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ABSTRACT OF THE DISSERTATION

Resource Allocation Techniques to Improve the Performance of Wireless Networks

by

Mustafa Yasir Arslan

Doctor of Philosophy, Graduate Program in Computer Science

University of California, Riverside, September 2012

Dr. Srikanth V. Krishnamurthy, Chairperson

Wireless networks are increasingly becoming important in enabling convenient Internet access

for users. Many users have WiFi networks in their homes and have access to cellular networks

(e.g., 3G, 4G) when they are on the go. Unfortunately, wireless networks do not offer performance

guarantees. The download and upload rates achieved with these networks fluctuate and may often

degrade to the point where they become practically unusable. One of the major factors that causes

this performance degradation is interference, which can be defined as the unwanted noise generated

by other devices in the wireless spectrum.

The root cause of interference lies within the fact that the open nature of wireless communi-

cations enables multiple stations to access the spectrum simultaneously. To eliminate interference,

wireless communication systems offer multiple orthogonal channels 1. If multiple stations access

the spectrum using these orthogonal channels, interference is very likely to be avoided (assuming

that the signal “leak” between orthogonal channels is negligible), as opposed to the case where

stations use the same channel. Therefore, one needs to determine the specific access patterns (i.e.,

which channel is used by which transmitter at what point in time) to systematically coordinate the

transmissions of multiple wireless stations.

1These are channels with non-overlapping frequency spans and hence, they are called orthogonal.
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While a large body of previous work exists to coordinate the use of orthogonal channels between

IEEE 802.11 a/b/g stations, we show that they are not able to address the interference problem for

IEEE 802.11n devices due to the use of wide channels in 802.11n systems. Thus, we propose

a WLAN management system – called ACORN – that not only allocates orthogonal channels to

802.11n access points but also makes intelligent user association decisions to significantly improve

aggregate WLAN throughput. Later, we study the interference in cellular networks, in particular

OFDMA femtocell systems. We experimentally characterize the interference between OFDMA

femtocells and propose design guidelines that help in building resource management solutions to

alleviate interference. We observe that resource management solutions for OFDMA femtocells need

to implement unique functionalities due to the fundamental differences between OFDMA access

technology and 802.11 WiFi systems. Leveraging the guidelines revealed by our study, we later

propose FERMI – a resource management solution that mitigates interference between OFDMA

femtocells and at the same time leverages spatial reuse opportunities. We implement FERMI on

a WiMAX femtocell testbed and show that it provides throughput benefits as much as 7x over a

baseline scheme and it is closer to the optimal solution than its simpler theoretical alternatives.

In addition to the multi-cell interference setting addressed by our above-mentioned contribu-

tions, we study beamforming in a single cell scenario. Beamforming is a technique that allows

focusing the energy of transmissions in a particular direction to improve overall signal quality.

Since OFDMA schedules multiple users in the same frame (and this is in contrast to WiFi), design-

ing data scheduling solutions and at the same time benefiting from beamforming is challenging. We

propose iBUS – a system that addresses uplink data scheduling with beamforming. We show that

iBUS is provably efficient in striking the right tradeoffs inherent in this setting. Evaluations from

both a prototype system implementation and simulations yield that iBUS improves the throughput

by more than 40% compared to an omni-directional scheduling scheme.

Finally, we study distributed computing on smartphones. We identify that there are a large

number of phones that are left idle (often when being charged overnight) for long periods of time.

We envision that an enterprise could use such idle smartphones (e.g., phones of its employees)
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for enabling parallel computing on them. We believe that smartphones offer precious computing

resources that have not previously been tapped into from a distributed computing perspective. In

addition to the computing capacity being offered, our cost analysis and projections show that smart-

phones are also an energy-efficient alternative to using dedicated servers for computing purposes.

However, enabling distributed computing on a large number of phones is complicated due to the

unique set of challenges that smartphones present, such as heterogeneity in CPU speed and variabil-

ity in network bandwidth. We design and implement CWC – a distributed computing infrastructure

using smartphones. Our extensive evaluations demonstrate that CWC can schedule tasks for 1.6x

faster completion that alternative mechanisms.
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Chapter 1

Introduction

The growing popularity of wireless networks have made them accessible to an increasing number

of users over the last decade. Today, a typical network scan produces results where many WiFi

access points (APs) are present and contend for access to the wireless spectrum (an example can

be seen in Figure 1.1). While theoretical data rates are constantly increasing with the introduction

of latest wireless technologies (e.g., IEEE 802.11n and 4G LTE, WiMAX), the “crowded” nature

of the wireless spectrum results in interference between stations and thus, introduces a bottleneck

in wireless data rates achieved in practice. In addition to the contention between multiple access

points, a single access point is often inhabited by multiple users (i.e., clients) and thus, the capacity

that it offers is also subject to contention among its clients. In summary, the contention for wireless

capacity exists both in the inter-cell setting as well as the intra-cell setting 1. If not coordinated

properly, this contention can drastically reduce wireless communication performance.

In this dissertation, we first present resource allocation techniques that coordinate the sharing

of the wireless spectrum to address two distinct, but equally important problems: (i): interference

between IEEE 802.11n WiFi APs and interference between OFDMA femtocells, and (ii): uplink

data scheduling across the clients of a single OFDMA femtocell 2. In addition to spectrum man-

1We loosely use the terms “cell”, “access point”, “base station” interchangeably in the rest of this dissertation.
2The term “downlink” represents the data flow from the access points to the clients and “uplink” represents the

opposite direction.
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Figure 1.1: A typical residential WiFi network scan profile where there are multiple access points

in the spectrum.

agement, we also present resource allocation techniques to carefully allocate computing resources

in a distributed computing infrastructure on smartphones. We show that our techniques offer signif-

icantly higher performance than their state-of-the-art alternatives. Next, we detail our contributions

in solving each of these problems.

1.1 Resource Management and Its Application to Alleviate In-

terference

Due to the broadcast nature of the wireless spectrum, the transmissions of a particular station on

a given channel is “heard” by other stations (tuned to the same channel) that are close enough

to the transmitter (e.g., stations within the communication range of the transmitter). While this

forms the basis for wirelessly communicating with intended recipients, it inevitably exposes the

communication to the noise generated by other wireless devices operating on the same channel.

This creates two problems for WiFi networks: (i): since WiFi uses carrier sense multiple access

(CSMA), the transmitters may back off (i.e., defer their transmission after sensing the channel to
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be “busy”) and (ii): the intended signal and the noise may collide at the receivers, degrading the

quality of decoding. Both of these cases result in a decrease in the achievable data rate of a particular

wireless link. Even though OFDMA systems are not vulnerable to the former (since they do not

employ CSMA), collisions due to interference still exist and degrade the link throughput.

1.1.1 Interference Mitigation in WiFi

WiFi systems support two mechanisms in their basic toolkit to alleviate interference. First, they

partition the spectrum into multiple orthogonal channels (e.g., IEEE 802.11a has 12 orthogonal

channels in North America). These channels are arranged so that they have different central fre-

quencies and their frequency span (i.e., bandwidth) do not overlap with each other. If links use

these orthogonal channels, they do not interfere (assuming the leakage between adjacent orthog-

onal channels is not significant). Second, even if two WiFi links are tuned to the same channel,

carrier sensing provides some level of arbitration since stations defer their transmissions in the

presence of other transmissions. However, carrier sensing comes at the cost of reduced data rate

since the channel is accessed less frequently as compared to the case where all links are tuned to

orthogonal channels. Thus, much of the previous work (e.g., [2, 3]) has proposed algorithms that

assign orthogonal channels to interfering APs for legacyWiFi systems (IEEE 802.11a/b/g). In these

systems, the channels are of fixed bandwidth (e.g., 20 MHz for 802.11a and 22 MHz for 802.11g).

The recent IEEE 802.11n standard introduces the option of using wider channels to significantly

improve the data rates. With 802.11n, an AP can either use a 20 MHz channel or a 40 MHz channel

by combining two adjacent 20 MHz channels. While the common wisdom has been in the favor of

using 40 MHz channels [4] 3, we show that wider channels may sometimes degrade throughput in

practice. Our key observation is that when a WiFi AP transmits using some power P , the energy

is evenly split across the sub-carriers forming a channel. The use of wider channels with 802.11n

results in less energy per sub-carrier since a 40 MHz channel has around twice the number of

sub-carriers in a 20 MHz channel. While certain links benefit from the increased capacity of wider

3In theory, doubling the bandwidth should double the raw data rate.
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channels, the reduction in sub-carrier energy can indeed result in degraded throughput for some

links. Thus, assigning channels in 802.11n systems requires careful selection of the channel width,

in addition to simply assigning orthogonal channels. Stated otherwise, it is imperative to design

channel allocation solutions that identify the set of links that can benefit from wider channels and

consider the application of wider channels exclusively for such links. The above-mentioned studies

targeted for legacy WiFi systems do not account for the bandwidth vs. energy tradeoffs with wider

channels and thus, are not suitable for 802.11n WLANs.

1.1.2 Our Contributions on WiFi Interference Mitigation

We conduct experiments to investigate the use of wider channels in practical 802.11n WLAN de-

ployments. Our experiments reveal that wider channels do not always provide throughput benefits

and for some links, they can even degrade the throughput. Such adverse affects of wider channels

have not been previously demonstrated for 802.11n systems. Leveraging this key observation, we

design and implement ACORN [5]. ACORN is a resource management system for 802.11nWLANs

that (i): assigns orthogonal channels to interfering APs together with determining the set of APs

that should use wider channels and (ii): involves a user association mechanism that carefully ad-

dresses the bandwidth vs. energy tradeoffs inherent in wider channels. We implement ACORN on a

802.11n testbed and show that the joint application of these two mechanisms significantly improve

the throughput (as high as 6x per AP) in comparison to state-of-the-art solutions proposed by prior

studies.

1.1.3 Interference Mitigation in OFDMA Femtocells

Femtocells are small cellular base stations that are deployed indoors (e.g., residences, malls, en-

terprise settings). These small cells use the same access technology and standards as macrocells

(traditional outdoor cell towers). The latest cellular systems (e.g., 4G LTE and WiMAX) use Or-

thogonal Frequency Division Multiple Access (OFDMA) as their access technology. Similar to
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Figure 1.2: Channel allocation comes at the cost of reduced bandwidth for OFDMA femtocells. In

contrast, WiFi systems have the same available bandwidth on each of the orthogonal channels.

WiFi systems, OFDMA femtocells also suffer from interference when deployed in close proximity

to each other. Before detailing how interference manifests in OFDMA femtocells, we first describe

three key differences between OFDMA access technology and WiFi.

1. In contrast to the unlicensed spectrum and the availability of multiple channels in WiFi,

OFDMA spectrum is licensed. Cellular operators typically purchase one frequency band

that is used by both femtocells and macrocells. The notion of orthogonality is supported by

having multiple orthogonal fragments of the purchased band. These fragments are called

sub-channels.

2. OFDMA does not employ carrier sensing. If two femtocells use overlapping sub-channels,

they directly project interference on each other’s clients (i.e., there is no busy channel back

off).

3. In a single OFDMA frame, the base station schedules multiple clients. In contrast, WiFi

frames contain data only to/from multiple clients.

These differences make interference management both unique and challenging in OFDMA fem-

tocell systems. We describe this with a simple example in Figure 1.2. On the left side of this ex-
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ample, we have two interfering WiFi APs tuned to channel 1 and channel 6 in the 2.4 GHz band 4.

Since WiFi spectrum consists of multiple channels of equal bandwidth and each AP is allowed to

use only one channel, both APs continue to have the same raw wireless bandwidth (B) irrespective

of the specific channel that they are tuned to 5. In other words, discovering a set of orthogonal chan-

nels for interfering APs suffices for interference mitigation inWiFi. For OFDMA on the other hand,

one needs to allocate orthogonal parts of the spectrum to interfering femtocells. Given that there is

only one frequency band, the band needs to be partitioned across interfering cells and this comes at

the cost of reduction in the channel capacity for each cell 6. Note also that OFDMA schedules data

to multiple clients in the same frame. While some of these clients may be subject to interference

(and require the assignment of orthogonal spectrum partitions), some clients may experience no (or

negligible) interference from other cells. Thus, blindly assigning orthogonal parts of the spectrum

unnecessarily reduces the channel capacity for the latter class of clients. WiFi systems do not bear

such performance costs since each AP transmits to a single client at a time, using the entire channel

bandwidth assigned to it.

In addition to the technical differences between WiFi and OFDMA, there also exists deploy-

ment differences between femtocells and macrocells (even though they implement the same set of

OFDMA standards). Macrocells are typically deployed in a well-planned fashion, in which the

operators conduct a significant amount of site surveys (signal strength evaluations) and frequency

planning to determine the placement of the cell towers. Femtocells on the other hand, are purchased

and deployed by end-users. While this presents a cost-effective opportunity for the operators to in-

crease their cellular coverage, it also makes femtocell deployments uncontrolled and ad-hoc.

Prior studies that focused on interference mitigation in OFDMA systems leverage the planned

deployments of macrocells in their solutions. Since cell boundaries are known, the determination

of which set of clients are subject to interference is an easier task as compared to femtocell de-

4There are only three orthogonal channels (1, 6 and 11) available in the 2.4 GHz band.
5Note that this is only theoretical bandwidth. If an AP uses a channel occupied by another AP, the practical data

rate can be worse than the theoretical maximum.
6We assume equal partitioning for simplicity. It is easy to see that the capacity reduction occurs for any arbitrary

partition.
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ployments. Although there has been recent studies addressing interference mitigation for OFDMA

femtocells (e.g., [6]), they are mostly theoretical studies (with simplifying assumptions) and thus,

have limited applicability in practice.

1.1.4 Our Contributions on Femtocell Interference Mitigation

Given the fundamental differences between OFDMA and WiFi, we first conduct an experimen-

tal study [7] to understand the design choices that need to be made for interference mitigation in

OFDMA femtocells. In these experiments, we compare and contrast alternative resource manage-

ment strategies and derive a set of guidelines that help in designing efficient interference manage-

ment solutions for OFDMA femtocells. Leveraging these guidelines, we design and implement

FERMI [8], which is a standards-compatible resource management solution that effectively miti-

gates interference and at the same time leverages spatial resource opportunities in a OFDMA fem-

tocell network. Although the objective of femtocell interference mitigation is similar to previous

studies, FERMI distinguishes itself with being practical, scalable and compatible with the standards.

Previous studies are mostly theoretical and have simplifying assumptions, which in turn limits their

adoption in practice. FERMI incorporates the following key features to offer a full-fledged resource

management solution.

1. It categorizes clients to determine the severity of interference projected by neighboring cells.

This determines whether to isolate the resources or reuse them for each client.

2. Given clients with different requirements (isolation vs. reuse), it involves intelligent schedul-

ing mechanisms for graceful existence of both types of clients in the same frame.

3. It allocates and assigns sub-channels to interfering femtocells subject to a max-min fairness

model. This is achieved in a scalable and efficient way with clever use of chordal graphs.
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1.2 ResourceManagement and Its Application to Data Schedul-

ing in Femtocells

Beamforming is a signal processing technique that helps focusing the transmitted/received energy

to/from particular directions. This is in contrast to omni-directional communications, where the

signals radiate and lose energy as they travel in all directions (hence, the term “omni”) in space. By

focusing the beams, a transmitter can boost the signal strength at a particular receiver (called trans-

mit beamforming) or similarly it can increase its received signal power from transmitters situated

at particular directions (called receive beamforming).

While beamforming has been extensively studied for WiFi systems (e.g., [9]), the fundamental

differences between WiFi and OFDMA render such studies inapplicable to OFDMA femtocells.

As alluded to previously, OFDMA schedules multiple clients in the same frame as opposed to WiFi

systems that schedule one client per frame. This creates an interesting tradeoff for receive beam-

forming in OFDMA. In particular, OFDMA benefits from scheduling uplink transmissions from

multiple clients by allocating fewer frame resources to each client and the resulting per-resource

power increase from it 7. However, this makes it more challenging to leverage the directionality

gains of receive beamforming; it now becomes harder to find a common beam that works well for

all multiplexed signals coming from different directions. Thus, there is an evident need for novel

uplink scheduling mechanisms that strike the right tradeoff between the multiplexing gain on one

hand, and the beamforming gain on the other.

1.2.1 Our Contributions on Femtocell Uplink Scheduling

To address the above-mentioned tradeoff, we propose iBUS. iBUS is an uplink scheduling system

that involves simple, yet efficient algorithms with a worst case approximation ratio of 1
2
in com-

parison to an optimal resource allocation 8. A distinguishing feature of iBUS is its practicality; our

7This is similar to the per-subcarrier energy increase when wider channels are avoided in 802.11n as described in

Section 1.1.1.
8We show the problem to be even hard to approximate in polynomial time.
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design ensures that it is agnostic to specific OFDMA standards (i.e., can be incorporated in most

modern OFDMA systems) and hence, is not limited by the beamforming support defined in these

standards. We implement a prototype of iBUS using real OFDMA femtocells and clients to evaluate

its benefits in practice. Our evaluations show that iBUS improves the uplink throughput by more

than 40% as compared to an omni-directional scheduler.

1.3 Resource Management and Its Application to Distributed

Computing on Smartphones

Smartphones are increasingly becoming popular due to a multitude of features that they offer such

as mobile access to the Internet, entertainment applications (e.g., games) and their advanced sen-

sors such as accelerometers and GPS. It is often projected that the number of smartphones will

soon surpass the number of PCs shipped worldwide [10, 11]. The popularity of smartphones has

also manifested for enterprises as there are a large number of companies that have started giving

out smartphones to their employees for various reasons [12]. We argue that an enterprise can ben-

efit from harnessing the computing power of such smartphones of its employees, to construct a

distributed computing infrastructure.

Our motivations for enabling distributed computing on smartphones are two-fold: (i) smart-

phone CPUs are increasingly becoming faster and approaching the clock speed of a traditional

PC CPU. A large number of smartphones, when allowed to work on some computation in paral-

lel, could provide significant computing power that could outperform that of a typical server. (ii)

Smartphones are much more (an order of magnitude) energy-efficient than typical servers. Thus,

computations can be executed with high energy efficiency while harnessing the same (or even higher

than) computing power of PCs. Furthermore, we identify that most of these smartphones are left

idle for long durations (e.g., being recharged overnight) and thus constitute a sizable infrastructure

that is waiting to be tapped into.
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1.3.1 Our Contributions on Distributed Computing Using Smartphones

Building such a distributed computing platform using smartphones however, is complicated by

many technical challenges. First, smartphones have heterogeneous computing capabilities. This

makes it harder to perform efficient task scheduling (e.g., load balancing) than typical servers which

often come in preset configurations. Second, the fluctuations in wireless bandwidth requires the

existence of schedulingmechanisms that are aware of the time it takes to copy a task to a smartphone

and get the results back from it. Third, smartphones are highly personal devices. Thus, using

them for distributed computing purposes should come at no (or negligible) distraction to the user

experience.

To address the above-mentioned challenges, we develop CWC – a distributed computing infras-

tructure using smartphones. Our contributions in building CWC is as follows.

1. We envision running tasks on phones only when they are being charged so as to minimize

concerns for battery life. Thus, we examine charging behaviors of 15 volunteers and identify

that there is significant idle charging time in smartphone usage.

2. We design a scheduler that minimizes the makespan of a set of jobs waiting to be scheduled

on smartphones. We show that optimally allocating jobs to smartphone resources is NP-

hard. Our scheduler is based on a greedy algorithm and we experimentally validate that it

outperforms its simpler alternatives.

3. We implement an approach to efficiently migrate tasks when their execution fails before com-

pletion. In our implementation, tasks are suspended if phones are plugged off the power

source during execution. Thus, tasks are migrated to other phones that are plugged for charg-

ing and resumed from the point that they failed.

4. We show that blindly running CPU-intensive tasks on a smartphone (when it is being charged)

can delay a full charge duration by as much as 35%, thus significantly deteriorating user
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experience. We design and implement a CPU throttling mechanism, which minimizes the

adverse impact of running tasks on the time required to charge a smartphone.

5. We implement a prototype of CWC on a testbed consisting of 18 Android smartphones. We

quantify the practical performance of our scheduler and its task migration capabilities and

show that CWC achieves a makespan that is 1.6x shorter than that of simpler heuristics.

1.4 Outline of this dissertation

The rest of this dissertation is organized as follows. In chapter 2, we detail the design of ACORN

– our framework to manage user association and channel selection functions in 802.11n WLANs.

ACORN is the first system that intelligently uses the wide channels feature in 802.11n and thus,

outperforms previous WLAN management solutions that are agnostic to the tradeoffs inherent in

using this feature. In chapter 3, we describe our experimental study that reveals an interesting set

of observations and guidelines for efficient interference management solutions for OFDMA femto-

cells. Chapter 4 presents FERMI – our interference management solution for OFDMA femtocells.

FERMI mitigates interference in a femtocell network and at the same time leverages spatial reuse

opportunities to provide significant throughput benefits. In chapter 5, we describe the design of

iBUS, which is an uplink data scheduling solution that considers the application of beamforming in

OFDMA femtocells. Finally in chapter 6, we present CWC – our distributed computing solution on

smartphones. The performance of CWC as revealed by our prototype evaluation demonstrates that

our vision is viable in practice.
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Chapter 2

ACORN: An Auto-configuration

Framework for 802.11n WLANs

The wide channels (WC) feature combines two adjacent channels to form a new, wider channel to

facilitate high data rate transmissions inMIMO-based 802.11n networks. Using a wider channel can

exacerbate interference effects. Furthermore, contrary to what has been reported by prior studies,

we find that WC does not always provide benefits in isolation (i.e., one link without interference)

and can even degrade performance. We conduct an in-depth, experimental study to understand the

implications of WC on throughput performance. Based on our measurements, we design an auto-

configuration framework called ACORN for enterprise 802.11n WLANs. ACORN integrates the

functions of user association and channel allocation, since our study reveals that they are tightly

coupled when WC is used. We show that the channel allocation problem with the constraints of

WC is NP-complete. Thus, ACORN uses an algorithm that provides a worst case approximation

ratio of O( 1
∆+1

), with ∆ being the maximum node degree in the network. We implement ACORN

on our 802.11n testbed. Our evaluations show that ACORN (i) outperforms previous approaches

that are agnostic to WC constraints; it provides per-AP throughput gains ranging from 1.5x to 6x

and (ii) in practice, its channel allocation module achieves an approximation ratio much better than

the theoretically predicted O( 1
∆+1

).
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2.1 Introduction

The IEEE 802.11n [13] is based on the use of MIMO technology and promises drastically improved

throughputs as compared to legacy 802.11 systems (a / b / g). In order to achieve high data rates (>

100Mbps), 802.11n supports a feature called wide channels (WC). WithWC, two adjacent channels

can be combined to form a new, wider frequency band; this is expected to support transmissions

at higher bit rates (i.e., bandwidth). The default channel width is 20 MHz and it is increased to 40

MHz when WC is activated. To realize increased data rates, 802.11n uses 114 subcarriers with 40

MHz channels (as compared to 56 subcarriers with 20 MHz channels) in a given OFDM symbol.

The use of WC however, has associated caveats. Communication links operating on 40 MHz

channels project increased interference on other links and can negatively impact the total network

throughput [14]. On the other hand, prior studies have only reported results suggesting that WC

would yield significantly higher throughput in settings without interference [14, 15]. Surprisingly,

our experiments suggest the contrary in quite a few cases; the throughput performance withWC (for

a single link in isolation) can be even worse than that with a single 20 MHz channel. We carefully

examine the reasons behind this observation by conducting both physical layer (PHY) as well as

higher layer experiments. Our key findings from the experiments are summarized as follows.

Wide channels without interference: First, with a fixed transmission power (Tx), there is

about a 3dB decrease in the signal strength per subcarrier when WC is employed. Thus for a fixed

Tx, the Bit Error Rate (BER) and the Packet Error Rate (PER) with WC is always greater than or

equal to that without WC. Therefore, the throughput observed with WC is almost always “less than

double” of that without WC 1. Second, using a higher number of subcarriers with WC increases the

likelihood of experiencing errors. We find that links of poor quality (i.e., low SINR) are the ones

that are most affected by these factors; the throughput on such links with WC is worse than without

WC. More importantly, as discussed later, the existence of a single low-SINR client in a cell (that

uses WC) can degrade the long-term throughput of the entire cell due to the 802.11 performance

1In an ideal setting, one would expect that doubling the channel width would yield twice the throughput.
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anomaly [16]. One might argue that these adverse affects of WC can be alleviated by using a higher

Tx at the APs. However, note that Tx cannot be increased beyond a specified maximum value; this

value is the same for both 20 and 40 MHz channels as mandated by the 802.11n standard [13]. In

addition, increasing Tx may project additional interference on other links if not properly executed.

Wide channels and interference: The use of WC projects interference over a larger spectral

width (40 MHz as opposed to 20 MHz). Thus, the wider channels need to be carefully assigned

to cells in a dense enterprise WLAN setting. Moreover, note that due to the 3 dB reduction in the

per-carrier signal strength, transmissions with the wider bands are more susceptible to interference.

The above observations suggest that WLANs should employ WC with care. In this chapter, we

detail the design of ACORN, an Auto-COnfiguRation framework for enterprise 802.11N WLANs.

ACORN jointly performs the functions of channel allocation and user association. As discussed

above, the existence of poor quality clients impacts the cell-wide performance; therefore, intelli-

gent user association is critical in facilitating the throughput gains fromWC. In brief with ACORN,

clients make association decisions not in a selfish / greedy manner, but by considering the impact

of their decision on cell throughput. APs make decisions on whether or not to use WC by con-

sidering factors such as interference, towards achieving network-wide performance gains. To our

best knowledge, ACORN is not only the first system to address the application of WC in enter-

prise WLANs but also the first system to consider the use of two distinct channel widths while

performing joint channel allocation and user association.

The main contributions of our work are the following:

• We conduct extensive PHY layer experiments using WARP [17] and higher layer experi-

ments on our 802.11n testbed, to validate that the performance can indeed degrade in settings

without interference if WC is used.

• Leveraging the insights from our experiments, we design ACORN - an auto-configuration

system for 802.11n WLANs. ACORN jointly executes user association and channel alloca-

tion with WC.
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• We show that the channel allocation module of ACORN achieves a theoretical worst case ap-

proximation ratio of O( 1
∆+1

) as compared to an optimal algorithm, where∆ is the maximum

node degree in the network (the problem is shown to be NP-complete).

• We implement ACORN on our 802.11n testbed and show that (i) it provides significant per-

formance benefits (ranging from 1.5x up to 6x) over the state-of-the-art schemes designed for

legacy 802.11 (which typically employ bands of a single width) and (ii) in practice, ACORN’s

channel allocation performs better than the theoretical worst case approximation.

• We evaluate ACORN with both synthetic UDP / TCP traffic as well as realistic HTTP work-

loads. We show that ACORN improves performance for all the considered traffic types.

The rest of the chapter is organized as follows. In Section 2.2 we provide brief background

on the 802.11n PHY and discuss related work. Section 2.3 describes our PHY and higher layer

measurements that provide an understanding of the behavior with WC. We present the design of,

and analyze the algorithms included in ACORN in Section 2.4. Section 2.5 describes the system

implementation and our experimental evaluation. We discuss ACORN’s applicability to other de-

ployments in Section 2.6. Our conclusions form Section 2.7.

2.2 Background and Related Studies

In this section, we first provide brief background on 802.11n. We then describe related previous

work.

2.2.1 802.11n Background

802.11n technology offers significant improvements over the legacy 802.11a / b / g protocol fam-

ily. At the PHY layer, 802.11n utilizes MIMO communication with OFDM. Two modes of MIMO

operation are feasible with 802.11n: (i) Spatial Division Multiplexing (SDM), which transmits mul-

tiple independent data streams and thus achieves higher data rates and (ii) Space Time Block Coding

15



(STBC), which targets higher reliability and range by transmitting a redundant copy of the signal.

Typically, vendors implement rate adaptation algorithms with 802.11n, which choose the mode of

MIMO operation based on the link quality and other parameters. The MIMO operation together

with the WC feature contributes to the throughput benefits offered by 802.11n.

2.2.2 Related Work

802.11n Experimental Studies: In [14], Shrivastava et al. identify that 802.11n throughput perfor-

mance is limited by the CSMA / CA access policy inherited from the 802.11 legacy protocol family.

In addition, they provide insights on increased interference due to WC, using a previously proposed

model [18]. They recommend using WC on the 5 GHz band (in contrast to 2.4 GHz) since it offers

more orthogonal channels and hence less potential interference. However, their conclusions cannot

explain why an isolated link does not always enjoy a higher throughput with WC, as compared to

the case without WC, which we show to be the case in practice. Visoottiviseth et al. [15] compare

the performance between commodity 802.11g and 802.11n devices. However, this work does not

examine WC in depth.

The above studies have either reported that WC decreased the throughput due to increased

levels of interference [14] or that WC increased the throughput when used for a single link in

isolation [14, 15]. On the contrary, we experimentally show that WC can degrade the performance

even for a single link, in addition to the degradation for multiple interfering links.

Orthogonal Frequency Division Multiplexing (OFDM): OFDM divides the allocated spec-

trum into smaller tones (subcarriers) that are orthogonal to each other. Each subcarrier carries data

at lower rates; however together they maintain the total data rate. OFDM systems have the advan-

tage of better coping with narrowband interference and fading [19]. There are many studies that

try to improve OFDM performance. For example, Rahul et al. [20] implement a downlink OFDM

PHY for WLANs that performs rate adaptation per subcarrier. Subcarrier power allocation is ex-

amined in [21]. In this work, we are not interested in changing the PHY layer functions of 802.11n

OFDM; we examine the effects of the PHY layer (with WC) on the higher layers and propose a
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solution towards improving performance without requiring significant changes at the core PHY /

MAC functionality.

Channel Width Adaptation: Commodity 802.11 hardware vendors have also implemented a

function that uses channels of varying width. These systems can flexibly operate on 5, 10, 20 and 40

MHz bandwidth [22, 23]. In [24], the authors propose a channel width adaptation algorithm that can

dynamically choose a bandwidth to satisfy an optimization criterion. Although the authors discuss

the potential usage of their algorithm in a WLAN context, the algorithm is designed assuming two

communicating nodes and its applicability in enterprise WLANs is not studied. [25] proposes a

spectrum allocation solution that leverages the flexible channel widths, by considering the load in

each AP. It only addresses the assignment of different channels with a given client population (i.e.,

user association is not studied). In contrast, we show that user association and channel allocation

(using WC in our case) is tightly coupled. We examine the impact of different channel widths

on 802.11n enterprise WLAN performance by jointly considering user association and channel

allocation.

Resource Allocation: Resource allocation in WLANs usually refers to power / rate control and

channel selection. User association is very tightly related with these functions; therefore, in many

cases they are studied together.

Static channel allocation is shown to have associated fairness issues and thus, Mishra et al. [26]

propose a dynamic algorithm based on frequency hopping. In [27], the same authors formulate the

channel assignment problem as a graph coloring problem and solve it. Kumar et al. [28] formulate

a utility optimization problem that accounts for user association. All of the above efforts however,

study the problems of channel selection or user association independently. In [29] and [1] the

problem of jointly performing frequency selection and user association is studied. Mishra et al. [29]

provide a centralized approach, while Kauffman et al. [1] provide a distributed solution based on the

Gibbs sampler. In [3], the authors study the interaction between channel allocation, power control

and user association.
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All of the above (independent or joint) network optimization solutions are designed for legacy

802.11 systems that use single channel widths. The complexities associated with WC render the

above solutions inapplicable to 802.11n. To the best of our knowledge, we are the first to study

the joint problem of channel selection and user association in 802.11n WLANs, considering two

distinct channel widths.

2.3 Wide Channels are not the Panacea

In this section, we first analyze the behavior of WC at the PHY layer. Later, we examine the impact

of these PHY observations on the higher layers.

2.3.1 Wide channels micro-effects

802.11n leverages the OFDM-based PHY to implement WC. OFDM is inherited from legacy

802.11 systems. 802.11a / g modulate 52 subcarriers in an OFDM symbol of 4µsec duration.

The OFDM subcarriers together form a 20 MHz channel (or band). Four subcarriers are for pilot

tones; thus, 48 subcarriers effectively carry data in an OFDM symbol. With 802.11n, the number

of modulated subcarriers is increased to 56; 52 subcarriers carry data and four are for pilot tones.

This results in a maximum nominal bit rate of 65 Mbps for a single data stream 2. WC utilizes

two adjacent channels simultaneously and employs 114 sub-carriers (108 data and 6 pilot) over a

total of 40 MHz bandwidth. As one might expect, the nominal bit rates with 40 MHz are slightly

higher than double of their 20 MHz counterparts for the same modulation. However, there is an

important factor that can negatively impact the achievable throughput in a 40 MHz channel; the

SNR experienced is lower with WC than when a 20 MHz band is used. To understand why this is

the case, let us first look at the impact of increasing the number of subcarriers on (a) the thermal

noise and (b) the energy per subcarrier.

2This assumes a 800nsec guard interval (GI). The option for a shorter GI (400nsec) is also available in 802.11n;

this reduces the symbol duration to 3.6µsec and further increases the data rate. For more details see [13] and [19].
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Impact of WC on thermal noise: The total thermal noise in a 40 MHz channel is higher than

that in a 20 MHz channel. The Wi-Fi noise floor, N , can be calculated as follows [30]:

N(in dBm) = −174 + 10 · log(B) (2.1)

where B is the bandwidth of the channel in Hz. It is easy to see that the noise in a 40 MHz channel

is about 3 dBm (10log2) higher as compared to a 20 MHz channel. If one assumes that the noise

is uniformly distributed across the subcarriers, the noise per subcarrier can be expected to remain

almost the same for both the 20 MHz and 40 MHz channels, and in theory there is just a 4%

reduction.

Impact of WC on subcarrier energy: The 802.11n standard [13] mandates the use of the same

maximum transmit power with and without WC. In an OFDM system, the transmit energy is uni-

formly distributed across the subcarriers. Since WC uses 114 subcarriers and the total transmit

power remains the same, the energy per subcarrier is theoretically reduced by 48% (approximately

halved) as compared to that of 20 MHz bands. Expressed in dB, this translates to about a 3 dB re-

duction in the energy per sub-carrier. This in turn, can have a negative impact on the performance.

Considering the two factors together, we postulate that:

• For the same transmission power (Tx), the SNR of a signal is reduced by 3dB with WC. A

reduction similar to this postulated value (52%), is seen in the energy per subcarrier in our

experiments (discussed below); the noise per subcarrier remains almost the same as predicted

theoretically (4% reduction). Thus, the SNR per subcarrier is halved; combined with the

increased probability of error due to the larger number of subcarriers (each subcarrier expe-

riences a different fade), a BER increase is expected.

• In order to achieve the same SNR on a link, with both 20 and 40 MHz channels, one needs to

increase the transmission power in the latter case. However, this might not be possible given

power budget constraints; in addition, 802.11n dictates the use of the same maximum power

with and without WC.
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• One might expect these factors to primarily affect poor quality links since these links are the

ones that are most susceptible to the lowered SNR due to the use of WC.

With additive white Gaussian noise (AWGN), one can deduce the above observations from

Shannon’s theorem on the capacity of wireless channels [30]. The capacity C of an AWGN channel

(in bits per second) with a bandwidth B (in Hz) is given by:

C = B · log(1 + SNR) (2.2)

One can see that for low SNR values, the logarithmic term dominates. Thus, if increasing B de-

creases SNR (as is the case when we transition from a 20 MHz channel to a 40 MHz channel), there

may be regimes where the capacity decreases. The validity of these theoretical assessments in real

settings has to be investigated, since the noise may not be AWGN in practice. We next present our

experiments for this purpose.

Experimental validation: We use the WarpLab framework with WARP [17] hardware to im-

plement a basic OFDM system. We generate a random bitstream and modulate it using DQPSK.

The Inverse Fast Fourier Transform (IFFT) is applied on the modulated I - Q (In-phase and Quadra-

ture) samples. A cyclic prefix is then added. A Barker sequence is later prepended to facilitate

the symbol detection at the receiver. These samples are transmitted over the air using 2 x 2 STBC

(Space Time Block Codes with two antennas - Alamouti) [31]; we use the STBC mode of transmis-

sion since on poor quality links, the auto-rate function of our 802.11n cards induces operations in

this mode. At the receiver side, the preamble sequence is detected and stripped. The cyclic prefix

is removed and the remaining samples are fed into a Fast Fourier Transform (FFT) module. After

demodulating the samples, the receiver obtains the bitstream. We implement the WC functionality

by appropriately changing the subcarrier mappings, sampling rate and using a 128-point FFT (as

opposed to a 64-point FFT with a 20MHz channel).

First, we investigate the spectral characteristics of the transmitted waveform. We obtain the

power spectral density (PSD) of the transmitted signals. The same power Tx, is used for both 20
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Figure 2.1: PSD estimate with different channel widths. WC results in a 3 dB reduction on the

signal strength per sub-carrier.
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Figure 2.2: Received constellations with different channel widths. Although one can transmit more

bits in a symbol with WC, the reception is more likely to be distorted (on the right) as compared to

the case without WC (on the left).

and 40 MHz channels. PSD reflects the distribution of the energy with regards to the frequency

content of the signal. Figure 2.1 depicts the PSD estimate with 56 and 114 subcarriers. It is evident

that there is a 3dB reduction (from -92 dB to -95 dB) in the energy per subcarrier when we double

the channel width. Note that in 802.11n, the central frequency Fc is not the same for 20 and 40MHz

channels (we deliberately plot the PSD using the same Fc for both bandwidths in Figure 2.1). In

practice, when two 20 MHz channels (centered at Fc1 and Fc2 where c1 < c2) are merged together,

the resulting channel is centered at Fc1 + 10 [32].
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Figure 2.3: BER for QPSK modulation with respect to SNR (a) and with respect to Tx (b). For a

given Tx, WC results in a higher BER (b and c).

To elucidate the effects of WC on a received signal, we present a typical sample from the

received QPSK constellations for both 20 and 40 MHz channels in Figure 2.2. With 20 MHz the

received symbols are mostly clustered around the actual transmitted symbol on the I - Q plane. With

WC, there is a higher uncertainty due to the lowered energy per subcarrier. The signals are more

vulnerable to fading and more likely to be erroneously decoded. The higher baud error rate (error

rate of QPSK symbols) results in a higher BER.

To look at the implications of our last observation, we measure the Bit Error Rate (BER) with 20

and 40 MHz channels. We use the OFDM reference design from [17]. On top of the OFDM PHY,

we use the BERMAC implementation [17] to transmit packets and calculate the BER for various

settings. We use a custom Java application that transmits back to back packets to an Ethernet switch

using the jpcap API [33]. The BERMAC implementation loads specific buffers of the WARP

boards (on both the transmitter and the receiver boards) with the packet transmitted by the Java

application; thus, the receiving node knows the correct payload contents for the BER calculation.

In our experiments, we transmit a total of 9000 packets with a packet size of 1500 bytes and collect

the BER statistics from the receiving board. We calculate the BERs using our WARP boards with

20 and 40 MHz channels, with QPSK. Note here that these are uncoded BERs (no forward error

correction (FEC) employed at the PHY). The BER results with respect to the measured SNR are

presented in Figure 2.3 (a). As one can expect, for a fixed SNR, the BER does not depend on the

channel width. We also plot on the same figure the theoretical bit error rates for the considered
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system from [30]; the theoretical BER formula depends only on the SNR per subcarrier and not

on the bandwidth. We observe that the experimental curves fit well with the theoretical plots 3. In

particular, the coefficient of determination [34] is 0.8 and 0.89 for 20 and 40 MHz, respectively.

Figure 2.3 (b) presents the same set of BER measurements, but with respect to Tx. We notice that

the wider channel exhibits a higher number of bits in error for a given Tx, thus corroborating our

intuition (discussed earlier). We observe a similar BER increase with other modulations (see Fig.

2.3 (c)).

2.3.2 Effects of WC on higher layers

The PHY layer performance is not always directly exported to the higher layers (due to mechanisms

such as FEC). Therefore, the performance degradation in terms of BER with a 40 MHz channel for

a fixed transmission power, may or may not be reflected in the performance observed at the higher

layers. To understand the effect at the packet level, we look at PER (Packet Error Rate). A small

increase in the raw uncoded BER (when using a 40 MHz channel) might result in no change in

the PER on a commercial coded system such as 802.11n. If so, the throughput enjoyed at the

application layer is practically doubled (ignoring MAC overhead). On the contrary, if the PER is

also increased, this will result in less than a two-fold increase in the throughput or in some cases,

could even result in a throughput reduction. Assuming the throughput T with transmission rate R

is roughly T = (1−PER) ·R, the throughput with a 40 MHz channel will be lower than that with

20 MHz if the following holds:

σ =
1− PER20

1− PER40
>

R40

R20
≈ 2, (2.3)

where PERx and Rx are the PER and the nominal transmission rate with the x MHz channels.

Here, σ is simply the ratio of packet delivery probabilities achieved without and with WC.

3We leverage this later in designing ACORN in Section 2.4.
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Figure 2.4: Uncoded PER for QPSK modulation. As expected, the higher BER with WC results in

a higher ratio of packet losses at the MAC.

modcod QPSK3/4 16QAM3/4 64QAM3/4 64QAM5/6

σ ≥ 2 -7dB 3dB 5dB 8dB

σ < 2 -4dB 5dB 7dB 11dB

Table 2.1: Experimental transition table for σ values.

PER performance: Using the previous experimental setup and results, we first obtain the

uncoded PER. Figure 2.4(a) presents the PER with respect to the SNR. As discussed, for a given

SNR the BER does not depend on the channel width; thus, the uncoded PER is similar for the 20

and 40 MHz channels for the same SNR. However, for the same Tx, the PER with WC is much

higher as compared to that without the feature (as seen in Figure 2.4(b)). Recall that with a 40 MHz

channel, for the same Tx, the SNR per subcarrier is halved and this contributes to the performance

degradation.

Experiments with commodity 802.11n cards: To examine the performance with commodity

systems employing FEC, we conduct experiments on our 802.11n testbed. Our testbed consists

of 18, 2 x 3 802.11n nodes, each equipped with a Ralink mini-PCI wireless card and three 5-dBi

omnidirectional antennas. The testbed contains both indoor and outdoor links [35]. We use the

5GHz band for our experiments, avoiding interference from other WLANs in the 2.4GHz band.

With our initial 802.11n experiments, we examine the performance of the PER with a coded

PHY layer. We tune the transmission power on our links in order to account for a large set of SNR
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Figure 2.5: σ-values for different links, Tx, modulations (mod) and code rates (cod). For a given

link, WC is beneficial (σ < 2) only beyond a certain power level. For lower power levels (lower
SNR), WC hurts performance (σ ≥ 2).

values, and we measure the PERs with both 20 and 40 MHz channels. In Figure 2.5, we plot the

σ values (recall Eq. 2.3) for various modulation schemes and code rates for four representative

links (we omit BPSK since it exhibits a similar performance as QPSK). Whenever σ is larger than

2, the throughput achieved with WC will be lower than that with a 20 MHz channel (Eq. 2.3).

Table 2.1 presents the observed SNR values (γ) when we have a crossover value of σ = 2. The

common trend identified among all the cases where σ ≥ 2 is that this degradation in performance

is observed for a certain range of transmission powers. This region maps to a 2 - 3 dB difference

in SNR 4. More specifically, for low Tx, the PER for both the 20 and 40 MHz channels is similar

(and close to 1), resulting in σ ≈ 1. As we increase the power, the PER with a 20 MHz channel

4When σ is > 10, we cap its value at 10 for better visualization.
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Figure 2.6: Throughput experiments (a) with rate control and (b) with fixed rates. Optimal MCS (b)

denotes the MCS giving the highest UDP throughput for a link. WC primarily hurts performance

for links with low SNRs even in the presence of rate control and FEC.

drops faster (with respect to Tx), since the SNR at the receiver is 3dB higher as compared to the

WC case. Thus (1− PER20) increases faster than (1−PER40) and the ratio σ can indeed assume

values larger than 2; however, as we keep increasing Tx, the SNR with 40 MHz also increases and

therefore, the PER performance with the two cases become similar to each other again (almost no

packet losses) and σ ≈ 1. Furthermore for a given link, the SNR value γ, at which we begin to

see a PER decrease with 20 MHz (which results in σ ≥ 2), is higher as the modulation becomes

more aggressive (Table 2.1). The reason for this is that with more aggressive modulations there is a

higher SNR requirement to correctly receive packets.

Note that, for some robust links (e.g., link B in Fig. 2.5) the PER is extremely low for both the

20 and 40 MHz channels and here WC will provide significant benefits in terms of throughput. For

poorer links, the difference in the PER performance can be significant and inequality 2.3 might be

satisfied. In such cases, a 20 MHz channel is preferable.

Throughput performance: From the perspective of the end-user, the achievable throughput

at the application layer is what is important. To examine the application layer performance, we

measure the achievable throughput with and without WC on our 802.11n testbed. Note that, so far

we have examined the impact of WC using a fixed modulation. However in practice, rate adaptation

mechanisms can potentially cope with the reduced SNR due to WC by adaptively using a more
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robust Modulation Coding Scheme (MCS [13]). For this reason, we use the rate control algorithm

of our wireless cards to assess the performance in the presence of rate adaptation and FEC. This

proprietary algorithm not only adjusts the rates in response to packet successes / failures but also

picks the best mode of operation (SDM or STBC) based on the channel quality. We consider both

UDP and TCP traffic generated by the iperf tool. The maximum transmission power is used and

we consider all of our links (24 in total) to capture a wide variety of link qualities. Figure 2.6 (a)

depicts the results. We see that in about 20% of our experiments, the use of the conventional 20

MHz channel yields higher throughput. What is more interesting is that the majority of these cases

are clustered in the low throughput regimes. In addition, the throughput gains are very significant

in these regimes (the points in the lower left corner of Fig. 2.6(a)); for example, 20 MHz channels

achieve 5 to 6 Mbps while 40 MHz channels yield almost 0 Mbps throughput. The SNR values

observed during these experimental trials were less than 6dB, which conforms with our previous

BER / PER observations in Table 2.1. We observe that the rate adaptation mechanism does indeed

lower the MCS to the most robust BPSK modulation. However, this is not sufficient to restore the

throughput with WC for links with very low SNRs. In addition, approximately 30% of the TCP

experiments yield better performance with 20 MHz as compared to only 10% with UDP. TCP is

more sensitive to packet losses and as a result even a small PER increase due toWC can significantly

degrade performance.

To understand the above observations, we next experiment with fixed transmission rates. For

every link on our testbed, we find through exhaustive search, the MCS which gives the highest

UDP throughput with and without WC, considering both modes of 802.11n (SDM and STBC). The

results from Figure 2.6 (b) imply that the optimal modulation scheme with 40MHz is almost always

less ‘aggressive’ (i.e., smaller MCS) as compared with the one with 20 MHz. This results in less

than a 2x throughput increase with WC as compared to 20 MHz channels. Figure 2.6 (a) verifies

this, since the vast majority of the points lie on the right side of the line y = 2x. This is again an

artifact of the increased BER and PER with WC.
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To summarize, our experimental study shows that WC does not always increase throughput

for links in isolation (such adverse effects of WC have not been reported in prior studies). If

one were to also consider the increased interference from wider channels, it becomes evident that

channel assignment algorithms should be carefully designed for 802.11nWLANs. In addition, user

association is even more critical in the case of 802.11n than in legacy 802.11 systems; a poor client

might hurt the throughput of the other clients of a cell that utilizesWC. Next, we describe the design

of our 802.11n auto-configuration framework ACORN, which accounts for all of the above factors.

2.4 Harvesting ACORN

ACORN is designed based on the understanding developed with the experiments described in the

previous section. It consists of two modules: (a) a user association module and (b) a channel

assignment module that accounts for WC. The operations of ACORN, are briefly depicted in Figure

2.7. In short, the functions of the two modules are the following:

a) The user association module tries to group users (or clients) of similar link qualities within

the same cell. The basis for this assignment is that the presence of a few poor quality users in a cell

can degrade the performance drastically with 40 MHz bands. In such cases, even the good clients

suffer due to the performance anomaly with 802.11 [16]. In brief, the distributed coordination

function (DCF) used with 802.11 ensures equal long-term medium access opportunities. Since

poor clients occupy the channel for longer periods, the good clients are hurt as well. This effect
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would cause an AP with an associated poor client, to suffer from degraded throughput if it were

to apply WC. If instead it does not apply WC, the potential throughput gains for clients with high

SNR links are lost. To address this, ACORN tries to ensure that each cell either has (preferably) all

users with high quality links, or contains larger numbers of users with poor link qualities. In the

former case, the cell can apply WC and in the latter it would simply use a 20 MHz channel.

b) TheWCmodule exploits the application of the user association module. It assigns 40 MHz

channels to those APs that achieve the highest improvements in throughput (clearly these are the

APs that contain the most clients with good quality links). 20 MHz channels are assigned to APs

that either suffer degradations in throughput with 40 MHz channels (due to the presence of poor

clients) or do not achieve significant gains with WC.

Note that many of the previously proposed WLAN configuration schemes minimize the total

transmission delay [1, 3]; this achieves fairness among the users. However, our objective is to

maximize the total network throughput. In other words, we tradeoff some level of fairness for sig-

nificant gains in the total network-wide throughput. This is the current trend in many commercial

platforms (e.g., 3G / CDMA), which typically employ schedulers that give priority to high quality

links (e.g., PF scheduler) [36, 37]; they maximize the total network throughput, allowing for some

hit in terms of fairness across the users. In addition, many studies align with this direction (for ex-

ample [38] and [39]). We assume saturated downlink traffic for analytical tractability of ACORN’s

decisions. Most of the previous work also relies on this assumption [3, 40]. However, we show

experimentally that ACORN helps even with unsaturated loads (e.g., TCP).

2.4.1 User Association

A newly arriving client u usually has a set Au, of serving APs to choose from. In order to pick the

best AP for association, an objective must be in place. With ACORN, the decision is based on the

pairing that achieves the maximum aggregate network throughput.

Gathering information for user association decisions: To achieve our goal, u needs to know

for every AP i ∈ Au the per client throughput of i, with and without u associated with it (X
i
w,u
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and X i
wo,u, respectively). The client computes these values by obtaining a modified beacon. This

beacon includes the number of clients associated with the AP (including u) Ki, the transmission

delays per client dicl, the aggregate transmission delay ATDi of the AP and the channel access time

Mi of the AP (if there is fully saturated traffic and no contention,Mi = 1). Client u calculates the

above quantities as (i) X i
w,u = Mi

ATDi
and (ii)X i

wo,u = Mi

ATDi−diu
[1].

In order for the AP to be able to include these information in the beacon, the user has first to

associate with it. Other, more simplistic approaches for AP selection, do not require prior client

association with the APs. For example, affiliation decisions that are based on the received signal

strength (RSS) of the beacons, do not require each user to associate with the APs in range first.

However, it is shown that cross layer information is important for user affiliation to deliver good

performance [40]; for instance simply looking at the RSS can lead to configurations with a few

overloaded APs and other underloaded APs. In order to obtain the required information accurately,

a user needs to associate with the AP and exchange traffic. Thus, we implement a similar approach

to the one proposed in [1] [3] to obtain the information required by our algorithm. Note however

that with ACORN the decision on which AP to affiliate with, is different.

Associating with an AP: Based on the information gathered from all the APs in range, u picks

the AP i∗ ∈ Au, which maximizes the following utility function with respect to i:

Uasoc(u, i) = Ki ·X
i
w,u +

∑

j∈Au,j $=i

(Kj − 1) ·Xj
wo,u (2.4)

The first term on the right hand side of Eq. 2.4 is the total throughput of the AP with which, u

associates. The second term is equal to the total throughput achieved by the other APs in the range

of u. Note here that Kj was defined as the number of clients associated with AP j, including client

u. When a new client joins the cell, there may be a reduction in throughput due to the increased

transmission delay. The goal is to minimize this reduction and preferably maintain the throughput

at the level prior to the client’s arrival. Eq. 2.4 minimizes the impact of a poor client v, in the

network. v affiliates with an AP serving similar quality clients, since this will minimize the total
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network throughput degradation (i.e., maximize the total network throughput) that could result from

the 802.11 performance anomaly [16]. Clients with high quality links do not significantly affect the

throughputs due to the anomaly when they associate with their best APs. The pseudocode for user

association is given in Algorithm 1.

1: Input: Ki,Mi, ATDi, ∀i ∈ Au and div ∀i
′s clients

2: Output: AP i that client u associates with
3: for i ∈ Au do

4: X i
w,u = Mi

ATDi

5: X i
wo,u = Mi

ATDi−diu

6: Uasoc(u, i) = Ki ·X i
w,u +

∑

j∈Au,j $=i

(Kj − 1) ·Xj
wo,u

7: end for

8: return i∗ : Uasoc(u, i
∗) ≥ Uasoc(u, i), ∀i ∈ Au

Algorithm 1: User Association Algorithm

2.4.2 Wide Channels Decision/Allocation

Next, we describe the channel allocation module of ACORN. Table 2.2 enlists the notation used.

Problem Formulation: The channel allocation problem is cast as a graph coloring problem

[27]. We apply the idea of the interference graph (IG) (as in [26, 27]). The set V of vertices of

the interference graph G(V,E) are the APs. An edge eij ∈ E, if APs i and j interfere with each

other. In the classic graph coloring problem [41], the objective is to assign colors from a given set

of colors to the vertices of the IG, such that no adjacent vertices have the same color. Note here

that, the notion of color conflicts differs in our case due to WC. For instance, let us assume colors ci

and cj , corresponding to channels fi and fj (20 MHz channels). Then the composite color {ci, cj}

corresponds to the 40 MHz channel derived from the combination of fi and fj . With this set up,

the basic colors ci and cj do not conflict; however, each of them conflicts with the composite color

{ci, cj}. In the rest of the chapter, we will refer to both basic and composite colors simply as colors.

We relax the constraint of the above graph coloring problem, since our objective is to assign colors

to the vertices (i.e., channels to the APs), so as to maximize the total network throughput. Formally,
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V Set of Access Points

Ch Set of available 20 and 40 MHz channels

F : V → Ch Channel assignment mapping

fi channel assigned at AP i
Xi Throughput of AP i

Table 2.2: Notations for channel allocation algorithm.

we seek to:

max
F

Y =
∑

i∈V

Xi(F ) (2.5)

NP-completeness: The graph coloring problem with the above objective is NP-complete. The

classic, NP-complete, decision graph coloring problem [41], tries to answer the following: “Given

a graph G(V,E) and k colors, can we color the vertices V such that ∀eij ∈ E → fi '= fj?”, where

fi is the channel assigned to AP i.

The total aggregate network throughput Y , is upper bounded by Y ∗ =
∑

i∈V

X isol
i , whereX isol

i =

max{X isol−20
i , X isol−40

i } is the maximum possible throughput for AP i in an interference-free set-

ting, achieved with either a 20 or a 40 MHz channel. Let F
′

be a solution to our problem, yielding

a total aggregate network throughput of Y
′

. The solution is optimal iff Y
′

= Y ∗ ⇔ G has a

k-coloring. Thus, our problem is NP-complete.

Our approach: We design an algorithm that allows APs to decide upon the channel(s) to use.

Later, we compute the approximation ratio of our algorithm relative to the optimal. Initially, all

APs are assigned either a 20 MHz or a 40 MHz channel at random. The algorithm is iterative and

executed with a periodicity of T . In every iteration, the AP that can provide the maximum increase

in the aggregate throughput by switching channels, is allowed to switch. The algorithm terminates,

after a number of iterations K, either when no further improvement can be provided or when the

improvements provided are very small. A pseudocode for our algorithm is given in Algorithm

2. Y W
x represents the long-term aggregate network throughput achieved at period W and after x

iterations of the algorithm.
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1: Input: Y T−1
k , F T−1

2: Output: F T

3: Y T
0 = Y T−1

k , k = 0
4: repeat

5: label (1)
6: AP = V , AP

′

= ∅
7: for i ∈ V do
8: k = k + 1
9: for c ∈ Ch do
10: Tmpi(c) =

∑

a∈V

Xa(F
T
j∈AP ′ , fi = c, F T−1

j∈AP )

11: end for

12: pick c∗i : Tmpi(c
∗
i ) ≥ Tmpi(c), ∀c ∈ Ch

13: ranki = Tmpi(c
∗
i )− Yk−1

14: if maxi∈V ranki < 0 then
15: if |AP

′

| ≤ 1 then
16: return F = (F T−1

j∈V , F T
j∈V )

17: else

18: GOTO (1)
19: end if

20: else

21: “winner” is AP m : rankm ≥ rankn, ∀n ∈ V
22: fT

m = c∗i , AP = AP/{m}, AP
′

= AP
′ ⋃

{m}

23: Y T
k =

∑

a∈V

Xa(F
T−1
j∈V , F T

j∈V )

24: end if

25: end for

26: if AP '= ∅ then
27: GOTO (1)
28: end if

29: until Y T
k < ε · Y T

k−1

Algorithm 2: Wide Channels Selection Algorithm
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In each iteration of the algorithm, the APs that have still not chosen new channel(s) (i.e., mem-

bers of the set AP ), estimate the aggregate throughput achieved with every possible channel, as-

suming that other APs keep their current allocation (line 10).

Estimating throughput: In order to estimate the throughput on a new channel, an AP needs

to take into account (i) the number of APs already residing on this new channel and (ii) the quality

of the links to its clients on the channel. The first requirement is possible either with help from an

administrative authority or the Inter Access Point Protocol (IAPP) [42]. For the second requirement,

we assume that the link quality on the different channels (of the same width) is not significantly

different. Later in this section, we provide measurements that validate this assumption in indoor

slowly varying settings, typical for enterprise 802.11nWLANs. However, this assumption does not

hold when channels are of different width. In other words, the channel qualities to the clients may

change if a channel of different width is used. To map the measured results from a 20 MHz channel

on to a 40 MHz channel (or vice versa), we leverage the understanding obtained from our PHY

layer measurements in Section 2.3.

We estimate the link quality on a channel of different width as follows. The input is the SNR

at the current width. When we change the width (from 20 to 40 MHz and vice versa), there is a

3dB change in the SNR; this processing is performed by a SNR calibrationmodule in our estimator.

Using this calibrated SNR value, a BER estimation module calculates the theoretical coded BER

(from [30]). Recall, from our measurements that one can expect a reasonable match between the

values computed with the theoretical formulas in [30] and the experimentally observed BER.

Finally, using BER we estimate PER. We use the commonly used assumption (e.g., in [43]) of

independent, uniformly distributed bit errors within a packet and compute PER as:

PER = 1− (1−BER)L. (2.6)

Note here that ACORN does not require the exact BER or PER values; it only needs a coarse

estimate of the link quality i.e., a reasonable classification of good and poor links.
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Once the performance on each of the available channels is estimated, the AP that can provide

the maximum increase in the aggregate throughput by switching channels does so. This approach

in essence, mimics the gradient descent algorithm; it greedily seeks to find the point that exhibits

the maximum increase in the value of the objective function (the throughput).

The same procedure is repeated considering the APs that have not had an opportunity to switch.

When no improvement is possible or the improvement is incremental (ε - line 29), the algorithm

stops. In our implementation, ε = 1.05 (i.e., if there is a 5% or less increase in the total aggregate

throughput as compared to the previous iteration, the algorithm stops).

Approximation Ratio: Gradient-based optimization can be trapped in a local extremum.

Given also that the channel allocation problem is NP-complete, we are interested in finding the

worst case approximation ratio of our algorithm.

The maximum possible aggregate throughput is obtained when all APs operate in an interference-

free setting, and is equal to: Y ∗ =
∑

i∈V

X isol
i as mentioned before. The worst local extremum where

our algorithm can be trapped, is the one in which every AP uses the same (20 or 40 MHz) chan-

nel. In other words, nodes are not just assigned conflicting colors, but are assigned exactly the

same color. This is because, if they are assigned different conflicting colors (a composite color

and a basic color) the achieved throughput will be higher (this is easy to verify). In this case, the

throughput of every AP u will be reduced by a factor of 1
degu+1

, assuming fully saturated traffic,

where degu is the degree of node u
5. Consequently the long-term total network throughput will

be Yworst =
∑

i∈V

1

degi + 1
· X isol

i ≤
1

∆ + 1
·
∑

i∈V

X isol
i , where ∆ is the maximum node degree in

the network. Thus, our algorithm has a worst case approximation ratio of O( 1
∆+1

). As shown in

Section 2.5, in practice, the channel allocation scheme performs much better.

Link quality on different channels: We assume that the quality of a link does not exhibit

significant variations in terms of PER on different channels of the same width. To verify this, we

conduct the following experiment. For all the links, we measure back-to-back, the PER on the dif-

5Note here that, the graph we consider is the interference graph of the network [27] with respect to the APs (vertices

of the graph). Two APs interfere with each other either if they directly compete for the medium or if either competes

with at least one of the other AP’s clients.
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Figure 2.8: Link quality on different channels (without interference) does not exhibit significant

differences.

ferent channels, using the maximum modulation of 64-QAM (MCS = 15 [13]). Figure 2.8 presents

the results from three representative links. Our measurements demonstrate that, indeed, the varia-

tions across the different channels are negligible (for both 20 and 40 MHz channels), making our

assumption realistic. Note that since the results in Fig. 2.8 are with the most aggressive modu-

lation (i.e., 64-QAM), the PER variations are even smaller for other less aggressive modulations.

There are studies (e.g., [20]), that have reported variations in the link quality with different chan-

nels. However, these studies are on single antenna systems. In contrast, in our experiments, we

utilize the MIMO PHY of 802.11n. The use of MIMO makes the performance stable and decreases

variations across the different channels (arising primarily due to fading in single antenna systems).

ACORN can easily be modified, such that each AP scans (one at a time) all the available channels

and gets more accurate information regarding the link quality to its clients. However, this would

add more complexity and increase the convergence time of the system.

Periodicity of our algorithm: The periodicity T with which we apply channel allocation needs

to be carefully chosen. If we apply it too often, then the hit in the throughput could be significant

due to the overhead. If on the other hand, we activate channel allocation too infrequently, the

topology might have significantly changed in the interim and the current allocation might provide

poor performance.
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Figure 2.9: CDF of user association durations.

In order to assess this tradeoff, we use data collected from 206 different (commercial) APs, in

a time period spanning more than 3 years from the CRAWDAD repository [44]. In particular, we

extract the association duration of each user. Figure 2.9 depicts the CDF of the association duration.

More than 90% of the associations last less than 40 minutes and the median is approximately 31

minutes. Based on these data, we run our channel allocation algorithm every 30 minutes.

2.4.3 ACORN and Other Rate Adaptation Algorithms

In our discussion, we have so far assumed that if an AP is configured with a particular channel

width (whether 20 MHz or 40 MHz), that channel width is used for all of AP’s clients. Our results

in Section 2.5 also reflect this assumption since the Ralink RT2880 APs use a fixed channel width

for all of their clients. However, other commercial 802.11n drivers such as ath9k [45] can adjust

the channel width while performing rate adaptation for each AP-client link. Such drivers typically

fall back to robust modulations in combination with a 20 MHz channel width for low-SNR clients,

while continuing to use higher modulations with 40MHz channel width for high-SNR clients. Next,

we discuss how ACORN’s functionality can be easily modified to account for such rate adaptation

capabilities.

User Association: Recall that when a new user u arrives, it considers joining an AP i based on

the per client throughput of i, with and without u associated with it (X i
w,u andX

i
wo,u, respectively).
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Previously, we assumed that when computing X i
w,u, u factors in the delay of its link to AP i based

on i’s current channel width and the resulting modulation (MCS) for the link between u and i. For

the case where, AP i can adjust its channel width for each of its clients, u simply needs to determine

the best channel width (and the resulting MCS) for its link to i, when it computes X i
w,u. Note that

despite this small modification, the user association objective still remains the same as expressed in

Eq. 2.4.

Channel Allocation: ACORN allocates additional channels (e.g., to use WC) to APs that

provide the maximum increase in throughput due to the allocation of that particular channel, in an

iterative fashion. With this, it prevents APs with low-SNR clients from using 40 MHz channels.

Note that this is subject to the assumption that the channel width use by an AP is fixed (and the

same) for all of its clients. However, even if an AP is capable of adjusting its channel width on a per

client basis, ACORN (modified as discussed in the previous paragraph) will ensure that the 40 MHz

channels are assigned to APs that have the maximum benefits in terms of throughput (predominantly

clients with good channel quality). For APs with a large number of clients with poor link qualities,

ACORN may assign 20 MHz channels. In dense deployments of WLANs (as is the case today),

this is especially useful in opportunistically reusing the available spectrum to the maximal extent.

In cells that have been assigned a 40 MHz of channel width, the corresponding APs can easily use

a smaller 20 MHz bandwidth to serve the few clients that have poor channel qualities.

2.5 Evaluating ACORN

In this section, we detail the implementation of ACORN and its evaluation using our 802.11n

WLAN testbed.

2.5.1 Implementation Details

We implement our algorithms using the Click modular router (v1.6) [46]. We implement a user-

level utility that runs both at the APs and the clients. We keep track of the SNR, the nominal rate
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and the association time per client by using the functions implemented in our card’s driver. The

delay for each client is calculated and broadcast in a beacon as described in Section 2.4, along with

theMa values (defined in Section 2.4.1), the number of clients and the aggregate transmission delay

of an AP. The client receives the beacons from every AP in range and makes appropriate association

decisions.

Calculating per client transmission delay and Ma: These metrics are not directly available

since our hardware does not provide access to firmware. We implement a module where every AP

calculates the delay of a client by utilizing our PER estimation procedure and the nominal rate for

the client. We estimateMa for an AP a by 1
|cona|+1

where cona denotes the set of neighboring APs

that reside on the same channel as AP a. This estimation has very high accuracy when these APs

can hear each other under saturated traffic. Accurate management and configuration of WLANs is

of most interest in these regimes i.e., in dense deployments and with heavy loads.

2.5.2 Experimental Evaluations

Comparison with legacy 802.11WLAN configuration systems: We start by randomly assigning

initial channels to APs from the 5GHz band. Clients are then randomly activated one by one.

Each client performs user association (i) as per Algorithm 1 or, (ii) the algorithm described in

[1]. The APs then perform channel selection either as per Algorithm 2 or a modified version of

[1]. We modify the frequency selection algorithm in [1] to implement a greedy strategy where APs

aggressively use the (single width) 40 MHz channels6. Specifically, they scan 40 MHz channels

and select the one that minimizes the total noise and interference. We simply refer to this scheme

as “[1]”.

ACORN significantly improves per-cell throughput in interference free settings: In these

experiments, we have saturated downlink UDP traffic (generated using iperf) from each AP to its

clients. We evaluate ACORN on many different WLAN topologies. We employ all the twelve 20

6As one might expect, simply using the algorithm with 20 MHz channels results in lower rates and correspondingly

lower throughput. For clarity and ease of discussion, we omit these results here.
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Figure 2.10: ACORN can provide throughput gains in interference-free deployments. Solid arrows

depict the association relationship between clients and APs. Dashed APs use 20 MHz with ACORN

and 40 MHz otherwise. Dashed arrows depict the different user affiliation decisions taken by [1].

MHz channels available in the 5GHz band with both ACORN and [1]. Figure 2.10 quantifies our

per-AP throughput observations with a few sample topologies (also depicted). Topology 1 consists

of 2 APs. This is a sparse WLAN where clients are connected with poor quality links with AP1

and good clients are associated with AP 2. We find that the user association with both ACORN

and with [1] are identical. However, the use of the 20 MHz band provides a significant increase (4x

throughput increase) for AP 1 because of its low-SNR client links. In fact, with the 3 dB reduction

in SNR, we observe that the poor clients can hardly communicate with the AP when it uses WC

with [1].

Topology 2 includes 5 APs. We observe that with ACORN, when poor clients associate with

an AP, the AP uses a 20 MHz channel. The same APs apply WC greedily with [1]. The presence

of poor clients reduces the cell throughput of the corresponding AP. These effects are seen with AP

4 and AP 5 of the topology and for these, ACORN provides significant throughput improvements

(6x for AP 4 and 1.5x for AP 5). We also observe that ACORN results in different user associations

for APs 1 and 3; as discussed, ACORN tries to group clients with similar link qualities in the same

cell. In contrast, [1] evenly divides the clients between these APs regardless of the specific client

link qualities. Due to this, AP 3 achieves a higher throughput (1.8x) with ACORN since it serves
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Figure 2.11: ACORN improves the median HTTP file transfer throughput by 1.5x for poor quality

links (left) while retaining the performance of good quality links (right).

only one good quality client. This results in more congestion at AP 1 with ACORN as compared to

[1] since it has to serve more clients. However, interestingly, AP 1 can still achieve the same total

throughput with more clients. We identify the reason behind this to be the following: since ACORN

groups similar-quality clients in one cell, the aggregate throughput does not change despite the fact

that per-client throughput is reduced; the performance anomaly of 802.11 does not take effect.

Similar performance gains are also observed in Topology 3. Here AP 3 achieves a ≈10x increase

when it avoids WC with ACORN. We again observe that ACORN chooses to group similar quality

clients around AP 3, instead of balancing the load across the APs. As a result of this grouping, AP

2 with ACORN also achieves higher throughput since it serves a single good quality client. We

observe a similar behavior with ACORN in a variety of other scenarios.

In addition to downlink UDP traffic, we evaluate ACORN against [1] with a HTTP workload. In

these experiments, we configure the APs as HTTP servers hosting files. The clients download a file

from their APs and we measure the throughput of the file transfer (using wget [47]). Fig. 2.11 plots

the CDF of the file transfer throughputs of each AP. For clarity, we plot the results separately for

two categories of links: a) links that achieve < 8 Mbps throughput with [1] (i.e., poor links) and b)

links with≥ 8 Mbps throughput with [1] (i.e., moderate and high quality links). While maintaining

a similar performance for cells with good client link qualities, ACORN provides significant gains
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Figure 2.12: ACORN provides the highest throughput in settings with interference. X, Y and Z

denote the channel widths (in MHz) used by APs 1, 2 and 3, respectively.

for cells with poor clients. For such clients, ACORN increases the median HTTP throughput by

1.5x. These experiments demonstrate that the application throughput of clients also improves with

ACORN for typical realistic traffic types.

ACORN reduces interference: In dense deployments where channel availability is limited,

ACORN reduces interference at the neighboring APs and provides even higher improvements in

throughput. To showcase this, we experiment with a representative scenario in Figure 2.12 where

the number of APs is not small relative to the number of available channels (unlike in the previous

experiments). We have 3 APs that contend for channel access and there are four 20 MHz channels

made available. AP 1 serves a good quality client and APs 2 and 3 have poor clients associated with

them. When all the APs aggressively use WC, they project interference on each other. In addition,

APs 2 and 3 suffer because of the poor client links. Note that, with 4 channels, only one AP can

use WC to achieve complete isolation. In such cases, it is essential for a channel allocation scheme

to identify the best AP that should exclusively use WC. We observe that, ACORN identifies this

AP and provides the highest throughput as compared to other possible allocations. It provides an

almost 2x improvement over the scheme that aggressively allows WC operations at every AP; the

aggressive allocation causes increased interference and thus, lower throughput.

Comparison with random manual configurations: We compare ACORN against a large

set of manual configurations in terms of assigned channels and user associations. The purpose of

this experiment is to see the effectiveness of ACORN in yielding the highest network throughput.
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ACORN Random Configurations (Descending order)

Network Tput (UDP - iperf) 259.2 201.63, 193.1, 188.56, 187.6, 184.62, 183.39, 169.62, 163.32, 160.47, 159.35

Network Tput (TCP - iperf) 178.93 161.7, 155.77, 134.78, 133.4, 130.64, 114.1, 109.4, 106.6, 103.41, 102.3

Table 2.3: ACORN achieves the highest network throughput (in Mbps) against 10 best (out of 50)

manual configurations.

In this experiment (different from previous experiments), we measure the performance in terms of

both UDP and TCP throughputs (both generated by iperf). The experiments evaluate ACORN’s

performance with unsaturated TCP traffic; since our analysis assumes saturated traffic, we wish to

examine if ACORN works well with unsaturated traffic as well. Note that, we are mainly interested

in scenarios that fully load the network (saturated conditions), since achieving balance and efficacy

is most important in these regimes. However, these experiments (together with the HTTP workload

evaluation) demonstrate the applicability of ACORN in more generic settings.

For a randomly picked topology, we first run ACORN and obtain the total network throughput.

Next, we configure APs with random channels (both 20 and 40 MHz) and let each client associate

with one of the APs in range with equal probability. We repeat this experiment for 50 different

configurations and take the 10 best configurations. Table 2.3 tabulates our results. We observe that

ACORN configures the network in a way that achieves the highest possible throughput as compared

to what is achieved with these random configurations. We wish to point out that ACORN provides

gains with TCP since congestion can still occur at shorter time scales; at such times, the use of

ACORN provides benefits. The decisions relating to WC deliver higher performance since they are

based on client link qualities and independent of the type of traffic. Although the set of random

configurations is by no means exhaustive, the experiments do demonstrate the efficacy of ACORN

in terms of yielding high throughputs.

How close to the optimal is ACORN channel allocation in practice?: Next, we perform ex-

periments to examine the approximation ratios achieved by the ACORN channel allocation module

in practice. We choose 3 APs that compete for channel access in each experiment (i.e., ∆ = 2);

9 such sets of different APs are considered. We then associate clients with each of these APs.
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Figure 2.13: ACORN has approximation ratios better than O( 1
∆+1

) in practice.

We then run saturated UDP downlink traffic from each AP to its clients in isolation for both 20

MHz and 40 MHz channels. We calculate Y ∗, which is the best possible aggregate throughput,

as
∑

i=1,2,3

max(T i
20, T

i
40), where T

i
x is the throughput obtained by AP i using a channel width of x

MHz. Note here that this maximum is achieved when we completely isolate the 3 competing APs

i.e., they do not contend with each other. Subsequently, we run the ACORN channel allocation

algorithm with 2, 4 and 6 orthogonal channels made available. Note here that, 6 orthogonal chan-

nels are enough for all of the APs to simultaneously activate WC. Figure 2.13 depicts the total

network throughput, T , obtained by ACORN in comparison with Y ∗. Note that Y ∗ computed as

above, is a loose upper bound, since complete isolation of the 3 APs is not always possible with

less than 6 orthogonal channels. With 2 channels, ACORN does not perform worse than what is

theoretically predicted; the aggregate network throughput is Y ∗

3
, since the medium access is shared

among the contending APs. In the case of 6 channels, ACORN can achieve Y ∗, since channel

allocation isolates every AP and configures the best channel width for each AP. We observe some

cases where ACORN performs very close to the optimal (what is possible with 6 channels) even

with only 4 channels. Examining the cases with care, we find that there is at least one AP i such

that T i
20 > T i

40; ACORN accounts for this and configures the particular AP with a 20 MHz channel,

leaving 3 channels for utilization to the other two APs.
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Figure 2.15: ACORN tracks the link quality and selects the channel width that gives the higher

throughput over fixed channel widths.

Evaluating ACORNwithmobility: With ACORN, once an AP is assigned a 40MHz channel,

it can opportunistically use its allocated channels. In other words, the AP can opt out from using

WC and only employ the 20 MHz channel (one of the two assigned). Since the other APs choose

their frequencies based on the channels assigned to this particular AP, using either of the two 20

MHz channels will not change the interference on the neighboring APs. This mode of operation is

particularly desirable in WLANs with mobile clients. Since an AP to client link quality can vary

temporally, the AP can dynamically activate the desired width of operation (20 vs 40 MHz) with

ACORN based on the measured link qualities of its clients. We experiment with a scenario that

involves pedestrian mobility. We configure a laptop with the same card that we use in our testbed

and use it as a mobile client. In this experiment, we have a single AP that has 2 static clients in
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addition to the laptop. First, we position the laptop close to the AP and start moving it away from

the AP. Figure 2.14 depicts this trajectory with dark arrows.The AP transmits downlink UDP traffic

to its clients and we record the aggregate throughput measured as a function of time. Figure 2.15(a)

presents the time trace of the aggregate cell throughput during the mobile client’s movement. We

compare ACORN against a configuration that strictly uses a 40 MHz channel. We observe that

ACORN uses the 40 MHz channel in the beginning and sustains this until the point where the link

quality becomes poor for the mobile laptop (around 30 sec). From that point until the end of the

experiment (the client stops at a location far from the AP), ACORN falls back to the 20 MHz mode

and is able to sustain a cell throughput that is almost ten times that of a fixed 40 MHz channel. Note

here that the poor quality link to the distant client affects the good clients as well due to the 802.11

performance anomaly [16]. In a similar experiment, we have our client moving towards the AP, the

trajectory is depicted with striped arrows in Figure 2.14. We compare ACORN against a fixed 20

MHz configuration in Figure 2.15(b). We observe that ACORN uses the 20 MHz until it recognizes

the improvement in link quality (SNR); at that time it switches to a 40 MHz channel (at around 10

sec) and is able to utilize the gains from WC.

2.6 Scope of ACORN

In our experiments, we evaluate ACORN in an enterprise setting where clients choose their AP

from a set of candidate APs. In addition, user association and channel allocation are executed

cooperatively so as to maximize the aggregateWLAN throughput. In residential settings, the clients

typically have only one AP to choose from and the APs may not cooperate towards a common

performance optimization. ACORN’s benefits from user association will not be viable in such

settings. However, ACORN can still be deployed with only the WC decision component. As

shownwith our experiments, ACORN provides significant gains from intelligent application ofWC.

Residential APs often have multiple clients due to the proliferation of mobile devices and wireless

home entertainment systems. In such cases, it is important to prevent throughput degradation due to
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poor quality client links, by carefully applyingWC. Thus, ACORN can also be applied to residential

WLANs to provide potential throughput benefits. Stated otherwise, ACORN is modular in nature

and can flexibly be deployed in various settings.

2.7 Conclusions

The wide channels (WC) feature allows 802.11n nodes to use a wider frequency band towards

achieving high data rates. We show that applying WC has associated caveats and can degrade

performance even in interference-free settings. We conduct extensive experiments to understand

why this is the case. Based on the understanding gained, we design and implement ACORN,

an auto-configuration framework for 802.11n WLANs. We show via extensive evaluations that

ACORN provides significant per-AP throughput gains (as high as 6x) over what is achieved with

prior approaches designed for legacy 802.11 systems that are based on using single channel widths.

To the best of our knowledge, ACORN is not only the first system to consider the application of

WC in 802.11n WLANs but also the first system to consider the use of two distinct channel widths

while performing joint channel allocation and user association.
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Chapter 3

Experimental Characterization of

Interference in

Multicell OFDMA Femtocell Systems

The increase in mobile Internet access is pushing broadband operators towards deploying smaller

cells (femtocells) and sophisticated air interface technologies (Orthogonal Frequency DivisionMul-

tiple Access or OFDMA). The expected high density of deployment and uncoordinated operations

of femtocells however, make interference management both critical and extremely challenging. A

significant challenge stems from the fact that femtocells have to use the same synchronous access

technology as traditional macrocells. Given this, understanding the impact of the multitude of de-

sign choices (originally tailored to well-planned macrocellular networks) on interference manage-

ment forms an essential first step towards designing efficient solutions for next-generation femtocell

networks. This in turn is the focus of our work.

With the help of extensive measurements from our WiMAX femtocell testbed, we character-

ize the impact of various system design choices on interference in OFDMA femtocell deployments.

The design choices that we examine are categorized across three broad dimensions: (i) resource iso-

lation at the logical (MAC) level across femtocells, (ii) resource mapping via sub-channelization at
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the physical (PHY) level within each femtocell, and (iii) synchronization (or lack thereof) between

interfering femtocells. Based on the insights from our measurements, we discuss several implica-

tions on the choice of system design features for femtocell operations. We also provide guidelines

for efficient interference management in femtocell networks.

3.1 Introduction

The demand for higher data rates to cope with increased mobile data usage is driving broadband

providers towards deploying smaller cells (called femtocells) with OFDMA [48]. Femtocells are

much less expensive than their macrocell counterparts and operate at much lower powers [49].

They are installed in homes and enterprises, and use the same spectrum and access technology as

macrocells, while connecting to the core network through cable or DSL backhaul.

Recent industry reports have shown that mobile access to the Internet is steadily increasing

(expected to grow by a factor of 26 in 2015) and around 40% of mobile data originates indoors (i.e.

homes and enterprises) [50]. Femtocells, being deployed indoors, present numerous advantages to

mobile broadband customers and service providers. With femtocells, customer equipment (e.g. 4G

phone, laptop) can save energy on the uplink and enjoy high throughput since it does not have to

transmit to the macro base station that is typically miles away. The downlink throughput is also

increased due to the short ranges of femtocells. In addition, the users can continuously experience

the “5-bar” cellular coverage in areas where the macrocell signal is poor. Recent surveys have

indicated that consumers find femtocells appealing due to above advantages [51]. This increases

user satisfaction and reduces subscriber churn for service providers. In addition, the small size

and low cost of femtocells offer cost-effective ways of providing coverage as opposed to deploying

large and often expensive macrocells. The smaller cell sizes also increase the system capacity via

spatial reuse.

While the above advantages motivate femtocells, they tend to get deployed in an unplanned

manner by end users without direct coordination of the cellular operators, and hence they inevitably
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lead to equivalent unplanned interference which can potentially limit their performance. There are

two potential interference scenarios for typical indoor femtocell deployments, (i) interference from

/ to macrocells and (ii) interference between femtocells. Although macro-femto interference has

been studied (e.g. [52]), interference between femtocells has not received much attention before.

If not properly understood, evaluated and accounted for, this can cause significant degradation in

femtocell performance.

Resource management solutions to mitigate interference between femtocells cannot, however,

be designed from scratch. These cells have to inter-operate with and use the same access technol-

ogy as macrocells. There are three key aspects that make resource management both challenging

and unique in femtocells: (i) Femtocell deployments are dense and uncoordinated unlike planned

deployments of macrocells. Thus, unlike in macrocells where interference is localized at cell-edges,

interference is less predictable and more pervasive across cells. (ii) Unlike in macrocells, it is harder

to achieve synchronization across interfering femtocells (deployed by different users). The impact

of this lack of synchronization on resource management is not well understood; one might however,

expect that this would make resource management harder. (iii) Macrocell access technology dic-

tates a synchronous channel access mechanism for femtocells (unlike asynchronous random access

in WiFi). WiFi systems adopt carrier sensing that arbitrates access to the transmission medium.

While this can help cope with some of the interference scenarios, a more widely-adopted approach

is to tune interfering WiFi APs to orthogonal channels (of same bandwidth) in the unlicensed spec-

trum. Femtocells lack the carrier sensing feature and operate on a licensed spectral band (i.e.

orthogonal channels are not available). Therefore, if interfering femtocells need to be tuned to or-

thogonal frequencies (for purposes of interference mitigation), they have to be assigned orthogonal

sub-channels (fragments of the licensed spectrum). This reduces the bandwidth per femtocell and

thus, the throughput. These factors necessitate the design of novel interference management solu-

tions for femtocells. However prior to that, one has to understand the impact of various features of

the macrocell access technology on interference among femtocells.
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In this chapter, we present one of the first and most detailed measurement studies of OFDMA

femtocell networks, performed using our WiMAX femtocell testbed. We provide an in-depth un-

derstanding of the impact of design choices made in the macrocellular context, on resource man-

agement in femtocells. These design choices are categorized along three broad dimensions. (i) Re-

source isolation across femtocells: isolation of transmissions between interfering cells can be either

in the time or frequency domain. (ii) Resource mapping or sub-channelization in each femtocell:

OFDMA sub-channels that provide the basic granularity of transmissions at the MAC layer, map

onto a set of sub-carriers (tones) at the PHY layer. Varying the sub-carrier composition (group-

ing) of sub-channels using (a) contiguous or distributed grouping, and (b) different permutation

sequences, can impact performance. (iii) Synchronization: lack of tight synchronization between

femtocells can exacerbate interference given the rigid frame structure (designed for macrocells).

Synchronization impacts both resource isolation and mapping.

Our study reveals several interesting (and sometimes surprising) effects. We carefully examine

these and provide inferences that help understand the implications of the aforementioned design

choices in the interference-rich femtocell environment. The study thus allows us to provide guide-

lines which would enable femtocells to effectively manage resources towards achieving both high

per-cell and network-wide performance. Our key findings are as follows.

• Unlike in macrocell networks, isolation of transmission resources between interfering cells

is critical towards alleviating pervasive interference that arises due to dense uncoordinated

deployments.

• Surprisingly, resource isolation in the frequency domain increases the system capacity as

compared to time domain resource isolation (reasons discussed later).

• A contiguous composition of subcarriers (as opposed to a distributed composition) at the

PHY level reduces interference due to frequency offsets across cells. This can significantly

aid performance.

• Permuting the subcarrier composition of sub-channels at the PHY level can provide only
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limited benefits. These benefits are due to the fact that different subcarriers are subject to

different interference patterns.

• Frame-level synchronization between base-stations (BSs) yields predictable benefits from

resource isolation. More importantly, there is still merit to isolating resources even in the

absence of synchronization (discussed later).

The rest of the chapter is organized as follows. In §3.2, we provide brief background onWiMAX

and OFDMA, and discuss related work. §3.3 describes our experimental platform and methodology.

§3.4, 3.5 and 3.6 describe our measurements related to resource isolation, resource mapping and

synchronization. The inferences that we draw from our measurements and guidelines for efficient

femtocell network operations are in §3.7. In §3.8, we discuss how our work applies to OFDMA

systems other than WiMAX. Our conclusions form §3.9.

3.2 Background and Related Work

3.2.1 Related Work

Multicell OFDMASystems:While OFDMAbroadband standards (WiMAX, LTE) have been drafted

recently, related research has existed for quite some time. There are studies that address problems

in multicell (e.g. [53, 54]) OFDMA systems. Several efforts have looked at the interference to cell-

edge users in OFDMA macrocells. The localized interference coupled with planned cell layouts

have aided various solutions (e.g. [55, 56]). Femtocells lack the desired features of localized in-

terference, planned deployments and coordinated operations of macrocells. This necessitates novel

resource management solutions. There have been some recent works [53, 6] that propose such solu-

tions but are restricted to theory. In practice, OFDMA femtocells are under trial by several network

operators and are yet to be deployed. To our best knowledge, there are no studies to date that shed

light on real-life performance of OFDMA femtocells.
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Figure 3.1: A simplified illustration of the WiMAX frame structure.

WiFi and OFDMA: Recent efforts show the benefits of OFDMA in the WiFi context by build-

ing practical systems that enable dynamic spectrum fragmentation [57, 58] and adaptive channel

width [59]. [60] explores 802.11 with OFDMA. Since WiFi is based on asynchronous channel

access, the main focus in all these efforts is enabling synchronization and alignment between a TX-

RX pair (crucial for OFDMA). However, OFDMA is a mature technology where synchronization

between a TX-RX pair is a standard feature. While the synchronization benefits are carried over to

femtocells, this also limits their ability to manage interference effectively (i.e., lack of carrier sens-

ing). This renders previous approaches addressing interference in WiFi (e.g. [2, 61]) inapplicable

to OFDMA. Several design choices made for macrocells have to be revisited in a femtocell context.

3.2.2 WiMAX Preliminaries

While our study applies to OFDMA femtocells in general, our measurements are on a WiMAX

(802.16e [62]) femtocell testbed. Hence, we overview of some of the relevant WiMAX components

(more details in [62]).

MAC Frame Structure: With OFDMA, the spectrum is divided into multiple frequency tones

(sub-carriers) and several sub-carriers are grouped to form a sub-channel. A WiMAX frame be-

comes a two-dimensional template that needs to be scheduled with data to multiple mobile stations

(MSs) across both time (symbols) and frequency (sub-channels). The combination of a symbol and

a sub-channel constitutes a tile, which is the basic unit of resource allocation. Data to users are

allocated as rectangular bursts of tiles in a frame.
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In OFDMAmacrocells, frames are synchronized both between the BS and MSs and across BSs.

An example of a WiMAX frame is shown in Fig. 3.1; the transmissions from the BS to the MS

(downlink) and those from the MS to its BS (uplink) are separated in time. The frame consists of

the preamble, control and data payload. The preamble is used by the MS to lock on to the BS. The

control consists of FCH (frame control header) and MAP. MAP conveys the location of the data

burst for a MS in a frame. A BS schedules tiles both on the downlink and the uplink. The DL-MAP

indicates the location of each burst in the frame, the MS it is intended for, and the modulation and

coding scheme (MCS) in use. The UL-MAP indicates where the MS should place its data on the

uplink frame. The different MCS levels in 802.16e are also shown in Fig. 3.1. While data bursts can

be modulated using any MCS, the standard mandates using QPSK for the control part. In addition,

the preamble is transmitted with a higher power compared to the other parts of the frame.

PHY Resource Mapping: While the MAC frame allocates resources at the granularity of tiles,

transmitted bits map on to sub-carriers at the PHY. WiMAX offers options for the grouping of

sub-carriers to form a sub-channel.

One aspect of grouping is related to the degree of contiguity in the sub-carriers. WiMAX pro-

vides three options here (see Fig. 3.2). FUSC (full usage of sub-carriers): sub-carriers composing

a sub-channel are picked in a completely distributed manner from the spectrum; PUSC (partial

usage of sub-carriers): sub-carriers are first grouped into clusters and distributed clusters are then

grouped to form a sub-channel; AMC (adaptive modulation and coding): contiguous set of sub-

carriers are grouped to form a sub-channel. AMC has perfect contiguity and hence retains the

frequency selectivity of user channels. However, leveraging this diversity requires feedback of

channel quality information (CQI) on all sub-channels from all users. FUSC loses frequency selec-
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tivity due to lack of contiguity, but requires only one CQI feedback (an average over the spectrum)

for each user. PUSC strikes a good balance between frequency selectivity and overhead; it retains

some contiguity via sub-carrier clustering and feeds back one CQI value similar to FUSC. PUSC is

the default mode in 802.16e. The first generation of WiMAX devices implement PUSC and FUSC

alone. Hence, we restrict our discussions to these modes.

Once the degree of contiguity is decided, the next step is to determine how the sub-carriers

are picked. This is achieved by using pre-defined permutations in 802.16e. A total of 16 and 8

permutations are available with PUSC and FUSC, respectively. We defer a detailed discussion of

these to §3.5.

3.2.3 Our work in perspective

Unlike in macrocells, interference is less predictable and more pervasive in dense, unplanned fem-

tocell deployments. While interference has a direct impact on the decoding of the data bursts, it

also significantly increases the vulnerability of the control part of the frame which is critical for de-

coding. To understand the impact of interference in femtocells, we perform extensive experiments

on a WiMAX femtocell testbed. In particular, we seek the answers to the following:

• Does interference require resource isolation or can it be addressed by choosing the right MCS

for each transmission (via link adaptation) ?

• If resource isolation is required, should it be achieved in the time or in the frequency domain?

• Is it sufficient to isolate resources for data bursts alone or is isolation also needed for the

control part of a frame?

• Can resource mapping at the PHY aid resource isolation?

• What is the impact of the lack of synchronization across interfering BSs, on resource isolation

and mapping?
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.

We believe that answering these will lead to guidelines for efficient interference management in

femtocell networks.

3.3 System Description

Experimental Setup: Our testbed consists of three femtocells deployed in an indoor enterprise

environment (Fig. 3.3) each with one client. We use PicoChip’s [63] femtocells that run 802.16e

(WiMAX). Our clients are black boxes that use commercial WiMAX cards (plugged into laptops)

from Accton [64] 1. Since WiMAX imposes a rigid frame structure (fixed locations for preamble

and control), the measurements can be executed by mainly varying the positions of the data bursts.

For this purpose, we modify the downlink scheduler code at the BS to perform measurements

in a variety of scenarios. Note that any change in the BS scheduler (permitted by the standard

[62]) is automatically conveyed to the clients via FCH and MAP. The cells operate on a 8.75 MHz

bandwidth with the carrier frequency of 2.59 GHz. For this frequency, we obtained an experimental

license from FCC to transmit WiMAX signals on the air.

Synchronous Transmissions: OFDMA uses synchronous channel access where a BS transmits

a downlink frame periodically (5 ms for WiMAX). The clients align their receivers in time with the

1We use the terms client - MS and femtocell - BS interchangeably.
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BS to receive these periodic transmissions. The failure of downlink frame delivery will cause a

client to disassociate from the BS. If there is no data to be sent to the MS(s), the BS has to transmit

at least the preamble and the control payload to keep the MS(s) in sync.

Although frames are synchronized between a client and its BS, they may not be synchronized

across BSs. In other words, the start of a femtocell’s downlink frame may not be aligned in time

with another femtocell’s downlink frame. We perform experiments with both synchronized and

unsynchronized frames among the BSs. While each BS has its own internal clock, they are initially

not synchronized with each other. To achieve synchronization across femtocells, we use external

GPS modules (antennas placed close to a window) from TeraSync [65] to provide a 1 pps (pulse

per second) signal to each BS, thereby aligning the start times of downlink frames. One particular

challenge that arose in our efforts was that there was already an on-board clock oscillator; we

needed to manually desolder the oscillator from the radio boards to use the external clock and the 1

pps signal from the GPS. Note that once synchronization is achieved, it will hold true for the uplink

frames of BSs as well (given the fixed downlink frame size and transmit gap).

Experimental Methodology: We focus on cell 1 for our measurements. The other two BSs

project interference (unless noted otherwise) on cell 1. Note that when BS 1 is transferring data to

its client (client 1), even switching on other BSs (without any data transfer) will cause interference.

This is because, every BS keeps transmitting the preamble and control information even when no

clients are associated with it. However, when data transfer is also involved, the impact of inter-

ference is more severe. To understand these different aspects of interference, we pick the client in

cell 1 and measure its throughput in the presence of either one or two other interfering cells, both

with and without data transfers in the interfering cells (to clients 2 and 3). We consider downlink

UDP traffic from the BSs to the clients generated by iperf. The traffic rate is set large enough to

saturate the available tiles. A client’s throughput is a function of the number of tiles in the allocated

burst (symbols ∗ sub-channels) and the number of bits that the selected MCS encodes. Under these

conditions, interference is projected by other BSs that transmit bursts (to their respective clients)

using a set of tiles that collide with that of the BS - client pair under consideration.
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Generating Topologies: OFDMA uses synchronous access as opposed to the asynchronous

random access in WiFi systems. This fundamental difference reveals different dependencies among

interfering entities in WiFi and OFDMA. In WiFi, interference can either hurt the reception at the

client (due to collisions) or the transmission at the AP (due to carrier sensing). Since an OFDMA

transmitter does not sense the medium, a nearby interferer does not preclude it from transmitting

frames. Thus, interference in OFDMA solely hurts the client reception the extent of which is deter-

mined by parameters such as client location, propagation environment and transmission power of

BSs. Therefore in measuring interference, we mainly vary the locations of clients (as opposed to

moving the BSs) to generate a plurality of scenarios. Our deployment is a typical indoor environ-

ment with walls, doors, rooms and cubicles. Varying the locations of clients gives us a finer level

of detail to cover a wide range of scenarios that include LOS and NLOS links. We call a given

triplet {bs, cl, int} a topology where bs is the BS that the client is associated to, cl is the location of

the client and int is the set of BSs that project interference on the client. Each measurement point

corresponds to a topology and is obtained by running an experiment for 7 minutes, measuring the

throughput and averaging it over several such runs.

Link Adaptation: The impact of interference on a client depends on the interference power

received (i.e. location) and the MCS used for the transmission. The SNR required for correct

decoding increases with higher MCS levels and thus, the impact of a given interference power is

more severe with higher MCS. Note that femtocells are meant to be user-installed at homes and in

enterprises. Hence, the baseline strategy is one where a femtocell operates on its entire spectrum,

while performing link adaptation (MCS selection) for each of its clients. While link adaptation

impacts client throughput in the presence of interference, current link adaptation solutions are sub-

optimal. Therefore, we consider ideal link adaptation, whereby for each data point, we sequentially

run the experiment over all MCS levels and record the one delivering the highest throughput for the

given topology. Since we experiment in a slowly-varying static indoor environment, it is feasible to

consider link adaptation as above.
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Figure 3.4: Hexagonal cell deployment. BSs transmit to center clients (C) using all sub-channels.

Three separate orthogonal segments of sub-channels are used at cell edges.

Given that there are a multitude of design features that can have an impact on interference among

femtocells, we categorize our study along the following three dimensions: (i) resource isolation, (ii)

resource mapping, and (iii) synchronization. To isolate the benefits of resource isolation and map-

ping from the impact of synchronization, we consider the first two dimensions with synchronized

femtocells.

Scalability of Inferences: Femtocells are constrained to inter-operate with the macrocell stan-

dards. Specifically, macrocells use 1:3 fractional frequency reuse (FFR) based on a hexagonal

deployment as illustrated in Fig. 3.4. To support 1:3 FFR, the OFDMA (WiMAX) frame is seg-

mented to form up to three non-overlapping sets of sub-channels. In macrocells, this segmentation

is used for both the control and data parts of the frame resulting in perfect isolation of resources.

This means at most two interferers can be accommodated on the same frame on orthogonal sub-

channels. Thus, any study that considers segmentation for interference avoidance requires only two

interferers to be considered. If there are more than two interferers, the interference effects can only

be studied where some sub-channels are inevitably reused by multiple BSs for the control payload.

With such reuse, interference on a BS to client link is quite disruptive even with two BSs causing

interference (shown later); the effects of interference will only exacerbate with more interfering BSs

and our inferences will still hold. Thus, we believe that our three cell system effectively captures

all cases that arise in realistic femtocell deployments.
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Figure 3.5: Prevalence of Interference

3.4 Resource Isolation

In this section, we examine the impact of various MAC level design choices on interference.

3.4.1 Prevalence of Interference

First we ask, How prevalent is interference in femtocell deployments? Client 1 is the desired client

whose throughput is measured (see Fig. 3.3 and note that client j ∈ cell j). While the locations

of clients 2 and 3 are fixed (very close to their BSs), the location of client 1 is varied to generate a

plurality of topologies. Either one or both interfering cells (cells 2 and 3) are activated and transfer

data to their clients so as to interfere with client 1’s reception. All cells use the available spectrum

entirely. At each location, we first find the best MCS for client 1 without interference; this MCS is

then fixed during interfering transmissions (no link adaptation). The reason for using this fixed rate

is to see in what percentage of locations a given client is impacted by interference (where it could

have achieved a high throughput in isolation). We consider cases with link adaptation later.

The CDF of the throughput at client 1 over numerous topologies is presented in Fig. 3.5. The

throughput without interference is used as a benchmark and compared against that with one and two

interfering cells. While the client sustains a median throughput of 11 Mbps with no interference,

this decreases to 5 Mbps with one interfering cell, and is close to 0 Mbps with both interferers

(≈ 60% of the locations have 0 Mbps). This clearly shows the pervasive impact of interference
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in indoor femtocell deployments. The maximum throughput in all cases is the same because these

correspond to locations where client 1 is very close to its BS; here, it is effectively shielded from

the interferers.

3.4.2 Resource Isolation vs. Link Adaptation

We now ask, Does link adaptation by itself suffice in alleviating the impact of interference or is

isolation of resources (tiles) needed? Switching to a lower MCS via link adaptation can provide

increased robustness to interference when the client’s SNR is above the threshold required for that

lower MCS level. If the received SNR is even lower than the most basic MCS requirement, this

does not help. Isolating tiles (in conjunction with link adaptation) between cells helps alleviate the

effects, but it comes at the cost of a reduced set of available tiles. In summary, the relative benefits

of the two approaches depends on the severity of interference.

In a two-dimensionalWiMAX frame (see Fig. 3.6), resource isolation can be either via (i) time-

domain isolation or TDI (symbols) or via (ii) frequency-domain isolation or FDI (sub-channels).

TDI isolates resources in time by offsetting the frames of multiple BSs and leaving empty (guard)

tiles to prevent collisions. FDI for data (denoted FDIdata) allocates orthogonal sub-channels to

multiple BSs only for data. The preamble and control parts use all available sub-channels. FDI for

data and control (denoted FDIctrl) allocates orthogonal sub-channels for both the data and control

parts. Note that with FDIctrl, due to the reduced number of sub-channels for the fixed-size control

part, it takes a higher number of symbols to transmit this part. Thus, slightly fewer tiles are available

for data bursts.

To understand the relative benefits of resource isolation and link adaptation, we experiment

with two strategies: (i) two cells operating on all resources (baseline) and (ii) two cells operating

on orthogonal sets, each containing half the sub-channels in a frame (FDIctrl). For both strategies,

we measure the throughput at client 1 in the presence of the other interfering cell (cell 2) by cycling

through all MCS levels and recording the MCS yielding the highest throughput. The results are

measured over several topologies (not necessarily same as the locations in Fig. 3.5). From Fig. 3.7,
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Figure 3.6: Illustration of TDI and FDI strategies.
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Figure 3.7: Isolating resources typically provides higher throughput gains than link adaptation with

full set of resources.

we see that making tiles orthogonal limits the maximum (median) throughput that can be achieved

to 6.3 Mbps (5 Mbps), because of using half of the frame. However, this is still much higher than

that using all tiles with link adaptation. For a small fraction of topologies, the baseline outperforms

FDIctrl; these are the locations where the SNR is high enough to support a lower MCS.

An effective resource isolation scheme has to opportunistically use all sub-channels and acti-

vate resource isolation only when it can provide benefits. Note that this is a fundamental difference

between OFDMA and WiFi. In WiFi, interfering APs still use the entire spectrum albeit on an

orthogonal channel. Thus, resource isolation (i.e. switching to a different channel) does not re-

duce bandwidth. On the other hand, resource isolation in OFDMA must be administrated with
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Figure 3.8: Benefits of Frequency Domain Resource Isolation.

care. To summarize, in femtocell deployments, link adaptation is typically insufficient to alleviate

interference and has to be coupled with resource isolation. However, opportunities exist where just

using link adaptation is beneficial. An effective resource management system must identify these

opportunities and exploit them.

3.4.3 Frequency vs. Time Domain Isolation

Next, our goal is to understand whether resources should be isolated in time or in the frequency

domain. We consider three strategies: with the baseline strategy, BSs operate using all resources.

With TDI and FDIctrl, BSs operate using half of the (orthogonal) available set of symbols and

sub-channels respectively, in each frame (illustration in Fig. 3.6). All the strategies employ link

adaptation via cycling through the MCS levels as discussed before.
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We begin by considering two cells (cells 1 and 2). Aggregate throughput results of both clients

1 and 2 from a representative subset of topologies (created by varying the locations of both clients)

are presented in Fig. 3.8(a). While resource isolation provides significant gains over the baseline,

isolation in the frequency domain outperforms that in the time domain by about 20%. We repeat

these experiments with all the three cells, each cell operating on a third of the resources during

isolation. The CDFs of the aggregate throughput gain of FDIctrl over TDI are computed over

several topologies and presented in Fig. 3.8(b). We observe that while the median gain of FDIctrl

over TDI is about 17% for two cells, it increases sharply to about 60% for three cells.

A deeper look into this surprising observation reveals an inherent property leveraged by FDIctrl,

referred to as power pooling. The energy transmitted by a BS is split over its constituent sub-

channels in OFDMA. Hence, when a smaller subset of sub-channels are used, the average power

per sub-channel increases, potentially allowing operations with a higher MCS than before. As

more links are included, the number of (orthogonal) sub-channels available per link decreases; this

however, increases the average power and hence the throughput per sub-channel. Since the total

number of sub-channels remains the same in the network, the higher per sub-channel throughput

translates to a higher network capacity. To illustrate, we consider cell 1 without interference and

fix the MCS. Then we decrease the number of sub-channels and measure the throughput. The per

sub-channel throughputs of client 1 at two different locations, one with MCS 3 and other with MCS

5 (see Fig. 3.1) are presented in Fig. 3.8(c) (results with other MCSs show similar trends but are

not included to avoid cluttering the plot). We see significant gains due to power pooling on a subset

of sub-channels. Reducing the set of sub-channels increases the average SNR on each sub-channel,

allowing it to better sustain (decode) the MCS of operation. However, once the SNR is sufficient

to sustain the MCS, any further power pooling will not yield additional gains (as with MCS 5). In

Fig. 3.8(d) we plot the fraction of topologies over which the MCS supported by client 1 increases

with FDIctrl as we go from two to three links. We see that a majority of the topologies benefit from

an MCS gain of two levels in the three link case due to power pooling, thus resulting in the higher

gains seen in Fig. 3.8(b).
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Note that the ability to pool the power of multiple cells (links) comes only with FDIctrl and not

with TDI. Hence, operating multiple cells on a subset of sub-channels but orthogonalizing them

using FDIctrl is the key to alleviating interference and increasing network capacity via power pool-

ing. While one can completely isolate the tiles (for control and data) between cells in FDIctrl,

achieving this with TDI is more challenging. Given that the control part has to immediately follow

the preamble, TDI requires guard spaces over several OFDMA symbol durations to prevent colli-

sions between interfering cells. With TDI, we measure the link throughputs without interference

and take their time average to emulate perfect isolation in time domain. However, even with this

best case scenario for TDI, the performance of FDIctrl is still superior.

3.4.4 Control vs. Data Isolation

Unlike with TDI, the control payload can easily be isolated in FDIctrl. However, standards restrict

the flexibility of isolation especially for the control part. For e.g., with WiMAX the control part

can be only placed in three distinct sub-channel regions (segments) i.e., isolation is provided for at

most three cells. If there are more cells in an interference domain, then the overlap of control parts

cannot be completely eliminated. We seek to understand “What is the impact of not isolating the

control part and whether data isolation can still provide benefits in such scenarios?”

We consider two cells (cells 1 and 2) and measure the throughput at client 1 with interference,

with three strategies: baseline, FDIdata and FDIctrl (all employing link adaptation). The histogram

of the results over several topologies is presented in Fig. 3.9(a). The median throughputs of the

baseline, FDIdata and FDIctrl are around 0.3, 2.5 and 5Mbps, respectively. This indicates that while

complete isolation of both control and data parts can significantly alleviate interference, isolating

sub-channels for the data part alone (with control parts experiencing interference) can still deliver

significant benefits over the baseline strategy.

Next, we investigate the robustness of FDIdata and FDIctrl to increased interference. We now

include cell 3 with the same set of sub-channels as cell 2 (already orthogonal to those in cell 1);

thus, it only projects increased interference on the control payload for client 1. We present a subset
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Figure 3.9: Impact of Increased Interference on Resource Isolation Strategies.

of our measurements in Fig. 3.9(b). We see that increased interference does not have an impact on

FDIctrl due to complete isolation (control + payload) of resources. However, increased interference

on the control payload does degrade performance with FDIdata by 20-30%; however, FDIdata still

delivers throughput gains over the baseline strategy.

Our next experiment is with two cells (cell 1 and 2) and their clients. Initially both clients are

close to their BSs (see Fig. 3.9(c)). Gradually, we increase the distances of both clients from their

BSs and move them closer to the interfering BS (as indicated by the arrows). The corresponding

aggregate throughput for the three strategies shown in Fig. 3.9(d), clearly reinforce the benefits with

FDIdata. We see that if the clients are close to the BS, the difference in throughputs with FDIctrl

and FDIdata is insignificant since the control part is not susceptible to interference; however, as they

move away, the control part is affected and the throughput with FDIdata decreases (still outperforms
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Figure 3.10: Possible interference scenarios.

baseline). In summary, although perfect isolation of both data and control parts is best, if control

part isolation is not feasible, data part isolation can still deliver significant throughput gains.

3.4.5 A Microscopic View

We have thus far presented macroscopic results on resource isolation. Next, we provide some of

the microscopic insights from our experiments. Our clients’ connection manager reports statistics

including signal strength, erroneously decoded packets and the cause of errors. The causes of errors

prove especially helpful in analyzing a scenario.

Fig. 3.10 depicts different scenarios seen in our experiments. Although both the control and

data payloads are isolated in FDIctrl, collision of preambles of interfering BSs inevitably occur.

We observed rare cases with FDIctrl where, the MS disconnects from its BS due to interference.

We find that by placing the MS at a location very close to the interfering BS causes it to drop

the connection since it cannot correctly decode the preamble from its BS (due to high power from

the interfering BS). This was also common to the other scenarios (baseline and FDIdata). For

FDIdata, overlap of the control payloads across cells is also a factor. We found that at locations

where the control payload was corrupted, the client did not receive any packets (0 Mbps). This

is because of the loss of DL-MAP which contains the parameters for correct decoding of the data

bursts. Although the data bursts are isolated from interference, the corruption of DL-MAP impacts

performance. Finally, with the baseline strategy, the preamble, control and data, all overlap. This
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Figure 3.11: Impact of Sub-carrier Contiguity on Interference.

explains the results in §3.4.2. The clients receive 0 Mbps throughput even with link adaptation due

to preamble and control payload collisions; benefits are limited to a small subset of locations where

the interference only affects the data payload.

3.5 Resource Mapping

We have so far considered isolating resources at the MAC (logical) level of sub-channels to alleviate

interference. However, the sub-carrier composition of sub-channels remained the same across cells.

Next we investigate how varying the sub-carrier composition at the PHY, can impact performance.
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3.5.1 Contiguous vs. Distributed Grouping

Recall from §3.2 that current WiMAX implementations widely adopt two modes of sub-carrier

grouping: contiguous (PUSC) and distributed (FUSC). Before considering interference, we exper-

iment with PUSC and FUSC without interference to understand their baseline performance. We

present client 1’s throughput at various locations in Fig. 3.11(a). Note that FUSC uses 768 sub-

carriers, while PUSC uses only 720 per symbol. Hence, a normalizing line is drawn at y = 768
720

x =

16
15
x. The clustering of points around this line indicates that the throughput of PUSC and FUSC are

similar in the absence of interference.

We now introduce interference from cell 2 and measure client 1’s throughput at various loca-

tions. While PUSC isolates both the data and control parts, FUSC does not allow for control part

isolation [62]. With PUSC, we consider both FDIctrl and FDIdata. The results from a representative

set of topologies are in Fig. 3.11(b). Three inferences are in order: (i) PUSC outperforms FUSC

with an average gain of 35%. This can be attributed to the following effect. While the frequency

offsets between cell 1 and its client 1 are taken care of using signaling in the frame, the synchro-

nization provided externally between the cells does not address the frequency offsets between the

interfering cell (cell 2) and client 1. This disturbs the orthogonality of sub-carriers between cell 1

and cell 2. Hence, although orthogonal sub-channels are used at the MAC, frequency offsets across

cells allow energy from sub-carriers of cell 2 to spill over the adjacent sub-carriers of cell 1. This

degrades the decoding quality at client 1. In PUSC, a contiguous set of 14 sub-carriers are grouped

to form a cluster; clusters are then grouped to form a sub-channel. This contiguity of sub-carriers

(within a cluster) in a sub-channel in PUSC, limits the corruption of sub-carriers (due to frequency

offsets) only to those at the edges of the clusters. However, since the sub-carriers in a sub-channel

are completely distributed in FUSC, most of the sub-carriers are vulnerable to the above effect.

This explains the loss in performance. (ii) As one might expect, with PUSC, FDIctrl outperforms

FDIdata. (iii) Interestingly however, in location 4, we find that FDIctrl does not perform the best.

This is because, when the control part is isolated, it expands into the data part, thereby reducing
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the number of tiles available for the data payload. Hence, if the interference on the control part is

not severe, the loss in throughput due to the expansion of the control part outweighs the benefits of

FDIctrl.

A more extensive set of measurements with each strategy is in Fig. 3.11(c). It is seen that PUSC

with FDIdata provides a median gain of 50% over FUSC, while PUSC with FDIctrl can provide

an additional gain of 50%. Further, for about 20% of the topologies where interference on the

control part is such that it does not prevent correct decoding, FDIctrl does not pay off. In summary,

distributed sub-carrier grouping (FUSC) is more vulnerable to frequency offsets across cells. This

degrades performance in the presence of interference. Further, FUSC can isolate resources only

for the data part unlike PUSC and hence, is limited in addressing interference. In cases without

interference, FUSC outperforms PUSC due to the higher number of sub-carriers.

3.5.2 Different Permutation Sequences

In §3.5.1, we studied the impact of contiguity in sub-carrier grouping, while keeping the tiles or-

thogonal between interfering cells. Given the benefits of PUSC over FUSC, we will now only

consider PUSC and study permutations that control the sub-carrier composition and hence, re-

source orthogonality between cells at the PHY layer. In PUSC, the spectrum is first divided into

14 contiguous sub-carrier sets called clusters. Then, the physical clusters are shuffled as per a

pre-determined renumbering sequence; these form the logical clusters, which are then gathered un-

der major groups as in Fig. 3.11(d). Two logical clusters within a group are combined to form

a sub-channel; thus, 30 sub-channels can be formed from 60 physical clusters. WiMAX uses the

following formula [62] to renumber the physical clusters:

LN = R(PN + 13 · permbase) modNclusters

where LN is the logical cluster number, PN is the physical cluster number and R is the renum-

bering sequence. Varying the permutation base (permbase) changes the set of physical clusters

70



BS 1

BS 2

P
H

Y
 c

lu
s
te

rs

M
A

C
 S

u
b
-c

h
a
n
n
e
ls

Renumbering (perm. base)

(a) Permutation Illustration

 0

 2

 4

 6

 8

 10

1 2 3 4 5 6 7 8

T
h
ro

u
g
h
p
u
t 
(M

b
p
s
)

Perm Base

Loc 1
Loc 2
Loc 3

(b) No Interference

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.5  0  0.5  1  1.5  2

C
D

F

Throughput Gain

Baseline
SH

DH (FDIdata)

(c) Two Cell Interference

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 3

T
h
ro

u
g
h
p
u
t 
(M

b
p
s
)

Topology

DH (FDIctrl)
SH, Same PermBase

SH, Diff PermBase

(d) Physical vs. Logical Isolation

Figure 3.12: Impact of Sub-carrier Permutation on Interference.

forming a sub-channel. Hence, two cells with orthogonal sub-channels (at the MAC) can still col-

lide on some sub-carriers at the PHY (if their permutations cause this to happen). Fig. 3.12(a)

illustrates two BSs using the same permutation base with orthogonal sub-channels at the MAC to

maintain orthogonality at the sub-carrier level.

We first study the impact of permutations on a single cell (cell 1) without interference. The

result in Fig. 3.12(b) shows that the frequency selectivity of the link varies with permutations,

causing throughput fluctuations of 1-2 Mbps across different permutations. We refer to this inherent

diversity as the permutation gain.

To understand the impact of permutations on interference, we consider two cells (cells 1 and 2)

and three strategies: (a) baseline: both cells use all sub-channels; (b) Same Half (SH): both cells
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use the same (half) set of logical sub-channels; and (c) Different Half (DH): the cells use orthogonal

(half) sets of logical sub-channels (FDIdata). Note that all three strategies use all sub-channels for

the control part. In each strategy, cell 2 is fixed on permutation base 0, while cell 1 cycles through

different permutations (including 0). The throughput of client 1 is measured at various locations.

The throughput when cell 1 uses a different permutation (other than 0) than cell 2 is compared

to that when both cells use the same permutation and the relative throughput gain is obtained. A

CDF (over topologies) of the throughput gain of using different permutations is presented in Fig.

3.12(c). Three inferences can be made: (i) when using all resources, varying the permutations

can bring a median gain of about 30%. Note that when all sub-channels are used by both cells,

changing the permutation will not reduce the number of overlapping sub-carriers between the two

cells. However, the permutation gain due to frequency selectivity (Fig. 3.12(b)) will still remain in

the presence of interference, largely contributing to the gain observed. (ii) the median gain when

using the same (half) set of sub-channels is much higher (at about 60%) compared to when using all

sub-channels. Although both the cells use the same logical set of sub-channels, leaving half the sub-

channels empty allows different permutations to select different sets of sub-carriers corresponding

to the same set of sub-channels. This reduces the number of overlapping sub-carriers between the

cells and hence interference, a benefit we refer to as interference reduction gain. This coupled with

the permutation gain contributes to the large benefits observed with SH. (iii) With DH, the logical

sub-channels used between cells are orthogonal to begin with. Hence, using the same permutation

maintains the orthogonality at the sub-carrier level as well. However, when the permutation is

changed between cells, this has an opposite effect (compared to SH), whereby sub-carriers now

start overlapping and introducing interference. Unlike in SH, where permutation and interference

reduction gains reinforce each other, they are in conflict in DH. Given that interference dominates

performance, we see that using different permutations causes a median loss of about 20% with DH;

permutation gain is dominant in only about 20% of the topologies.

We now compare DH with a fixed permutation that provides perfect isolation between cells

(FDIctrl) against SH that uses different permutations. The results for a representative subset of
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topologies are in Fig. 3.12(d). As before, employing a different permutation improves performance

in SH. However, since the permutation cannot be controlled to completely isolate the sub-carriers,

interference still exists. Thus, its performance is inferior to that of DH with the fixed permutation.

It is extremely hard to determine the permutation that yields the best performance since it varies

not only with the client location, but also with the interfering cells. Fig. 3.12(b) clearly indicates

that the permutation yielding the best throughput is very location-specific. An improperly chosen

permutation may degrade performance, even in the absence of interference. A permutation that is

the best for one location (permbase 8, Loc 2) may be the worst for another location (permbase 8,

Loc 3).

To summarize, we find that permutations introduce diversity and can help reduce interference

at the PHY when sub-channels overlap and are not completely used. However, the interference

reduction benefits obtained from resource isolation at the logical sub-channel level outweigh the

benefits from permutation gain. Finally, the diversity gain observed with a permutation base is

location-specific and the best permutation base is hard to predict.

3.6 Synchronization

In the experiments thus far, the femtocells were synchronized via GPS modules. There are tight

synchronization requirements in macrocell OFDMA networks. In upcoming femto standards [66]

provisions are being made for achieving synchronization between femtocells, potentially using

self-organizing (SON) servers. However, it is unclear (as of now) if tight synchronization can

be achieved among femtocells. Hence, it is important to understand the impact of synchroniza-

tion or lack thereof on resource isolation and resource mapping. Next, we consider cell 1 and 2

without frame level synchronization. With the preamble being transmitted at 3-5dB higher power,

interference patterns could change, potentially causing further throughput degradation.
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Figure 3.13: Impact of Lack of Synchronization on Resource Isolation and Sub-channelization.

3.6.1 Impact on Resource Isolation

First, we study synchronization and resource isolation. We consider three strategies: baseline,

FDIdata and FDIctrl. The throughput at client 1 in the presence of interference is measured over

numerous locations and its CDF is plotted in Fig. 3.13(a). It can clearly be seen that by isolating

both the control and data parts of the frame between interfering cells, FDIctrl is relatively immune

to lack of synchronization and continues to outperform baseline and FDIdata.While the preamble

of one cell can corrupt the data of the other cell, this corruption will be restricted to one symbol

with the rest of the frame being completely isolated with FDIctrl. Between baseline and FDIdata,

we find that there are three distinct regions: baseline outperforms FDIdata, FDIdata outperforms

baseline, and both strategies suffer.

74



To gain a deeper understanding, we performed a more detailed six-stage experiment with the

timeline in Fig. 3.14: (1) Cell 1 alone starts operating and transferring data to client 1 on all

sub-channels (All SC) from t=0 onwards, (2) cell 2 switches on and starts transmitting only the

preamble and control from t=30, (3) cell 2 starts transferring data to client 2 on all sub-channels

from t=60, (4) cell 1 and cell 2 switch to different sets of sub-channels from t=90 (FDIdata), (5) cell

2 stops transferring data and goes back to transmitting only the preamble and control from t=120,

and (6) cell 2 switches off at t=150. Re-starting the BSs for every experimental run changes the

frame alignment between cells and hence, the interference pattern. Two of the prominent patterns

that repeat over numerous experiments are shown in Figs. 3.13(b) and 3.13(c). In one of the

patterns in Fig. 3.13(b), we find that even when only the preamble of cell 2 is switched on, it

completely inhibits the transmission of cell 1, which does not recover until cell 2 is switched off.

This corresponds to the case where both baseline and FDIdata suffer (left region in Fig. 3.13(a)).

In the other pattern in Fig. 3.13(c), we find that when cell 2’s preamble is switched on, it does

not completely disrupt cell 1’s transmission but degrades its throughput from 15 Mbps to 11 Mbps.

However, when cell 2 starts transferring data on all sub-channels, this completely interferes with cell

1’s transmission. However, when both the cells isolate their data in stage 4, cell 1’s transmission

starts recovering and approaches the maximum throughput possible with half the sub-channels.

This corresponds to the case, where FDIdata outperforms baseline (middle region in Fig. 3.13(a)).

In the remaining 40% of topologies, the interference between the cells was not severe enough to

prevent decoding even with the lowest MCS. In this case, link adaptation was sufficient to address

interference (both baseline and FDIdata support the same MCS) and hence, isolating resources

reduces throughput by half unnecessarily compared to operating on all sub-channels. This explains

the right region in Fig. 3.13(a), where baseline outperforms FDIdata.

Thus, we find that even without synchronization, resource isolation between interfering cells

is extremely beneficial - isolation of both data and control parts continues to deliver significant

benefits, while isolating the data part alone also contributes to large gains in over 30% of the

scenarios.
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Figure 3.14: Timeline of the six stages for Fig. 3.13(b) and 3.13(c).

3.6.2 Impact on Resource Mapping

Next, we study the effect of lack of synchronization on resource mapping. We measure the through-

put with PUSC and FUSC for cell 1 and 2. The BSs use orthogonal sets of half of the sub-channels

(FDIdata) and the throughput of client 1 is measured at various locations. Fig. 3.13(d) depicts the

CDF (over topologies) of throughput. We notice that PUSC outperforms FUSC in low throughput

regimes, where interference is the dominant factor on performance. This is consistent with our

observations in §3.5; FUSC is still vulnerable to frequency offsets between the BSs. However, for

throughput samples larger than 2.5 Mbps, FUSC outperforms PUSC. We find that in these regimes

where interference is not the dominant factor, client 1 alleviates the effects of interference with link

adaptation. We further observe that these samples are clustered around 2.977 and 3.247 Mbps with

PUSC and FUSC, respectively (with the best MCS being the same for both schemes). The cluster-

ing can be explained by the inherent benefit with FUSC due to the higher number of sub-carriers;

the ratio corresponds to ≈ 16
15
in line with our previous observations. In summary, we find that

PUSC is less vulnerable to frequency offsets across cells and this helps in handling interference

better than FUSC, even without synchronization.

3.7 Design Implications

Our extensive measurements provide an understanding of the impact of interference and how to

address it in femtocell networks. The key inferences are summarized below.
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• Strong interference in femtocells cannot be alleviated by just link adaption and requires re-

source isolation.

• Isolating resources in the frequency domain can increase throughput capacity due to power

pooling.

• Resource isolation, even when achieved on only the data part, can still alleviate interference.

• Having contiguity in sub-carriers (forming a sub-channel) reduces the vulnerability to fre-

quency offsets that can cause interference across cells even when resources are isolated at the

MAC level.

• Altering the sub-carrier composition of sub-channels via different permutations at the PHY

provides a diversity gain but does not outweigh the benefits of interference reduction from

isolation of sub-channels at the MAC.

• Isolating resources in frequency domain and retaining contiguity in sub-carriers to address

interference holds promise even in the absence of synchronization.

These inferences lead us to the following set of guidelines for the design of an efficient multicell

OFDMA femtocell system. When interference between femtocells does not prevent decoding with

lower MCSs, it is better to operate using:

• distributed sub-carrier grouping (e.g. FUSC) to form sub-channels since this reduces the

control signaling overhead, while making more room for data transmissions.

• different permutations at the PHY level to leverage the diversity gain resulting from it.

However, in the presence of strong interference, it is preferable to operate a femtocell network that

• isolates resources between interfering cells in the frequency domain to increase capacity.

• uses contiguity in sub-carriers (e.g. PUSC) to alleviate the adverse impact of frequency off-

sets across cells.
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• trades-off permutation gain for significant interference reduction throughMAC layer resource

isolation.

We believe these guidelines will help network practitioners design efficient resource management

solutions for femtocells. Some interesting implications that arise in the design of such solutions

include:

• When interference is tolerable (via link adaptation), isolating resources will degrade perfor-

mance. Hence, we would need mechanisms that differentiate between fading and interference

and appropriately trigger link adaptation or resource isolation. This would in turn require

interference estimation capabilities that might have to be performed using calibrating mea-

surements or with the help of external sensors.

• When a cell has multipleMSs experiencing different levels of interference, the scheduling de-

cisions (use of resources) would have to intelligently incorporate link adaptation and resource

isolation in tandem.

• Network dynamics in the form of deployment of new cells, removal of existing cells, load

variations, etc. have to be factored in when designing distributed mechanisms.

3.8 Discussion

Our experiments are conducted towards understanding the impact of interference between femto-

cells in indoor deployments. There have been studies that address interference mitigation between

macrocells and femtocells. Designing resource management solutions with our guidelines will

complement these studies and increase performance further. In our experiments, we assume a sin-

gle MS associated with each BS and measure the performance with interference from other BSs.

Our inferences on interference characterization will clearly hold when a BS has multiple MSs. We

experiment with WiMAX BSs that use OFDMA; however, we believe that most of our inferences

are applicable to other OFDMA-based technologies such as LTE and LTE-A.
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3.9 Conclusions

In this chapter, we experimentally characterize interference in OFDMA femtocell networks. Using

programmable WiMAX femtocells and commercial clients, we perform measurements with a mul-

titude of design choices including resource isolation, resource mapping and synchronization among

BSs. We derive several inferences from our measurements and provide guidelines for efficient de-

ployment of OFDMA femtocell networks. To the best of our knowledge, this is the first study

that characterizes interference in multicell OFDMA systems using measurements from an actual

femtocell testbed. We believe that our guidelines provide a good starting point towards designing

efficient resource management solutions for femtocells.
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Chapter 4

A Resource Management System for

Interference Mitigation in Enterprise

OFDMA Femtocells

To meet the capacity demands from ever-increasing mobile data usage, mobile network operators

are moving towards smaller cell structures. These small cells, called femtocells, use sophisticated

air interface technologies such as Orthogonal Frequency Division Multiple Access (OFDMA).

While femtocells are expected to provide numerous benefits such as energy efficiency and bet-

ter throughput, the interference resulting from their dense deployments prevents such benefits from

being harnessed in practice. Thus, there is an evident need for a resource management solution to

mitigate the interference that occurs between collocated femtocells. In this chapter, we design and

implement one of the first resource management systems, FERMI, for OFDMA-based femtocell

networks. As part of its design, FERMI (i) provides resource isolation in the frequency domain (as

opposed to time) to leverage power pooling across cells to improve capacity; (ii) uses measurement-

driven triggers to intelligently distinguish clients that require just link adaptation from those that

require resource isolation; (iii) incorporates mechanisms that enable the joint scheduling of both

types of clients in the same frame; and (iv) employs efficient, scalable algorithms to determine a
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fair resource allocation across the entire network with high utilization and low overhead. We imple-

ment FERMI on a prototype four-cell WiMAX femtocell testbed and show that it yields significant

gains over conventional approaches.

4.1 Introduction

The demand for higher data rates and increased spectral efficiencies is driving the next genera-

tion broadband access networks towards deploying smaller cell structures (called femtocells) with

OFDMA [48]. Femtocells are installed indoors (e.g., enterprises, homes) and use the same spec-

trum and access technology as macrocells (traditional cell towers), while connecting to the core

network through cable or DSL backhaul. The poor cellular signal problem indoors, experienced by

many users today, can easily be overcome by femtocells. Moreover with femtocells, mobile devices

(e.g., 4G-enabled smartphones) can save energy by transmitting to a nearby femtocell (rather than

a distant cell tower) and enjoy high data rates. In addition, the small range of femtocells increases

the cellular network capacity via increased spatial reuse. These advantages allowmobile broadband

service providers to (i) improve coverage and service quality and (ii) offload traffic from macrocells

to femtocells in a cost-effective manner.

To harness the aforementioned benefits in practice, one first needs to mitigate the interference

that occurs in femtocell networks. Although previous studies (e.g., [67]) have proposed solutions

to alleviate the interference between macrocells and femtocells, interference mitigation between

collocated femtocells has not drawn considerable attention and thus forms the focus of this work.

However, the design of a resource management solution for femtocells is complicated by the fact

that the femtocells have to inter-operate with the cellular standards that they inherit frommacrocells.

There are several other key aspects that make the resource management problem both challenging

and unique. We articulate these below.

Femtocells versus Macrocells: Typical femtocell deployments are significantly more dense

compared to the well-planned deployments of macrocells. Hence, while interference is localized at
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cell edges in macrocells, it is less predictable and more pervasive across femtocells. This renders

Fractional Frequency Reuse (FFR) solutions (proposed for macrocells) inadequate in mitigating

interference between femtocells.

Femtocells versusWiFi: OFDMA dictates a synchronous medium access for femtocells, on a li-

censed spectrum. On the contrary, WiFi stations access the unlicensed spectrum in an asynchronous

manner (i.e., random access via CSMA). In a typical WiFi network, interfering cells either operate

on orthogonal channels or use carrier sensing to arbitrate medium access on the same channel. In an

OFDMA femtocell network, there is no carrier sensing and multiple central frequencies (channels)

are not available in the licensed spectrum; therefore, existing solutions for WiFi are not applicable.

Interfering femtocells can either operate on orthogonal parts (called sub-channels) of the spectrum,

or directly project interference on the clients of each other. Further, in OFDMA, transmissions to

different clients of a single cell are multiplexed in each frame. Since every client of a cell may not

need spectral isolation (for purposes of interference mitigation), blindly operating adjacent cells on

orthogonal parts of the spectrum comes at the cost of underutilization of the available capacity. In

other words, resource isolation in OFDMA femtocells needs to be executed by jointly considering

interference mitigation and leveraging spatial reuse opportunities. Since a WiFi access point trans-

mits data to a single client at a time (using the entire channel width assigned to it), this challenge

does not arise.

Our contributions in brief: We design and implement one of the first practical resource man-

agement systems, FERMI, for OFDMA-based femtocell networks. FERMI decouples resource

management across the network from scheduling within each femtocell and addresses the former.

This allows resource allocation across femtocells to be determined by a central controller (CC) at

coarse time scales. Frame scheduling within each femtocell can then be executed independently

on the allocated set of resources. The four key cornerstones of FERMI’s resource management

solution include:

• Frequency Domain Isolation: It isolates resources for clients in each femtocell, in the fre-

quency domain (as opposed to the time domain). This allows for power pooling to jointly
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mitigate interference and increase system capacity (discussed later).

• Client Categorization: It employs proactive, measurement-driven triggers to intelligently dis-

tinguish clients that require just link adaptation (i.e., clients that can reuse the spectrum) from

those that require resource isolation with an accuracy of over 90%.

• Zoning: It incorporates a frame structure that supports the graceful coexistence of clients that

can reuse the spectrum and the clients that require resource isolation.

• Resource Allocation and Assignment: It employs novel algorithms to assign orthogonal sub-

channels to interfering femtocells in a near-optimal fashion.

We have implemented FERMI on a four-cell WiMAX femtocell testbed. FERMI provides a

complete resource management solution while being standards compatible; this enables its adoption

on not only experimental platforms but also on commercial femtocell systems. To the best of

our knowledge, we report the first resource management system implemented on a real OFDMA

femtocell testbed. Comprehensive evaluations show that FERMI yields significant gains in system

throughput over conventional approaches.

The rest of the chapter is organized as follows. We describe background and related work in

§4.2. Experiments that motivate FERMI’s design are in §4.3. The building blocks of FERMI are

described in §4.4. In §4.5, we describe the resource allocation algorithms that are part of FERMI.

We evaluate FERMI in §4.6 and we conclude in §4.7.

4.2 Background and Related Work

In this section, we describe relevant related work. We then provide brief background on WiMAX

femtocell systems.

Macrocellular Networks: While broadband standards employing OFDMA (WiMAX, LTE) are

relatively recent, related research has existed for quite some time [68]. There are studies that address

problems pertaining to single cell (e.g., [69]) and multi-cell systems [67, 54, 70, 71, 72, 73, 53, 6].
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The above studies on multi-cell systems have looked at the interference between macrocells and

femtocells, for both downlink (e.g., [6]) and uplink communications (e.g., [53]). In summary,

the solutions in these studies leverage the localized interference and the planned cell layouts of

macrocells, and they are restricted to theoretical studies with simplifying assumptions that prevent

their adoption in practice. On the other hand, femtocell deployments in practice are not planned

and thus, do not benefit from localized interference.

For interference between macrocells and femtocells (i.e., macro-femto interference), we assume

one of the models in [6]. In this model, macro-femto interference is mitigated by partitioning the

frame resources across macrocells and femtocells in a semi-static manner (based on macro and

femto users’ traffic). Thus, our focus in this work is specifically on interference between femtocells.

While FERMI’s overarching goal of femtocell interference mitigation is similar to that of the above

studies, it is the first study that achieves this with a standards-compatible implementation. We

evaluate FERMI on real OFDMA hardware and show that it is viable for commercial femtocell

deployments.

Spectrum Allocation: In addition to the studies in the cellular domain, there have been studies

addressing resource allocation using graph coloring for WiFi systems (e.g., [2, 25, 3, 61]). The

main objective in these studies is to allocate a minimum number of orthogonal contiguous chan-

nels to each interfering AP. Instead, our objective is to realize a weighted max-min fair allocation

while utilizing as many sub-channels (fragments of the spectrum) as possible. In addition, re-

source allocation is just one component of our study; we implement a novel, complete resource

management system with several enhancements specifically tailored to OFDMA. There have also

been approaches that allocate spectrum fragments to contending stations (e.g. [58, 60]). However,

these studies rely on asynchronous random access and associated sensing capabilities. We address

a more challenging problem in OFDMA synchronous access systems and satisfy requirements that

are specific to OFDMA femtocells.
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Figure 4.1: A simplified illustration of the WiMAX frame structure.

4.2.1 WiMAX Preliminaries

While our study applies to OFDMA femtocells in general, our measurements are conducted on a

WiMAX (802.16e [62]) femtocell testbed. WiMAX divides the spectrum into multiple sub-carriers

and groups several sub-carriers to form a sub-channel. Specifically, we use the distributed grouping

mode (PUSC [62]) in our implementation since it is mandatorily supported. In PUSC, the individ-

ual sub-carriers forming a sub-channel are distributed throughout the spectrum. This distribution

(i.e., which sub-carriers are selected as part of a sub-channel) is subject to specific permutations.

Thus, two different sub-channels at the MAC level map to two distinct sets of sub-carriers at the

PHY level. In general, interference from the same source may be different on different sub-channels

if frequency selectivity is taken into account. However, note that PUSC picks the subcarriers com-

posing a sub-channel randomly from the spectrum. This averages the effect of frequency selectivity

and interference on a given sub-channel, thereby giving a uniform effect across sub-channels.

A WiMAX frame (see Fig. 3.1) is a two-dimensional template that carries data to multiple

mobile stations (MSs) across both time (symbols) and frequency (sub-channels). The combination

of a symbol and a sub-channel constitutes a tile (the basic unit of resource allocation at the MAC).

Data to users are allocated as rectangular bursts of tiles in a frame. The BS 1 schedules the use

of tiles both on the downlink and the uplink. Frames are synchronized in time both between the

BS and MSs as well as across BSs (by virtue of synchronizing to the macro BS [74]). The frame

consists of the preamble, control and data payload. While the preamble is used by the MSs to

1We use the terms femtocell, BS, cell interchangeably.
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lock on to a particular BS, the control consists of FCH (frame control header) and MAP. MAP

conveys the location of the data burst for a MS in a frame and consists of both the downlink and

uplink MAPs. The DL-MAP indicates where each burst is placed in the frame, which MS it is

intended for, and what modulation level (MCS as shown in Fig. 3.1) decodes it. Similarly, the

UL-MAP indicates where the MS should place its data on the uplink frame. The uplink frame also

has dedicated sub-channels for HARQ, which is used by the MSs to explicitly acknowledge (ACK

/ NACK) the reception of each burst sent by the BS.

4.3 Design Aspects of FERMI

To derive the right design choices for interference mitigation, we conduct extensive measurements

on our testbed. The testbed consists of four PicoChip [63] WiMAX femtocells (cells 1-4) deployed

in an indoor enterprise environment at NEC Laboratories America Inc. (Fig. 4.2). The clients are

commercial WiMAX USB dongles (with unmodifiable, proprietary source code [64]) plugged into

laptops running Windows XP. All cells use 8.75 MHz bandwidth with the same carrier frequency of

2.59 GHz. For this frequency, we obtained an experimental license from FCC to transmit WiMAX

signals on the air.

There are two approaches to coping with interference in OFDMA. Switching to a lower MCS

via link adaptation (rate control) could suffice if the received signal quality is above the threshold
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required by the lower MCS level. With strong interference (typical in dense deployments), the

received SINR could be even lower than that required for the lowest MCS operation. In such cases,

isolating the resources (tiles) utilized by interfering cells helps alleviate the effects, but it results in

a reduced set of tiles in each cell. Clearly, the choice between link adaptation and resource isolation

must be made depending on the nature of interference. In a two-dimensional WiMAX frame, the

tiles can be isolated among BSs either in time (symbols) or in the frequency (sub-channels) domain

as depicted in Fig. 3.6. Time domain isolation (TDI) isolates tiles by leaving empty (guard) symbols

to prevent collisions; frequency domain isolation (FDI) allocates orthogonal sets of sub-channels to

different BSs for their transmissions.

4.3.1 Accommodating Heterogeneous Clients

As discussed earlier, for clients in close proximity to their BS, link adaptation alone may be suf-

ficient to cope with interference. Invoking resource isolation for such clients will underutilize the

tiles in the frame. Given that OFDMA multiplexes data to multiple clients in a given frame (to fill

the available tiles), it becomes necessary to accommodate clients with heterogeneous requirements

(link adaptation vs. resource isolation) in the same frame. To achieve this, we propose to use zon-

ing, where an OFDMA frame is divided into two data transmission zones 2. The first zone operates

on all sub-channels and is used to schedule clients that need just link adaptation (hereafter referred

to as the reuse zone). The second zone utilizes only a subset of sub-channels (determined by FDI)

and here, the clients that require resource isolation are scheduled (referred to as the resource isola-

tion zone). Link adaptation is also performed for clients in this zone albeit only within the restricted

subset of sub-channels.

We conduct an experiment with two cells to understand the benefits of zoning. Cell 2 causes

interference while cell 1 transmits data to its clients. Cell 1 schedules data for two clients: one

by reusing all sub-channels (the reuse client) and the other one by isolating resources (from cell

2). The reuse client is moved from the proximity of cell 1 towards cell 2; the other client is static.

2A zone in OFDMA is a dedicated portion of the frame in which one or more bursts can be scheduled.
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Figure 4.3: Motivation for having separate zones in the frame.

We compare the throughput that cell 1 delivers (aggregate throughput of both clients) against a

scheme where there is no reuse (i.e. both clients are scheduled by isolating resources). As one

might expect, as long as the reuse client does not experience appreciable interference from cell 2,

reusing sub-channels provides a throughput gain over the pure resource isolation scheme. We plot

this throughput gain in Fig. 4.3 as a function of the reuse client’s distance from cell 1. Interestingly,

significant gains (at least 20%) from reusing sub-channels can be availed even when the client is at

40% of the distance between the interfering cells. Beyond this distance, the interference from cell

2 starts degrading the throughput. We revisit zoning in detail in §4.5.

Although zoning holds promise, it only dictates how to accommodate heterogeneous clients; it

does not provide a complete resource management solution. Several challenges remain in achieving

this goal. Specifically, for each cell, we need to (a) determine the size (in symbols) of the reuse

zone (b) determine the subset of sub-channels allocated to the resource isolation zone, and (c) adapt

both these zones to the dynamics of the network in a scalable manner. FERMI incorporates novel

algorithms to address these challenges.

4.4 Building Blocks of FERMI

We depict the relationship between the blocks of FERMI in Fig. 4.4. In a nutshell, the categoriza-

tion of clients allows each BS to determine how the frame should be divided into zones, from its
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perspective (block 1). Each BS then determines the set of BSs that cause interference on those of

its clients that require resource isolation. This information, along with cell-specific load parame-

ters, is then fed to the central controller (CC), which then constructs an interference map (block 2).

Using the interference map (i.e., conflict graph), the CC computes the network wide sub-channel

allocation and zoning parameters (details in §4.5). It disseminates this information back to the BSs,

which use these operational parameters until the next resource allocation update.
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4.4.1 Client Categorization at the BS

The first building block categorizes clients into two classes; the first needs just link adaptation

(class LA) while the second needs resource isolation together with link adaptation (class ISO). To

understand how clients are to be categorized as either class LA or class ISO, we perform calibration

experiments. We consider two cells each with a single client. We experiment over a large set of

client locations to generate a plurality of scenarios. We first consider a cell in isolation (i.e., no

interference). At each client location, we experiment by sequentially allocating two spectral parts

(of equal size) of the frame to the client. Since, the fading effects on the two sets of assigned sub-

channels are likely to be different, the client will receive different throughputs with the two different

allocations. We notice however, that the difference between the two allocations is at most 25 % in

more than 90 % of the considered client locations (Fig. 4.5). We now repeat the experiment, but

with interference. In one of the allocations (i.e., parts), the second cell projects interference on the

client; in the other, the operations are without interference (via resource isolation). We observe that

in this case, there is a throughput difference of over 25 % (in many cases, significantly higher) in

more than 80 % of the topologies.

These results suggest that the throughput (per tile) difference between an interference-free al-

location and an allocation with interference can be used to categorize a client as class LA or class

ISO. If this difference is less than a threshold (referred to as α later), link adaptation suffices. If it is

larger than the threshold, one cannot immediately determine if the client needs resource isolation.

This is because the above experiments were done by allocating equal number of tiles to the client

both with and without interference. If such a client is categorized as class ISO and allocated a

smaller set of isolated resources, its throughput may in fact only be similar to what it would achieve

by being a class LA client. Unfortunately, it is difficult to know the cell loads a priori and hence one

cannot make a clear determination of whether to categorize these clients as class LA or class ISO.

Thus as a design choice, FERMI takes a conservative approach and categorizes all of such clients

as class ISO. We find that this helps accommodate fluctuations in the load and interference patterns.
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Figure 4.6: The accuracy of BDR to estimate throughput.

Although a BS does not have access to the throughput at a client, it is informed about the

reception of each burst via ACKs and NACKs on the uplink. We define Burst Delivery Ratio

(BDR) to be the ratio of successfully delivered bursts to the total number of transmitted bursts by

the BS. The BS can estimate BDR by taking the ratio of the number of ACKs received to the total

number of feedbacks (ACKS + NACKS) received from the clients. Since the feedback itself might

practically get lost on the uplink, this is an estimate of the actual BDR. We perform experiments

to understand if the BDR estimate at the BS can provide an understanding of the throughput at the

client. Fig. 4.6 plots a sample result showing that indeed the BS can very accurately track the

client throughput using the BDR estimates. We find that, as per the WiMAX standard, the feedback

channels on the uplink modulate data using robust QPSK modulation. This helps in reducing the

probability of a feedback being received in error by the BS and makes the BDR estimate accurate.

Similar notions of uplink feedback channels are also available in other OFDMA standards such as

LTE.

Having established that BDR accurately represents throughput, we next describe our catego-

rization solution. Before providing details, we sketch how throughput in an OFDMA system can

be computed. A rectangular burst consists of x symbols and y sub-channels which collectively

form t = x ∗ y tiles. If a single burst is successfully received by the client, it delivers t ∗ b bits of

information where b is the bits per tile that the MCS used for the burst encodes. Here, the MCS is
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Figure 4.7: Illustration of the measurement zones in the frame.

typically chosen based on the SINR of the link. Thus, the throughput over j transmitted bursts can

be computed as t ∗ b ∗ j ∗BDR.

To achieve categorization in practice, FERMI introduces twomeasurement zones in the frame as

depicted in Fig. 4.7, namely the occupied and free zones. Every BS operates using all sub-channels

in the occupied zone. Scheduling a client in this zone enables the BS to calculate the BDR in the

presence of interference from other cells. Scheduling a client in the free zone to calculate the BDR

without interference is slightly more involved. Given a set of interfering BSs, all BSs but for one

must leave the free zone empty in any frame. Allowing only one of the interfering BSs to schedule

its clients in the free zone, will enable it to measure the BDR without interference at its clients.

Hence, a random access mechanism with probability γ

n
is emulated to decide access to the free zone,

where n is the number of interfering BSs and γ ≥ 1 is a constant parameter set by the CC. Note that

clients associate with BSs at different instants and hence it is unlikely that all interfering BSs will

categorize their clients at the same time. Hence, γ is used to increase the access probability to the

free zone. FERMI schedules regular data bursts in the measurement zones to calculate the BDR,

thereby keeping the process transparent to clients and retaining standards compatibility. While the

occupied zone can be used as an extension to the reuse zone when categorization of the clients is

complete, this is not possible for the free zone, whose utility is towards categorization in other cells.
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Figure 4.8: The accuracy of the client categorization component.

Here, the CC keeps track of client (dis)associations, triggers the use of the free zone (cast as a data

zone) solely for the purpose of categorization in relevant parts of the network and disables it to

minimize overhead once the procedure is complete.

The accuracy of client categorization is evaluated in Figs. 4.8(a) and 4.8(b). We again consider

two cells; clients 1 and 2 belong to the two cells, respectively. We generate multiple topologies by

varying the location of client 1 in the presence of interfering cell 2. First, the throughput of client

1 is measured for both zones (free and occupied) to identify the ground truth; here leveraging our

calibration measurements, we conclude that if the throughput difference is less than 25%, client 1

is at a location where it only needs link adaptation. Otherwise, it needs resource isolation. After

the ground truth is established, cell 1 performs the following set of actions.

1. ForK samples, transmit to a client using the occupied zone and with the probability specified

earlier, transmit to the same client using the free zone. During this period keep track of the

BDR for each zone.

2. Calculate occupied throughput Tocc = t ∗ bocc ∗ K ∗ BDRocc where BDRocc is the BDR of

the occupied zone and bocc is the number of bits that the sampled MCS encodes. Similarly,

calculate Tfree = t∗ bfree ∗K ∗BDRfree (note that the number of tiles considered, t, is equal

for the two zones).
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3. If Tfree >= (1 + α) ∗ Tocc, then the client is of class ISO; otherwise belongs to class LA.

Based on the calibration measurements, we set α = 0.25.

Here, arbitrating the access to the free zone is a factor that reduces the accuracy of estimation. If

two BSs schedule their clients in this zone at the same time, rather than getting a BDR sample

without interference, they both could get a sample that indicates interference. We use the BDR

average over multiple samples to alleviate such inaccuracy.

The categorization accuracy when the ground truth is (a) resource isolation and (b) link adap-

tation is shown in Figs. 4.8(a) and 4.8(b), respectively. In corroboration with our measurement-

based inference, we see that increasing α beyond 0.25 decreases the accuracy of detecting resource

isolation but it increases the accuracy of detecting link adaptation. Further, while increasing the

number of samples over which α is measured can help improve accuracy, the benefits are not sig-

nificant. Hence, it pays to use fewer samples to categorize clients (towards reducing overhead).

Thus, FERMI uses α = 1 with 25 samples to obtain an accuracy greater than 90%.

4.4.2 Interference Map Generation

The CC in FERMI generates an interference (conflict) map that not only captures point-to-point but

also cumulative interference experienced by the clients. Note that interference is client-dependent

and since multiple clients are scheduled in tandem in each OFDMA frame, the interference patterns

between BSs vary from one frame to another. This makes it impossible for any practical resource

management scheme to gather schedule-dependent interference information, determine an alloca-

tion and disseminate it to the BSs for execution in every frame (sent every 5ms in WiMAX). Hence,

the goal of the resource management scheme in FERMI is to allocate resources at a coarser time

scale (over hundreds of frames) by collecting aggregate interference statistics from each BS. This

decouples resource allocation from frame scheduling in each BS, thereby allowing a conflict graph

approach to adequately capture interference dependencies for our purpose.
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In addition to client categorization, the measurement zones in FERMI also help in deciphering

interference relations. If a BS causes interference to the clients of another BS so as to require re-

source isolation, then an edge is added between the two BSs in the conflict graph. Note that the

interference relations need to be determined only for class ISO clients. FERMI uses the measure-

ments in the occupied zone as the basis to categorize a client as class ISO. Note however that all

BSs operate in this zone and thus, the client experiences the cumulative interference from all inter-

fering BSs. Adding an edge to each of these neighboring cells in the conflict graph would be overly

conservative; some of them may only project weak levels of interference on the client. Hence, we

need to determine the minimum set of interference edges that need to be added in the conflict graph

to eliminate interference through resource isolation. Towards this, we use the following procedure

following the initial categorization.

Consider a femtocell A and a class ISO client cl of A. cl passivelymeasures the received power

from neighboring BSs (available during handover between BSs). If the power from a neighboring

BS (B) exceeds a threshold, then B is added to cl’s list of strong interferers. cl reports this list to

A, which then consolidates it and reports the set of conflict edges (for each strong interferer) that

must be added to the conflict graph, to the CC. The CC uses this information for making the initial

resource allocation decision. While this accounts for point-to-point interference, some clients may

not see any individual strong interferer but the cumulative power from a subset of neighbors could

be strong enough to require resource isolation. Such clients will continue to see interference after

the initial resource allocation. These clients can be identified by comparing the BDR achieved on

the assigned sub-channels with that seen in the free zone. We adopt an iterative approach to further

refine the conflict graph to isolate such clients.

To illustrate, let us consider one such client. The client reports a list of neighbor BSs (not already

reported) in decreasing order of received power as potential cumulative interferers to its BS. Now,

FERMI needs to identify the smallest subset of these neighbors to whom adding a conflict edge will

eliminate interference through resource isolation. To achieve this two filters are applied: (i) from

the cumulative interference list sent by the client, the BS first removes those neighbors from the
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list to whom an edge was already added by one of its other clients; (ii) the pruned list is sent to the

CC, where neighbors whose current resource allocation are orthogonal to that of the client’s cell are

further removed as they could not have caused interference. The CC then looks at the final pruned

lists and adds a conflict edge to the neighbor that appears first in multiple lists. With the updated

interference graph, resource allocation is determined once again and disseminated to femtocells for

the next resource allocation epoch. If the BDR for the client is sufficiently improved and is now

within α% of what is observed in the free zone, the process is complete. If not, the next strongest

interfering BS is added to the conflict graph (again subject to filtering based on the current resource

allocation) and so on. In addressing cumulative interference, conflict edges are added only one

by one in each epoch by the CC. This is because most of the interference experienced by clients

is strong in dense femtocell deployments. Hence, aggressively adding conflict edges to address

cumulative interference will only result in under-utilization of resources. Thus, using both passive

and active measurements at clients, FERMI accounts for both strong and cumulative interference in

its resource allocation decisions in each epoch.

Why Dedicated Measurements?: One could argue that using only the passive received power

measurements from interfering BSs may be an easier approach to categorize clients. Here, if a

client receives a signal from an interfering BS that is higher than a threshold, it is categorized as

class ISO; otherwise, it is a class LA client. However, for this method to work well in practice, a lot

of calibration is needed to find accurate, often scenario dependent, threshold values. In addition,

the received power does not necessarily give an indication of the throughput observed at the clients.

To avoid these practical issues, FERMI relies on highly accurate direct measurements for client

categorization, which allows it to have coarse thresholds for identification of strong interferers.

Having categorized the clients and identified the interference dependencies between femtocells,

we are now ready to present the resource allocation algorithms executed by the CC.
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4.5 Algorithms in FERMI

The goal of resource management at the CC is to determine for each femtocell (i) the size of the

reuse zone and, (ii) the specific subset of sub-channels for operations in the resource isolation

zone, to obtain an efficient and fair allocation across femtocells. While the joint determination of

parameters for both the zones is the optimal approach, this depends on throughput information that

changes in each frame, thereby coupling resource allocation with per-frame scheduling decisions.

Since, as discussed in §4.4, per-frame resource allocation is infeasible due to practical constraints,

FERMI performs resource allocation at coarser time scales.

Each femtocell reports two parameters to the CC to facilitate resource allocation: (i) load (num-

ber of clients) in its resource isolation zone, and (ii) desired size (in time symbols) of its reuse

zone. Alternative definitions for load can be adopted but the number of clients is sufficient for

our purposes (as in [25]). Note that a femtocell does not have the complete picture of interfer-

ence dependencies across cells; it only has a localized view. Thus, it simply provides the load in

its resource isolation zone and expects the CC to allocate resources proportional to its load. Each

femtocell determines the desired size of its reuse zone based on the relative load in the two zones.

Since class ISO clients will be scheduled immediately after the reuse zone (see Fig. 4.7), if two

interfering cells have different sizes for their reuse zones, then the cell with the larger reuse zone

will cause interference to the class ISO clients of the other cell. Hence, an appropriate size for the

reuse zone of each cell also needs to be determined by the CC based on the reported desired values.

Next, we present the algorithm at the CC to determine the sub-channel allocation and assignment

to each femtocell, followed by the selection of their reuse zone sizes.

4.5.1 Allocation and Assignment

The goal of sub-channel allocation is to allocate and assign sub-channels to the resource isolation

zone in each femtocell to maximize the utilization of sub-channels in the network subject to a

weighted max-min fairness model. The reasons for the choice of the weighted max-min fairness
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are two-fold: (i) weights account for variations in load across different cells; and (ii) max-min

allows for an almost even split of sub-channels between cells in a contention region, which in

turn maximizes the benefits from power pooling (see §4.3). Thus, given the load for the resource

isolation zone from each cell along with the conflict graph, the CC’s goal is to determine a weighted

(load-based) max-min allocation of sub-channels to femtocells (i.e. vertices in the graph).

Theorem 1. The sub-channel allocation and assignment problem in FERMI is NP-hard.

Proof. Consider the simpler version of the problem, where we are interested only in the optimum

objective (max-min) value and not in the specific allocation to all the cells. Hence, we are interested

only in determining the largest number of sub-channels x such that all cells can at least be given

an allocation of x. This in turn can be determined as follows. For a given integer i, replace each

vertex (femtocell) in the conflict graph G = (V,E) by a clique of size i and add edges between all

vertices across the cliques if there existed an edge between the vertices corresponding to the cliques

in the original graph G. Let the resulting graph be Gi. Now, determining the maximum i such that

Gi is colorable with N colors (N being the # of sub-channels) yields the desired objective value.

However, determining if Gi is colorable with N colors is the problem of multi-coloring G, where

each vertex requires as assignment of i colors. Thus, the max-min value to our simpler problem is

x if and only if G can be x-fold colored with N colors. Since multi-coloring is NP-hard and forms

a special case of a simpler version of our problem, the hardness automatically carries over.
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While the allocation problem may seem similar to multi-coloring at the outset, this is not the

case. In fact, multi-coloring can only provide an assignment of sub-channels for a specified allo-

cation. However, in FERMI, we are also interested in determining a weighted max-min allocation

in addition to the assignment, which makes the problem much more challenging. Further, every

contiguous set of sub-channels allocated to a cell is accompanied by an information element in

the control part of the frame (MAP), describing parameters for its decoding at the clients. This

constitutes overhead, which in turn increases with the number of discontiguous sets allocated to a

cell. Therefore, our goal is to reduce overhead due to discontiguous allocations, while ensuring an

efficient allocation of sub-channels.

Overview of FERMI’s resource allocation: Any resource allocation algorithm attempts to

allocate shared resources between entities in a contention region subject to a desired fairness. Each

contention region corresponds to a maximal clique in the conflict graph. However, a given femtocell

may belong to multiple contention regions and its fair share could vary from one region to another.

This makes it hard to obtain a fair allocation, for which it is necessary to identify all maximal cliques

in the graph. However, there are an exponential number of maximal cliques in general graphs with

no polynomial-time algorithms to enumerate them. Hence, we propose an alternate, novel approach

to resource allocation in A3 (outlined in Algorithm 3), which runs in polynomial-time and provides

near-optimal fair allocation with minimal discontiguity (overhead).

1: Triangulate: A3 first transforms the given conflict graph G into a chordal graph G′ by adding

a minimal set of virtual interference edges to G = (V,E).
2: Allocate and Assign: A3 computes a provably weighted max-min fair allocation on the

chordal graph G′.

3: Restore: A3 removes the virtual edges from G′ and updates the allocation to the vertices

carrying the virtual edges to account for under-utilization on the original graph G.

Algorithm 3: Allocation and Assignment Algorithm: A3

Chordal Graphs: A chordal graph does not contain cycles of size four or more. Chordal graphs

have significant applications in sparse matrix computations and have been extensively studied. Al-

gorithms for important problems such as maximum clique enumeration can efficiently be applied
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on chordal graphs [75]. The key idea in A3 is to leverage the power of chordal graphs in obtaining

a near-optimal allocation. We now present details of the three steps in A3 along with a running

example in Fig. 4.9.

Triangulation: The process of adding edges to chordalize (triangulate) a graph is known as

fill-in. Since adding edges to the conflict graph would result in a conservative allocation than is

required, the goal is to add the minimum number of edges needed for triangulation. While this is

a NP-hard problem in itself, A3 employs a maximum cardinality search based algorithm [76] that

is guaranteed to produce a minimal triangulation and runs in time O(|V ||E|)), where V is the set

of vertices and E is the set of edges in the graph. Fig. 4.9 depicts a fill-in edge between vertices

A and C. As we shall subsequently see, the restoration (third) step in A3 is used to alleviate the

under-utilization introduced by the triangulation.

1: INPUT: G′ = (V,E ′) and load ℓi, ∀vi ∈ V
2: Allocation:

3: Un-allocated vertices U = V , Allocated vertices A = ∅
4: Determine all the maximal cliques C = {C1, . . . , Cm} in G′ using perfect elimination ordering

5: Resource: Rj = N , Net load: Lj =
∑

i:vi∈Cj
ℓi, ∀Cj

6: Determine tuples: si = maxj:vi∈Cj
{Lj},

ti =
∑

j 1vi∈Cj
, ∀vi

7: Determine initial allocation:

Ai = minj:vi∈Cj

⌊

ℓiRj∑
k:vk∈Cj

ℓk
+ 0.5

⌋

, ∀vi ∈ U

8: while U '= ∅ do
9: Pick un-allocated vertex with maximum lexicographic rank: vo = argmaxi:vi∈U(si, ti)
10: Allocate Ao sub-channels to vo; U ← U\vo,

A ← A ∪ vo
11: Update remaining resource: Rj = Rj −Ao,

∀j : vo ∈ Cj

12: Remove vo from cliques: Cj ← Cj\{vo}, ∀j : vo ∈ Cj; Update Lj ∀j and (si, ti) ∀vi ∈ U
13: Update allocation:

Ai = minj:vi∈Cj

⌊

ℓiRj∑
k:vk∈Cj

ℓk
+ 0.5

⌋

, ∀vi

14: end while
Algorithm 4: Weighted Max-min Fair Allocation Algorithm

Allocation: A3 uses Algorithm 4 to determine the weighted max-min allocation on the trian-

gulated graph G′. Once the graph is triangulated, all its maximal cliques are listed in linear time
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(O(|V |)) by determining a perfect elimination ordering (PEO) [76]. A3 determines the net load

on each maximal clique (step 5) and for every un-allocated vertex (cell, vi), it determines a tuple

(si, ti), where si indicates the highest load in the cliques that vi belongs to and ti is the number

of cliques that it belongs to (step 6). A3 then determines a vertex’s weighted fair share in each of

the maximal cliques that it belongs to and determines its minimum (rounded) share amongst all its

member cliques (step 7). It picks the vertex (vo) with the highest lexicographic rank and allocates

the computed share of sub-channels to it (vertex C is picked first with sc = 5 and tc = 3). vo is then

removed from the list of un-allocated vertices (steps 8-10). The allocated vertex is also removed

from the cliques that it is a member of, and the clique loads, resource and vertex tuples are corre-

spondingly updated (steps 11,12). The weighted share for the remaining set of un-allocated vertices

in each of the maximal cliques that vo belongs to is updated based on the remaining resources in

those cliques (step 13). The process is repeated until all vertices receive allocation and runs in time

O(|V |2).

Assignment: After the vertices get their weighted max-min allocation, the next step is to pro-

vide an actual assignment of sub-channels to satisfy the allocations. A3 leverages clique trees for

this purpose. A clique tree for a chordal graph G is a tree whose nodes are maximal cliques in G.

Further, it satisfies some useful properties (as we show later).

A3 generates a clique tree for the chordal graph G′ (depicted in Fig. 4.9) in linear time by

building on top of a PEO or by constructing a maximum spanning tree [75]. It picks an arbitrary

node in the clique tree as its root and starts sub-channel assignment proceeding from the root to

its leaves. At every level in the tree, it assigns sub-channels to un-assigned vertices in each of the

nodes (maximal cliques) based on their allocation (vertex D is assigned first with sub-channels

[1:5]). When assigning sub-channels to a vertex, it picks a contiguous set of sub-channels that is

disjoint with existing assignments to other vertices in the same clique. When contiguous assignment

is not possible, A3 makes the assignment to minimize fragmentation (e.g. vertex B is assigned two

fragments). Since a vertex may belong to multiple maximal cliques, once its assignment is made, it

is retained in all subsequent levels of the tree. We establish later that the above procedure that runs
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in O(|V |) can yield a feasible assignment of sub-channels (i.e. proper coloring of G′) to satisfy the

allocation.

Restoration: Fill-in edges could result in conservative (under-utilized) allocation of resources.

While the triangulation inA3 attempts to reduce the addition of such edges, we still need a final step

to restore potential under-utilization. A3 re-visits vertices that carry fill-in edges and removes such

edges one by one. When a fill-in edge is removed, the removal of a conflict may free up some sub-

channels at each of the vertices carrying the edge. If so, the largest set of such sub-channels (that

do not conflict with the assignment of neighbor vertices) are directly assigned to those vertices (for

vertex A, sub-channels [12:19] are freed after the conflict removal with C and can be re-assigned

to A). This can be done in O(|V |).

To summarize, given the exponential number of cliques in the original graph, A3 intelligently

transforms the graph into a chordal graph with only a linear number of cliques and optimally solves

the allocation and assignment problem. A3 keeps the potential under-utilization due to virtual edges

to a minimum with its triangulation and restoration components. Thus, it provides near-optimal

performance for most of the topologies with a net running time of O(|V ||E|). We now establish

two key properties of A3.

Property 1. A3 produces a weighted max-min allocation on the modified graph G′.

Proof. Before the proof, we recap the definition of max-min fairness, which needs to be slightly

modified given that fractional channel allocations are not possible. An allocation vector is said

to be max-min if it is not possible to increase the allocation (x) of an element without decreasing

that of another element with an allocation of x+ 1 or lesser. The corresponding weighted max-min

definition requires that an increase in the allocation (x) of an element with weightwi is accompanied

by a decrease in the allocation of another element j (with weight wj) with an allocation of
wjx

wi
+ 1

or lesser.

Note that a weighted max-min allocation on G′, where the weights correspond to the load on

the vertex, is equivalent to a max-min allocation on a transformed graph G∗, where each vertex vi
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in G′ is replaced by a clique with ℓi nodes (sub-vertices) in G
∗ and an edge between two vertices

in G′ translates to an edge between all sub-vertices of the two vertices in G∗. A clique Cm with m

vertices in G′ now translates to a clique with
∑

i:vi∈Cm
ℓi sub-vertices in G

∗. Thus, to show A3’s

allocation mechanism yields a weighted max-min allocation on G′, it is sufficient to show that it

yields a max-min allocation in G∗ where each sub-vertex has unity load (weight). We will show

this by contradiction.

Assume a given allocation is not max-min. Hence, consider two sub-vertices va, vb in a maximal

clique C1 with respective allocations being x and x + 2. For the allocation to not be max-min, we

should be able to increase va’s allocation either in isolation or by decreasing vb’s allocation. Since

va’s allocation was restricted to begin with, it must belong to a bigger clique than C1, namely C2.

This is because, when all the loads are unity, the allocation mechanism picks vertices belonging to

bigger cliques first. Now, if va’s allocation can be increased by one sub-channel, then this must also

not exceed the resource capacity of C2. There are three possible cases.

(i) If va was allocated after other sub-vertices in C2, then va’s allocation would have already ex-

panded to occupy the remaining capacity of C2, which means that va’s allocation cannot be in-

creased further.

(ii) If va was not the last sub-vertex in C2 to be allocated, then it might be that the sub-vertices

that followed va were bottlenecked in other larger cliques and could only receive an allocation

< x, thereby allowing va’s allocation to be further increased to use up the remaining capacity in

C2. However, this is not possible since the sub-vertices that follow va in A3 can only belong to

equivalent or smaller cliques and will hence be able to receive an allocation ≥ x, thereby using up

C2’s capacity completely. Thus, va’s allocation cannot be increased in this case as well.

(iii) Similar to vb, let vc ∈ C2 be another sub-vertex with an allocation ≥ x + 2. In this case, va’s

allocation can be increased at the cost of vb’s and vc’s allocations in the two cliques. However, note

that if vc was allocated before va, then its allocation will be ≤ x. Further, since va is bottlenecked

in C2, if vc is allocated after va, then its allocation can at most be x + 1. Thus, in either case, va’s

increase will have to come at the cost of another sub-vertex with an allocation ≤ x+ 1.
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Property 2. A3 always produces a feasible assignment of sub-channels for its allocation.

Proof. A3 generates a clique tree for G′ and starts assigning sub-channels to vertices in each of the

nodes (cliques) in the clique tree starting from the root. A3 can run into assignment problems if it

encounters an un-assigned vertex vi belonging to multiple cliques at the same level with conflicts

such that it prevents a feasible assignment to vi. This is where the clique intersection property of

clique trees come into play.

The clique intersection property states that for every pair of distinct cliques C1, C2, the set of

vertices in C1 ∩ C2 will be contained in all the cliques on the path connecting C1 and C2 in the

tree. Hence, if vi appears at multiple cliques at a level in the tree, it must have appeared in isolation

at some higher level in the tree. Given that all vertices, when encountered first, appear in a single

clique at a level, a feasible assignment to the vertex is always possible since the allocations always

satisfy the capacity in all cliques. Further, once a vertex is assigned sub-channels, its assignment

carries over to other cliques containing it in subsequent levels. Thus, by using a clique tree for

assignment, A3 is able to ensure a feasible assignment of sub-channels given a weighted max-min

allocation.

Based on these two properties, we have the following result.

Theorem 2. If G is chordal, then A3 produces an optimal weighted max-min allocation.

Through our comprehensive evaluations in Section 4.6, we show that over 70% of the topolo-

gies are chordal to begin with for which A3 is guaranteed to yield an optimal allocation. For the

remaining topologies, A3’s sub-optimality is within 10%, indicating its near-optimal allocation ca-

pability.

Other possible comparative approaches: While greedy heuristics for multi-coloring do not

address our allocation problem, to understand the merits of A3, we propose and consider two ex-

tensions to such heuristics that also perform allocation and assignment (coloring). These simpler

heuristics do not need to operate on a complete list of maximal cliques as we describe next.
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The first heuristic is progressive (labeled prog); here, the allocations and assignments are made

in tandem one sub-channel at a time. The vertex with the smallest weighted allocation (allocation
load

=

Ai

ℓi
) is chosen and assigned the smallest indexed sub-channel available in its neighborhood. By

assigning sub-channels one at a time, this heuristic achieves reasonable fairness. However, its

running time is O(|V |2N), where its dependence on N (number of sub-channels) makes it pseudo-

polynomial, thereby affecting its scalability. It also results in a highly fragmented assignment of

sub-channels, which in turn increases the control overhead in frames.

Another heuristic that can avoid the pseudo-polynomial complexity, is interference-degree based

(labeled deg). The share to every vertex is determined based on its weight and the remaining re-

sources (after removing allocated vertices) in its interference neighborhood and is (
ℓi(N−

∑
j:(vi,vj)∈E,vj∈A

Aj)
∑

j:(vi,vj )∈E,vj∈U
ℓj

).

Then the vertex with the min. share is allocated as contiguous of a set of sub-channels as possible.

This heuristic runs inO(|V |2) and also keeps the overhead low. However, its fairness is significantly

worse as compared to prog.

By adopting a greedy approach, heuristics derived from multi-coloring either achieve low com-

plexity and overhead at the cost of fairness but not both. A3 however, deciphers interference de-

pendencies with good accuracy to provide both near-optimal fairness and reduced complexity and

overhead. Further, since the allocation and assignment is conducted on the chordal graph G′, dy-

namics in the form of arrival/departure of clients/cells (i.e. addition/deletion of conflict edges) can

be easily accommodated in a purely localized manner through incremental schemes [77]. This in

turn allows A3 to scale well to network dynamics unlike other heuristics.

Benchmarking: To understand how closeA3 is to the optimum, we need to obtain the weighted

max-min allocation on the original graph G (not necessarily chordal). This requires listing all

the maximal cliques, which are exponential in number. However, this can be done in a brute-

force manner with exponential complexity. Once all the maximal cliques are listed, the allocation

procedure of A3 can be directly applied to obtain a weighted max-min allocation on G.
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4.5.2 Zoning

We addressed the assignment of sub-channels to the resource isolation zone of each cell. Our next

step is to determine the size of the reuse zone (in symbols) for each cell based on their desired

sizes. There arise three challenges in determining the reuse zone size (referred to as sr). (i) If two

interfering cells use two different sr’s, the one with the larger sr will cause interference to the class

ISO clients of the other cell. Hence, a common reuse zone is required among interfering cells. (ii)

Since allocation and zoning are meant to operate at coarse time scales (decoupled from per-frame

scheduling), the common sr among interfering cells cannot be determined based on throughput.

Hence, the choice of the common sr is restricted to either the minimum or maximum of the desired

zone sizes of the neighboring cells. (iii) If each cell belongs to a single contention region (clique),

choosing the common sr is easy. However, since cells may belong to multiple cliques, this will

result in a common sr (minimum or maximum) propagate to the entire network. Cells with a

desired zone size less than the common sr may not have sufficient data for their class LA clients to

fill up to the sr, while cells with a larger desired zone size will have to perform isolation (without

reusing sub-channels). Either case results in under-utilization, which is exacerbated when a single

common sr is allowed to propagate to the network.

FERMI addresses the above challenge as follows (illustration in Fig. 4.10). For each cell, the

CC determines the minimum of the advertised (desired) sr’s of all the cell’s neighbors and uses that

as its operational sr (e.g. 10 symbols for BS1, 5 symbols for BS2). The cell schedules its class

LA clients in the reuse zone till the operational sr (using all sub-channels). It continues to schedule

class LA clients in the second zone between its operational sr and its desired sr. However, these

are scheduled only in the band allocated to the cell by A3 (the scheduling of BS2 between the 5th

and the 15th symbols). The class ISO clients are scheduled in the resource isolation zone (after the

desired sr) using the band allocated by A
3.

Introducing a transition zone (marked on Fig. 4.10) that schedules class LA clients between the

operational and desired srs (using the band given byA
3), provides a graceful transition between the
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Figure 4.10: Illustration of zoning mechanism of FERMI.

reuse and resource isolation zones. Since the chance for under-utilization is more when the opera-

tional sr exceeds the desired sr, FERMI uses the minimum of the desired srs in the neighborhood

as the operational sr for a cell. Further, since each cell computes its operational sr only based on

the desired srs of its neighbors and not their operational srs, propagation of a single common sr in

the network (and the resulting under-utilization) is avoided. As an example, this would correspond

to every BS having the same sr (i.e. global min.) of 5 symbols in Fig. 4.10. Using the minimum of

the desired srs of neighbors (i.e. local min.) avoids this propagation for BS1 and allows it to have

a sr of 10 symbols. Hence, different regions of the network can have different sr values, which in-

creases the potential for sub-channel reuse. Further, cells that belong to multiple contention regions

with different operational srs in the different cliques (e.g. BS2 in Fig. 4.10) will not suffer from

interference to their class ISO clients, since the operational sr of all their cliques will be less than

their desired sr, while they schedule only class LA clients in the region between their operational

and desired sr. As we shall show in our evaluations, FERMI’s zoning arrangement provides signif-

icant gains since the sr values in different cliques can be decoupled (i.e. a single globally minimum

desired sr does not propagate).
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Figure 4.11: Our WiMAX equipment.

4.6 System Evaluation

To evaluate FERMI, we both conduct experiments on our testbed as well as use simulations. Simu-

lations help evaluate the scalability and the relative performance of each algorithm with parameters

that are not easy to adapt in practice.

4.6.1 Prototype Evaluations

Implementation Details: Fig. 4.11 shows a picture of our testbed equipment. Given that we do not

have a macro BS at our disposal, we use external GPS modules to achieve synchronization among

femtocells. The GPS modules are placed next to windows with cables providing a 1 pulse per

second (pps) signal to each femtocell (antenna and cable depicted). The clients are USB dongles

connected to laptops.

FERMI is implemented on the PicoChip platform which provides a base reference design imple-

mentation of the WiMAX standard. The reference design does not involve sophisticated scheduling

routines and provides just a working link between the BS and the MS. Since the clients are off-

the-shelf WiMAX MSs (with no possibility of modification), it is a challenge to realize a working
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Figure 4.12: Implementation details of FERMI.

implementation of various components such as categorization and zoning. Some of these chal-

lenges were to keep our implementation within the boundaries of the rigid WiMAX frame structure

and to integrate commercial clients with our experimental testbed. We significantly extend (shown

as shaded components in Fig. 4.12) the reference design to implement FERMI. Specifically, our

implementation operates as follows.

(a)When data from higher layers is passed onto the MAC, we first route the data based on what

MS it is intended for and whether that MS is already categorized (as in §4.4) or not. (b) If the MS is

already categorized, its data is packed in the relevant zone of the frame that the MS needs (reuse vs.

resource isolation). If not, its data is packed in the measurement (recall free and occupied) zones

introduced for categorization. The burst packing component implements a rectangular alignment of

the data of bothMSs that have been categorized before as well as MSs that are being categorized. (c)

After packing, the data is passed onto the frame controller which prepares the control payload before

the frame is transmitted on the air. (d) The burst tracking component keeps an information tuple

for the measurement zones for the MSs that are being categorized. It tracks the ACK status of each

measurement burst. After enough BDR samples are collected, it decides on the client category and

informs the burst packing component about the decision. (e) The interface with the CC leverages

kernel sockets to communicate the load and conflict information to the CC via Ethernet and receives

operational parameters for zoning and allocation (used by the burst packing component).

Experimental Evaluations: Next, we evaluate the performance of each algorithm using our

testbed. We create five topologies as shown in Fig. 4.13. The dotted edge between BS1 and
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Figure 4.13: Topologies used for prototype evaluation.

BS3 in Topology 2 is the fill-in edge introduced by A3 (other topologies are already chordal). In

generating these topologies, we leverage our WiMAX testbed (see Fig. 4.2) by changing the client

locations for each BS. We measure the fairness of each algorithm relative to the optimal allocation

(benchmark) as the normalized distance to the benchmark d =
√
∑

i∈V (ti − si)2 /
√
∑

i∈V (si)
2

[78] where ti and si denote the number of sub-channels assigned to vertex i by an algorithm and

the benchmark, respectively.

Throughput and Fairness: In our testbed, the cells have N = 30 sub-channels available in

the spectrum. Each BS has two clients (one class LA, one class ISO). When there is no zoning,

we schedule both clients on the same set of sub-channels allocated to the BS. For scenarios with

zoning, the specific zoning strategy determines the size of the reuse zone and the resource isolation

zone.We perform experiments for each topology with the allocation determined by each algorithm

(assuming equal load at each BS). Here, we introduce another heuristic (labeled dist) that decides

the share of a vertex based on its weight and the resources in the neighborhood (without removing

the allocated vertices). The share of a vertex i becomes ℓiN∑
j:(vi,vj)∈E ℓj

. It mimics a distributed

degree-based allocation and helps us understand the importance of having a centralized approach.
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Topology 1 Topology 2 Topology 3 Topology 4 Topology 5

Algorithm A3 dist deg BM A3 dist deg BM A3 dist deg BM A3 dist deg BM A3 dist deg BM

BS1 (1) 15 15 20 15 20 10 20 15 10 7 7 10 15 15 20 15 20 15 23 20

BS2 (2) 15 10 10 15 10 10 10 15 10 10 16 10 15 10 10 15 10 7 7 10

BS3 (3) 15 15 20 15 20 10 20 15 10 7 7 10 15 10 10 15 10 10 11 10

BS4 (2) - - - - 10 10 10 15 10 10 16 10 15 15 20 15 10 10 12 10

Utilization 45 40 50 45 60 40 60 60 40 34 46 40 60 50 60 60 50 42 53 50

Throughput(Mbps) 20.8 18.3 21.8 - 29 19.7 27.8 - 19.6 15.8 20.7 - 26.7 22.7 27 - 23.9 19.9 25 -

Table 4.1: Throughput and utilization of each algorithm along with individual allocations (for equal load) for the BS.

1
1
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Figure 4.14: Fairness benefits of A3.

Table 4.1 summarizes the number of sub-channels allocated to each BS along with utilization

and aggregate throughput measurements from the experiments. We observe that dist has the lowest

utilization and therefore the lowest aggregate throughput. This is because it over-accounts for

interference by just considering the vertex degrees in allocation. deg inherently penalizes vertices

with high degree and allocates more resources to the others; it slightly outperformsA3 in utilization

and throughput (albeit at the cost of fairness). Fig. 4.14(a) and 4.14(b) plot the fairness for equal

load and variable load (the loads are listed next to each BS in parentheses in Table 4.1), respectively.

It is seen that A3 consistently outperforms the other algorithms except topology 2 (equal load case)

where it requires a fill-in edge. However, the restoration step ofA3 can account for under-utilization

(due to the fill-in edge) helping it achieve the same utilization as the benchmark. In all other

topologies, A3 achieves the exact allocation as the benchmark (BM in Table 4.1) since they are

naturally chordal.

Zoning Benefits: We now present throughput measurements for A3 - with and without zoning

in Fig. 4.15(a). The baseline strategy is where each cell operates on all tiles with link adaptation.

We observe that even without zoning, A3 has significant gains over the baseline. The gains are

further pronounced when zoning is employed, giving A3 a throughput increase of 50% on average.

Next, we quantify the benefits of decoupling reuse zone demands in the network (local min.)

against having a single reuse demand propagated to each contention region (global min.). For this
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Figure 4.15: Zoning Benefits of A3.

experiment, we use topology 1 in Figure 4.13. We set equal reuse zone size demands for BS1 and

BS2 (varied in each measurement) and a fixed demand of 4 symbols for BS3. Demand difference

is defined as the difference between the common demands of BS1 and BS2 and the demand of

BS3 (4 symbols). As we vary the demand difference from 2 to 14, we measure the aggregate

throughput and present it in Fig. 4.15(b). It is seen that both global min. and local min. zoning

result in increasing throughput as the demand difference increases. For the global min., although

the operational size is the same (4 symbols), the high demands of BS1 and BS2 allow them to

schedule their class LA clients over a larger set of resources (recall the transition zone in §4.5).

Note that since class LA clients are likely to support a higher MCS than class ISO clients, having

a large demand contributes to throughput gains (as compared to scheduling class ISO clients in

the transition zone). For local min. zoning, the operational size for BS1 is significantly higher

as compared to the global min. resulting in an increasing throughput gain over the global min.

strategy. This shows FERMI’s benefits from decoupling desired reuse zone sizes between different

contention regions in the network.
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Figure 4.16: Effect of femtocell range on A3’s fairness.

4.6.2 Evaluations with Simulations

System Model and Metrics: We implement a simulator to evaluate FERMI in comparison to its

alternatives. The simulator incorporates a channel model proposed by the IEEE 802.16 Broadband

Wireless Access Working Group for femtocell simulation [79]. This model captures wireless effects

such as log-distance path loss, shadow fading and penetration loss, typical of indoor deployments.

The SNR from the model is mapped to a MCS using a rate table from our testbed to compute

throughput. The simulation area is a 7x7 grid where the distance between each grid point is 12

meters. In addition, the width and height of this area is 100 meters. We simulate a deployment

by randomly choosing grid locations for each cell. We then randomly generate a client location

for each cell and determine the conflict graph. We measure the overhead of each algorithm as the

number of contiguous sub-channel chunks allocated per cell. In addition to overhead, we define

the fill-in edge ratio to be the ratio of number of fill-in edges to the edges that are already present

in the conflict graph. If the conflict graph is chordal, the fill-in edge ratio is 0. Next, we present

our simulation results. Each data point is an average over results from 100 randomly generated

topologies.

Effect of Cell Range: Fig. 4.16(a) plots the effect of cell range on fairness. We observe that

both heuristics (prog and deg) consistently deviate more from the benchmark as range increases.

With increasing range, the number of sub-channels that a cell is assigned decreases (resources

114



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 10  15  20  25  30  35  40

D
is

ta
n

c
e

 f
ro

m
 o

p
ti
m

a
l

Number of Femtocells

A
3

prog.
deg.

(a) Fairness

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 10  15  20  25  30  35  40

F
ill

-i
n

 E
d

g
e

 R
a

ti
o

Number of Femtocells
(b) Fill-in Edge Ratio

Figure 4.17: Effect of number of femtocells on A3’s fairness.

are shared among more cells). Recalling the fairness formula, a given difference in allocations

(between the benchmark and the heuristics) becomes more pronounced with a smaller number of

sub-channels assigned by the benchmark (si). Interestingly,A
3 exhibits an improvement in fairness

after a particular range (while maintaining less than 0.15 distance from the benchmark). We find

that the fill-in edge ratio is the main factor that affects A3’s fairness (plotted in Fig. 4.16(b)). For

small ranges, the graph contains some isolated vertices (very few cycles) and A3 does not introduce

fill-in edges. As range increases, cycles start to form and A3 adds fill-in edges to make the graph

chordal. However for further ranges, increased connectivity turns in favor of A3 since the cycles

happen rarely and the fill-in edge ratio decreases again.

Effect of Number of Cells: We now fix a number of sub-channels (5) and a range (20 m.) and

vary the number of cells. From Fig. 4.17(a), we see that A3 consistently outperforms the other

heuristics in terms of fairness and is within 0.1 distance of the benchmark due to the rare need

for fill-in edges. The distance increases with the number of cells due to an increased likelihood

of cycles; the trend again follows that of the fill-in edge ratio (plotted in Fig. 4.17(b)). For deg

and prog, the distance also increases with the number of cells because of a reduced number of

sub-channels per cell (si), similar to the effect of cell range.

Effect of Number of Sub-channels: We now simulate 30 cells with a fixed range of 10 m. and

vary the number of sub-channels in the spectrum. Fig. 4.18(a) shows that A3 exhibits a constant
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Figure 4.18: Effect of Number of Sub-channels on A3’s fairness and overhead.

distance from the optimal. Since A3’s performance is mainly influenced by the fill-in edge ratio,

the number of sub-channels does not have a significant effect on A3’s fairness. In addition, the

distance for prog and deg decreases with an increased number of sub-channels due to the increase

in number of sub-channels per cell (si). This makes the differences in allocations (between the

heuristics and the benchmark) less pronounced as compared to when there are fewer sub-channels.

Fig. 4.18(b) shows that the overheads for A3 and deg are very close to 1 and do not change with

the number of sub-channels. This shows that both strategies can assign a single contiguous set of

sub-channels to the cells. However, prog tends to have an increasing overhead trend. Since prog

assigns a fragmented set of sub-channels, the overhead increases with an increasing number of

sub-channels that can be assigned to a cell.

Effect of Zoning: In simulations with zoning, each cell has two clients: one that requires

resource isolation (class ISO) and one that requires just link adaptation (class LA). We simulate 40

cells with range 10 m, and a frame structure having 30 sub-channels and 30 symbols. Among the

cell population, we have three different types of reuse zone demands: i) high-demand cells that

randomly demand a reuse zone size between 15 and 20 symbols ii) moderate demand cells that

generate a demand value between 10 and 15 symbols and iii) low-demand cells with a generated

demand between 5 and 10 symbols. We experiment by varying the fraction of the high-demand

cells. Fig. 4.19 shows the total throughput achieved for each zoning strategy. It is seen that as
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the fraction of high-demand cells increases, the throughputs for both zoning strategies increase.

However, the gain of local min. over global min. is more with a higher fraction of high-demand

cells. This is a natural artifact of vertices converging to a higher local demand as opposed to

the global minimum value which is typically the same on average (generated by the low-demand

vertices). The results reinforce FERMI’s benefits of decoupling the reuse zone demands in different

contention regions of the network (i.e. preventing a single demand from propagating).
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Overall Fairness: Finally, we present the CDF of the distance from the optimal as a cumulative

set of all previously described simulations for the three algorithms considered, in Fig. 4.20. We

mainly use the results with range 10 m. and 20 m., as these represent a more realistic deployment

(given the entire area is 100x100 meters). The results provide an understanding of how fair a given

algorithm is in practical deployments with a large set of variables (# femtos, # sub-channels, zoning

etc.). It is seen that A3 reaches the exact same allocation as the benchmark in about 70% of the

topologies, which is far superior to the performance of the other heuristics. deg has the worst

performance and reaches the benchmark allocation in only 10% of the topologies. prog does better

than deg but still significantly underperforms A3.

4.7 Conclusions

In this chapter, we design and implement FERMI, one of the first resource management systems for

OFDMA femtocell networks. Resource management in femtocells offers a set of unique practical

challenges (posed by the requirement for standards compatibility) that - to the best of our knowledge

- had not been addressed to date. FERMI provides a complete resource management solution with

several unique features. It uses measurement-driven triggers to classify clients into two categories,

those that need resource isolation and those that do not. It incorporates a frame zoning structure that

supports the graceful coexistence of clients from both categories. For purposes of interference mit-

igation, it allocates orthogonal sub-channels of the OFDMA spectrum with high utilization and low

overhead. We implement FERMI on our WiMAX femtocell testbed and show via both experiments

and simulations that its performance is superior to other conventional methods.
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Chapter 5

Design and Implementation of an Integrated

Beamformer and Uplink Scheduler for

OFDMA Femtocells

Beamforming is a signal processing technique with numerous benefits. Unlike with omni-directional

communications, it focuses the energy of the transmitted and/or the received signal in a particular

direction. Although beamforming has been extensively studied on conventional systems such as

WiFi, little is known about its practical impact on OFDMA femtocell deployments. Since OFDMA

schedules multiple clients (users) in the same frame (in contrast to WiFi), designing intelligent

scheduling mechanisms and at the same time harnessing gains from beamforming, is a challenging

task.

Unlike downlink, we show that the integration of beamforming with uplink scheduling projects

an interesting trade-off between beamforming gain on the one hand, and the power pooling gain re-

sulting from joint multi-user scheduling on the other hand. This in turn makes the uplink scheduling

problem even hard to approximate. To address this, we propose algorithms that are simple to im-

plement, yet provably efficient with a worst case guarantee of half. We implement our solutions on

a real WiMAX femtocell platform integrated with an eight-element phased array beamforming an-
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tenna. Evaluations from both prototype and trace-driven simulations show that our solution delivers

throughput gains of over 40% compared to an omni-directional scheme.

5.1 Introduction

To meet the demands for increased capacity driven by the exponential growth in mobile data traffic

[80], broadband network deployments are moving towards smaller cells – called femtocells – that

use Orthogonal Frequency Domain Multiple Access (OFDMA). Femtocells inherit OFDMA and

their synchronous access nature from macrocells; this allows for easier deployment and seamless

operations with mobile clients.

The ability to focus energy in specific directions (called beamforming) using antenna arrays can

serve as a valuable tool in enhancing the performance of OFDMA femtocells. While beamforming

is extensively studied for WiFi systems (e.g., [9, 81]), the fundamental differences between WiFi

and OFDMA – scheduling of multiple users in the same frame and the synchronous access in

OFDMA – render such studies inapplicable to femtocells. The future releases of OFDMA systems

(e.g., WiMAX 802.16m [66]) support beamforming as part of the standard. They allow for multiple

beams at the base-band level (one beam per user) to be used on the data payload within the same

frame (user-level beamforming). However, potential beamforming gains are limited as they support

a limited number of antennas at femtocells (e.g., four in WiMAX and LTE-Rel.8) and the specific

beamforming mechanisms vary from one standard to another.

A more flexible alternative to user-level beamforming is to employ frame-level beamforming,

which applies a single beam (common to all users) to the entire frame (not only the data payload

but also the control part) at the RF level. Since user-specific beams are not leveraged, such an

approach may incur sub-optimal performance for the data payload since a beam pattern that “fits”

all users has to be found. However, we identify that frame-level beamforming still has critical

advantages: (a) it is realizable as a plug-and-play external RF beamformer and hence, is agnostic

of the access technology (WiMAX, LTE, etc.); and (b) beamforming gain is not limited by the
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number of antennas supported by the standards. Even more interestingly, we show that it also

offers a unique, complementary benefit for interference mitigation, in a multicell context (discussed

in detail later in §5.3). However in realizing the true potential of frame-level beamforming, an

essential first step is to integrate it with the scheduler at each femtocell.

The integration of frame-level beamforming with downlink scheduling can be accomplished by

extending existing solutions [82, 83] - by running the scheduler for each beam and picking the one

yielding the best objective. However, the corresponding uplink problem encounters two aspects

unique to the uplink that make the problem challenging:

Power pooling vs. beamforming: When multiple users are jointly scheduled in a frame (i.e., the

resources are shared), each user pools his transmit power on a smaller set of sub-channels (instead

of using all sub-channels). This results in a higher user rate per sub-channel and hence higher frame

throughput (power pooling gain). While beamforming improves a user’s rate, using a single beam

(common to users) for a frame may not yield the optimal performance for every user scheduled in

the frame. Hence, the higher the number of users scheduled in a frame, the higher is the power

pooling gain but lower is the beamforming gain, and vice versa.

Batch scheduling: For a femto base station (BS) to compute the uplink allocation, the scheduling

requests have to come from the clients (as is the case in macrocells). Clients contend for sending

such requests, which they send in response to changes in their buffer occupancies. This incurs both

contention delay and overhead (multiple requests sent for a transmission buffer worth of data). A

better option is to allow the BS to poll clients for their buffer occupancies at periodic intervals

(e.g., polling service in WiMAX [62]). This avoids contention and reduces overhead. However,

scheduling is now done for a group of frames jointly (batch scheduling) based on client buffer

occupancies. More generically, even without polling, batch scheduling allows a user’s data to be

spread across multiple frames, thereby accentuating power pooling gains and hence, aggregate

throughput (details in §5.4.1).

In this study, we consider the batch scheduling problem on the uplink for non-real-time traffic.

While it is optimally solvable for omni-directional communications, we show that it is hard to even
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approximate when integrated with frame-level beamforming, where it also requires the determina-

tion of a beam for each frame. In addressing this problem, we make the following contributions.

• We propose simple but efficient algorithms for both continuous and discrete rate functions

with a worst case guarantee of 1
2
.

• We implement our solutions on a real WiMAX femtocell platform that is integrated with an

eight-element phased array antenna for beamforming.

• We conduct comprehensive over-the-air evaluations with both a prototype implementation

and trace-driven simulations; results indicate an average gain of 40% over an omni-directional

scheme, in practical settings.

The rest of the chapter is organized as follows. §5.2 presents a brief WiMAX overview and

related work. In §5.3 and 5.4, we describe the motivation and the design of our system. §5.5

describes our algorithms. §5.6 contains implementation details and §5.7 shows evaluation results.

We conclude in §5.8.

5.2 Background

WiMAX: While our solutions apply to OFDMA femtocells in general, our implementation is on

WiMAX. Hence, we provide brief background on relevant WiMAX components (details in [62]).

OFDMA divides the spectrum into multiple frequencies (sub-carriers) and several sub-carriers are

grouped to form a sub-channel. The sub-carriers can be grouped in a contiguous, partially contigu-

ous or fully distributed manner. Partially contiguous grouping, being the mandatory model, is alone

implemented on most WiMAX devices and is hence, considered in our work. Here, sub-carriers

forming a sub-channel are permuted to allow for a common transmission rate for a user on all sub-

channels. This requires only a single channel feedback per user. Permuting also helps average out

inter-cell interference.
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Figure 5.1: An illustration of the WiMAX Frame

AWiMAX frame is a two-dimensional template that is scheduled at the MAC with data to/from

multiple mobile stations (MSs), across both time (symbols) and frequency (sub-channels). Data

to/from users are allocated as rectangular bursts of resources in a frame (see Fig. 5.1). For e.g.,

the uplink allocation in Fig. 5.1 can be visualized to be at the sub-channel granularity. The frame

consists of the preamble, control and data payload. While the preamble is used by the MS to lock

on to the BS, the control consists of FCH (frame control header) and MAP. The BS, using MAP,

indicates the schedule of transmissions both on the downlink and the uplink. The DL-MAP specifies

the location of each burst, which MS it is intended for, and what modulation decodes it. Similarly

the UL-MAP tells the MS where to place its data in the uplink and how to modulate it.

Beamforming: The ability to transmit (receive) signal energy in (from) specific directions is

called beamforming. This is achieved by weighing the signals transmitted (received) from an an-

tenna array in both magnitude and phase. The weight vector applied determines the specific beam

pattern generated. Such weight vectors can be pre-determined and stored a priori (switched beam-

forming) or can be computed on the fly based on instantaneous channel feedback from the clients

(adaptive beamforming).

To achieve low complexity, standards use code-book based beamforming, whereby weight vec-

tors (pre-determined by the code-book) are employed and the one yielding the best SNR at the

client is chosen. Since beams are enabled only for the data part, a beam vector suited for each client

scheduled in a frame can be chosen, to encode data in the digital signal space (user-level beamform-
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ing). In contrast, applying a single beam physically at the RF level (frame-level beamforming), will

provide beamforming for the entire frame, including the control part (advantageous in a multicell

context as explained in §5.3). While its beamforming gain for the data part may be sub-optimal

compared to user-level beamforming, frame-level beamforming is agnostic of the standards and

thus, is not limited by them. Indeed, this has allowed us to integrate an eight-element phased ar-

ray antenna with a WiMAX BS, although the current OFDMA BSs do not support beamforming

and the next generation ones (e.g., 802.16m) support only four antennas. We consider frame-level

beamforming for uplink, where the beam patterns emphasize reception in desired directions and

could either correspond to physical directions covering the 360◦ azimuth (e.g., [81]) or be based on

Gaussian code-books (e.g., [84]).

Related Work: Several works have studied the design of throughput [82, 83, 85, 86] and QoS

[87, 88] schedulers for OFDMA. However, their focus has been on per-frame scheduling. While

batch scheduling is not very different from per-frame scheduling on the downlink (in terms of op-

timization), the ability to leverage power pooling on the uplink makes the problem challenging and

has not been addressed. While some studies (e.g., [89]) have looked at the design of polling inter-

vals specifically for the uplink of WiMAX, they have not addressed the batch scheduling problem.

User-level beamforming has been jointly optimized with per-frame scheduling for OFDMA

systems [90, 91]. However, the notion of frame-level beamforming and its various benefits have

not been explored; its integration with uplink batch scheduling and the challenges it encounters

have also not been considered. We contribute by designing and implementing an efficient uplink

scheduler that integrates frame-level beamforming with batch scheduling for OFDMA.

5.3 Motivation

We motivate the importance of frame-level beamforming and batch scheduling for the uplink using

measurements from an experimental testbed. We defer however, a detailed description of the testbed

to §5.6.
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Figure 5.2: Sub-optimality of frame-level beamforming.

Small Loss Compared to User-level Beamforming: One drawback of frame-level beamform-

ing is the constraint of using a single beam for all the users scheduled in a frame, thereby poten-

tially limiting the per-user beamforming gain. In strong line-of-sight environments, where very few

beams work well for each client, the sub-optimality of such a common beam could be significant.

To understand this sub-optimality indoors, we placed a client at multiple (thirty) locations in the

building and recorded the uplink SNR (as measured at the BS) with various beams for each of these

locations. Then, different subsets of client locations were grouped together to emulate different sets

of clients being scheduled in the same frame. For each of these subsets, a single beam was chosen

(frame-level beamforming) that yielded the smallest aggregate loss compared to the case where the

optimal beam for each client was chosen (user-level beamforming).

The CDF of the loss per client (in dB) is shown in Fig. 5.2. It is seen that even when five clients

(reasonably high for femtocells) are multiplexed in the same frame, the loss is less than 2 dB for

over 60% of the scenarios, indicating that the sub-optimality of using a common beam for a frame

is not significant. This can be attributed to the multipath nature of the indoor environment, which

allows for multiple beams to perform reasonably well for a given location, thereby increasing the

possibility of finding a mutually good beam for multiple clients. However, as more and more clients

are multiplexed together, the sub-optimality will tend to increase.
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Figure 5.3: Relative overhead with batch scheduling.

Reduced Overhead with Batch Scheduling: Client requests for resources on the uplink typ-

ically experience contention, delay and overhead, with redundant requests being potentially sent

out prior to transmission. To overcome these issues, typical OFDMA systems allow the BS to poll

clients for data periodically (period adjusted based on traffic variations). We profile the relative

overhead between client-initiated and BS-polled requests, by measuring the number of requests

generated for a fixed amount of data for a single client, in Fig. 5.3. We see that BS polling reduces

the overhead by as much as five folds. Further, the overhead does not grow with input rate unlike

with client-initiated requests. With BS polling, buffer occupancy information of clients is available

only once every polling interval. During this interval, frames can be scheduled one at a time or

jointly as a batch, with the latter yielding better performance owing to joint optimization.

Improved Decoding of Control Part: One not-so-obvious benefit of frame-level beamforming

is its ability to improve the decoding of the control part, through improved beamforming gain. As

described earlier in §5.2, the control part carries vital information that helps clients decode and

transmit their data payload. If the control part in a frame cannot be decoded by the clients (e.g., due

to interference from other cells), the frame fails to deliver even a single byte of data. To understand

the impact of interference on the control part, we experiment with two BSs that have one client

associated with each. To make sure that the interference impact is only on the control part, we
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Figure 5.4: Benefits of frame-level beamforming in a multicell scenario.

configure the two BSs to use orthogonal sets of sub-channels for their data payloads (i.e., data

payload is protected from interference). While one BS is omni-directional, the other is equipped

with a beamforming antenna. The client associated with the beamforming BS is placed at various

locations to generate varying interference scenarios. In each of the locations, we measure the

downlink throughput delivered at the client using each beam.

The throughputs delivered by the best beam and the omni beam are presented in Fig. 5.4(a). We

see that there is a lot of room for improvement with beamforming (≈ 7X on average) even when the

data parts are immune to interference. There are two factors behind the observed throughput: (i) the

rate (modulation) increase due to beamforming gain on the data part, and (ii) improved resilience of

the control part and hence, reduced frame losses. Fig. 5.4(b) presents the relative contributions of

these two components. We see that the improved decoding of the control part owing to frame-level

beamforming is the more important component and provides the bulk of the gain in most scenarios.

This clearly indicates that the performance of existing resource isolation solutions such as [8] can

be enhanced even further, if the control part decoding is improved with the help of frame-level

beamforming1. To realize the benefits of frame-level beamforming2 and batch scheduling, we next

present our design of an integrated beamformer and uplink scheduler – iBUS.

1While a scheme that combines an external common beam on the control part with user-level beamforming on the

data part may be ideal, the varying size of the control part prevents its realization due to lack of standards support.
2Hereafter referred to as simply beamforming.
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5.4 Design of iBUS

5.4.1 Overview

In batch scheduling, given a polling interval (F frames) and the buffer occupancies of the clients,

the problem is to effectively pack (schedule) the out-standing client data jointly over F frames, with

potentially different schedules across frames. When batch scheduling is integrated with beamform-

ing, in addition to packing, one also needs to determine a beam for each frame in the batch. Picking

a beam for a frame and a subset of clients (for data packing) are inter-twined since the beam choice

for a frame will affect the rate supported by clients in that frame and hence, the amount of data

that can be packed. Similarly picking a subset of clients will influence the beam choice since the

sub-optimality of beamforming will vary with the subset of clients.

Two aspects make the integrated scheduling problem challenging: (a) Power Pooling: In

OFDMA, when multiple clients are multiplexed in the same uplink frame, they pool their pow-

ers on a smaller set of sub-channels, thereby potentially supporting higher rates per sub-channel.

Batch scheduling across multiple frames enhances power pooling further - spreading a client’s data

across multiple frames will require fewer sub-channels per frame, resulting in higher power pool-

ing gain per frame. (b) Beamforming: Spreading data across multiple frames for each client will

maximize the power pooling gain. However, this results in more clients being scheduled in the

same frame, making it harder to find a good common beam for each frame; this increases the sub-

optimality of beamforming. The scheduler’s objective is to strike the right trade-off between these

two components.

Remarks: We note that unlike uplink, in the downlink, there is no notion of power pooling (due

to fixed BS total transmit power) and no signaling overhead that may necessitate batch schedul-

ing. Hence, downlink is limited to per-frame scheduling, solutions for which exist even when a

user’s rate varies across sub-channels [82]. Further, its integration with beamforming can be real-

ized by running existing schedulers for various beams and picking that schedule and beam, which

maximizes the objective. However for the uplink, the combination of batch scheduling and power
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pooling with beamforming makes the problem challenging even when a user’s rate does not vary

across sub-channels.

5.4.2 Formulation and Hardness

The integrated uplink scheduling problem can be formally stated as the following non-linear integer

program.

ISP: Maximize
∑

i

Ui(Ri)

Ri =
∑

j,k

xi,j,k

{

∑

ℓ

yj,ℓ · k · ri,k,ℓ

}

≤ Bi, ∀i ∈ K

∑

ℓ

yj,ℓ ≤ 1, ∀j ∈ F

∑

i,k

xi,j,k · k ≤ N, ∀j

∑

k

xi,j,k ≤ 1, ∀i, j

where xi,j,k and yj,ℓ are binary indicator (output) variables indicating the assignment of k con-

tiguous sub-channels in frame j to user i and the assignment of beam ℓ to frame j respectively.

K, F , L indicate the set of users, frames in the batch and the available beams, respectively. The

objective is to maximize the aggregate client utility, where the utility function can be any concave

function (e.g., logarithmic function captures proportional fairness [85]) of the data scheduled and

can vary from one client to another. The first constraint limits the net allocation to a user to be

limited to its buffer occupancy Bi (in bits). Further, it indicates the inter-dependence of power

pooling (# sub-channels assigned, k) and beam chosen (ℓ) on the user’s rate per sub-channel (ri,k,ℓ

in bits). The remaining constraints are all conservation constraints indicating the (i) assignment of

a single beam per frame, (ii) net allocation of sub-channels being limited to N in a frame, and (iii)

assignment of one contiguous set of sub-channels to a user in a frame, respectively.
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We next show that it is hard to even obtain a PTAS (polynomial time approximation scheme)

for the ISP problem. Specifically, we have the following result.

Theorem 3. For some ε > 0, there is no (1− ε)− approximation algorithm for ISP unless P=NP.

Proof. Scheduling of multiple sub-channels in a frame across users with finite buffers and varying

rates across sub-channels (SCF) has been studied in [82] and shown to not admit a PTAS, using a

reduction from 3-bounded 3-matching problem. We next show that SCF is a special case of ISP.

Consider a simpler version of ISP, where the beam choices for the frames do not have to be

determined but are given a priori (ℓj for frame j). Further, consider only one sub-channel per frame

(N = 1) available for allocation in each of the F frames. Since a user’s (i) rate will vary from one

beam to another and across frames (ri,1,ℓj , ∀j), the resulting ISP problem is now equivalent to an

SCF problem with F sub-channels (mapping from frames in ISP) in a frame and users with finite

buffers and varying rates across the sub-channels, where the rate of user i on sub-channel c is ri,c,ℓc,

c ∈ [1, F ]. Hence, the desired result.

5.4.3 Components of iBUS

To address the above problem, we design iBUS, which consists of the following key components.

Measurement of Beam SNRs: If there are |L| beam patterns, |L| frames are used for mea-

surement (one for each pattern). On the uplink part of each frame, the BS schedules all the active

users such that their data spans all the sub-channels (number of time symbols allocated varies across

users). Such a schedule can be visualized as user bursts being arranged vertically rather than hori-

zontally as in Fig. 5.1 (see uplink). The resulting SNR (ρ) for each user with each beam is measured

directly at the BS and corresponds to that when power is split on all sub-channels (ρ(i, N, ℓ), ∀i, ℓ).

Rate Estimation using Power Pooling: Rate tables are determined separately to identify the

best modulation and coding rate (MCS) to employ for a given SNR that yields a specific loss

rate (e.g., < 0.1). However, since the rate would vary with the number of sub-channels allocated

(due to power pooling), a direct SNR measurement for each possible set of sub-channels for each
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beam (ρ(i, k, ℓ)) would constitute significant overhead. Hence, based on the SNR measurement

from all sub-channels (ρ(i, N, ℓ)), we extrapolate the SNR for other subsets of sub-channels, taking

power pooling into account. For e.g., if half of the sub-channels are allocated to a user, then its

resulting SNR ρ(i, N
2
, ℓ) = ρ(i, N, ℓ) + 3 (in dB). Since the power gets distributed over 1

2
of sub-

channels, the per sub-channel power is doubled, corresponding to +3 in dB scale. In general,

ρ(i, N
α
, ℓ) = ρ(i, N, ℓ) + 10 log10(α), α ∈ [1, N

N−1
, . . . , N

1
]. Fig. 5.5 validates the modeling of

power pooling by measuring the SNR in practice for a client, when data is transmitted on different

sets of sub-channels.

From ρ(i, k, ℓ), one can obtain ri,k,ℓ using the rate table. Essentially, every user (i) has a power-

pooling rate curve (g(i, k, ℓ)) as a function of number of sub-channels (k) and the beam chosen

(ℓ). Depending on the nature of SNR-rate mapping, these curves may or may not be concave. If

continuous Shannon rates are employed, then we have g(i, k, ℓ) = k ·log2(1+
N
k
ρ(i, N, ℓ)), which is

a concave function (see Fig. 5.6). If discrete rate tables are used then g(i, k, ℓ) = k · ri,k,ℓ results in

a piece-wise linear (between SNR thresholds) function, where the mapping ri,k,ℓ ←
N
k
ρ(i, N, ℓ) is

131



determined by the rate table. Depending on the rate-SNR thresholds, g(i, k, ℓ)may still be concave

or not (Fig.5.6 shows g() for two such examples). As we shall see in §5.5, depending on the nature

of g() (concave or arbitrary), different algorithms will be required.

Buffer Estimation using Polling: The BS polls all its clients towards the end of the current

polling interval to estimate their buffer occupancies for scheduling during the next polling interval.

Note that if the total buffer occupancy of all clients is less than the total frame resources in the

polling interval, then there will be under-utilization. Further, the schedules computed for the polling

interval will be relevant only if the SNRs are relatively static during that interval. Hence, the polling

interval is decided based on both the coherence time of SNR values (reasonably high for indoor

static clients) and the typical transmission buffer size of clients (details in §5.6).

Schedule Determination: Once the BS has all the information needed to determine the batch

schedule, it executes its algorithms. The batch schedule consists of two parts. The first part is a

schedule for F − |L| frames (|L| << F ), where the ISP problem is solved over F − |L| frames.

The latter part is a schedule for the remaining |L| frames, and serves as the measurement interval

to obtain the SNR information for the next polling interval. Hence, in the latter part, the beam

choices for the |L| frames are fixed (one beam each) during measurement, and allocation is done

only across time symbols by employing the same algorithm used for solving ISP, albeit with some

fixed variables. While the main purpose of the second part is measurement, one can also optimize

the packing of client data that remains after the first F − |L| frames, given the beam choices.

Solving the ISP problem, i.e., determining data packing along with the beam choices over a

given set of frames, forms the core of our solution and is described next.

5.5 Algorithms in iBUS

Given the hardness of the scheduling problem ISP, we focus on algorithms that have a provable

worst case guarantee and are simple to implement. Our algorithms can be classified based on the

nature of the power pooling rate curve.
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1: INPUT: Buffer occupancy Bi, ∀i ∈ K; rates g(i, k, ℓ), ∀i, k ∈ [1, N ], ℓ ∈ L
2: OUTPUT: Beam choices ℓj , ∀j ∈ F ; per-frame user allocation Aij , ∀i, j
3: for f ∈ [1 : |F|] do
4: Omax = 0
5: for ℓf ∈ [1 : |L|] do
6: Di ← Bi, ∀i;;

;

;

aij = Aij , ∀i, j ∈ [1, f − 1] and aij = 0 ∀i, j = f
7: for k = 1 : N do

8: i∗ = argmaxi∈K

{

Ui

(

∑f
j=1 g(i, aij, ℓj) + min (g(i, aif + 1, ℓf)

−g(i, aif , ℓf), Di))− Ui(
∑f

j=1 g(i, aij, ℓj))
}

9: ifi∗ '= ∅ then
10: Di∗ ← Di∗ −min (g(i∗, ai∗f + 1, ℓf)

−g(i∗, ai∗f , ℓf), Di∗)
11: ai∗f ← ai∗f + 1
12: else break endif

13: end for

14: Of =
∑

i∈K Ui

(

∑f
j=1 g(i, aij, ℓj)

)

−Ui

(

∑f−1
j=1 g(i, aij, ℓj)

)

15: if Of > Omax then

16: Omax = Of ; ℓmax = ℓf ; Aif = aif , ∀i
17: endif

18: end for

19: ℓf = ℓmax; ; ;

Bi ← Bi −min(g(i, Aif , ℓf), Bi), ∀i
20: end for

Algorithm 5: Integrated Scheduler: iBUS1
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5.5.1 Concave Rate Curves

We present two greedy algorithms called iBUS1 and iBUS2, outlined in Algs. 5 and 6, respectively.

In iBUS1, resource allocation and beam selection are performed one frame at a time in the batch,

sequentially. For a given frame (iteration), based on the remaining data available for the users,

resource allocation is performed for every choice of the beam, and the beam yielding the best

aggregate marginal utility for the frame is chosen (steps 14-16). For resource allocation within

each frame given a beam (steps 6-13), iBUS1 assigns each sub-channel to the user who yields the

highest marginal utility taking the users’ buffer status into account (step 8). For concave utility

functions, such an allocation is indeed optimal. Further, allocation based on the marginal utility

also helps multiplex multiple users in the same frame thereby maximizing the benefits of power

pooling. Once the best beam and its corresponding resource allocation are determined (steps 14-

17) for the current frame, the user buffers are updated (step 19) and the procedure is repeated for

the remaining frames in the batch, sequentially. iBUS1 has a time complexity of O(|F||L||K|N).

The key difference between iBUS1 and iBUS2 is that while iBUS1 performs resource allocation

within each frame in isolation, iBUS2 performs joint resource allocation across all frames consid-

ered in an iteration. Hence, in addition to enabling power pooling within each frame, it allows a

user’s data to be spread across multiple frames thereby pooling the user’s power across frames as

well. This in turn results in a more efficient data packing and hence, higher aggregate throughput.

Specifically, when considering a beam for a given frame (f ) during a considered iteration, resource

allocation is performed for all frames till the current frame jointly (steps 6-13) to determine the

resulting utility for the beam. The beam yielding the highest utility is then chosen for that frame

(steps 15-19). Hence, each iteration of resource allocation now involves determining not only the

user to whom a sub-channel must be allocated but also in which frame (∈ [1, f ], step 8). Note that

once the beam is chosen for a given frame, user buffers do not have to be updated for the next frame

since resource allocation will then be re-performed. Thus, for every newly considered frame, user

buffers are re-initialized (step 6). Essentially, resource allocation for all frames till the one under
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1: INPUT: Buffer occupancy Bi, ∀i ∈ K; rates g(i, k, ℓ), ∀i, k ∈ [1, N ], ℓ ∈ L
2: OUTPUT: Beam choices ℓj , ∀j ∈ F ; per-frame user allocation Aij , ∀i, j
3: for f ∈ [1 : |F|] do
4: Omax = 0
5: for ℓf ∈ [1 : |L] do
6: Di ← Bi, ∀i;;

;

;

Aij = 0 ∀i, j = [1, f ]; kj = N , ∀j ∈ [1, f ]
7: while kj '= 0, ∃j ∈ [1, f ] do

8: (i∗, j∗) = argmaxi∈K,j∈[1,f ]

{

Ui

(

∑f
m=1 g(i, Aim, ℓm)

+min{g(i, Aij + 1, ℓj)− g(i, Aij, ℓj), Di})

−Ui(
∑f

m=1 g(i, Aim, ℓm))
}

9: if(i∗, j∗) '= ∅ then
10: Di∗ ← Di∗ −min (g(i∗, Ai∗j∗ + 1, ℓj∗)

−g(i∗, Ai∗j∗, ℓj∗), Di∗)
11: Ai∗j∗ ← Ai∗j∗ + 1;;

;

;

kj∗ ← kj∗ − 1
12: else break endif

13: end while

14: end for

15: Of =
∑

i∈K Ui

(

∑f
j=1 g(i, Aij, ℓj)

)

16: if Of > Omax then

17: Omax = Of ; ℓmax = ℓf
18: endif

19: ℓf = ℓmax

20: end for
Algorithm 6: Integrated Scheduler: iBUS2
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consideration is done mainly for the purpose of determining the beam yielding the highest utility

for the considered frame. The actual resource allocation is the one that is computed during the final

frame of iteration, where the allocation for all the frames in the batch is jointly determined along

with the beam for that frame. While iBUS2 enables power pooling both within and across frames,

the joint resource allocation across frames results in an additional time complexity of O(|F|) and

hence a net time complexity of O(|F|2|L||K|N).

While iBUS2 results in a better performance than iBUS1, we now show that even iBUS1’s worst

case performance can be bounded. We provide some definitions on matroid and sub-modularity that

are relevant for the proof.

Partition Matroid: Consider a ground set Ψ and let S be a set of subsets of Ψ. S is a matroid if,

(i) ∅ ∈ S, (ii) If P ∈ S and Q ⊆ P , then Q ∈ S, and (iii) If P,Q ∈ S and |P | > |Q|, there exists

an element x ∈ P\Q, such that Q ∪ {x} ∈ S. A partition matroid is a special case of a matroid,

wherein there exists a partition of Ψ into components, φ1,φ2, . . . such that P ∈ S if and only if

|P ∩ φi| ≤ 1, ∀i.

Sub-modular function: A function f(·) on S is said to be sub-modular and non-decreasing if

∀x, P,Q such that P ∪ {x} ∈ S and Q ⊆ P then,

f(P ∪ {x})− f(P ) ≤ f(Q ∪ {x})− f(Q)

f(P ∪ {x})− f(P ) ≥ 0, and f(∅) = 0

Theorem 4. iBUS1’s worst case performance is within 1
2
of the optimum.

Proof. The sub-optimality of maximizing a sub-modular function over a partition matroid using a

greedy algorithm of the form x = argmaxx∈φi
f(P ∪ {x})− f(P ) in every iteration was shown to

be bounded by 1
2
in [92]. We will now show that iBUS1 is such an algorithm, with our scheduling

objective corresponding to a sub-modular function to obtain the desired result.

Let the ground set be composed of the following triplets.
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Ψ = {(j, ℓj, aj) : j ∈ [1 : |F|], ℓj ∈ [1 : |L|],

aj = ∪i∈Kaij s.t.
∑

i aij ≤ N}

Now Ψ can be partitioned into φj = {(j, ℓj , aj) : ℓj ∈ [1 : |L|], aj = ∪i∈Kaij s.t.
∑

i aij ≤ N},

∀j. Let S be defined on Ψ as a set of subsets of Ψ such that for all subsets P ∈ S, we have (i) if

Q ⊆ P , then Q ∈ S; (ii) if element x ∈ P\Q, then Q ∪ {x} ∈ S; and (iii) |P ∩ φj | ≤ 1, ∀j. This

means that S is a partition matroid. Further, any P ∈ S will provide a feasible schedule with at

most one feasible allocation and beam choice for each frame, thereby allowing the partition matroid

to capture our scheduling problem. Our scheduling objective is given as,

f(P ) =
∑

i∈K

µi(P )

where, µi(P ) = U(min{
∑

j:(j,ℓj,aj)∈P

g(i, aij, ℓj), Bi})

It can be seen that if Q ⊆ P , then µi(Q) ≤ µi(P ). Hence, for an element (j, ℓj , aj) such

that P ∪ {(j, ℓj , aj)} forms a valid schedule, it follows that f(P ∪ {(j, ℓj , aj)})− f(P ) ≤ f(Q ∪

{(j, ℓj, aj)})− f(Q). This results both from the potential buffer limitation in subsequent frames as

well as the concave nature of the utility function. This establishes that the function f(P ) is indeed

sub-modular. Further, our scheduling problem aims to maximize this non-decreasing sub-modular

function over a partition matroid. Hence, if the optimal allocation corresponding to every beam

were given by some oracle for each frame, then picking the beam yielding the highest marginal

utility for a frame in iBUS1 (steps 14-17) would correspond to determining

(j, ℓ∗j , a
∗
j ) = arg max

(j,ℓj,aj)∈φj

{f(P ∪ {(j, ℓj, aj))})− f(P )}
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Thus, the sub-optimality of 1
2
would then follow from the result in [93].

Note that, there are exponential allocations possible that satisfy
∑

i aij ≤ N for every beam

choice. Hence, bypassing the oracle assumption would require us to find the optimal allocation for

a given beam, which is a problem in itself. However, since the utility functions are concave, this

would correspond to a concave optimization problem, which iBUS1 solves optimally by employing

a steepest gradient approach based on maximum marginal utility (steps 7-13). Hence, iBUS1 is

able to bound its sub-optimality by 1
2
.

1: INPUT: Buffer occupancy Bi, ∀i ∈ K; rates g(i, k, ℓ), ∀i, k ∈ [1, N ], ℓ ∈ L
2: OUTPUT: Beam choices ℓj , ∀j ∈ F ; per-frame user allocation Aij , ∀i, j
3: for f ∈ [1 : |F|] do
4: Omax = 0
5: for ℓf ∈ [1 : |L] do
6: Di ← Bi, ∀i;;

;

;

aij = Aij , ∀i, j ∈ [1, f − 1] and aij = 0 ∀i, j = f
7: Run an FPTAS for multiple-choice knapsack problem FA(f, ℓf); Obtain aif , ∀i

8: Of =
∑

i∈K Ui

(

∑f
j=1 g(i, aij, ℓj)

)

−Ui

(

∑f−1
j=1 g(i, aij, ℓj)

)

9: if Of > Omax then

10: Omax = Of ; ℓmax = ℓf ; Aif = aif , ∀i
11: endif

12: end for

13: ℓf = ℓmax; ; ;

Bi ← Bi −min(g(i, Aif , ℓf), Bi), ∀i
14: end for

Algorithm 7: Integrated Scheduler: iBUS3

5.5.2 Arbitrary Rate Curves

For arbitrary power pooling rate curves, we present the following algorithm iBUS3, which is a

modified version of iBUS1. Specifically, iBUS3 is similar to iBUS1 in picking the beam yielding

the highest marginal utility for each frame. However, its frame allocation for a given beam choice
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is significantly different. This is because if the power pooling rate curves are not concave, then

allocations based on marginal utilities will not work. Hence, allocations to users in each frame

must be made as a subset of sub-channels instead of individual sub-channels. Thus, we model

the allocation problem for a given frame and beam choice (f, ℓf) with arbitrary rate curves as the

following multiple choice knapsack problem (MCKP), which is a NP-hard problem in itself.

FA(f, ℓf) : Maximize
∑

i

∑

k∈Ni

uik(f, ℓf)xik(f)

s.t.
∑

i

∑

k∈Ni

k · xik(f) ≤ N (5.1)

∑

k∈Ni

xik(f) = 1; ∀i

where xik(f) ∈ {0, 1} and Ni ∈ {0, 1, . . . , N}.

Essentially, there are N + 1 allocations (Ni) possible for each user and the MCKP problem is

to pick exactly one allocation for each user such that the total frame allocation does not exceed N .

The user’s profit or utility for each allocation is computed based on the current and previous frames’

allocations as follows:

uik(f, ℓf) =
∑

i∈K

Ui

(

f−1
∑

j=1

g(i, aij, ℓj) + min{g(i, xik(f), ℓf), Bi}

)

where, aij = k : s.t. xikj = 1, ∀i, j ∈ [1, f − 1]

Note that the user’s buffer occupancy is automatically accommodated in its profit. Now a FT-

PAS based on dynamic programming from [94] can be employed to efficiently solve FA(f, ℓf) to

within (1− ε) of the optimal at a time complexity of O( |K|N
ε

). This results in a net time complexity

of O( |F||L||K|N
ε

) for iBUS3.
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In establishing a bound on the worst case performance of iBUS3, we employ the following

lemma proved in [95].

Lemma 1. If the sub-modular function is only α− approximable, then the approximation guarantee

of greedy maximization changes to α
p+α

, where the maximization is subject to a p− independence

system.

Theorem 5. iBUS3 provides an approximation guarantee of 1
2
− ε.

Proof. Note that matroids are 1-independence systems (see [96] for an exposition). Given that the

FPTAS yields a (1−ε) approximation in computing the frame allocation and hence the sub-modular

function, we have α = 1 − ε and hence the resulting performance guarantee of iBUS3 reduces to

1
2
− ε.

Remarks: While we have shown that our algorithms have an approximation guarantee of half

for both concave and arbitrary power pooling rate curves, one might wonder how much further

can this guarantee be improved without increasing the complexity significantly. Unfortunately, the

answer is not optimistic. We had shown that ISP does not admit a PTAS and hence a (1 − ε)

approximation. Further, recall from §5.4.2 that single frame scheduling with varying sub-channel

rates and finite user buffers (SCF) is a special case of our ISP problem. In [82], it was shown

that one can improve the guarantee for SCF to 0.63 albeit through a complex LP relaxation and

rounding procedure, where an exponential number of subsets is involved in the LP formulation. In

light of this, we believe that our greedy algorithms strike a good balance between both performance

and complexity. Further, §5.7 reveals their close-to-optimal performance in practice, on average,

compared to their worst case guarantees of half.

5.6 Implementation

Fig. 5.7 depicts our system design. The testbed consists of a WiMAX femtocell platform and

commercial clients (USB dongles attached to laptops). Our experiments are conducted over-the-air
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Figure 5.7: iBUS system architecture.

(10 MHz bandwidth) with an experimental license from FCC. We have an eight-element phased

array antenna designed by Fidelity Comtech, attached via a RF cable to the BS. The array generates

16 beam patterns of 45◦ each, spaced 22.5◦ apart to cover the entire azimuth of 360◦. We also have

a Linux PC for the gateway functionality required for WiMAX. In WiMAX, the gateway manages

the service flows needed to transmit/receive data to/from the clients.

The BS and the gateway communicate using sockets via an Ethernet switch. When the BS

decodes user data on the uplink, it passes it to the application at the gateway (iperf) via the switch.

In addition, the switch is used to pass the client buffer information and the measured beam SNRs

to the gateway. The gateway both implements our algorithms in Java, and at the same time controls

the array by a serial port (RS232) application that we have developed in C.

When the gateway receives the buffer and SNR information, it executes the iBUS algorithms

and sends the computed batch schedule to the BS, one frame at a time. A beam corresponding to a

frame in the batch is applied to the array just before the corresponding schedule is sent to the BS.

However, note that there is inevitably a delay before a particular beam is applied by the antenna fol-

lowing the gateway command. We measured this delay to be ≈ 6ms on average (8ms max.). Since
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each WiMAX frame is 5ms, applying one beam for a single frame is difficult. To circumvent this,

each schedule corresponding to a frame in the batch is extended over 20 frames at the BS, by taking

into account the resources from the 20 frames jointly. In addition, each beam li is applied 10ms

(two frames) prior to schedule i. With this a priori beam application, when the BS starts execut-

ing schedule i, the hardware is ready to transmit with beam li. One can alternatively implement the

algorithms and the beam management component at the BS, for tighter beam and schedule synchro-

nization. However, this would add complexity and overhead to the BS, making the deployment less

practical. Our design realizes a light-weight, standards-compatible OFDMA beamforming system

that does not result in significant processing overhead at the BS. In addition, since the gateway is

agnostic of the underlying technology, we believe that it can flexibly be extended to other OFDMA

systems such as LTE, which use a similar notion of sub-channels.

In our implementation, the BS polls the clients for buffer occupancies every 100 frames, thereby

forming the batch scheduling interval. Since there are 16 beam patterns, 16 frames are used to

measure the beam SNRs of each client. Selecting a large polling interval will not sufficiently capture

the channel diversity (e.g., the SNRs can change in the interim), making the computed schedule sub-

optimal. Conversely, a short polling interval will not sufficiently reduce the contention overhead for

buffer requests. We have verified in our experiments that the SNRs with each beam are relatively

stable during a 100 frame (500ms) interval, and that the client buffers are large enough to hold

pending data.

5.7 Performance Evaluation

In this section, we evaluate iBUS using both our prototype implementation and trace-driven sim-

ulations. To isolate the gains achieved with power pooling (i.e., packing) and beam selection, we

propose two simpler versions of iBUS1 that do not require beam adaptation across frames: (a)

iBUS-mean schedules multiple clients in the same frame like iBUS1 but uses a fixed beam for

every frame. The fixed beam is chosen to minimize the mean loss from the best beams of each
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client. Each client i has SNR ρimax with some beam yielding the max. SNR from its perspective.

If client i has SNR ρil for beam l, then the loss is ρimax − ρil. iBUS-mean picks beam l ∈ L that

minimizes the mean loss over all clients, (b) iBUS-weighted uses a fixed beam as in iBUS-mean

but the loss is weighted based on the buffer occupancy of each client, to account for asymmetric

application rates. In this case, the loss for a client is calculated as (ρimax − ρil) ∗ Bi. Again, the

beam l ∈ L that minimizes this weighted mean loss over all clients is fixed for all frames in the

batch. We compare our algorithms to an omni-directional scheme (labelled omni) that leverages

power pooling by employing the same packing procedure as iBUS1 (but each frame is transmitted

omni-directionally).

5.7.1 Prototype Evaluation

In WiMAX, the modulation to be used by the clients for uplink communications is determined

by the BS. Since the BS directly measures the received SNR from clients, it uses a threshold-

based table to determine the modulation for each client. Fig. 5.8 enlists the thresholds used in our

platform.

With such discrete rate tables, all SNRs in between two consecutive thresholds map to the

MCS with the lower threshold (similar to WiFi). For example in Fig. 5.8, the BS instructs the

clients to use QPSK
3
4 for all SNRs between 12dB and 15dB. Depending on the thresholds (de-
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termination of which is not specified by the standard and is left to the vendor), this may result in

non-concave client power-pooling curves (g()). Indeed with our femtocells, we observed that such

non-concavity occurs in practice. While iBUS3 can address non-concavity, we choose to implement

iBUS1, iBUS-mean and iBUS-weighted on our prototype because of their low complexity and ease

of implementation.

To make iBUS1 compatible with non-concave g(), we transform a given g() into a correspond-

ing concave function. Fig. 5.9 depicts an example transformation where g() is computed as the

product of number of sub-channels and the number of bits that a given MCS encodes. To do the

transformation, we first determine the number of sub-channels where each MCS transition occurs.

This can easily be done by computing the SNR for a given number of sub-channels using the power

pooling formula. Then, the transition points are connected by lines with an appropriate slope. Note

that the resulting concave function assumes that the error rate at a given MCS level increases in

conjunction with the SNR drop as the power is distributed over more sub-channels. Even if the

table maps two SNRs to the same MCS, the lower SNR will likely result in a higher bit (or sym-

bol) error rate, reducing the throughput in practice. This observation is also leveraged by prior
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Figure 5.10: Performance results with iBUS in real experiments. Equal rates (left), different rates

(right).

studies (e.g., [97]). In our experiments, we observed that the throughput predicted by the concave

transformation matched the observed client throughput in practice reasonably well. On average, the

predicted throughput was 94% of the actual throughput.

We run each scheme on several topologies, created by placing three clients in different loca-

tions. The utility function of a user is equal to the total data scheduled for that user in the batch

(i.e., Ui(Ri) = Ri). The clients initiate UDP flows to the BS, generated by iperf. Fig. 5.10(a) shows

the aggregate throughput for five sample topologies of clients with equal application rates (iBUS-

weighted yields the same fixed beam as iBUS-mean and hence, is not considered). We observe

that iBUS1 outperforms omni by 42%, on average. In addition, the beam adaptation component

in iBUS1 helps outperform iBUS-mean by 15% - 25%. However, cases exist where iBUS-mean

performs as well as iBUS1, indicating that the proper choice of a fixed beam may provide signif-

icant gains, depending on the topology. Fig. 5.10(b) shows the aggregate throughput for clients

with different application rates. We observe that iBUS1 outperforms omni by 45% on average.

For iBUS-weighted, we see that it can improve performance over iBUS-mean in some cases (e.g.,

topology 2 and 3). In addition, there are again cases where iBUS-mean and iBUS-weighted per-

form as well as iBUS1. To summarize, while iBUS1 consistently outperforms the omni-directional

scheme by≈45%, an appropriate choice of a fixed beam can also yield significant gains in practice.
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5.7.2 Trace-driven Simulations

To evaluate with a large client population, we resort to SNR traces measured at 30 different client

locations in our testbed. We consider 100 topologies, generated by picking random subsets of the

client locations from our traces. To evaluate iBUS1 and iBUS2 with MCS tables in practice (i.e.,

discrete r()), we employ the same g() transformation as before. We also consider a continuous r()

function (Shannon). We introduce an alternative scheme labelled ULBF, that mimics user-level

beamforming and serves as a loose upper bound. In ULBF, packing is executed by spreading a

client’s data over multiple frames as in iBUS2. However, rather than using a common beam for a

frame, each client can operate using its best beam (i.e., beam with the max. SNR.) even within a

frame.

Fig. 5.11 shows the the mean gains achieved over omni for a varying number of clients. With

discrete rate tables (Fig. 5.11(b) and 5.11(c)), we observe that iBUS1 delivers around 40% gain

over the omni scheme for four clients (inline with our prototype evaluation). However, iBUS2

and ULBF do not significantly improve the performance further. Even though there is increased

power pooling and hence higher SNR, the effective rate is not substantially higher than iBUS1 due

to the nature of discrete MCS tables. In addition for all the schemes, the gains tend to drop with

increasing numbers of clients. With a larger client population, finding a common beam comes at

the cost of significant SNR loss from their best beam for some clients. On the other hand, the

omni benefits from client diversity (increased chance of a client having high SNR with the omni

beam) and is able to deliver increased throughput. However, since the femtocell client populations

are typically small (<8), appreciable gains can still be attained. Thus, we conclude that iBUS1 is a

low-complexity alternative to user-level beamforming in practical deployments. Since the increased

power pooling and beamforming gains of user-level beamforming cannot fully be harnessed with

discrete MCS tables, iBUS1 serves as a flexible alternative (i.e., number of antennas is not limited)

with similar performance. Fig. 5.11(d) and 5.11(e) show the mean gains over the omni scheme for

the continuous rate (Shannon) function. This time, we observe that iBUS2 outperforms iBUS1 by
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Figure 5.11: Performance of iBUS obtained with trace-driven simulations.

10% - 20% due to its better power pooling capability across frames. Further, the gap with respect

to ULBF is around 30% - 40%. This behavior is expected since the continuous rate function will

benefit more from better power pooling and proper beam selection, compared to a discrete rate

table.

In the above experiments, we have demonstrated the mean gains over the omni scheme. To

better visualize the distribution, we plot the CDF of the gain for four clients. Fig. 5.12(a) shows that

the maximum gain with iBUS1 can be as high as 60% - 80% for 20% of the scenarios. Further, an

interesting observation that is revealed is that in 10% - 15% of the scenarios, iBUS-mean performs

worse than omni. Recall that iBUS-mean picks a common beam that minimizes the mean loss from

the best beam of each client. In such scenarios, some clients may have to operate with a beam,
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Figure 5.12: CDF of the gain distribution with four clients. iBUS2 is not shown in (a) for clarity

(has similar performance as iBUS1).

yielding a SNR that is several dB less than their optimal beam and even worse than the omni-

directional beam. However, adapting the beam in iBUS1 addresses this issue to deliver improved

performance. Similar observations hold for both types of rate functions (see Fig. 5.12(b)).

5.8 Conclusions

We investigate the joint problem of uplink batch scheduling and frame-level beamforming (shown

to not admit a PTAS) in OFDMA femtocells. We propose a set of algorithms with a worst case

approximation guarantee of 1
2
. Our algorithms address the unique tradeoff between scheduling

multiple users in a frame (benefiting from power pooling) and harnessing the gains from directional

beams (by applying a common beam for multiple users). We implement the algorithms on a real

WiMAX femtocell platform. Our prototype evaluation and trace-driven simulations demonstrate

that our algorithms provide benefits of over 40% over an omni-directional scheme. To our best

knowledge, this is the first study that integrates and evaluates frame-level beamforming on an actual

OFDMA femtocell platform.
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Chapter 6

Computing While Charging: Building a

Distributed Computing Infrastructure Using

Smartphones

Every night, a large number of idle smartphones are plugged into a power source for recharging the

battery. Given the increasing computing capabilities of smartphones, these idle phones constitute

a sizeable computing infrastructure. Therefore, for a large enterprise which supplies its employees

with smartphones, we argue that a computing infrastructure that leverages idle smartphones being

charged overnight is an energy-efficient and cost-effective alternative to running tasks on tradi-

tional server infrastructure. While parallel execution and scheduling models exist for servers (e.g.,

MapReduce), smartphones present a unique set of technical challenges due to the heterogeneity in

CPU clock speed, variability in network bandwidth, and lower availability compared to servers.

In this chapter, we address many of these challenges to develop CWC—a distributed computing

infrastructure using smartphones. Specifically, our contributions are: (i) we profile the charging be-

haviors of real phone owners to show the viability of our approach, (ii) we enable programmers to

execute parallelizable tasks on smartphones with little effort, (iii) we develop a simple task migra-

tion model to resume interrupted task executions, and (iv) we implement and evaluate a prototype

149



of CWC (with 18 Android smartphones) that employs an underlying novel scheduling algorithm

to minimize the makespan of a set of tasks. Our extensive evaluations demonstrate that the perfor-

mance of our approach makes our vision viable. Further, we explicitly evaluate the performance of

CWC’s scheduling component to demonstrate its efficacy compared to other possible approaches.

6.1 Introduction

Today, a number of organizations supply their employees with smartphones for various reasons

[98]; a survey from 2011 [12] reports that 66% of surveyed organizations do so and many of these

organizations have 75–100% of their employees using smartphones. For example, Novartis [99]

(with 100,000 employees in 140 countries) handed out smartphones for its employees to manage

emails, calendars, as well as information about health issues; Lowe’s [100] did so for its employees

to have real time access to key product information and to allow managers to handle administrative

tasks.

We argue that in such settings, an enterprise can harness the aggregate computing power of

such smartphones, to construct a distributed computing infrastructure. Such an infrastructure could

reduce both the capital and energy costs incurred by the enterprise. First, this could reduce the

number of servers to be purchased for computing purposes. For example, Novartis awarded a

contract of $2 million to IBM to build a data center for their computational tasks [101]. If they

could exploit the smartphones handed out to their employees to run some portion of their workload,

it is conceivable that the cost of their computing infrastructure could have been reduced. Due

to recent advancements in embedded processor design, now a smartphone can replace a normal

desktop or a server running a dual core processor for computation. According to Nvidia, their Quad

Core CPU, Tegra 3, outperforms an Intel Core 2 Duo processor in number crunching [102]; for

other workloads, one can expect the performance of the two CPUs to be comparable.

Our second motivation for the smartphone-based computing infrastructure is that the enterprise

could benefit from significant energy savings by shutting down its servers by offloading tasks to
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smartphones. The power consumed by a commercial PC CPU such as the Intel Core 2 Duo is

26.8W [103] at peak load. In contrast, a smartphone CPU can be over 20x more power efficient,

e.g., the Tegra 3 has a power consumption of 1.2W [103, 104]. Since their computing abilities are

similar, it is conceivable that one can harness 20 times more computational power while consuming

the same energy by replacing a single server node with a plurality of smartphones. In fact, to harness

the energy efficiency of embedded processors, cloud service providers are already pushing towards

ARM-based data centers [105] to reduce energy costs while offering the same or even improved

performance.

The construction and management of such a distributed computing infrastructure using smart-

phones however, has a number of associated technical challenges. We seek to articulate these chal-

lenges and build an efficient framework towards making such a platform viable. In particular, the

biggest obstacles to harnessing smartphones for computing are the phone’s battery-life and band-

width. If a smartphone is used for computing during periods of use by its owner, we run the risk

of draining its battery and rendering the phone unusable. Further, today data usage on 3G carriers

are typically capped, and thus, shipping large volumes of data using 3G is likely to be impractical.

Thus, our vision is to use these smartphones for computing when they are being charged, especially

at night. During these periods, the likelihood of active use of the phone by its owner will be low.

Moreover, the phone will be static and, will likely have access to WiFi in the owner’s home (today,

80% of the homes in the US have WiFi connectivity [106]); this will both reduce fluctuations in

network bandwidth, and allow the transfer of data to/from the smartphones at no cost.

We name our framework CWC, which stands for computing while charging. To realize CWC,

we envision the use of a single server, connected to the Internet, for scheduling jobs on the smart-

phones and collecting the outputs from the computations. The scheduling algorithms executed on

the server are lightweight, and thus, a rudimentary low cost PC will suffice. Smartphones are only

utilized for computation when being charged. If an owner disconnects the phone from the power

outlet, the task is suspended, and migrated to a different phone that is connected to a power outlet.

Towards building CWC, our contributions are as follows:
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• Profiling charging behaviors: While an enterprise can possibly mandate that its employees

charge their smartphones when they are not being actively used, we examine the typical

charging behaviors of smartphone owners. Using an Android application that we develop,

we gather charging statistics on the phones of 15 volunteers. Our results demonstrate that, on

average, a typical user charges his phone for up to 8 hours every night.

• Scheduling tasks on smartphones: As a fundamental component of CWC, we design a

scheduler that minimizes the makespan of completing the jobs at hand, taking into account

both the CPU and bandwidth available for each a smartphone. Since the optimal allocation

of jobs across phones is NP-hard, we design a greedy algorithm for the allocation, and show

via experiments that it outperforms other simple conceivable heuristics.

• Migration of tasks across phones: CWC executes tasks on smartphones only when they are

being charged. Tasks are suspended if phones are unplugged during execution. We design

and implement an approach to efficiently migrate such tasks to other phones that are plugged

in.

• Automation of task executions: The typical means of running an application on smart-

phones is to have the phone’s owner download, install, and run the application. However,

we cannot rely on such human intervention to leverage smartphones for a computing infras-

tructure. We demonstrate how task executions on phones can be realized in a completely

automated manner. Note that, while we recognize the potential privacy implications of run-

ning automated tasks on smartphones, we simply assume here that an enterprise would not

run malicious tasks on its employees’ smartphones. Improving the isolation of tasks imple-

mented in typical smartphone operating systems is beyond the scope of our work.

• Preserving user experience: Blind execution of tasks for extended durations on a smart-

phone being charged, can prolong the time taken for the phone to fully charge. We show

experimentally that intensive use of a phone’s CPU can delay a full charge by 35%. We de-
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sign and implement a CPU throttling mechanism, which ensures that task executions do not

impact the time to charge a phone.

• Implementation and experimentation: Finally, we implement a prototype of CWC and

conduct extensive experiments on a testbed of 18 Android phones. Specifically, we showcase

the efficacy of the scheduling and task migration algorithms within CWC.

6.2 Related Work

To the best of our knowledge, no prior study shares our vision of tapping into the computing power

of smartphones. However, some efforts resemble certain aspects of CWC.

Smartphone testbeds and distributed computing platforms. Publicly-available smartphone

testbeds have been proposed [107, 108] to enable smartphone OS and mobile applications research.

CrowdLab [109] and Seattle [110] provide resources on volunteer devices. There also exist systems

where users voluntarily contribute idle time on their PCs to computational tasks (e.g., [111]). In

contrast, our vision is not for the smartphone infrastructure to be used for research and testing, but

to enable energy and cost savings for real enterprises. Moreover, the issues that we address have

not been considered by these efforts.

Flavors of MapReduce for smartphones have been implemented (e.g., [112]). However, such

efforts do not address the issues of detecting idle phone usage, partitioning tasks across phones with

diverse capabilities. They do envision using phones to offer a distributed computing service.

Participatory sensing. Recent studies such as [113], advocate the collective use of the sens-

ing, storage, and processing capabilities of smartphones. With participatory sensing [114], users

collect and analyzing various types of sensor readings from smartphones. Unlike these efforts, a

distinguishing aspect of CWC is that the data to be processed does not originate from the phones.

In addition, CWC allows the execution of a variety of tasks unlike above, where typically a fixed

task (sensing) is supported. Finally, CWC seeks to leverages compute resources on smartphones,

rather than tapping human brainpower via users’ phones [115].
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Measurements of smartphones. There have been measurement studies [116, 117] to charac-

terize typical network traffic and energy consumption on smartphones. In contrast, our focus is on

developing a scalable platform for gathering measurements from the phones in CWC. Several prior

studies [118, 119] have observed that phones are idle and are being charged for significant periods

of time every day. We are however the first to recognize that these idle periods can be harnessed to

build a distributed computing infrastructure.

Provisioning tasks on cloud services. Prior efforts have also tried to identify when the use of

cloud services is appropriate (e.g., [120]), discuss the challenges involved in using them (e.g. [121]),

or present solutions for provisioning applications (e.g., [122]). However, these efforts focus on

traditional server-based cloud services. Prior efforts on managing resources in the cloud (e.g.,

[123]) do not tackle challenges associated with provisioning tasks on heterogenous resources nor

deal with the variability of wireless links.

6.3 Feasibility Study

In this section, we examine (a) the challenges associated with building a smartphone-based com-

puting infrastructure and (b) the potential savings in capital and energy costs offered by such an

infrastructure.

6.3.1 Challenges

Adequacy of computing power: The smartphone infrastructure is only attractive if it can effec-

tively accomplish the computing tasks undertaken on today’s servers. Due to rapid advances in em-

bedded processor technologies, numerous smartphones with Quad Core CPUs are emerging [124].

Some of these CPUs offer clock speeds of up to 2.5 Ghz per core (Qualcomm snapdragon quad-core

APQ8064) and their computational capabilities are beyond that of typically used server machines.

To compare the performance of a smartphone CPU with that of typical desktop and server CPUs, we

refer to the well known CoreMark benchmarks [125]. Figure 6.1 (borrowed from [104, 125]) shows
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Figure 6.1: CoreMark score of different CPUs.

the performance of major smartphone CPUs against a widely used desktop and server CPU—the

Intel Core 2 Duo; the higher the CoreMark score, the better. We see that while the Nvidia Tegra-3

outperforms the Intel Core 2 Duo, the Core 2 Duo outperforms the other processors by more than

50%. This shows that state-of-the-art smartphones like Samsung Galaxy S-3 (running on Tegra-3

CPU) can only replace a single-core server or desktop machine. In our smartphone testbed, most of

the smartphones are running on Tegra-2, Snapdragon S-3, and Ti OMAP-4 CPUs; in spite of this,

we can execute a typical server job with two or three (of these older) smartphones.

Availability of idle task execution periods: Beyond the dramatic improvements in their com-

pute capabilities, smartphones are attractive for a computing service because their resources are

unused for long periods of time. Most users leave their smartphones idle overnight while the bat-

teries are being recharged. When being recharged, a smartphone typically runs only light-weight

background jobs (e.g., downloading e-mail) that require minimal computation and intermittent net-

work access. Scheduling jobs on a phone during such periods is unlikely to impact smartphone

owners.

To identify and utilize idle periods, we have implemented an Android application to profile

the charging behavior of users (Apple iOS also supports the core functionality required). The

application tracks three states on every phone: (a) plugged: when the user is charging the phone,

(b) unplugged: when the phone is detached from the charger, and (c) shutdown: when the phone

is powered off. When there is a change in state (i.e., unplugged to plugged), the application logs
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Figure 6.2: Charging duration for both day and night.

the change to a server along with a timestamp (of the user’s local timezone). In addition, it logs

the total bytes transmitted and received over all wireless interfaces (cellular and WiFi) when in the

plugged state; this statistic is reset every time the phone newly enters the plugged state. The server

parses the log files and computes for every charging interval of a particular user: (a) the duration of

the interval, and (b) the number of bytes (transmitted and received) during that interval.

We conduct a study of realistic user behavior by having 15 volunteers (real users) install our

application on their phones and gathering statistics. In Fig. 6.2, we plot the distribution of charging

interval lengths, with every interval assigned to day or night; if the plugged state occurs between

10 p.m. and 5 a.m. of a user’s local time, that interval is considered to be in the night, else in the

day. We observe that the median charging interval is around 30 minutes and 7 hours long, at day

and night respectively. In addition, there are fewer charging intervals in the night. This suggests

that users charge their phones for an uninterrupted stretch of several hours at night. During the day,

charging is interrupted frequently, resulting in a large number of short intervals.

We now focus only on the charging intervals at night. Fig. 6.3(a) plots the CDF of data transfers

over all night charging intervals. Although the user is unlikely to be actively using the phone, there

is background data in the form of periodic e-mail checks, push notifications from news and social
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Figure 6.3: The study of charging durations (with less than 2MB network activity) across 10 vol-

unteers.

media, etc.. However, we find that the total network activity is less than ≈ 2 MB for 80% of all

night charging intervals.

Using the network activity data, we identify night charging intervals that can be considered idle

to be the ones in which the data transfer is less than 2 MB. Fig. 6.3(b) shows that the users, on

average, have at least 3 hours of idle charging at night. However, the characteristics highly depend

on the individuals. For example, users with the highest idle durations (users 3, 4, and 8) have lower

variability in their behavior; this suggests that they regularly charge their phones for 8 to 9 hours

at night. In addition, users very rarely turn their phones off while charging (only 3% of the logs

are in the shutdown state). The consistent low load at night (as also reported by [126]) suggests

that idle usage patterns occur in large-scale settings as well. Given this, we speculate that this will

provide an overlap of long idle charging times across users, yielding several operational hours for

computing, without disturbing users’ routine activities.

Next, we also examine the plugged and unplugged activity of each user. Our goal is to identify

periods where, the phones are most likely to be unplugged. In our setting, we consider unplugging

as a failure since we do not execute tasks when a phone is unplugged. Figure 6.4(a) plots the CDF

of unplugged activity (failure) for all users. It is seen that the likelihood of failure between 12 AM

to 8 AM is less than 30%. In CWC, we simply migrate such failed tasks to phones that are still
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plugged in (discussed later).

Profiling an individual user behavior’s can allow the prediction of device specific failures (this

can help since tasks can be migrated to phones that are less likely to fail at the time of consideration).

Figures 6.4(b) and 6.4(c) show the unplugging behaviors of two representative users from our study;

as evident, the two behaviors differ. However, interestingly, the likelihoods of failure in both cases

are very low between 12 A.M. and 6 A.M. It shoots up between 6 A.M. and 9 A.M. when people

begin to use their phones. During the day, the likelihood of unplugged activity is high; it decreases

when phones are charged again at night.

In summary, our study suggests that the charging behaviors of users are typically consistent at

night, and offers an opportunity for harnessing the computing power of idle smartphones during

these times.
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Stability of the wireless network: To fully utilize the idle periods to execute jobs, a stable

network connection is necessary. Since we only schedule jobs when a phone is on charge (typically

at night), it is safe to assume that the channel qualities do not fluctuate much. The location of a

device may, however, affect the bandwidth (due to fading); to account for temporally varying fading

effects, a periodic (short) bandwidth measurement test is required prior to scheduling jobs on the

phones. To examine the stability of these measurements over WiFi links, we perform experiments

at three different locations (within a 2 mile radius), when the phones are put on charge. Figure 6.5

depicts the results of such a bandwidth test for WiFi links where we run a iperf session from the

phones to the server for 600 seconds.

We see that the variation in bandwidth for WiFi links is very low; this means that we can use

infrequent (periodic) bandwidth measurements. Since we expect that communications between the

smartphones and the supporting server will typically be via WiFi at users’ homes, we conclude that

bandwidth stability is not likely to be an issue. Cellular links can also be utilized as appropriate,

but will require more frequent bandwidth measurements [127].

6.3.2 Benefits

Savings in infrastructure costs: Since the idle compute resources on already deployed smart-

phones are used, the cost borne by corporations to bootstrap the platform will be minimal in com-

parison to that in setting up a similar service on a server-based infrastructure. Companies have

either to invest in buying hardware (e.g., servers, switches) or in outsourcing their tasks to third

party cloud services. In addition, establishing computing infrastructure requires careful planning

with regards to factors such as space, federal and state regulations, and the provisioning of power

and cooling support. In contrast, the use of a smartphone infrastructure obviates such considera-

tions. To leverage existing smartphones as the elements of a utility computing service, an enterprise

will need no more than a central, lightweight server to identify idle resources and allocate them to

computational tasks.
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Savings in energy costs: A primary concern of cloud service providers is the power consump-

tion in their data centers. A typical data center server can consume 26.8 Watts (Intel Core 2 Duo)

to 248 Watts (Intel Nehalem) [128] of power, depending on the configuration. More importantly,

this does not account for the power required for cooling. In a data center setting, to calculate the

total power consumption, we use an Average Power Usage Effectiveness (PUE) ratio [129] of 2.5;

for every Watt consumed by a server, 2.5 watts are in addition consumed for cooling and power

distribution overheads. Extrapolating this, we can project the energy cost of a server with a Intel

Core 2 Duo to be:

67

1000
KWH× 24 hrs× 365 days× $0.127 = $74.5/year

(using the average commercial price of 12.7c/KWH in the US in April 2011). Note that a more

powerful server (like the Intel Nehalem) may cost up to $689 /year.

In comparison to a datacenter server, the power consumption of a smartphone is as low as 1.2

Watts at peak load. The cost of operating a smartphone (with a similar model) can be estimated to

be:

1.2

1000
KWH× 24 hrs× 365 days× $0.127 = $1.33/year

Note that the PUE ratio does not apply in case of Smartphones since they do not require any

cooling. The above analysis suggests that energy costs of operating the smartphone computing in-

frastructure is significantly lower (by an order of magnitude) than using typical datacenter servers.

6.4 Design and Architecture

In this section, we describe the design of CWC. We first describe the parallel task (job) execution

model for CWC 1, and then seek answers to the following. (a) How can we predict task execution

1We use the terms task and job interchangeably.
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times?, (b) How can we implement automated task execution on smartphones without requiring

direct user interaction?, and (c) How can we preserve user experience while the tasks are being

executed on the phones?

Task model: In CWC, a task is a program that performs a computation on an input file, such as

counting the number of occurrences of a word in a text file. Similar to the model in MapReduce, a

central server partitions a large input file into smaller pieces, transmits the input partitions (together

with the executable that processes the input) to the smartphones in CWC. Upon receiving the exe-

cutable and the corresponding input, the phones execute the task in parallel and return their results

to the central server when they finish executing the task. The central server performs a logical ag-

gregation of the returned results, depending on the task. For the word count example, the server

can simply sum the number of occurrences reported by each phone (obtained by processing their

respective input partitions) to compute the number of occurrences in the original input file. We call

such tasks breakable tasks to reflect that in this class, a task does not exhibit dependencies across

partitions of its input and hence can be broken into an arbitrary number of concurrent pieces.

While the above model is suitable for parallel tasks in general, some tasks cannot be broken

into smaller pieces on which computations can be performed followed by merging the results, to

produce a logical outcome. We call such tasks atomic tasks; such a task (and its input) can only be

executed on a single phone due to the dependencies in its input. An example of an atomic task is

photo filtering (e.g., blurring a photo). A blur is typically obtained by computing a new pixel value

based on the neighboring pixels. Since the blurred pixel value depends on its neighboring pixels, a

blur on a photo cannot be obtained by breaking the photo into smaller pieces, blurring the pixels in

each individual piece and merging the results. Although an atomic task cannot be parallelized, there

are still concurrency benefits when many such tasks are executed in batches. For example, if one

needs to filter 1000 photos, each individual photo can be transferred to a phone and thus, multiple

photos can be filtered in parallel. CWC accounts for both breakable tasks and batch atomic tasks in

its scheduler (details in Section 6.5). Next, we describe how CWC predicts task execution times.
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6.4.1 Predicting Task Execution Times

When a task is scheduled on a phone, there are two important factors that affect the completion time

of that task. First, it takes time to copy the executable (i.e., binary) and the input file partition to a

phone. This depends on the achievable data rate on the link between the phone and the central server

that copies the data. Second, the same task takes different times to complete on different phones

(depending on the computational capabilities of the phone). While “computational capabilities” is

broad and can include characteristics such as the speed of reading a file from the disk (e.g., the SD

card on a phone) or the size and speed of the cache, we only focus on the CPU clock speed of a

phone; a phone with a fast CPU (in GHz) should execute a given task in less time as compared to a

phone with a slow CPU.

Next, we introduce some basic notation that we use in the subsequent discussions. bi is the time

that it takes to copy 1 KB of data from the central server to phone i. cij is the time it takes to execute

task j on 1 KB of input data using phone i. Ej is the size (in KB) of the executable for task j and

Lj is the size (in KB) of input data that task j needs to process. Given this notation, the completion

time of task j, when it is scheduled to run on phone i, is equal to Ej ∗ bi + Lj ∗ (bi + cij). The

first term accounts for the time that it takes to copy the executable to the phone and the second term

accounts for the copying of the input data and executing the task on it. If phone i is assigned a

piece of job j’s input file, we denote this by lij and one can simply replace Lj with lij in the above

formula to account for executing input partitions.

The estimation of the bi values are via direct measurements in CWC (bandwidth tests described

earlier). The estimation of cij for each phone task pair has to be low-cost since many such combina-

tions may exist. To estimate cij values, we resort to a scaling technique where we first execute each

task j on 1 KB of its input using the slowest phone with a S MHz CPU speed. If the slowest phone

takes Ts milliseconds to locally execute task j on a 1 KB input (excluding the associated executable

and data copying costs), a phone with ‘A’ MHz CPU speed is expected to complete the same task

in Ts ∗
S
A
milliseconds. This technique avoids the cost of profiling each phone-task pair and as we
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Figure 6.6: Predicted speedup vs. the measured speedup.

show in Figure 6.6, is a fairly accurate representation of actual task completion times. In plotting

Figure 6.6, we first run a task on the slowest phone in our testbed (HTC G2 with 806 MHz CPU).

We then run the same task on all the other phones. Comparing the actual runtimes of each phone i

(denoted ti) to the run time of the slowest phone (denoted ts), we have the measured speedup,
ts
ti
.

We then compute the expected speedup based on CPU clock speeds. If a phone has a X MHz CPU,

then the expected speedup with respect to the HTC G2 is equal to X
806
. We do this comparison for

three different tasks (described later in detail in Section 6.6). Figure 6.6 shows that the CPU scaling

model captures the actual speedup for most of the points (the points are clustered around the y = x

line), with a few exceptions where the actual speedup is higher than what is predicted by the model

(the rightmost points on the x-axis).

The above model is used by CWC’s task scheduler (described in Section 6.5), which runs on the

central server and periodically assigns partitions of tasks to a set of phones based on the predicted

run time. The phones return their results along with the time it actually took to locally execute their

last assigned task. The scheduler then updates its prediction for each phone (and task) based on the

reported execution times and uses it for predicting the run time in the following scheduling period.

With this, CWC accounts for the few cases that the initial prediction fails to capture.
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6.4.2 Automating Task Execution

One of the key requirements of CWC is that a task be executed without requiring continuous user

input. The typical means of “running a task” on smartphones today is running an application (i.e.,

“app”). When a user wants to execute a new task on her phone, she needs to download and install

the app. This process typically requires direct human input for various reasons (e.g., Android users

are presented a list of app permissions and have to manually validate the installation). Such a mech-

anism is clearly not apt for CWC, since the tasks are to be dynamically scheduled on smartphones.

To run tasks on the phones, we leverage a cross-platform mechanism that uses the Java Reflec-

tion API for the Android OS. With reflection, a Java executable (i.e., a .class file) can dynam-

ically load other executables, instantiate their objects and execute their methods, at runtime. This

allows CWC to ship different task executables and input files to a particular phone in an automated

fashion. In addition, the reflection functionality can be implemented as an Android service 2 thus,

bypassing the need for human input. Note that dynamic class loading is not specific to Android;

such capabilities are also available with other smartphone OSs (e.g., iOS permits this via shared

libraries).

With reflection implemented on the smartphone side, CWC does not require any additional

infrastructure at the central server. In fact, developers can continue to use their traditional Java

programs and have them scheduled for parallel execution by CWC. Since Android can execute Java

code, we just require developers to implement their tasks in Java (no knowledge of Android API

required). In Fig. 6.7, we depict the flow chart of a typical CWC task. The .java source files

are compiled into .class files at the central server, which are then packaged as .jar files using

the Android tool chain (i.e., the dx command). The .jar file (containing the executable for the

Android VM) together with the input data is copied to the phone. The phone extracts the .jar

file and uses reflection to load and run the task, producing an output of results. Figure 6.8 shows

the Java implementation of a typical CWC task. When the .java file is compiled and packaged

in a .jar file, the task is executed on the phone using the code snippet in Figure 6.9. Thus, each

2Android services do not display graphical elements to users and can run in the background.
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Figure 6.7: Flow chart of a CWC task (shown in shaded components).

1 pub l i c c l a s s Task {
2 pub l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) {
3 execu t eTask ( a r g s [ 0 ] ) ;

4 }
5 pub l i c s t a t i c vo id execu t eTask ( S t r i n g f i l e n ame ) {
6 / / r ead and p r o c e s s i n p u t

7 }
8}

Figure 6.8: Task.java to be compiled at the central server.

phone concurrently processes the input partition (input.txt) assigned to it and this is transparent to

the developers who implement their tasks (with the template in Figure 6.8) with a single desktop

machine in mind.

6.4.3 Preserving User Expectations

While predicting task execution times and automating them are important, we must note that phones

are personal devices. Thus, first it is important to ensure that when a user chooses to use her phone,
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1 S t r i n g pa th = g e t F i l e s D i r ( ) . g e tAb s o l u t eP a t h ( ) ;
2 S t r i n g j a r F i l e = pa th + ” / t a s k . j a r ” ;

3 DexClas sLoader c l a s s L o ad e r = new DexClas sLoader ( j a r F i l e ,

pa th , nul l , g e tC l a s s ( ) . g e tC l a s s L o ad e r ( ) ) ;

4 Cla s s [ ] t y p e s = {new S t r i n g [ ] { } . g e tC l a s s ( ) ,} ;
5 Clas s<?> myClass = c l a s s L o ad e r . l o a dC l a s s ( ” Task ” ) ;

6Method m = myClass . getMethod ( ”main ” , t y p e s ) ;

7 Objec t [ ] p a s s ed = {new S t r i n g [ ]{ pa th + ” / i n p u t . t x t ” }} ;
8 Objec t x = m. invoke ( c l a s sLoade r , p a s s ed ) ;

Figure 6.9: Reflection functionality on the smartphone.

CWC stops the execution of the last assigned task to that phone so as not to adversely impact

the end-user experience (e.g., task execution on the CPU can affect the responsiveness of the user

interface). The tasks that are thus stopped, are then migrated to other phones that are still plugged

in (as discussed).

Second, running tasks on phones that are are plugged in, should have a minimal impact on the

charging times of the phones’ batteries. We observe that a heavy utilization of a phone’s CPU

draws power and therefore, in some cases, prolongs the time taken to fully charge a phone’s battery.

Specifically, we conduct experiments where we first fully charge many types of phones (i.e., from

0% residual battery to 100%) in two settings; the first setting is without any job running on the

phone, and the second setting corresponds to a case wherein a CPU intensive task is continuously

run. As an example, we discuss results in the case of HTC Sensation phones, where we repeatedly

run a CPU intensive task of counting the number of prime numbers in a large input file continuously

during the charging period. We observe that while it takes around 100 minutes to complete full

charging in the first setting, the time increases to 135 minutes in the second setting. Note that this

increase could be phone-specific; our observation is that the more powerful the phone, the higher

the penalty in terms of the increase in the charging period. Further note that, if the tasks are only

scheduled after the phone is fully charged, there is no penalty (the phone remains fully charged);

this is because the energy from the power outlet is directly applied to CPU computations. However,

this would delay task processing and is thus avoided in CWC; moreover, users may not leave their

phones plugged in until they are fully charged.
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Figure 6.10: Charging times with different discharging schemes.

Our goal is minimize the aforementioned adverse affect on a device’s charging profile. If the

CPU utilization can be controlled, we could achieve the above goal. Prior approaches advocate

dynamically varying the voltage and/or the frequency of the CPU [130]. However, the modifica-

tion of the voltage and frequency values require root privileges on the phone, and is therefore not

applicable in our setting (using root privileges on a device voids its warranty). Thus, our approach

is to periodically pause the tasks being executed on the phones, and leave the CPU idle during such

paused intervals. Next, we discuss when and for how long, we pause the execution of a task.

To begin with, our experiments demonstrate that the residual battery percentage (reported by

the operating system) exhibits a predictable linear change with respect to time (as seen from Figure

6.10) in the case where no jobs run on the phone (referred to as the phone’s charging profile). The

rate of this linear change is specific to the device and the power source, but the relation remains

linear across all the devices. When a task runs on the CPU of the phone, it draws power and thus,

the charging profile deviates from this linear profile. We seek to minimize this deviation.

If there was no other task (e.g., background jobs not scheduled by CWC) running on the phone,

we could determine the deviation due to CWC. Unfortunately, the process is complicated by the

existence of such other tasks (possibly at different times) each of which with unpredictable CPU

requirements and therefore power consumption patterns. Further, there could be fluctuations in the

input power drawn from the supply (e.g. charging using a USB vs. a wall charger). Given this,
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our approach is to continuously monitor the rate at which the battery is charged, and either increase

or decrease CPU utilization accordingly; the amount by which we increase the CPU utilization is

called the scaling factor.

Specifically, we first measure the time it takes for the residual battery charge (δ) to increase

by 1% of its preceding value, without any jobs running on the phone. This value of δ is referred

to as the target charging parameter. Then, we run the task for a time period of δ/2 and put the

process to sleep for the next δ/2 seconds. We repeat this process until the overall residual battery

charge increases by 1%. Let the time taken for this be β(≥ δ); this is referred to as the actual

charging parameter. If β = δ, there may be energy available to further ramp up the CPU utilization

(the power from the outlet might be higher than what is required for charging). In this case, we

decrease the sleep time during each δ period by a factor of 0.75, thereby inherently increasing CPU

utilization; a new β is then computed based on the new settings. If β > δ, the power drawn by

the CPU is affecting the battery charging profile. Thus, we increase the sleep time by a factor of 2.

Again, a new β value is computed. The process is repeated continously. Note that the above strategy

is akin a multiplicative increase/multiplicative decrease (MIMD) of the period for which the CPU

is kept idle. Finally, since the phone’s charging profile could change with time (as an example due

to other tasks), we recompute the value of δ each time the residual battery charge changes by 5%.

We plot the results with our adaptive MIMD based CPU scheduling in Fig. 6.10 for the HTC

Sensation phones. The results from an ideal charging profile (no tasks) as well as a case where

the CPU is heavily utilized without our approach are also shown. We see that our approach allows

the phone to charge in a time that is almost the same as in the ideal case; there MIMD behavior of

our approach is highlighted in the zoomed insert in the figure. Without our approach, the charging

time increases by 35 %. Note here that, the use of the adaptive approach results in a reduction

in computation (increase in computation time) of about 24.5 % compared to the heavily utilized

scenario (due to the sleep cycles).
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6.5 Task Scheduling

In this section, we detail how tasks are scheduled in CWC. We are given a set J of jobs and a set

P of smartphones. As discussed earlier, each job j ∈ J and phone i ∈ P . The time it takes i to

process x KB of j’s input is given by

Ej ∗ bi + x ∗ (bi + cij) (6.1)

where, Ej is the size (in KB) of job j’s executable, bi is the time (in milliseconds) that it takes phone

i to receive 1 KB of data from the server, and cij is the time that it takes for phone i to execute the

job j on 1 KB of input data. Our objective is to schedule the tasks across the phones such that the

time it takes for the last phone to complete, T , (the makespan) is minimized. In the schedule, each

job j’s input can be split into pieces and each piece can be assigned to a phone. lij denotes the

size (in KB) of job j’s input partition assigned to phone i. lij = 0 simply indicates that phone i

is not assigned any input partition of job j. uij is an indicator variable that denotes whether or not

a partition of job j’s input is scheduled to run on phone i. The scheduling problem (SCH) is then

captured by the following quadratic integer program.

SCH: Minimize T

s.t.
∑

j

uij ∗ (Ej ∗ bi + lij ∗ (bi + cij)) ≤ T, ∀i ∈ P

∑

i

lij = Lj , ∀j ∈ J

uij ∈ {0, 1} ∀i ∈ P, ∀j ∈ J
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∑

i

uij = 1 ∀ atomic j ∈ J

where we minimize the makespan, T . The first constraint requires that all phones finish executing

their assigned tasks before T . The second constraint ensures that for every job, all of its input is

processed. The last constraint ensures that atomic jobs are allocated to a single phone. SCH reflects

the general case for the minimum makespan scheduling (MMS) problem, which is known to be

NP-hard. MMS is defined as: “Given a set of jobs and a set of identical machines, assign the jobs

to the machines such that the makespan is minimized” [131]. A more general version of MMS

is scheduling using unrelated machines (U-MMS), where each machine has different capabilities

and thus, can execute tasks in different times. In both of these problems, only atomic jobs are

considered. In other words, the goal is to assign each job to exactly one of the machines such

that the makespan is minimized. SCH is a general case of U-MMS. We consider both atomic and

breakable tasks and the machine capabilities are different. Since the special case of SCH (U-MMS)

is NP-hard, the hardness carries over to SCH as well.

Our Solution: We address the SCH problem by solving the complementary bin packing prob-

lem (CBP), similar to the approach in [132]. In CBP, the objective is to pack items using at most

‖P‖ bins (with capacity C) such that the maximum height across bins is minimized. Here, the

items correspond to the tasks and the bins correspond to the phones. The correlation between CBP

and SCH can be drawn as follows. Let us assume that there is an optimal solution to CBP where

the maximum height across the bins isM . If one rotates each bin 90◦ to the right, each bin visually

appears as a phone in makespan scheduling. Items packed on top of each other in a bin correspond

to input partitions assigned to a phone one after the other. Clearly,M corresponds to the maximum

completion time across the set of phones in the rotated visualization. Thus, packing all items (tasks)

using at most ‖P‖ bins (phones) and minimizing the maximum height across bins will minimize

the makespan 3.

3The reader can refer to [132] for details.
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1: L : sorted list in decreasing order of execution time

2: C : bin capacity

3: repeat

4: find the first item in L;

that can fit in any opened bin

5: if such an item exists then

6: pack the item in the bin with min. height

7: if the item was packed as a whole then

8: remove it from L

9: else

10: insert its remaining input in L

11: re-sort L

12: end if

13: else

14: if there are un-opened bins then

15: open the best bin for the largest item in L

16: pack the item in the opened bin

17: if the item was packed as a whole then

18: remove it from L

19: else

20: insert its remaining input in L

21: re-sort L

22: end if

23: else

24: cannot open any more bins

25: cannot finish packing with C

26: end if

27: end if

28: until all jobs are packed

Algorithm 8: Greedy Packing Algorithm

The pseudocode of our greedy algorithm to solve CBP is given in Algorithm 8. The idea is to

first sort the tasks in decreasing order of local execution time. The first item in the sorted list is one

whereRj ∗csj is the largest where s is the slowest CPU phone in the system andRj is the remaining

input size (in KB) of item (job) j that is yet to be assigned to some phone. Initially Rj = Lj .

In each iteration, we search for the first item in the list that can be packed in any of the previously

opened bins (an open bin represents a phone that has previously been assigned some input partition).

Note that determining whether an item can be packed in a bin depends on whether the current height

of the bin plus the execution cost of that item in the particular bin is less than the bin capacity. If

we can find such an item, we pack it in the bin with the minimum height at that time (i.e., the phone
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with the least total execution time). When packing such an item (line 6), we pack its largest input

partition that can fit. If the item can fit without partitioning it, we prefer packing it as a whole.

The idea behind our design is the following. If a task is broken down to N pieces, then the

central server would have to aggregate N partial results, which would be an extra overhead at the

central server when the phones return their partial results. Thus, if two packings would produce

the same minimum bin height in the end, we prefer one with fewer partitions. If packing an item

as a whole is not possible (simply because doing so would result in the bin height going over the

capacity), we pack that item’s largest partition that can fit without violating the bin capacity (again

with the purpose of keeping the number of partitions low). If no item can fit in the opened bins (line

13), we check if we can open a new bin. If not, the algorithm cannot find a feasible packing for

the given capacity. If we can open a new bin, we open the bin that would accept the largest item in

L, with the minimum increase in its height (line 15). Clearly, such a bin is the one that minimizes

Equation 6.1 for the largest item in L. After opening the bin, we again try to pack the item as a

whole (line 17). If not, we pack the item’s largest partition subject to the bin capacity.

The above algorithm is repeated multiple times for different selections of bin capacities. Here,

we adopt an approach similar to binary search. We first determine an upper bound (UB) on the

bin height. Clearly, the maximum bin height occurs when all items are assigned to the bin that

maximizes Equation 6.1 (i.e, the worst bin). For the lower bound (LB), we initially pick a loose

boundwhere all items are packed in a single magical bin that has the aggregate processing capability

and the aggregate bandwidth of all bins; there are no other bins. This magical bin represents the

ideal case where the inputs are partitioned without the executable cost. After determining these

initial bounds, we execute Algorithm 8 with C = (LB+UB)
2

. If the algorithm succeeds packing all

items with bin capacity C, we update UB to be equal to C. If the algorithm cannot find a feasible

packing with the initial C, we update LB to be equal to C. The algorithm is then repeatedly

executed with C = (LB+UB)
2

, until the algorithm succeeds with the minimum C. Here, the binary

search simply reduces the search space for the minimum bin capacity, with which the algorithm

packs all the items.
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When CWC determines the schedule as described above, it starts copying the relevant executa-

bles and the input partitions to each phone. This is done on a per-partition basis; the next assigned

task to the phone is copied only after the phone completes executing its last assigned task. When

the phones inform the central server about a task completion, they report the partial results together

with the time it takes to locally execute the assigned task. As described in Section 6.4, CWC uses

such execution reports to update its prediction on completion times of tasks. If the same task is

assigned to the same phone in the future (albeit with a different input partition), CWC uses the

updated prediction for scheduling.

Handling Failures: In CWC’s task execution cycle, some phones may naturally fail while

executing a given task. In our setting, the term failure can correspond to a variety of cases. For

example, when a phone is plugged off the charger, we treat it as a failed node since continuing

to execute a CPU-intensive task on it would drain the battery (a critical concern for CWC). In

CWC, such failures are communicated back to the central server whenever possible (i.e., when the

phone still has a network connection), and the execution can be resumed from the point where it

failed (details of task state migration are in Section 6.6). We call these class of failures where the

phone maintains a connection with the server “online failures”. Other scenarios may include harder

failures, in which the phone loses its connection to the server (e.g., wireless driver suddenly crashes

or the network connection is dropped), and thus, cannot report its failed state back to the central

server (the description of detecting such failures at the central server is again deferred to Section

6.6). We call this class of failures “offline failures”.

Assume that at time instant A, we compute a schedule X . In X , each phone i has a set of tasks

Xi that it will execute as time progresses. CWC starts copying the executable and input partitions

in Xi to i one task at a time and waits for i to either report a completion or a failure. If no report

is received for the last copied task, say lasti (due to an offline failure), CWC marks i as failed

and inserts lasti and all the remaining tasks in Xi to a list FA that contains all failed tasks after

A. If i reports completion, CWC simply copies the next task in Xi and again waits for reports. If

on the other hand, i reports failure for lasti, the report contains additional information: (a) how
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much of the input was processed by i by the failure instance, and (b) what was the intermediate

(partial) result associated with the processing. CWC still inserts lasti (and all that remains in

Xi) in FA, but now lasti is inserted with only the part of the input not processed by i (and the

intermediate results are saved). Now assume that we have a new schedule to be computed at time

instant B. Some new tasks have entered the system at this point and awaiting scheduling. Now,

CWC computes a schedule for all such new tasks and FA combined. The reason that we avoid

immediate re-scheduling of tasks in FA and wait until B is to account for the possibility that failed

phones may re-enter the system after a short period of unavailability (e.g., the user plugs her phone

to the charger after a few minutes or the connectivity is restored). Note that this is in contrast with

typical MapReduce architectures, where failures may result in long periods of unavailability [133].

6.6 Implementation and Evaluation

In this section, we first describe our prototype implementation of CWC. Subsequently we present

our evaluations using the prototype deployment.

Implementation and the Testbed: Our testbed consists of 18 Android phones with varying

network connectivity and CPU speeds. The network interfaces vary from WiFi (both 802.11a and

802.11g are considered) to EDGE, 3G and 4G. The CPU clock speeds vary from 806 MHz to 1.5

GHz. Each phone registers with a central server and reports its CPU clock speed. We measure bi

values with the iperf tool.

The phones host the CWC software, which maintains a persistent TCP connection with the

server and permits dynamic task execution as instructed by the scheduler. To maintain long-lived

flows, we use the SO KEEPALIV E option in the connection sockets as well as implement cus-

tom application layer keep-alive messages. The latter also serve as a means of detecting offline

failures. If a phone fails to respond to a preset number of keep-alive requests from the server, it

is marked as failed. In our implementation, the keep-alive message period is 30 seconds and the

number of response failures tolerated, is 3.
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Several techniques exist to migrate failed tasks and resume their state on a target machine;

for example, the authors in [134] modify the Android virtual machine (VM) itself to migrate the

state of execution but this requires changes to the original Android VM. To make it more user and

developer friendly, we ported JavaGO – a Java program migration library [135] to the Android.

JavaGO is based on a “source-code-level” transformation technique, where the JavaGo translator

takes user program as input and outputs the migratory Java code. The translated code can run on

any Java interpreter and can be compiled by any Just-in-Time (JIT) compiler. JavaGo provides

flexibility by allowing programmers to annotate their code using three added language constructs

to the Java language, namely go, undock and migratory. The go statement specifies the IP address

of the machine where the failed application will be resumed. The undock construct specifies the

area to be migrated in the execution stack while migratory construct declares which methods are

migratory so that only those methods are modified by the JavaGo compiler. In CWC, we translate

the annotated java task files with JavaGo translator to produce the migratory .jar task file. In case

of a failure, the state of a task is saved and transmitted to the central server (via the go construct).

Our server records the transmitted state but does not itself resume the computation at that state.

At the next scheduling instant, the server sends the recorded state of each failed task to a newly

assigned phone, which then resumes the task. Details on migration can be found in [135].

The server is implemented as a multi-threaded Java non-blocking IO (NIO) server. The use

of threads with NIO allows the server to concurrently copy data to a phone while reading the

completion reports of other phones. We host the central server on a small Amazon EC2 instance

to showcase its lightweight implementation and its economical viability. The small instance is

the default configuration offered by EC2 and a single virtual core together with the 1.7 GB of

memory that it offers represents a machine that is far less capable than state-of-the-art workstations.

Currently, Amazon charges 8 cents per hour for a small Linux instance. This (although the exact

values may change over time) clearly shows that the lightweight central server in CWC incurs a

very small cost for a typical enterprise.
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Prototype Evaluation: In evaluating CWC, we use a variety of tasks. The first task involves

counting the occurrences of prime numbers in an input file. The second task is to count the number

of occurrences of a word in the input file and the third task is to blur the pixels in a photo. While we

are able to directly use the desktop Java versions of the first two tasks, doing this was not possible

for the photo blurring task. The challenge relates to the lack of compatibility between the graphics

classes on the desktop Java virtual machine and the Dalvik virtual machine in Android. While

the code works on JVM, the reflection class loader on Android complained about the part of the

code that reads the pixels from the image file (in particular BufferedImage class does not exist in

Android). To eliminate the phone’s reading the pixels directly from the image, we do the following

modification. We first pre-process the pictures to read the pixels (at the central server) and create

text files that contain a pixel value in each of its lines. Each phone was able to process the text

files as before. After this, the server re-creates each photo from the blurred pixels returned by each

phone.

Comparison with simple practical schedulers: At the server, we also implement simpler schedul-

ing alternatives to CWC. The first alternative splits each breakable job into |P| pieces without ac-

counting for the different bandwidth and CPU speeds of phones in P . The atomic jobs are assigned

to phones in a round-robin manner (phone 1 gets atomic job 1 and so on). In the second alternative,

both breakable and atomic jobs are assigned in a round-robin manner.

Setup: We distribute our 18 phones in three houses (the locations are shown in Fig. 6.11). In

two of these houses, we have a 802.11g WiFi network and an abundance of interfering residential

access points using the 2.4 GHz band. In the third house, we have a 802.11a WiFi AP without

interference from neighboring APs. Of the 6 phones we place in each house (phones are plugged

to power outlets), we associate 2 phones with the WiFi AP and 4 phones are configured to use

varying cellular technologies (from the slowest EDGE to the fastest 4G). Before running the CWC

scheduler, we initiate iperf sessions from each phone to the EC2 server and log the measured data

rate in KBps (the inverse of this value is used as bi). The workload comprises of the following. We

have 50 instances of task 1 (counting primes) with varying input data sizes, we have 50 instances
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Figure 6.11: Map of the phone locations.

of task 2 (counting word occurrences) with varying input sizes and, 50 variable size photos to be

blurred (atomic task 3).

Results: In the first experiment, we run our greedy scheduler followed by the two alternate

scheduling strategies described above; we do not consider phone failures. Fig.6.12(a) presents the

task execution timeline for a select set of phones. We do not show the plots for every phone for

better visualization (the patterns are similar across the phones). The vertical black stripes in a

phone’s timeline correspond to the time intervals where the phone is receiving the task executable

and the corresponding input partition from the server. The white regions correspond to the time

intervals where the phone executes the task locally. From Fig. 6.12(a), we observe that while some

phones (2 and 9) finish their tasks earlier than others, the load is well balanced for most of the

phones (4, 12, 13, 14 complete at similar time instants). Phones 2 and 9 finished early because of a

mismatch between the expected speedup and the measured speedup (recall Fig. 6.6 in Section 6.5).

In particular, these phones are faster than what is indicated by their CPU clock speeds and thus,

finish earlier than the scheduler’s prediction. We see that the difference in the completion times

between the earliest phone (2 finishes at around 900 seconds) and the last phone (12 finishes at
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Figure 6.12: Our greedy scheduler balances the load and produces very few input partitions.

around 1100 seconds) is ≈20% of the makespan. In addition, our scheduler’s predicted makespan

of 1120 seconds was only 20 seconds more than the actual makespan of 1100 seconds. Fig.6.12(b)

shows the CDF of the number of input partitions for each of the 150 tasks considered. An input

partition of 0 indicates that the task was atomically assigned to a single phone. While 33% of

the tasks by definition cannot be partitioned (the photo tasks are atomic), we observe that our

scheduler preserves atomicity for most of the tasks (close to 90%) and thus, significantly reduces

the aggregation cost at the server. In contrast, we observe that the equal split strategy achieved a

makespan of 1720 seconds, and produced a large number of input partitions since each breakable

task is split into |P| pieces. While the round-robin strategy avoided excessive input partitions, it

achieved a makespan of 1805 seconds. In summary, our greedy scheduler is around 1.6x faster

than the alternative schedulers and it achieves this while with almost negligible aggregation costs.

In Fig. 6.13, we plot the timeline for a different run of the above experiment. Here, we intro-

duce failures by unplugging three phones (phones 1, 6 and 17) at random instances during task

execution (the plot again shows a subset of phones). As discussed in Section 6.5, in the next round

of scheduling, our scheduler re-schedules tasks from previously failed phones across the remaining
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Figure 6.13: Support for failure recovery in CWC.

set of phones. The x marks on Fig. 6.13 indicate the assignment of the failed tasks of a phone.

The shaded task executions depict the execution of re-scheduled tasks. We observe that phone 1’s

tasks were partitioned across phones 7, 13 and 14. On the other hand, phone 6’s failed tasks were

re-scheduled across phones 0, 7, 8 and 14. Since phone 6 failed at the very beginning of its sched-

ule, it had more tasks to be re-scheduled. Our scheduler mainly chose faster phones (phones 0, 7

and 8 completed ahead of time in the original schedule) to re-schedule these failed tasks. Overall,

re-scheduling failed tasks required an additional 113 seconds after the original makespan.

Benchmarking the Scheduler: Next, we try to get a lower bound on the makespan to bench-

mark the performance of our algorithm. This requires optimally solving the quadratic integer pro-

gram formulated in Section 6.5, which is NP-hard owing to the integral nature. While the integral

part can be relaxed by allowing the variables uij and lij to take fractional values and hence pro-

ducing a loose lower bound, we still cannot use standard LP solvers to compute the bound owing

to the quadratic nature. To address this, we can re-formulate the problem by transforming the first
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Figure 6.14: Comparison of the makespans of the greedy scheduler and the solution to the relaxed

problem.

constraint to
∑

j uij ∗ (Ej ∗ bi) + lij ∗ (bi + cij) ≤ T , where now uij applies only to the first term.

However, to prevent the solution from allocating jobs to a phone (lij > 0) without accounting for

the shipping cost of its executable (uij = 0), we add another constraint (1− uij)lij = 0, ∀i, j. The

latter can now easily be relaxed as lij ≤ Lj ∗ uij , thereby resulting in an LP relaxation, which can

be solved to obtain a loose lower bound (smaller makespan than optimal due to relaxation) on the

solution. Thus, we have Trelaxed ≤ Toptimal ≤ Tcwc, where T is the makespan produced by each of

these solutions.

To understand how close we are to the optimal, we input various combinations of tasks and

bandwidth profiles and solve the problem with (a) our greedy scheduler and (b) using the relaxed

formulation above. We simulate the solutions by generating random bi values between 1 and 70 mil-

liseconds (the minimum and maximum values measured in our experiments). We consider the same

set of 150 tasks and we get the cij values from the phones in our testbed. We generate 1000 random

configurations and for each configuration, we first obtain the makespan for the relaxed formulation

and subsequently we obtain the makespan produced by our greedy scheduler. Fig. 6.14 shows the

CDF (over random configurations) of these makespans. It is seen that the median makespan of our

greedy scheduler is approximately 18% worse than the relaxed formulation’s solution.
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6.7 Conclusions

In this chapter, we envision building a distributed computing infrastructure using smartphones for

the enterprise. Our vision is based on several compelling observations including (a) enterprises

provide their employees with smartphones in many cases (b) the phones are typically unused when

being charged and, (c) such an infrastucture could potentially yield significant cost benefits to the

enterprise. We articulate the technical challenges in building such an infrastructure. We address

many of them to design CWC, a framework that supports such an infrastructure. We have a proto-

type implementation of CWC on a testbed of 18 Android phones. Using this implementation, we

demonstrate both the viability and efficacy of various components within CWC.
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