 0 for i = 1, · · · , K − 1 and βi ≤ gU,i/σ
2
i for i = 1, · · · , K.

Proof: Please see Appendix B.

From Lemma 2, we can obtain the primal optimal solutions maximizing J with the given

dual variables ν, λ, and {βi}Ki=1. Also, Lemma 2 implies that the optimal downlink energy
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allocation policy in (31) is similar to that of the infinite capacity energy storage case, i.e., the

H-AP transmits the energy RF signal with its maximum energy ε̃D,i = τ̃iPP during the first few

time slots, and then it will be turned off. Based on Lemma 2, the dual problem can be written by

min
ν,λ,{βi}

G(ν, λ, {βi}Ki=1)

subject to ν ≥ 0, λ ≥ 0,

0 ≤ βi ≤
gU,i
σ2
i

, i = 1, · · · , K, (33)

PP ζi − λ ≤ 0, i = 1, · · · , K − 1, (34)

where constraint (33) and (34) come from Lemma 2.

The optimal dual solutions ν⋆, λ⋆, and {β⋆
i }Ki=1 can be efficiently determined by subgradi-

ent methods, e.g., the ellipsoid method [22]. Note that the subgradient of the dual function

G(ν, λ, {βi}Ki=1) is computed as µ = [µν , µλ, µβ1
, · · · , µβK

], where µν = PA − ∑K

i=0 ε̃D,i,

µλ = 1−∑K

i=0 τ̃i, and µβi
= ηigD,i

∑i−1
j=0 ε̃D,j − ε̃U,i for i = 1, · · · , K. In addition, we need the

subgradient of the constraint in (34), which is not easy to derive due to the definition of ζi. To

this end, we introduce the following lemma which provides the equivalent condition of (34).

Lemma 3: The constraint in (34) for i = 1, · · · , K − 1 is equivalent to

PP

( K
∑

j=2

ηjgD,jβj − ν

)

− λ ≤ 0. (35)

Proof: We prove this lemma for two cases ζ1 = 0 and ζ1 =
∑K

j=2 ηjgD,jβj − ν > 0. First,

if ζ1 = 0, i.e.,
∑K

j=2 ηjgD,jβj − ν ≤ 0, then we have ζi = 0 for i = 2, · · · , K − 1, since βi

is a non-negative number. In this case, both the constraint (34) and the condition (35) become

equivalent to λ ≥ 0, i.e., (34) and (35) are the same. On the other hand, for the second case

of ζ1 =
∑K

j=2 ηjgD,jβj − ν > 0, the condition (35) is equivalent to (34) for i = 1. Also, if the

condition (35) is satisfied, the inequalities (34) for i = 2, · · · , K − 1 are directly obtained since

βi ≥ 0. This completes the proof.

After we compute ν⋆, λ⋆, and {β⋆
i }Ki=1, it still remains to find zi in (32). This can be determined

by the complementary slackness condition of problem (5) as

β⋆
i

(

ηigD,i

i−1
∑

j=0

ε⋆D,j − ε⋆U,i

)

= 0, (36)
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where {ε⋆D,i}Ki=0 and {ε⋆U,i}Ki=1 indicate the optimal solution for problem (5) with the optimal

dual variables ν⋆, λ⋆, and {β⋆
i }Ki=1. Let us define the set S as S = {i|β⋆

i > 0}. Then, to satisfy

(36), the optimal uplink energy allocation is given by ε⋆U,i = ηigD,i

∑i−1
j=0 ε

⋆
D,j for i ∈ S. It is

worth noting that from (32), we have ε⋆U,i = Bi for i ∈ Sc, where Sc is the complementary set

of S.

Combining these results and (30), the optimal time allocation solution {τ ⋆i }Ki=1 can be written

by τ ⋆i =
−gU,i/σ

2
i

1/b⋆i + 1
ε⋆U,i for i = 1, · · · , K, where b⋆i is equal to bi with the optimal dual variables.

Also, one can prove that τ ⋆0 = ε⋆D,0/PP , since otherwise we have ε⋆D,0 = 0 from (31) which

implies ε⋆D,i = 0 for i = 1, · · · , K due to the fact β⋆
i ≥ 0, and obviously, this is not the optimal

solution. With τi = τ ⋆i and εU,i = ε⋆U,i, ∀i, problem (5) becomes a linear programming (LP) in

terms of {εD,i}Ki=0. The optimal downlink energy allocation {ε⋆D,i}Ki=0 can be efficiently identified

by solving this LP via the simplex algorithm or the interior-point method [22]. We summarize

the overall algorithm for the finite capacity energy storage case below.2

Algorithm 2: Optimal algorithm with finite capacity energy storage

Initialize ν, λ, and {βi}Ki=1.

Repeat

Compute {τ̃}Ki=0, {ε̃D,i}Ki=0, and {ε̃U,i}Ki=1 from (30)-(32).

Update ν, λ, and {βi}Ki=1 by using the ellipsoid method.

Until convergence

Obtain {ε⋆D,i}Ki=0 by solving the problem (5) with τi = τ ⋆i (i = 0, · · · , K)

and εU,i = ε⋆U,i (i = 1, · · · , K).

V. SIMULATION RESULTS

In this section, we provide numerical results evaluating the average sum rate performance of

the proposed algorithms for the infinite capacity and finite capacity energy storage cases. In the

simulations, we set the energy harvesting efficiency ηi as ηi = 0.7, ∀i, and the noise power at

the H-AP σ2
i as σ2

i = −50 dBm, ∀i. Also, it is assumed that all users’ energy storages have the

2The sum rate maximization problem for the infinite storage case can also be solved via Algorithm 2. However, Algorithm 1 is

still meaningful because of the computational complexity. It is worth noting that Algorithms 1 and 2 require O(K) and O(K3)

computations, respectively [22]. Therefore, in the special case of Bi = ∞, Algorithm 1 is more efficient than Algorithm 2.
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Fig. 4. Average sum rate performance as a function of PA for infinite capacity energy storage case with PP = 5PA

same capacity, i.e., Bi = B, ∀i, and we employ the Rayleigh fading channel model with 30 dB

average signal attenuation from the H-AP to all users.

Figure 4 depicts the average sum rate performance as a function of PA in the infinite capacity

energy storage case. For comparison, we also plot the performance of two conventional schemes

in [11] and [12]. In [11], an ideal non-causal energy system was considered, and the optimal joint

energy and time allocation algorithm was proposed for the infinite capacity energy storage case.

Meanwhile, [12] assumed equal power allocation, i.e., pD,i = PA, ∀i, and provided the optimal

time allocation algorithm in the causal energy WPCN systems. In this plot, it is observed that

at PA = 30 dBm, the proposed algorithm under the same causal energy scenario provides about

29% and 24% gains over the time allocation scheme in [12] for K = 3 and K = 5, respectively.

This implies that the energy allocation optimization offers large performance gains over the

system without energy allocation. Note that although the proposed algorithm considers practical

causal energy WPCN systems, the performance gap with respect to the non-causal energy system

is less than 1 dB for the average sum rate of 4 bps/Hz.

In Figure 5, we illustrate the average sum rate performance of the WPCN systems as a function
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Fig. 5. Average sum rate performance as a function of PA with K = 3 and PP = 2PA

of PA with different B. Here, the equal time allocation scheme indicates the case with equal time

duration for all time slots, i.e., τi =
1

K+1
, ∀i, and employs the optimal downlink energy allocation

policy in (31). Then, the downlink energy can be computed from (15)-(17) with L =
⌊

PA

PP (K+1)

⌋

,

where ⌊·⌋ stands for the floor operation. We can check in the figure that for a small PA, the

average sum rate performance in the finite capacity energy storage case is quite similar to that

in the infinite capacity energy storage case, since the H-AP cannot transfer enough energy to

users regardless of B with a small PA. On the other hand, at a high PA regime, the user’s energy

storage is fully charged for a finite B, and thus the user transmits the information signal with

the maximum energy εU,i = Bi. Therefore, the average sum rate with a finite B saturates in

the high PA regime. Also, it is shown that the performance gap between the proposed optimal

algorithm and the equal time allocation scheme increases as B grows, and at B = 50 µJ and

PA = 30 dBm, the proposed optimal algorithm offers about 30% average sum rate gain.

Next, with the fixed energy storage capacity B = 50 µJ, we demonstrate the average sum

rate of the proposed optimal algorithm and the equal time allocation method with different peak

power constraint PP in Figure 6. We can check that as PP gets larger, the average sum rate with
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B = ∞ increases for all PA, while the performance is saturated at high PA and PP in the finite

capacity energy storage case.

Figure 7 exhibits the average sum rate of the WPCN systems with different K as a function

of PA. We can see that the average sum rates of both the proposed optimal algorithm and the

equal time allocation scheme improve with the number of user K. With PA = 30 dBm, the

proposed optimal algorithm provides 34% and 24% gains over the equal time allocation scheme

at K = 3 and 7, respectively.

In Figure 8, the average sum rate performance is presented as a function of B at PA = 20 dBm.

With a large B, the proposed algorithm for the finite capacity energy storage case provides the

performance almost identical to the infinite energy storage case. It is observed that B = 150 µJ

is enough to achieve the performance upper bound at PA = 20 dBm. On the other hand, the

equal time allocation scheme cannot achieve the performance upper bound even if B goes to

infinity.
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VI. CONCLUSION

In this paper, we have studied the multi-user WPCN under the causal energy assumption. Joint

energy and time allocation problems for maximizing the uplink sum rate have been optimally

solved in both the infinite capacity and the finite capacity energy storage cases. First, with the

infinite energy storage case, we have derived the optimal downlink energy allocation policy. In

this policy, the H-AP consumes all available energy in the first few time slots, and then is turned

off during the remaining time slots. Based on this optimal strategy, an analytical solution for the

resource allocation problem has been provided. Next, we have proposed the optimal algorithm

for the finite capacity energy storage case, which jointly computes energy and time allocation.

From the simulation results, we have confirmed that the proposed optimal algorithms provide

remarkably enhanced performance compared with conventional techniques.

APPENDIX A

PROOF OF LEMMA 1

Let us define the optimal solution of problem (11) as {τ ⋆i , ε⋆D,i}Ki=0, and the corresponding

objective value as R({τ ⋆i , ε⋆D,i}Ki=0). Suppose that the optimal time allocation solution of problem

(11) is given by τ ⋆i = 0 and τ ⋆j > 0 for j 6= i. Then, by contradiction, we will show that

{τ ⋆i , ε⋆D,i}Ki=0 is not the optimal solution with τ ⋆i = 0 for i = 0, · · · , K. First, we investigate the

case of τ ⋆0 = 0. Due to the peak power constraint ε⋆D,0 ≤ τ ⋆0PP = 0, it follows ε⋆D,0 = 0, and

thus the uplink rate R1 for user 1 is zero. Now we consider positive numbers τ̂0, τ̂1, ε̂D,0, and

ε̂D,1 which fulfill the following conditions:

τ̂0 + τ̂1 = τ ⋆1 , ε̂D,0 + ε̂D,1 = ε⋆D,1, ε̂D,0 ≤ τ̂0PP , and ε̂D,1 ≤ τ̂1PP . (37)

It is worth noting that with τ̂0, τ̂1, ε̂D,0, and ε̂D,1 in (37), we can achieve non-zero R1 without

reducing other users’ uplink rate, since the harvested energy of user j for j = 2, · · · , K does

not change due to the condition ε̂D,0 + ε̂D,1 = ε⋆D,1. Furthermore, we have ε̂D,0 + ε̂D,1 =

ε⋆D,1 ≤ (τ̂0 + τ̂1)PP = τ ⋆1PP , and thus the positive numbers τ̂0, τ̂1, ε̂D,0, and ε̂D,1 satisfying

(37) always exist. Therefore, by setting τ̂j = τ ⋆j and ε̂D,j = ε⋆D,j for j = 2, · · · , K, it follows

R({τ̂j , ε̂D,j}Kj=0) > R({τ ⋆j , ε⋆D,j}Kj=0). This contradicts with the assumption that {τ ⋆j , ε⋆D,j}Kj=0 is

optimal.
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Second, to show that τ ⋆i = 0 for i = 1, · · · , K do not achieve an optimal solution, we formulate

the optimization problem to find a positive solution τ̂i as

max
0≤τi≤τ⋆i+1

τi log
(

1 + γi

∑i−1
j=0 ε

⋆
D,j

τi

)

+ (τ ⋆i+1 − τi) log
(

1 + γi+1

∑i−1
j=0 ε

⋆
D,j

τ ⋆i+1 − τi

)

, (38)

where we have used the fact ε⋆D,i = 0. It is worthwhile to note that only Ri and Ri+1 are

dependent on τi, and thus we can improve the sum rate performance by solving (38) without

reducing Rj , ∀j 6= i, i+ 1.

It is known that the optimal τ̂i must satisfies [8]

γi

∑i−1
j=0 ε

⋆
D,j

τ̂i
= γi+1

∑i−1
j=0 ε

⋆
D,j

τ ⋆i+1 − τ̂i
.

Therefore, we have

τ̂i =
γi

γi + γi+1
τ ⋆i+1. (39)

Since (39) fulfills 0 < τ̂i < τ ⋆i+1, new solutions {τ̂i, ε̂D,i}Ki=0 such that τ̂i+1 = τ ⋆i+1 − τ̂i, τ̂j =

τ ⋆j , ∀j 6= i, i+ 1 and ε̂D,j = ε⋆D,j for j = 0, · · · , K increase the sum rate performance, i.e., the

assumption R({τ̂j, ε̂D,j}Kj=0) ≤ R({τ ⋆j , ε⋆D,j}Kj=0) is contradiction. This completes the proof.

APPENDIX B

PROOF OF LEMMA 2

First, we proceed to solve (29) for i = 0. In this case, problem (29) becomes a LP since

J0 is an affine function on τ0 and εD,0. Thus, it is not difficult to show that a solution ε̃D,0

maximizing J0 is obtained as (31). Plugging this result into J0, it follows J0 = (PP ζ0 − λ)τ0.

Since 0 ≤ τ0 ≤ 1, the optimal τ̃0 that maximizes J0 is given by τ̃0 = 1 if the coefficient of τ0

in J0 is positive, i.e., PP ζ0 − λ > 0. Otherwise, we have τ̃0 = 0. Therefore, a solution τ̃0 can

be written by (30).

Next, we investigate problem (29) for i = 1, · · · , K. Similar to the case of i = 0, a solution

ε̃D,i for i = 1, · · · , K is determined by (31), since Ji is an affine function of ε̃D,i. Substituting

(31) into Ji yields

Ji = τi log

(

1 +
gU,i
σ2
i

εU,i
τi

)

+ (PP ζi − λ)τi − βiεU,i. (40)
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Then, by using the zero gradient condition ∂Ji

∂τi
= 0 and ∂Ji

∂εU,i
= 0, we have

log
(

1 +
gU,i
σ2
i

εU,i
τi

)

+
1

1 +
gU,i

σ2
i

εU,i

τi

= 1 + λ− PP ζi, (41)

gU,i

σ2
i

1 +
gU,i

σ2
i

εU,i

τi

= βi. (42)

It can be shown that a solution of the equation (41) does not exist if PP ζi − λ > 0 since

gU,i

σ2
i

εU,i

τi
≥ 0 in general. Therefore, from (41), we can obtain a solution τ̃i for i = 1, · · · , K as in

(30), and the dual variables must satisfy the condition PP ζi − λ ≤ 0.

Also, combining (42) and the constraint 0 ≤ εU,i ≤ Bi, a solution ε̃U,i can be expressed by

ε̃U,i = min

{(

1

βi

− σ2
i

gU,i

)

τ̃i, Bi

}

. (43)

Here, to ensure ε̃U,i ≥ 0, the dual variable βi must be upper bounded by βi ≤ gU,i/σ
2
i . Then,

from (30) and (43), we can see that ε̃U,i is equal to a solution of the following fixed point

equation:

εU,i = min

{−gU,i/σ
2
i

1/bi + 1

(

1

βi

− σ2
i

gU,i

)

εU,i, Bi

}

. (44)

With any feasible initial point 0 ≤ zi ≤ Bi, a solution of (44) is computed as (32). This completes

the proof.
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