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Abstract: Upper and lower bounds are proved for We find it useful to group a process' !;tates

the shared space requirements for solution of sev- into four regions: the ~ or!!'..Yl!!9. ~~ con-

eral problems involving resource allocation among sists of those states which a process can be in

asynchronous processes, Controlling the degrada- while running its entry protocol, and the exit

ti on of performance when a limited number of ~ similarly consists of states corresporlding

processes fail is of particular interest. to the exit protocol. The states between the! entry

and exit protocols comprise the critical~~.

All other states belong to the remainder~~.
1. --We make no assumptions about what a process does

while in its critical or remainder region except

that it does not attempt to communicate with other

processes running their protocols.

Various solutions in the literature differ

with respect to the underlying model of computation,

"fairness properties" or relative order in which

processes are admitted to their critical regions,

time and space complexity of the algorithms, and

irllnunity to various types of permitted "failure" of

components of the system.

Burns et. al.[BFJLPl and Cremers and Hit,bard

[CH1,CH2] provide upper and lower bounds on the

amount of shared memory needed to insure certain

fairness properties such as absence of lockout,

bounded waiting, and FIFO service order. The model

used in those papers assumes a shared memory with a

test-and-set primitive as the basic interprocessor

communication mechanism. Rivest and Pratt [RP] and

Peterson and Fischer [PF] also analyze the memory

requirements for such problems, but their model

assumes a much more limited form of access to the

shared memory. Moreover, their algorithms ar,e de-

signed to continue to function correctly even under

repeated "failure" of any number of processes, pro-

vided only that a failed process signal that it is

no longer active and that it return to its remain-

der region when it is later restarted. "Shutdown"

is perhaps a more appropriate term for that kind of

failure, for it carries no connotation of ma11Func-

tion.

Introduction--

The critical section problem has been widely

studied for its illustrative value in problems of

synchronization as well as for its practical appli-

cation to real concurrent systems [BFJLP, CH1, CH2,

Dil, EM, Kn, Lam, PF, RP]. The problem is to de-

vise protocols for each of several communicating

asynchronous parallel processors to control access

to a designated section of code called the criti-

cal section. Such code might manipulate a C{mrmDn

resource, in which case access to the critical

section corresponds to allocation of the resource.

In the simple case of a single nonsharable reus-

able resource such as line printer or a tape drive,

the two basic properties desired of the access

policy are mutual exclusion and impossibility of

deadlock. Mutual exclusion means that two pro-

cesses can never simultaneously be executing their

critical sections. Deadlock is a situation in

which one or more processes are attempting to

enter or leave their critical sections, but none

of them ever succeeds. Finding appropriate proto-

cols to insure these two properties is the criti-
cal sectio"- problem. -

Two protocols comprise a solution. The ~

protocol is the section of code that a process

executes before being admitted to its critical

section, and the ~ protocol is run when the

process leaves its critical section. Equivalently,

the entry protocol allocates the resource corres-

ponding to the critical section and the exit pro-

tocol returns it to the system.

In this paper, we generalize the critical

section problem to the case where some number l > 1
of processes (but not more) are permitted to be -

simultaneously in their critical sections. Regard-

ed as a resource-allocation problem, we consider l

identical copies of a non-sharable reusable re-

source, where each process can request at mos1: one

copy of that resource. We use the test-and-sE!t

model of [BFJlP] and, as in that paper, attem~,t to

minimize the amount of shared memory used.
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The exclusion property of the -critical sec-

tion problem, that at most l proces es are ever

simultaneously in their critical re ions, we call

l-exclusion. To avoid degenerate s lutions,we must

also formalize the notion that "it hould be poss-

ible for as many as l processes to e simultaneous-

ly in their critical regions." We nterpret this

to mean, roughly, that if fewer tha l processes

are in their critical regions, then it is possible

for another process to enter its critical region,

even though no process leaves its critical region

in the meantime. We call this property "avoiding

l-deadlock."

it increments COUNT. releases its exclusive access

to COUNT. and enters its critical section. {pro-

cesses are always permitted to decrement COUNT.)

The code for each process is:

1. Perform the entry protocol for the 1-criti-

cal section algorithm.
2. {Busy Waiting) Wait until COUNT < l. then

set COUNT ~ COUNT + 1.

3. Perform the exit protocol for the 1-criti-

cal section algorithm.

4. Execute the critical section.

5. Set COUNT := COUNT -1.

If the 1-critical section algorithm has the prop-

erty that processes return to their remainder

regions in the same order as they entered their

critical regions, then the l-resource algorithm

satisfies fairness conditions corresponding to

those of the 1-critical section solution.

A trivial generalization of a binary semaphore

yields a system exhibiting l-exclusion and no 1-

deadlock. Assume a shared variable COUNT which at

any time contains the correct count of the number

of processes currently in their critical sections.

A process wanting to enter its critical region per-

forms a test-and-set instruction on COUNT which,

in one indivisible step, reads the value of COUNT,

increments it if it was less than 1, and stores

the result back into COUNT. The process then pro-

ceeds to its critical section if it saw the count

less than 1, and it loops back and repeats the

test otherwise (busy-waiting). A process leaving

its critical section simply decrements COUNT.

The bank algorithm has a rather subtle defect

which becomes apparent when several tellers become

simultaneously free. If k > 2 tellers are free,

one would like the first k people in line to all

move "simultaneously" to a teller, yet the algo-

rithm requires them to file past the head of the

queue one at a time. If the person at the front

of the line is slow, the k-l people behind him are

forced to wait unnecessarily. In fact, if the

person at the front of the line "fails", then the

people behind him wait forever and the system

stops functioning. In this case, one failure can

tie up all of the system's resources~

This algorithm imposes no fairness criteria

on the order in which processes enter their crit-

ical sections, and in fact it is possible that an

individual process will always find the critical

section "full" (i.e. COUNT = l) whenever it happens

to examine COUNT and therefore be "locked out" of

its critical section. We are thus led to generalize our deadlocking

definition to include controlling the degradation

of performance in the event 4hat a limited number

of processes fail during the execution of their

protocols.

Our notion of "failure" is quite different

from the "shutdown" considered in [RP] and [PF].

We say a process ~ if it simply ceases to

execute steps of its program when it is not in its

remainder region. However, unlike a process which

shuts down, a sleeping process does not announce

to the world that it is sleeping. If it is not

really sleeping, but merely delaying its next step,

it will later resume execution as if nothing had

happened. Thus, there is no way for other pro-

cesses to detect that a given process has gone to

sleep; indeed, no finite portion of a computation

suffices to determine whether a process is sleep-

ing or just running very slowly. The distinction

can only be made in terms of the asymptotic or

infinite behavior of the system --an active

process eventually takes another step, whereas a

sleeping process does not.

Rather than devise new algorithms for the

l-resource problem with stronger fairness condi-

tions, an obvious approach is to try to reduce the

l-resource problem to a l-resource problem and

then apply known solutions to the latter problem.

A solution of this kind is commonly used in banks

for scheduling people waiting for a teller. People

entering the bank line up in a single queue. When

one or more tellers become available, the person

at the head of the queue goes to any free teller.

To see the reduction that is illustrated by this

simple example, think of arrival at the head of

the queue as a "resource!'. Only one person has

this resource at a time, and the queue itself

serves to allocate that resource in first-in first-

out (FIFO) order. Only the person holding the

head-of-queue resource is permitted to go to a

teller, so the order of service bya teller is

1 i kewi se FIFO. Our first observati on ,. used for

Theorem 4.1, is that such a reduction is gener-

ally possible, and the number of values of shared

memory increases only bya factor of (l+l) over

the requirement of the l-critical section solution

used. We use the previously-described semaphore

solution but we protect access to the busy-wait

loop with a l-critical section algorithm of our

choosing. Entry to the critical section then be-

comes a two-stage process. First, a process gains

exclusive access to the semaphore, COUNT, byexe-

cuting the l-critical section algorithm. Then it

waits for COUNT to become less than l, whereupon
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cal region can take place only bya positive action

of the given process.

The main results of the paper are three robust

algorithms (Theorems 4.2, 4.3, and 4.4) for !;olving

the I..-critical section problem for N processes,

and two lower bound results (Theorems 5,2 and 5,3).

The first algorithm (Theorem 4.2) has unlimi1:ed

robustness, enables processes in FIFO order, and

uses O(N2) values of shared memory, assuming I.. is

fixed. The algorithm "simulates" the behavior

that would be achieved by allowing the entirE!

queue of waiting processes to reside in the !ihared

variable. However, keeping the queue would r'equire

a number of values exponential in N; our algorithm

achieves the same effect with a "distributed im-

plementation" of the queue, which reduces grE'atly

the shared memory requirements. The algorithm

satisfies very strong independence condition5;, and

we give an S"I(N2) lower bound (Theorem 5.2) orl the

size of shared memory for any algorithm sati5;fying

such conditions.

Our interest in this kind of failure stems

partly from the practical problem of building

fault-tolerant distributed systems and partly from

the desire to understand the dependencies among

processes competing for entry to their critical

sections. Each instance where one process must

wait for another indicates a lack of concurrency

in the whole solution which, taken together, tend

to cause the whole system to run at the speed of

the slowest process. Algorithms which continue to

operate correctly even when a limited number of

processes sleep cannot exhibit such simple depen-

dencies. For example, if process A waits for pro-

cess B to take some action and process B sleeps,

then process A will wait forever and make no fur-

ther progress toward its goal. Assuming that

correct operation implies absence of lockout, then

B's sleeping has caused the system to fail by lock-

ing out A. Insisting that algorithms be robust in

the face of a limited amount of sleeping gives us

a formal way of studying degrees of concurrency

which in turn have some implications on the over-

all running time of the system.

Intuitively, an algorithm is "k-robust" if it

is immune to failure (sleeping) of fewer than k

processes in their entry or exit regions. By this,

we mean that if a total of fewer than k processes

go to sleep in either region, the system continues

to operate properly --other processes wanting to

enter their critical sections eventually get to do

so, and the algorithm continues to exhibit the

same fairness conditions that it did previously.

The second algorithm (Theorem 4.3) achie!ves

bounded waiting, is k-robust, and uses only O(N)

values of shared memory, assuming k and .t are!

fixed. Important ideas used in its implementation

are that of a virtual process which always runs

and serves as a scheduler, and a distributed re-

dundantly-stored data base to hold essential

scheduling information. We show how to implement

these two concepts within our model. We also

prove (Theorem 5.3) a corresponding Q(N) lower

bound.

The third algorithm (Theorem 4.4) uses ideas

similar to those of the second to achieve FIFO

order of enabling, k-robustness, and O(N(log N)c)

values of shared memory, where c depends only on k

and l, which are again assumed fixed. Theorems

4.3 and 4.4 are first steps toward the

development of uniform methods for introducing

robustness into non-robust synchronization algo-

rithms, while keeping shared data requirements

reasonably low.

Two other results appear in the paper.

Theorem 4.1 describes bounds achievable for the

l-critical section problem using the "bank teller'

idea described above, in conjunction with various

known l-critical section algorithms. Theorem 5.1

describes a corresponding lower bound.

At first sight, the concepts of robustness

and fairness, say FIFO ordering, appear to be con-

tradictory. Robustness says that if one process

sleeps in its trying region, the system must con-

tinue to function, so other processes which later

enter their trying regions will enter their crit-

ical regions ahead of the sleeper. That, however,

violates usual definitions of FIFO ordering (such

as (C5) in Section 3). One might simply exempt

sleeping processes from fairness constraints, but

the resulting conditions are impossible to imple-

ment because of the fact that sleeping cannot be

detected by the system after any finite length of

time. The problem is circumvented by defining

the fairness conditions not in terms of the order

in which processes ~ their critical regions

but rather by the order in which they become

enabled to enter their critical regions. By

"enabled", we mean that a process no longer needs

to wait for action by any other process before it

can go into its critical section, nor can the

actions of other processes prevent it from enter-

ing its critical region. Intuitively, when a pro-

cess becomes enabled, a copy of the resource is

reserved for it, and actions of other processes

are no longer needed in order for the give~ pro-

cess to complete its entry protocol. The key dis-

tinction between enabling and actual entry to the

critical region, which our algorithms exploit, is

that a process might become enabled passively as

a result of some other process changing the value

of the shared memory. whereas entry to the criti-

2. A Formal Model for Systems of Processes

A process is a triple P = (V.X.o) where V is a

set of values. X is a (not necessarily finite) set

of states partitioned into disjoint subsets R. T.

C and E. where R is nonempty. and the transition

function O is a total function. O : V x X + V~X

with the following properties:

(a) x £ R. v £ V imply o(v.x) £ V x (T u C),

(b) x £ T. v £ V imply o(v.x) £ V x (T u C).

(c) x £ C. v £ V imply o(v.x) £ V x (E u R).

(d) x £ E. v £ V imply o(v.x) £ V x (E u R).
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remainder-ablp) at r{q,h). In either case, P. is
1

enabled at q. Let CEn. {resp. REn.) denote
1 1

{q : P. is critical:enabled {re~remainder-
1

enabled) at q}.

The set V is referred to as the shared varia-

ble, X is the set of local states of prccess-P:--R,

T-;-c and E are the remaTnde~, trying region,

critical region, and exit r~gion of P, respective-

ly. A transition from-TV,x) to o(v,x) is a ~ of

process P.

Thus, processes are deterministic. Condi-

tions (a) and (c) say that a process can leave its

remainder region or critical region at any time on

its own, but (b) and (d) indicate that the same

is not necessarily the case for the trying and

exit regions. We "abstract away" all program steps

executed bya process while in its remainder and

critical regions, treating only the protocols ex-

plicitly.

Thus, the enabled i.d.'s are those in which a

process is not required to execute any protocol in

order to proceed to its critical or remainder

region. Unlike R., T., C. and E., a process i can
1 , 1 1

be caused to enter CEn. or REn. by steps of other
1 1

processes. Thus, CEn. and REn. can be thought of
1 1

as describing "passive" belonging to the critical

and remainder regions respectively. Note that a

process can reach the critical or remainder region

without becoming enabled.

We write Ilgl for {i: q � Ti}' and use

similar notation for other sets of i.d.'s.

Process Pi ~ in schedule h if i appears

only finitely often in h. If Pi halts in h and q

is an i.d., we define final(i,q,h) to be the in-

ternal state of process i when it halts. Formally,
final(i,q,h) = y if there exists an i.d. q' =

(V'Yl'...'YN)' schedules hl' h2 with hl finite

and h = hlh2 such that h2 contains no occurrence

of i, r(q,hl) = q' and Yi = y. Process Pi sleeps

in h from q provided i halts in h and final(i,q,h)

t Ri. Pi ~ in h from q provided i halts in h

and final(i,q,h) E To u Eo. Fail(q,h) =

1 1
{i; Pi.fails in h from q}. If k E IN, then h is

k-admissible from q provided IFail(q,h)1 < k.

For N e: 1N , (N] denotes {l,...,N}. For N e: IN ,

a system of N processes is a 2N + 1- tuple S =

(V~{"..,XN'cS1'...'cSN) where for each i e: [N],

p, = (V,X,,0 l.) is a process. The remainder, trying,
1 1

critical and exit regions of process Pi are denoted

by Ri' Ti' Gi' and Ei' respectively. A system of

N processes in which Ei = ~ for all i e: [N] has

null exit regions.

An instanta~eous descriptjon (i.d.) of S is an

N + 1- tuple q = {v'Xl'."'xN)' where v e: Vand

x. e: X. for all i. The functions CS, of the indi-
1 1 1

vidual processes have natural extensions to the set
of i.d.'s of S, defined by cSi(V'x1'...'XN) =

(V"Xl'.'.'Xi-l'X"Xi+1'.."XN)' where °i(v,xi) =

(v' ,x'). We also use (ambiguously) the notation

R" T., G" and E, for the natural extensions of
1 1 1 1

the denoted sets of states to corresponding sets of

i.d.'s, For example, (V'Xl'.."XN) e: Ri if and

only if x. e: R"
1 1

3. Propert;e~ of Systems

In th;s section, S denotes a system of N pro

cesses, q an i.d. and k, l natural numbers. We

consider the follow;ng conditions.

(Cl) .f.-Exclusion

q violates .f.-exclusion if IC(q)[ > .f..

S satisfies .f.-exclusion from q If no i.d.

reachable from q in S violate~-?-::exclusion.

We next define "(k, .f.)-deadlock", a central

concept for this paper. Intuitively, as long as

fewer than k processes fail (in their trying or

exit regions), the system should continue to

"accomplish something." Tasks to be accomplished

are permitting processes to leave their trying re-

gions for their critical regions (as long as there

is room available), and permitting processes to

leave their exit regions for their remainder re-

gions. (Our definition treats the two protocols

symmetrically; this amounts to thinking of the

remainder region as a second critical region, but

with a trivial bound of N on the number of pro-

cesses which can coexist there.) The possibility

of failure necessitates careful formulation of

these tasks. The system might "allocate" a slot

If $ is a system of N processes, then any

finite or infinite sequence of elements of [N] will

be called a schedule for $. In a natural way, each

schedule defines a "computation" of system $, when

applied to any i.d. q of $. Namely, if

h = hl'...'hk is a finite schedule for $" then

r{q,h) = oh {oh {...oh {q)...» is the result of

k k- 1 1

applying schedule h to i.d. q. I.d. qO is reach-

able from q via schedule h provided r{q,hO)-;-qr

~some prefTX ho of h. I.d. q' is reachable

from q provided q' is reachable from q via some

finite schedule h. Let q ~ p mean p = r{q,h).

p. is critical-able {resp. remainder-able) at
1

.q if r{q,i) E C. {resp. R.); in either case, P. is
1 1 1

able at q. P. is critical-enabled {resp. remainder-
-1

enabled) at q provided for all finite schedules h

not containing i, P. is critical-able tresp.
,
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We next define three increasingly strong fair-

ness properties. For each property, there are two

versions, one useful for the more usually consider-

ed case where no failure occurs, and the other,

weaker version (defined in terms of "enabling")

useful for our new setting.

in the critical region to a process which subse-

quently fails before actually advancing to its

critical region. Technically. there are still un-

occupied slots in the critical region. but the

system can do no more to cause them to become occu-

pied. Thus. rather than regard the critical region

as full when all slots are actually occupied. we

will instead regard it as full when all slots are

either occupied or else allocated.

Thus, the definition of deadlock requires a

preliminary (abstract) definition of allocation.

The simplest such definition would allocate slots

to all sleepers in their trying regions. (We

nee-a-only consider allocation of slots to sleepers,

since all other processes will actually advance to

occupy their slots.) However, our algorithms have

a stronger property: slots actually become allo-

cated to groups of processes in the sense that

members of those groups can take possession of

their slots simply by executing one step:

Finite schedule h is a cycli~9schedu]e for

Pi from q if i £ R(q} and i £ C(q'} where

q' = r(q,h}. Pi cycles n times during h from q

provided h can be written as kOhlklh2...kn-lhnkn

where each hj' 1 ~ j ~ n, is a cycling schedule for

Pi from r(q, kOhl...kj-l}. Similarly, Pi cycles

~ ~ during h from q provided h = kOhlklh2. ..

and each h., 1 < j, is a cycling schedule for P.
J -,

..kj-l/.

Finite schedule h is an e~aelin~schedule for

Pi from q if i t CEn(q) u REn(q) and

i ~ CEn(q') u REn(q'), where q' = r(q,h). P.

1

becomes enabled in h from q provided h = hlh2h3'

with h2 an enabling schedule for Pi from r(q,\).

Pi makes progress in h from q provided Pi either

changes regions or becomes enabled in h from q.

Pi b-waits (resp. b-waits for enabling) for

Pj in h from q, where b ~ ~ u {~} provided

i t T(q) u E(q) (resp. i ~ (T(q) -CEn(q)) u

(E(q) -REn(q))), P. does not change regions (resp
1

make progress) in any proper prefix of h from q,

and Pj cycles b times during h from q. (We ex-

plain our consideration of proper prefixes only,

after the definition of FIFO enabling (C5').)

from r{q, kOhl.

Let G ~ T(q) (resp. E(q». G is C-group-

enabled (resp. R;~ro~e ~n~~l~d) at q provided for

all schedules h In whlch each i £ G appears at

least once, at least IGI distinct processes go di-

rectly from trying region to critical region (resp.

from exit region to remainder region) in h applied

from q. (Thus, we permit a process not in G to pre-

vent one in G from entering its critical region by

entering in its place, but that is all the damage

such a process can do.) C-allocation(q) (resp.
R-allocation(q) = max {IGI : Gis c-group-enabled

Tfesp. R-group-enabled) at q}.

I
(C3) k-Finite Wai!in~ (resp. (C3') k-Finite

Waitinq for Enabling)

S satisfies k-finite waiting (resp. k-finite

~~i~~~q-~~~..e~~b1~~~) from q provided there

do not exist q reachable from q, k-admiss-

ible schedule h and processes Pi and Pj such

that P. oo-waits (resp. oo-waits for enabling)
1

for Pj in h from q'.

(C2) (k.f.)-Deadlock-Free

Schedule h exhibits (k.f.)-deadlock from q pro-

vided (a)-(d) hold.-

(a) h is infinite and k-admissible from q.

(b) No process changes regions in h applied

from q.

(c) C-allocation and R-allocation do not

change when h is applied from q.

(d) At least one of (dl) and (d2) holds.

(dl) IT(q)1 > C-allocation(q) and C-allo-
cation(q) + \C(q)\ < f..

(d2) IE(q)\ > ~allocation(q).

S i~:~k~~~~ge~~lg~~~f~~~ from q provided there

do not exist q reachable from q and schedule

h such that h exhibits (k.f.)-deadlock from q'.

In the literature (including [BFJLP], a

property called "no lockout" is usually formalized

instead of (C3). "No lockout" is generally ex-

pressed in terms of each process making eventual

progress. This requirement really includes two

different conditions -a condition which states

that the system as a whole continues to make prog-

ress, and a condition which states that no process

is indefinitely discriminated against in favor of

other processes. Here, these two conditions are

treated separately, as (C2) and either (C3) or

(C3' ) .

Condition (d) above states that a situation in

which no progress is occurring is considered to be

"deadlock" when there remain unallocated slots in

the critical region as well as processes in the

trying region to which no slot is allocated. Also,

we consider such a situation to be "deadlock" when

there are processes in the exit region to which no

"slot" in the remainder region is allocated. The

case where k=l corresponds to no failure and

thus formalizes the intuitive notion of l-deadlock

alluded to in the Introduction.
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(C6) l-Queuelike

S is l-Queuelike from Q provided S satisfies

l-exclusion from Q, has null exit regions, is

l-full from Q and is FIFO enabling.

Note that (C6) implies (Cl), (C2), (C3'),

(C4'), and (C5'). In particular, (C6) for a par-

ticular l implies (C2) for the same l and

arbitrary k.

4. Upper Bound Results

It is straightforward to formalize in our

model the construction, described in the Intro-

duction, of an l-exclusion algorithm frpm a 1-

exclusion algorithm. Roughly, for $ any system of

nN processes, q E iE[N]Ri' l E ~ , let ~ be the new

system of N processes constructed by the trans-

formation in Section 1. Clearly, $' has null exit

regions. The variable of $' is the same as that of

$, augmented with COUNT. ~, the starting i.d. of

$' , is the same as q with COUNT(q') initialized at

0. A total mapping T is defined from reachable

i.d.'s of SI to those of $ and another

mapping 0" is defined from "computations" of $' to

those of $. (Given i.d. q1 of $' and schedule h,

schedule cr(q1'h) is obtained by deleting from h

(1) all occurrences of process numbers correspond-

ing to $' transitions which are busy-waiting for

COUNT to become less than l, and (2) all occurr-

ences of process numbers corresponding to moving

from critical to remainder region in $'). These

mappings are used to prove the next lemma.

(C4) Bounded Waiting (resp. (C4') Bounded Wait-

...ing for Enabling)

S satisfies b-bounded-waiting (resp.

b-bounded-waitina for enabTinl ) from q

b � ~ , provided there do not exist q'

reachable from q, schedule h and process i

and j such that P. b+l-waits (r~sp.; b+1:-

waits enabling) fOr P. in h from q'.
J

S satisfies bounded ~aiting (resp. bounded

waiting for enabling) from q if S satisfies

~ounded waiting {resp. b-bounded waiting

for enabling) from q for some values of

b e; ~.

(C5) FIFO (resp. (C5') FIFO Enabling)

S is f!fQ (resp. FIFO enabling) from q if S

satisfies O-bounded waiting {resp. O-bounded-

waiting for enabling) from q.

The definition of FIFO enabling as a-bounded

waiting for enabling explains our use of proper

prefixes only in definin~ b-bounded waiting for

enabling. Namely, violatlon of our intuitive

notion of FIFO enabling occurs if a process Pi re-

mains in its trying region and does not become

enabled, while another process P. enters its trying
J

region and progresses to a point where it becomes

enabled. This computation, followed bya single

step of P., causes P. to go to its critical region.
J J

The resulting augmented s~hedule violates our

formal definition of FIFO enabling. However, no

such violation would occur if we considered all

prefixes in our definition, since P. could become
1

enabled by the last step of P..
-J

(Note the slight difference in style between

definition (C3) and definitions (C4) and (C5). k-

admissibility is not required for (C4) or (C5)

because violations of bounded waiting conditions

always occur in a finite schedule.)

A system S is said to be order preserving from

q provided the order of entry to the critical

region is the same as the order of return to the

remainder region.

Lemma 4.1. Let S be any system of N processes.

~Ri' le:IN,be:INu{O}. AssumeS is

(1,1)-dead1ock-free and order preserving from q.
Then S' satisfies l-exc1usion (C1) and is (l,l)-

deadlock-free from q' (C2). Furthermore, (a) and
(b) hold.

(a) If S satisfies I-finite waiting (C3) from q,

then S' satisfies I-finite waiting from q'.

If S satisfies b-bounded waiting ((C4) or (C5»)

from q, then S' satisfies b-bounded waiting

from q'.

Finally. one might imagine an algorithm which

stores the entire queue of waiting and critical

processes in the shared variable. A process in any

of the first l positions of the queue is per-

mitted to enter the critical region. Such

an algorithm requires no nontrivial communication

among processes. and in fact. each process need

only make changes in the system i.d. at the moments

of its entry to the trying region

and remainder region. (No exit region is required.'

Such an algorithm satisfies (Cl). (C2) and (C5').

but it requires too much space in the shared vari-

able. However. some algorithms of interest have

the property that they "simulate" the above algo-

rithm without keeping the entire queue in the

variable. This idea is captured in the final prop-

erty (C6).

(b)

s is i-full from q provided for all q' reach-

able from ~is the case that ICEn(q')1 =

min(i-IC(q')I, IT(q')I).

Theorem 4.1. Let i, N E rn .For each of the

following, there exist S a system of N processes

and q an i.d. such that S has null exit regions,
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satisfies l-exclusion (Cl) and is (l,l)-deadlock-

free (C2) from q, and such that the following

holi:l':

(a) S satisfies I-finite waiting (C3) from q, and

I vi .::: (l+1)(l~J+9).

(b) S satisfies I-bounded waiting (C4) from q, and

I vi.::: (l+1)(N+3).

(c) S is FIFO (C5) from q, and I vi .::: (l+1)(N+7).

those of the shared variable of the given s,ystem

of programs. The transition function °i is

defined as follows. Consider the case where x

describes a configuration of program i and v is a

value of the shared variable such that x and v are

simultaneously reachable via executions of the

given system, and also program i started in con-

figuration x reaches a LOCK statement. Then
define o.(v,x) = (w,y), where wand yare the

1

value of the shared variable and the configuration

of program i respectively, which result when

progr~m i is run from configuration x, using v for

the value of the shared variable, just until it

executes an UNLOCK statement. (We know that such

an UNLOCK statement is reached because of the

given restrictions.) If x and v are not simultan-

eously reachable then define °i(v,x) arbitrarily.

If program i started in configuration x never
reaches a LOCK statement, define °i(v,x) = (v,x).

In this translation, quite complex LOCK-

UNLOCK computation might be translated into a

single test-and-set. Such computation might

include apparent changes to the shared variable,

followed by tests and computation involving the

new value, followed in turn by further changes to

the shared variable. Furthermore, the shared

variable might be organized as several component

variables and computation might be expressed in

terms of these components. The apparent earlier

changes to the shared variable are overwritten

before the variable is released for use by other

processes.

Proof. By Lemma 4.1 , together with the systems

described in [BFJLP,CH2]. Those systems have

starting i.d.'s q in QE[N] Ri' are (l,l)-deadlock-

free and order-preserving from q and have appro-

priate fairness properties and space bounds. ((c)

uses an improvement of the result of [CH2].)

0

The remaining algorithms will be presented in

an Algol-like, Pascal-like language similar to

that in [CH2]. Added to the usual sequential pro-

gramming constructs are two synchronization

statements, LOCK and UNLOCK; LOCK locks the shared

variable for the private use of the program

executing the statement, while UNLOCK releases it.

We consider a general translation of systems of

LOCK-UNLOCK programs into our basic model, where

each program i gets translated into a process Pi.

All computation of a program occurring after a

LOCK and before the next UNLOCK is intended to be

included within a single test-and-set in the

translated system. For translation of a system

of programs to be possible, the executions of the

system must satisfy certain conditions.

One cannot effectively determine, in general,

whether a given LOCK-UNLOCK program satisfies the

restrictions needed for translation. Moreover,

even if it is known that the restrictions are

satisfied, finding a translation is not effective,

in general. However, for the algorithms in this

paper, it is not difficult to see that the re-

strictions are satisfied and to find a transla-

tion.

Next, we present our O(N2) queuelike algo-

rithm.

Theorem 4.2. Let i. N E ~ .There exist S a

system of N processes and q an i.d. such that S

is i-queuelike (C6) from q and I vi is O(N2).

(The constant of proportionality is (2l-1)(1+1)2.

If i ~ N, a trivial algorithm suffices

Thus in what follows we can assume N > i.

.P.!:.Q.Qf

First, LOCK and UNLOCK statements are "dy-

namically paired" : the first (if any) synchroni-

zation statement executed as well as the next

(if any) synchronization statement following an

UNLOCK, is a LOCK, and for each LOCK executed,

say of program i, there is a next synchronization

statement executed, and it is an UNLOCK (of

program i). Furthermore, all computation involv-

ing the shared variable must be included within

such LOCK-UNLOCK pairs. A program i's local

computation will not be constrained. (Where it

occurs outside of LOCK-UNLOCK pairs, the

translation will incorporate its result into the

next (if any) test-and-set of process p.. If

program i loops forever without executi~g another

LOCK statement, it is treated as if it had

stopped performing computation immediately after

its previous UNLOCK statement.)

With these restrictions, translation proceeds

as follows. Assume a system of N processes is

given, together with their initializations, and

consider program i. The states of process Po are
1

identified with finite vectors consistin9 of an

UNLOCK statement (or the START statement) of

program i, together with values of all the local

variables of program i. The values of V are just

We imagine (l+l)N reusable tickets to the

critical region, with N tickets (numbered 1 to N)

of each of t+l colors (numbered a to t). A ticket

is issued to each process as it enters the system,

which it relinquishes upon leaving the system.

No two processes are ever simultaneously in

possession of the same ticket. From time to time,

a ticket becomes validated. If a process holds a

valid ticket, it can enter its critical region.

At any time, exactly t tickets are valid;
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whenever there are fewer than l processes in the

system. some of the valid tickets will not

currently be issued.

(Initially, (!,0) appears.)

(c) Quant(i). O < i < !, the quantity of each

color representeQ by the! val id tickets~

(Initially, Quant(O) = t and all others

are 0.)
We preserve FIFO enabling (C5' ); thus we

validate tickets in the same order as they are

issued. Tickets are issued, starting with ticket

1 of color 0, in numerical order within a color.

After ticket N of a color has been issued, distri-

bution resumes with a different-colored ticket

numbered 1. Initially, tickets number~ 1 to I

of color ° are valid.

The bound on variable size holds because the

information in (c) represents only (2f-1)

distinct possibilities.

Considerable information can be determined

from the value of the variable only. In particu-

lar, the variable suffices to determine newcolor,a

color different from those of all the valid and

issued tickets. It determines whether Issue leads

Valid, or vice versa, or whether they coincide.

(The hypothesis N > l is used here.) If Issue

leads Valid, then the values of these two pointers

together suffice to determine all the intervening

tickets, since N > l. Thus, because of the con-

secutivity properties previously discussed, the

variable suffices to determine the set of invalid

issued tickets. These capabilities are used in

the program below. (All processes are identical.)

We imagine two pointers, Issue for the most

recently issued and Valid for thelmost recently

validated ticket respecrrvely, traversing tickets

in the same order. Either pointer may lead the

other. When there are fewer than i processes in

the system, Valid leads Issue, having already

validated the next ticket(s) to be issued. When

there are more than i processes, Issue leads

Valid, indicating that there are processes in the

trying region waiting to be allowed to enter their

critical regions. When there are exactly i pro-'

cesses, the two pointers coincide, indicating

that the i active processes hold the i valid

tickets. Valid can lead Issue by at most i, while

Issue can lead Valid by at most N-i.

Although FIFO enabling holds, some processes

may get "skipped over" for actual order of entry

to their critical regions (if they sleep or go

slowly, for example). Thus, valid tickets may

become widely separated. However, at any time

when there are processes with invalid tickets, it

is the case that the most recently validated

ticket and all invalid issued tickets are consecu-

tive in the following sense. Starting with the

vaTld ticket, they have consecutive numbers and

are all of the same color until ticket number N

is reached; if this occurs. then the sequence re-

sumes with number 1 of the color of Issue, and

continues with consecutive numbers of that color.

(Symmetrically, if there are valid tickets which

are not currently issued, then the last issued

ticket and all the non-issued valid tickets are

consecutive.)

In order to insure that two processes never

simultaneously hold the same ticket, the algorithm

follows the policy that no ticket with number 1

ever gets issued or validated bya leadlng pointer

if there is a ticket of the same color already

issued or validated. The fact that it is still

always possible to select a new color when needed

is a consequence of the first consecutivity con-

dition of the previous paragraph.

Process i Local variable: Ticket

Trying Protocol

START;

LOCK;

/*Take the next ticket.*/

IF Issue.Number t N

THEN Ticket := (Issue.Number+l,Issue.Color)

ELSEIF Valid leads Issue

THEN Ticket := (l,Valid.Color)

ELSE Ticket := (l,Newcolor);

/*Update the shared variable.*/

Issue := Ticket;

UNLOCK;

/*Wait until your ticket is valid.*/

W: LOCK;

IF your ticket is invalid ,

THEN [UNLOCK; GOTO W]

ELSE UNLOCK;

Exit Protocol

LOCK;

/*Validate a new ticket.*/

IF Valid.Number t N

THEN Valid := (Valid.Number+l,Valid.Color)

ELSEIF Issue leads Valid

THEN Valid := (l,Issue.Color)

ELSE Valid := (l,Newcolor);

/*Update quantity information.*/

Quant(Valid.Color) := Quant(Valid.Color)+l;

Quant(Ticket.Color) := Quant(Ticket.Color)-l

UNLOCK;

The variable must contain enough information

to indicate to each entering process what ticket

it has been issued, and to indicate to each pro-

cess whether its ticket is valid. Our variable

contains the following.

(a) Issue, (the number and color of) the ticket
-.
most recently lssued.

(Initially, (N,l) appears.)

(b) ~, the ticket most recently validated.
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putation by the original system in which the super-

visor takes at most one step between every pair of

worker steps. Assuming infinitely many supervisor

steps get simulated, this will be a valid compu-

tation of ~e original system.

Systems with a Supervisor

Up until now, we have been considering only

systems of processes in which all processes are

treated uniformly --every process has a critical

region and a protocol, every process is permitted

to halt in its remainder region, etc. Adding

another process to such a system can make imple-

menting a synchronization algorithm far easier,

for the new "supervisor" process can keep track

of all the necessary scheduling information, assum-

i rig of course tha t the supervi sor never fa i 1 s .

The most obvious place to store the current

supervisor state is in shared memory. Then every

worker process can simulate one step of the super-

visor each time it,performs a test-and-set. The

only diffi~lty is that the size of shared memory

increases too much if the supervisor has many

states.

An alternate strategy is to have a worker

process Pi keep the supervisor state in its in-

ternal memory and to simulate a supervisor step

each time it runs. This has two difficulties.

First, P. might fail, in which case the supervisor
1

would stop. Second, P. mi g ht halt in its remainder
1

or critical region, again stopping the supervisor.

Both of these problems are circumvp~ted by

storing the supervisor state redundantly in

several workers executing their protocols. When~

ever any of them runs, it updates the supervisor

state and sends the new state to the other pro-

cesses. When it wants to enter its critical or

remainder region, it sends its state to some other

active process. This strategy works as long as

there are always enough active processes, for at

most k-l can fail simultaneously.

Our method is to combine these two strategies.

The first is used whenever the number of active

processes falls below a certain threshold Cl.

Otherwise, the current supervisor state is stored

redundantly in the internal memories of k dis-

tinct workers in their trying regions. Byassump-

tion, not all of them can fail. The supervisors

we simulate have the property that the number of

reachable supervisor states is small when there

are few active processes, so storing the state

then in shared memory does not increase execssive-

ly the number of shared values.

Our interest in systems with a supervisor

stems from the fact that under certain conditions

the supervisor can be eliminated to yield an ord-

inary N-process system of the kind studied in this

paper while preserving desired properties. We use

the strategy of first constructing a system with a

supervisor and then eliminating the supervisor to

obtain two l-exclusion algorithms: an O(N) space

method with bounded waiting for enabling, and an

O(N(log N)c) space method with FIFO enabling.

To make these notions more precise, we define

a system of N worker processes and a supervisQr

to be a (2N+3)-tuple

S = (V,xl,...,XN+I'OI'.. .'ON+I)

where P. = (V,X.,o.) is a process, I < i < N+I.
1 1 1 --

PI'. ..,PN are the worker processes and PN+I is the

supervisor. S can be regarded as an ordinary sys-

tern of N+I processes except that only the worker

processes have regions. All of the notions of

schedule, halting, instantaneous description, etc.

which do not concern the regions apply unchanged

to S, and the definitions of critical-enabled

and remainder-enabled apply to PI'...'PN. The

significant change comes in the definition of k-

admissible schedule, for we now restrict it to be

one in which fewer than k worker processes fail

and the supervisor does not halt unless all the

workers halt. Properties (Cl)-(C6) and (C3')-(CS')

extend directly to PI'...'PN using this new notion

of k-admissibility.

We now describe, for the case where the

supervisor state is stored redundantly, how the

redundant copies of the current supervisor state

are managed and updated. Assume initially that k

distinct processes each have a copy of the current

supervisor state stored in its internal memory.

Any of them has the information necessary to sim-

ulate a step of the supervisor and does so on its

next step, modifying the simulated shared memory

accordingly (which is stored as a component of

the real shared variable}. It must now inform

k-l other processes of the new state, or k other

processes if it itself is about to enter its crit-

ical region.

~rvisor Elimination

In this section, we show how, under certain

conditions, to replace a system of N worker pro-

cesses and a supervisor by an ordinary N-process

system. The new system preserves all of our

properties, (in particular, (Cl), (C2), (C4'), and
(C5')), and the space requirement increases by

at most a constant factor (for fixed k and l).

We eliminate the supervisor by having the

worker processes simulate it. No individual

worker can have sole responsibility for carrying

out the simulation, since anyone process might

fail or sleep. Rather, any worker with access to

the current supervisor state might simulate the

next step of the supervisor by updating the super-

visor state and shared variable accordingly. Thus,

an execution of the new system simulates a com-

There are two ways another process can obtain

the new state. First, a process having the prev-

ious supervisor state can update its copy knowing

only enough about the new state to distinguish it

from the other possible new states which could be

reached in one step of the supervisor on other
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i.d.'s q, q' and workers Pi' Pj for which G' =

o.{q), i E Q{q), and i E D{q').
J

{R2) A worker can tell, knowing only its internal

state and the shared variable, which eligi-

bility class it is in, i.e. there exists a

function elig. : V x X. + {'H' , 'Q', 'D'}
1 1

such that for ~ny reachable i.d.
q = {V'Xl'...'XN)' i E H{q) {resp. Q{q),

D{q)) iff elig;{v,x;) = 'H' {resp. 'Q', 'D')

(R3) H(q) u Q(q) ~ T(q).

(R4) If i is critical-able at q, then i £ D(q),
I

(R5) The supervisor can tell, knowing only its

internal state and the value of the shared

variable, the cardinality of T(q), i.e.

there exists a function active; V x xN+lr[N]

such that for any reachable i.d,
q = (v,xl'. ..,xN+l)' IT(q)1 = active(v,xN+l)

(R6) If IT(q)1 > cl then IH(q)1 ~ 2k-l. This in-

sures that sufficiently many helpers are

available when many processes are in their

trying protocols,

(R7) For each v £ V, I{x £ XN+l ; active(v.x) ~

cl}1 ~ c2' c2 bounds the amount of

memory needed to store the supervisor state.

when it is kept in shared memory.

values of the shared variable. This distinguish-

ing information is placed in shared memory by the

process which simulated the supervisor step. The

old value of the shared variable suffices to

determine the new supervisor state from the old,

but if {ON+l(V'X) : v E V} is much smaller than \',

significantly less information suffices, thereby

saving on memory.

A process not holding either the current or

previous supervisor state gets the current state

by receiving a "message" from some stateholder

containing the complete state. The state is en-

coded in binary and sent one bit at a time. The

sender and receiver use a simple protocol for the

orderly transmission of this information. Since

either sender or receiver might fail, a given

transmission is not guaranteed to terminate

successfully. By having k senders and 2k-l poten-

tial receivers, with each sender transmitting to

each receiver over k.(2k-l) independent "channels",

we are guaranteed that at lease k receivers event-

ually get the updated state, for at least one

sender and k receivers do not fail.

With this motivation, we list the conditions

on a system with a supervisor that permit the sim-

ulation to be carried out.
Let S = (V'X1'... ,XN+l'Ol'...'ON+l) be a system of

N workers and a supervisor. As usual,
Po = (V,X.,o.) is a process, 1 < i < N+l.

1 1 1 --

Pl'...'PN are the workers and PN+l is the super-

visor. Let qo be the initial i.d., and say q is

reachable if it is reachable from qO.

(R8) For each,x £ XN+l.l{oN+l(V.X} : v £ V}I ~ c3

For each reachable i.d. q, assume a partition

of {l,...,N} into three sets H(q), Q(q), and D(q).

H(q), the helpers, are those processes which are

eligible to help with the task of storing and up-

dating the supervisor state, Q(q), the quitters,

are processes becoming ineligible to help, and

D(q), the drones are the other processes. A sys-

tem S with initial i.d: qo is k-s~mulatab~e (with

coilstants Cl' c2' c3) 1 f there exl ~ts sucn a par-

tition satisfying the following conditions.

(Rl) The only eligibility changes that can occur

for a worker process are those described by

the following diagram:

~ SUP ~~ ~Q SUP.~ Sup

D

Let s be a system of N workers and a super-
visor as above. and let S' = (V'.X1' XN' .

°l' ON') be an ordinary system of N processes

Pl ' PN '. where each P.' = (V'.X.'.0.') is a
1 1 1

process with remainder. trying. critical. and exlt

regions Ri'. Ti'. Ci' .and Ei' .respectively.

Let qo' be the initial i.d. of S'. Let T be a

mapping from reachable i.d.'s of S' to i.d.'s of
S. anrl let a: (reachable i.d.'s of S') x [N] +

+
[N+l] .Each step of S' simulates one or more

steps of S; a tells which ones. We extend a to

arbitrary schedules in its second argument.
a(q',h') is then the schedule of S simulated by

S' when S' is started in i.d. q' and run accord-

ing to schedule h'.

Here, an arrow labelled by Sup denotes a

change in eligibility permitted bya single

step of the supervisor, and an arrow labelled

by W denotes a change permitted on a move of

a worker. For example, this condition would

be violated by the existence of reachable
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schedule such that T{q') = r{qo'h) in S. Since

T preserves regions, /C{T{q'»/ > l, so {Cl) fails

for S.

(i) cr(q',A) = A, the empty schedule;

(ii) cr(q',hj) = cr(q',h).cr(r(q',h),j) for h

finite;

(iii) a(q',h) = lim a(q',hO) for h infinite.

hO<h
("<" denotes finite prefix.) ,

SI k-simulates S if (Sl) -(S4) hold:

.(Sl) T preserves regions of PlI,...,PN', e.g

i E C'(q') iff i E C(T(q'». Also,
T(qO') = qO.

(52) The following diagram commutes:

T

Suppose (C2) does not hold for S'. Then there

exists a reachable state q' and an infinite k-

admissible schedule h' for which conditions (a)-

(d) in the definition of (C2) hold. Let
q = T(q') and h = a(q' ,h'). h is k-admissible from

q, so (a) holds from q. (b) holds from q since

T preserves regions. Since no process changes

regions when h is applied from q, the C-allocation

and R-allocation can only increase, and that can

happen only a finite number of times. Choose

hl" h2' so that h' = hl'.h2'. Let p' =

r(q',hl'), p = T(p'), hl = a(q',hl'), and

h2 = a(p',h2 '). hl' can be chosen to insure that

(c) holds for p and h2. (a) and (b) hold for p

and h2 since they held for q and h. We note that

if G is C- (R-) 9roup-enabled at T(p') in S, then

G is also C- (R-) group-enabled at p' in S', but

the converse does not necessarily hold. Thus,

C-allocation(p') > C-allocation(T(p')) and

R-allocation(p') > R-allocation(T(p')). Hence,

C'-allocation(q') ~ C-allocation(p') > C-alloca~

tion(p) and R-allocation(q') = R-allocation(p:) >

R-allocation(p), so (d) holds for p and h2. Hence,

schedule h2 exhibits (k,l.)-deadlock from p. Since

p is reachable, (C2) fails for S.

Suppose S' fails to have b-bounded waiting
(( C4 ' ) or ( CS ' ) ) .Then for some i, j , there i s a

reachable i.d. q' and a finite schedule h' such
that P. ' (b+l)-waits for enabling for P.' in h'

1 J

from q'. TI IUS, P.' cycles b+l times during h' from
J

q', and Pi' does not make progress in any proper

prefix of h' from q'. Choosing such an h' of mini-

mal length, we must have h: = g'j and j f; C'(r')

-C'(p'), where r' = r(q',h') and p' = r(q',g').

Let g = a(q',g') and define q, p, r accordfng to

the diagram:

Intuitively, the system 51 maintains a repre-

sentation of each i.d. of 5, given by the mapping

T. (51} and (52) ensure that the simulation is

faithful and that T preserves reachability. (53}

requires the simulation to be step by step with

respect to the worker processes and prevents the

supervisor from running too fast. (54') ensures

that infinitely many supervisor steps are simu-

lated as long as the system 5' remains active.

r'

T

a(o' -;)p a.r 'u, ~

Lemma 4.2. Let S be a system of N

workers and a supervisor and S' an ordinary N-

process system which k-simulates S. Let qo and

qo' be the initial i.d. 's of S and S', respective-

ly. Each of properties (Cl), (C2), (C4' ), and

(CS') holds for S' if it holds for S.

(Note: Actually, all of our properties are pre-

served, but it is only these four which we

require for the rest of our algorithms. )

Since P.' (b+l)-waits, i E T'(q' )-CEn' (q' )
1

or i £ E'(q')-REn'(q'), and P.' does not make
1

progress in any proper prefix of h' from q'.

Hence, i E T(q)-CEn(q) or i £ E(q)-REn(q), and

P. also does not make progress during g from q,
1

nor is P. enabled at p.
1

By (51), j E c(r)-c(p). If cr(p',j) = j, then

Pi (b+l)-waits for Pj in schedule gj from q.

Otherwise, cr(.p',j) = (j,N+l), so for some s,

Proof. For each property, we show that if it

-:rans for S', then it fails for S.

Suppose (Cl) does not hold for S'. Then
there is a reachable i.d. q' with IC'(q')1 > l.

Let h' be a finite schedule such that q' =

r(qo',h') in S'. Then h = a(qo',h') is a finite
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(S3)cr(q',j) E {j,(j, N+l )}for all reachable

i.d.'s q' in S' and j E [N].

Thus, each step of Pj' simulates a step of

Pj possibly followed by one step of the

supervisor, PN+l.



p j s N+l r

1 )

Then j E C(S), since P. cannot change regions on a
J

supervisor step. Again, gj is a schedule in which

P. (b+l)-waits for P. from q.
1 J

In either case, S fails to have b-bounded

waiting since q is reachable. Thus, each of (C4')

and (C5') fails for S' only if it fails for S.

0
If the holder of slot s has the current state,

it will attempt to send it to slot r using "channel"

ch(s,r), for each possible r, ch(5,r) is stored in

shared memory and can take on one of four values:

'READY' denotes that the channel is clear and ready

for the sender to transmit the next bit of its

message; '0' and '1' are the two message bits; and

'DONE' denotes a successful end of transmission.

The protocol used is described bya simple graph,

where s represents the sender, r the receiver, and

I the step initiator:

Lemma 4.3. Let S be a k-simulatable system with

constants Cl' c2' c3 of N workers and a supervisor

~Iith value set V. There exists an ordinary N-

process system S' with value set V' which k-simu-

lates S. Moreover, IV'I < d.!V!, where d is a

constant depending only on k, cl' c2' c3.

f!QQf. As usual, let S = (V,Xl'...'XN+l'

6 1 '...'6 N+l )' and let P. = (V,X.,6.), 1 < i < N+l.
1 1 1 --

We construct S' = (V',Xl',...,Xn',61',... ,6N' ),

Pi' = (V,Xi ',6i '), 1 ~ i ~ N, by exhibiting the

algorithm for an arbitrary process Pi'. As before,

the transition function is described in a Pascal-

like notation.

In the above intuitive outline of the algo-

rithm, we mentioned a mechanism for one process to

transmit a copy of the supervisor state to another.

In greater detail, we have 3k-l slots. Associated

wi th each s lot s i s a word of sh~ memory,

status(s), which can take on one of five values:

FREE, RECEIVE, CURRENT, PREVIOUS, and DEAD. A

slot mayor may not have a worker associated with

it. status(s) ; 'FREE' iff it has a worker, in

which case status(s) indicates the role the worker

is currently playing in the simulation. 'CURRENT'

means the worker has the current supervisor.state

stored in its internal memory. 'PREVIOUS' means

the supervisor state in the worker's internal

memory is one step out-of-date. 'RECEIVE' means

the worker does not have either a current or prev-

ious supervisor state but is trying to obtain a

current copy. 'DEAD' means the worker no longer

contains valid information and should release the

slot on its next step.

Other data in shared memory are the following

v -the simulated value of the

shared variable in s.

stateholders -the number of helpers curr-

ently holding the current

supervisor state

( 0 ~ statehol ders ~ k) .

step -an encoding of the most

recent supervisor step.

xs

The status word can be manipulated byeither

the slotholder or by the process which initiates

the simulation of a supervisor step. (We think of

a stage of simulation as consisting of a simulation

of a supervisor step followed by the transmission

of the new state to the helpers.)

loGcur

Letting I denote the step initiator and H the

slotholder. the possible value transitions on the

status word are given by the graph:

locprev

-the current supervisor state

in case active(q) ~ Cl; or

the previous state on a step

in which active(q) becomes

> cl.

-location of current super-

visor state: 'SHARE'means

in xs, 'DIST' means in cer-

tain helpers' internal mem-

ories.

-the previous value of loccur.

The total size of shared memory is some constant

times I vi. for all of the variables except v are

bounded by functions of k, In particular. xs takes

on ~t most c2 values and step requires at most c3'
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Each process has a number of local variables.

Besides the obvious temporaries, the following are

of interest:

The regions of S' are defined by the regions

of S, that is, a state of Pi' is in Ri' (re~pec-

tively T.', C.', E.') iff w E Rl.(respectively 1 1 1

T., C., E.), where w denotes (ambiguously) the
1 1 1

contents of local variable w in that state.

s -the number of the slot held by

the process, or O if no slot

is held.

x -the current or previous super-

visor state, or undefined,

depending on s and status(s}.

w -the internal state of the

corresponding worker process.

rbuf(t} -a buffer in which the partial

state received so far from

slot t is accumulated.

n(t} -the number of the next bit of

the supervisor state to be

sent to slot t.

prevhelper- true iff the process was a

helper the last time it ran.

Whenever Po' takes a step. it simulates a
1

step of Poo It then simulates a supervisor step
1

if either the current supervisor state is in

shared memory (indicated by loccur = 'SHARE') or

Po' holds some slot s with status(s) = 'CURRENT'
1

and in addition stateholders = k. To show (S4)

holds for S'. we must argue that these conditions

are satisfied infinitely often as long as not

every worker process halts. and hence infinitely

many supervisor steps get simulated.

If loccur = 'SHARE'. then another step of the

supervisor is simulated as soon as any Pj' takes a

step.

Assume now that loccur = 'DIST' and that a

supervisor step has just been simulated. We

argue that a time is reached before the next

supervisor step is taken when stateholders = k.

At that time, exactly k helpers (and possibly

other processes as well) have the current state.

There are two cases to consider. Suppose
locprev = 'SHARE'. Then all slots are either

'DEAD' or 'FREE', and all but k-l of these event-

ually becomes 'FREE'. Hence, the remaining 2k

slots are or will become available to the helpers.

By conditions (R5) and (R6), there are at least

2k-l helpers at this time. (Rl) insures that no

helper quits before the next supervisor step is

simulated, and (R3) and (R4) insure no helper will

enter its critical or remainder region (where it

might stop). When a helper takes a slot in this

situation, it picks up the old supervisor state

and updates it immediately to become a current

stateholder. At most k-l helpers fail, so at

least k helpers do eventually become current

stateholders.

The code makes use of some functions which are

described below: elig. and active are the func-
1

tions mentioned in (R2) and (R5).

°N+l is represented by three functions:

newval, transno, and newstate. newval(v,x) gives
the new value of the shared variable produced by

the transition °N+l(V'X)' and transno(v,x) gives an

encoding of the new supervisor state. newstate is
the corresponding decoding function. Thus,
°N+l(V'X) = (newval(v,x), newstate(x,transno(v,x))).

We assume that transno is such that for each
x £ XN+l' there is an integer m(x) so that ,

{transno(v,x) : v £ V} = [m(x)], and that transno

is chosen to minimize m(x). Thus, the encoding is

compact. By (R8), m(x) ~ c3.

Finally, we have three operations on bit-

strings. Length(z) gives the number of bits in z,

bit(i,z) is the ith bit of z, and o denotes con-

catenation of bit~strings. We use these operations

on states assuming a binary encoding of the state.

Now suppose locprev = 'DIST'. Inductively,

we may assume thatirlmediately before the current

supervisor step was taken there were k helpers

with the current state (as well as possibly other

non-helping processes). After the step, these k

processes hold the now-previous supervisor state,

and some of them additionally may have entered

class 'Q', thereby ceasing to be helpers. However,

all of them are allowed to keep their slots (and

indeed must do so), whereas each other slotholder

will release its slot on its next step. Ignoring

failing processes for the moment, at least 2k-l

helpers will eventually get slots. Even consider-

ing failures, at most k-l slots can be lost to

failing processes and at most k-l helpers can

fail, so at least k active ~elpers end up with

slots. Since at least one of the previous state-

holders also stays active, k helpers eventually

obtain the current state. Another supervisor step

is then simulated on the next step of any of these

One further convention

denoting [3k-l].
"slots" is a constant

The code for process P.' appears on the follow-
.1
lng page.

let qo = (Vo,XO,I'... ,XO,N+l) be the initial

i.d. of S. The shared memory of S' is initialized

by setting status(t) = 'FREE' and ch(t,t') = 'READY'

for all t, t' £ slots; v = vo; stateholders = 0;

step = I; XS = XO,N+l; and loccur = locprev =

'SHARE'. The local variables of process Pi' are

initialized by setting s = 0; x = XO,N+l; w = xO,i;

rbuf(t) = A and n(t) = 1 for each t £ steps; and

prevhelper = false. All other temporaries are set

arbitrarily.

246



Code for Process P.' (Lemma 4.3)

1

/*Service slot held, if any.*/
REPEAT FOREVER

LOCK;

/*Simulate one step of Pi.*/

(v,w) := o.(v,w);
1

/*Simulate supervisor step, if possible.*/

IF loccur = 'SHARE' or

(sfO & status(s) = 'CURRENT' & stateholders=k)

THEN

BEGIN
xx:= IF loccur = 'SHARE' THEN xs ELSE x;

v:= newval(v.xx);

step:= transno{v.xx);

xx' := newstate(xx,step);

locprev:= loccur;

stateholders := 0;

IF active(v,xx') > C
lTHEN

/*New state is distributed.*/

IF sfo & stateholders < k

THEN

BEGIN
IF status(s) = 'CURRENT'

THEN
FOR ALL t e: slots DO

IF ch(s,t) = 'READY'

THEN
IF n(t) > length(x)

THEN ch(s,t) := 'DONE'

ELSE [ch(s,t) := bit(n(t),x);

n(t) := n(t) + I]

ELSEIF status(s) = 'PREVIOUS'

THEN

BEGIN

x:= newstate(x,step);
status(s) := 'CURRENT' ;

IF elig.(v,w) = 'H'

1
THEN stateholders := stateholders + I;

FOR ALL t' e: slots DO n(t') := I

END
ELSEIF status(s) = 'RECEIVE'

THEN
IF locprev = 'SHARE'

THEN

/*Get previous state from shared memory.*/

[x ~ xs; status(s) ~ 'PREVIOUS']

ELSE

BEGIN
loccur ;= ' DIST' ;

FOR ALL t e: slots DO
IF status(t) = 'CURRENT'

THEN status(t) ;= 'PREVIOUS'
ELSEIF status(t) e: {'RECEIVE' , 'PREVIOUS'}

THEN status(t) := 'DEAD';
FOR ALL t, t' e: slots DO ch(t,t' ) ;= 'READY'

END

1"1,1" /*Receive state through some channel.*/

/*New state is kept in shared memory.*/ FOR ALL t E slots 00

IF ch(t.s) = '00NE'

THEN

/*Complete state has been received from

slot t.*/

BEGIN

loccur := 'SHARE' ;

xs := xx' ;
FOR ALL t e: slots DO

IF status(t) ~ 'FREE'

THEN status(t) := 'DEAD'

END

END;

/*Release current slot if necessary.*/

BEGIN

x :=- rbuf(t);
status(s) ~ 'CURRENT' ;
stateholders ~ stateholders + I;

FOR ALL t' E slots DO n(t') ~ I;

EXIT LOOP

END

ELSEIF ch(t.s) E {0.1}

THEN

/*Next bit has arrived.*/

BEGIN
rbuf(t) ;= rbuf(t)och(t.s)

ch(t.s) := 'READY'

END

END;prevhe 1 per ;=, { e 1; 9 .( v, w ) = I H I ) ;

UNLOCK 1

END REPEAT

IF s~o & (status(s) = 'DEAD' or eligi(v,w) = 'D'

or (status(s) = 'PREVIOUS' & not prevhelper))

THEN [status(s) ;= 'FREE' ; s := 0];

/*Take a new slot if needed and possible.*/

IF loccur = 'DIST' & s = 0 & eligi(v,w) = 'H' &

status(t) = 'FREE' for some t £ slots

THEN

BEGIN

s := t;
status(s) ;= 'RECEIVE' ;
for all t' £ slots do rbuf(t' ) := A

END;
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processes (if not before). The supervisor keeps the following additional

data in local memory:
In each case, we have shown that another

supervisor step is eventually simulated, establish-

ing (S4). The remaining properties, (Sl) -(S3),

are straightforward but tedious to verify.

Lemma 4.4. For each k, l, there exist constants

Cl' c2' c3 such that the following holds. For each

N, there is a k-simulatable system S with constants
Cl' c2' c3 of N workers with a supervisor satisfy-

ing (Cl), (C2), and (C4') which uses only O(N)

values of shared memory.

Queue -a seQuence Ql'...'Qm of

colors, where m ~ l;

count(c) -the number of processes holding

color c less enb(c), where

c e; Queue;

maincouflt- the number of processes currently

in main;

gatecount- the number of processes currently

in gate.

Proof. We use an extension of the ideas of [CH1]

~BFJLP] as well as those of the colored ticket

algorithm which proves Theorem 4.2. The system

maintains a queue of "buckets" which are identified

by color. The first bucket is called buf. the

second. ~. the third. ~. and the -remaining

are a sequence ~ of length at most l. buf and

main can each hold up to N processes; the remaining

buckets never contain more than k-l processes.

All of these variables are bounded bya function of

k and I except for maincount, which can take on

N+l values. However, maincount is bounded by the

total number of processes in their trying regions,

so property (R7) will hold for a suitable choice of

c2.

A process first entering its trying region

joins bucket buf. From then on, there are two ways

it can advance toward its critical section. First,

from time to time, the supervisor rearranges the

buckets, so at some later time the process may find

its bucket is well into the queue. The other

method requires an explicit action on the part of

the process. When the supervisor sets MOVE to true,

any process in main can move to gate. When the

supervisor sets enb(c) non-zero, any process in

bucket c can enter its critical section.

The following data is kept in shared memory:

buf -color of current buffer bucket;

bufcount- number of processes currently in

buf;

main color of current main bucket;

gate -color of current gate bucket;

enb(c) -the number of processes holding

color c that are group-enabled

(undefined if c t queue u {buf,

main, gate});

cscount -number of processes in their

critical regions;

move -true to request a process to

move from main to gate.

elig(c) -enables a worker to determine

its eligibility class. Value is

'H' when c £ {buf, main, gate},

'Q' from the time c enters the

queue until enb(c) is first set

non-zero, and 'D' thereafter.

We need a total of !+3 colors. Thus, all of

the shared variables are bounded bya function of

k and i except for bufcount, which can take on

N+l values. Hence, the storage requirement is O(N)

for k and i fixed.

The supervisor now uses the following simple

strategy. Whenever it finds an empty bucket on its

queue. it deletes it from the queue. Whenever it

finds main is empty. it moves the entire bucket

buf to main and chooses a new color for buf. When-

ever it finds gate is empty. it uses one of two

strategies to try to fill gate. If main has at

most k-l processes. then the entire bucket is

moved to gate. Otherwise. r~oVE is set true to

request one process in main to move to gate. The

supervisor then waits for this to occur. which it

must since not all of the processes in main can

fail. Whenever the supervisor finds that the

queue has room for another bucket. it puts gate on

the queue. Finally. whenever it finds a place in

the critical section not already filled or

allocated (through group-enabling). it group-

enables another process from the first bucket on

the queue not already fully enabled.

In the code on the following page. "colors"

is a constant denoting [£+3]. Whenever a new

color is chosen. there are at most £+2 colors in

the variables buf. main. gate and queue. so that

procedure newcolor described below will always

succeed in obtaining an unused color. The function

delete(c. queue) returns queue with all occurren-

ces of c deleted. The syntax "WHILE (LOCK; test)

DO body;" is used as an abbreviation for "LOCK;

WHILE (test) DO [body; LOCK];".

Initially. all the counts are 0. buf. main.

and gate are assigned distinct colors.
elig(c) = 'H' for all c E colors. move = false.

and the queue is empty.

A process Pi in its trying region holding

color c is in eligibility class elig(c) and is in

Class 'D' otherwise; hence (R2) and (R3) hold. By

inspection of the code and the fact that elig(c)

is set to 'D' the first time enb(c) is set non-

zero. we establish (Rl) and (R4). Also. (R5) is

imnediate.

Let Cl = £.(k -1) + 2k -2. At most
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Code for Supervisor (Lemma 4.4) /*Enable new process.*/

REPEAT FOREVER

L count(c);

ce:queue

totenb := L enb(c);

ce:queue
IF cscount + totenb < t & totcount > O

THEN

BEGIN

i := 1;
WHILE count(queue.) = O DO i := i+l;

1

C := queue. ;
1

el ig(c) := 'D' ;

enb(c) := enb(c) + 1;

count(c) := count(c) -1

END;

UNLOCK

END REPEAT

LOCK;

totcount ;=

/*Eliminate empty buckets from queue.*/

LOCK;
FOR ALL c £ colors DO

IF c £ queue & collnt(c) +'enb(c) " o

THEN queue ~ delete(c. queue);

UNLOCK;

/*Fill empty main.*/

PROCEDURE newcolor()

FOR c e: colors DO

IF c t queue u {buf, main, gate}

THEN EXIT LOOP;

enb(c) := 0;

elig(c) ;= 'H';

RETURN c

END

IF maincount = 0

THEN

BEGIN
WHILE (LOCK; bufcount t maincount) DO

[m~incount ~ maincount + I; UNLOCK];

main := buf;

buf := newcolor();

bufcount ~ 0;

UNLOCK

END;

I*Fill empty gate.*1

Code for Process Pi (Lerrma 4.4

IF gatecount = O

THEN

BEGIN

LOCK;
IF maincount < k- I

THEN

BEGIN

gate := main;

gatecount := maincount;

main := newcolor();

maincount := O

END

ELSE

BEGIN

move:= true;

WHILE move DO [UNLOCK; LOCK];

maincount := maincount -I;

gatecount := 1

END

UNLOCK;

END

Tryinq Protocol

LOCK;

c := buf;

bufcount := bufcount +1;

UNLOCK;
WHILE (LOCK; enb(c) = D) DO

BEGIN
IF move & c = main

THEN [move := false; c := gate];

UNLOCK

END

enb(c) := enb(c) -I;
cscount := cscount + I;

UNLOCK
vacant slot on queue.*//*Fil

Exit Protocol

LOCK;
cscount := cscount- I;

UNLOCK

IF length(queue) < l

THEN

BEGIN

LOCK;

queue ;= queueogate;

count(gate) ;= gatecount;

enb(gate) ;= 0;

elig(gate) ;= 'Q' ;

gate ;= newcolor();

gatecount ;= 0;

UNLOCK

END;

i.(k- 1) processes can be in allof the buckets in

the queue, ,establishing (R6). As previously men-

tioned, (R7) holds by choosing c2 sufficiently

large. Finally, (R8) holds since the only super-

visor variable whose size is not bounded by a

function of k and i, maincount, is never changed on

a single step except by incrementing or decrement-

ing it or setting it to 0.
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.1. '-
short(MT' tl) = short(MT' t2) iff tl=t2.

Theorem 4.3. Let k, l, N £ m. There exists a

system S' of N processes with initial i.d. qa'

which satisfies l-exclusion (Cl), is (k,l)-

deadlock-free (C2) and satisfies bounded wafting
for enabling (C4'), and S' uses a(N) values of

shared memory. (The constant coefficient is ex-

ponential in each of k and l.)

Proof. Apply Lemma 4.4 to obtain a k-simulatable
system of $ of N workers with a supervisor having

the desired properties. Lemma 4.3 eliminates the

supervisor from $ to yield $'. By Lemma 4.2, (Cl),

(C2), and (C4') are preserved. The number of
shared memory values of $' is only a constant times

larger than the number for $, which is O(N).

Lemma 4.5. For each k, l, there exist constants

Cl' c2' c3 such that the following holds. For each

N, there is a k-simulatable system S with constants

cJ.' c2' c3 of N workers with a supervisor satsify-

ing (Cl), (C2), and (C5') which uses O(N (log N)c)

values of shared memory where c is a constant de-

pending only on k and l.

Sketch of Proof. We describe the main ideas used

in constructingS and leave the complete construc-

tion to the full paper.

We use many of the ideas in the algorithms

which prove Theorem 4.2 and Lemma 4.4. The system

maintains a queue of processes. Processes within

the first l positions of the queue are enabled or

already in their critical regions. A process marks

its queue entry as empty when it leaves its criti-

cal region, and the supervisor subsequently deletes

it entirely, thereby enabling a waiting process.

The queue is kept in two parts: the first

2[ + 2k -1 entries are the exposed part and are

kept in shared memory; the rest of the queue is

kept in the private memory of the supervisor and

is called the hidden part.

The problem of finding short names has a his-

tory in terms of monotone formula lengths for

threshold k functions. Kleiman and Pippenger

summarize the history in [KP]. Briefly, Khasin

[Kh] gives a non-explicit construction of formulas

of length O(N log N) (which, translated into our

formulation, shows that only O(log N) different

maps are needed to encode every monochromatic sub-

set T of tickets with ITI 2 k -1,) Korobkov [Ko]

, provides an explicit construction of formulas of

length O((N log N)(~)lo9*N). We describe a par-

ticularly simple explicit encoding (probably the

same as Korobkov's construction) that requires

O((log N)k-2) values per map, and thus

0«(lo9 N)(k-2)(U+2k-l» values for all the maps.

Let T = {tl'.."tm} be a monochromatic set of

tickets, m < k-l, and let t. = (c, x.), I < i < m.
-1 1 --

Express XI '...'Xm in binary notation. There exist

m-l bit positions il'. ..,im-l which distinguish

all of the x's, that is, for each r, s, if xr

agrees with x in position i" for each I < j < m-l,
s J --

then r = s. This is easily established by induc-

tion on m. Now, let br,j be bit ij of xr' and

let a = (b 1 '...'b 1 ). Define the map
r r, r,m-

MT =(i l '...'i l 'a",...,a). Now, ift=(c,x),
m- 1 m

then short(~, t) = (c, r) where r is the least

r' for which bit i. of x equals b r ' .for all j,
J ,J

12 j 2 m-l, and r = I if no such r' exists.

Clearly, short has the desired property that
short(MT' ti) = (c, i), I < i < m.

Processes on the queues are identified by

temporary and changeable names. Every process has

a long name which it knows, and it may also have a

short name. Long names are used on the hidden part

of the queue and short names on the exposed part.

The supervisor knows the long name of every pro-

cess on the hidden part. For the long name, we

use the notion of ticket introduced in the proof of

Theorem 4.2. A ticket has two parts: a color and

a number. There are 2l + 3k + 2 distinct-coTOrs,

and the number part is in [N]. An entering pro-

cess is issued the next available ticket of the

current issue color. {As described below, the

supervisor from time to time changes the current

issue color, so that tickets never run out.)

A short name consists of a color and an inte-

ger in [k-l]. L~ g names of color c are converted

to short names rj a ~ M(c). The supervisor

constructs M(c) and leaves it in the shared vari-

able. There 1.; a fixed universal function "short"

whereby any p..ocess can find the short name of its

t1cket t, short(M, t), given a map M for t's color.

Short preserves the color of t.

We now sketch the action of the supervisor.

Its only functions are to delete processes from

the queu~ which have left their critical regions

and to maintain the property that the first

2l + 2k -1 entries are exposed. Thus, a deletion

must always be accompanied by the move of a

process from the hidden part to the exposed part

whenever the latter part is non-empty.

Let P. be a process to be moved from the
1

hidden queue to the exposed queue, and colori the

color of its ticket. In order to move Pi' the

supervisor must define M(color.) if it has not
1

already been defined. Let B(c) be the set of

processes currently holding tickets of color c.

Assume inductively that if B(c) contains any

ticket already on the exposed part, for any color
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Short names are not in general unique. How-

ever, if T is a monochromatic set of long names and

ITI 5- k-l, then there is a map MT which uniquely

encodes T in the sense that if t, , try £ T, then



either have colors the same as processes on the

exposed part, or they are in Z or have colors

color2 or co.lor3' Thus, the total numbers of

colors in use is 2l + 3k. Two new colors are

needed during the conversations with members of Z,

so 2l + 3k + 2 colors are sufficient to make the

algorithm work,

c, then IB(c)1 < k-l and M(c) has been defined.

Thus, if B(color.) contains any ticket already on
1

the exposed part, then notning further needs to be

done. If IB(colori)1 ~ k-l but M(colori) has not

yet been defined, it can be defined at this time

to encode B(color.), since every process in
1

B(color.) is on the hidden queue and therefore the
1

supervisor knows its long name. Otherwise,
IB(colori)1 > k-l, and every process in B(colori)

is on the hidden part of the queue. In this case,

the supervisor attempts to converse with all pro-
cesses in Z = U{B(c') : M(c' ) is not yet defined}.

A conversation follows a particular protocol.

The supervisor selects two unused colors, colorland

color2. Then it requests to talk to any process in

Z. The process responds by sending its ticket to

the supervisor, thereby identifying itself. The

supervisor examines the ticket and depending on

what it sees issues a new ticket to the process.

If the process is Pi' the new ticket is (colorl'l).

Otherwise, the new ticket is the next available

ticket of color2. When the process receives the

new ticket, it discards its old one and acknowl-

edges the receipt to the supervisor, which then

replaces the old ticket on the hidden queue with

the new one. This completes the conversation. The

actual transmission of a ticket takes place by

sending a serial bit-string.

We now say a few words on how this algorithm

can be made k-simulatable. Let the processes in

the first l positions of the exposed part be

drones, let the next process be a quitter, and let

the remaining processes on the queue (including

all of the hidden part} be helpers. Any process

not on the queue is also a drone. Choose
Cl = l + 2k -1. (Rl} is satisfied since only the

supervisor can insert or delete entries from

either part of the queue. (R2} -(R4) and (R6}

are immediate from our definition of the eligi-

bility classes and Cl. (R7} is easily satisfied

for appropriate choice of c2 since the hidden

part is empty whenever IT(q}1 ~ Cl. This is

because at most l processes on the exposed part

are not in their trying regions. (R8} can be

made to hold by using the same trick for copying

the current issue ticket number into supervisor

memory as was used in the algorithm of Lemma 4.4

to copy bufcount to maincount.

Because of the possibility of failure, the

supervisor carries on k conversations concurrently

with k different members of Z. Since at most k-l

processes fail, at least one conversation runs to

completion. The supervisor then begins a new con-

versation with yet another process in z. This

continues until all but k-l members of Z have

completed conversations with the supervisor.

Theorem 4.4. Let k. £, N £ m. There exists a

system SI of N processes with initial i.d. qQ'

which satisfies £-exclusion (Cl). is (k,£)-

deadlock-free (C2) and FIFQ enabling (C5'). and

S' uses Q(N.(log N)c) values of shared memory.

where c is a constant. (The constant coefficient

in the big "oh" is exponential in each of k and

£. while c grows only linearly in k and £.)

Proof. Apply Lemma 4.5 to obtain a k-simulatable

SYStem S of N workers with a supervisor satisfy-

ing the desired properties. Lemma 4.3 eliminates

the supervisor from S to yield S'. By Lemma 4.2,

(Cl), (C2), and (C5') are preserved. The number

of shared memory values of S' is only a constant

times larger than the number for S, which is

O(N. (log N)c).

At that time, Pi is either the only process in

B(colorl) or Pi is one of the remaining k-l pro-

cesses in l, Pi is still in B(colori)' and

IB(colori)1 ~ k-l (since B(colori) ~ l). In either

case, the map for Pi's color can be constructed.

Let c' be its current color. In case c' is also

the current color of newly issued tickets, a new

unused color3 is chosen for the latter purpose so

that additional processes cannot enter B(c') and

invalidate M(c').

M(c' ) is now defined, so the supervisor moves

P. by placing short(M(c' ), t) at the end of the
1

exposed part of the queue and deleting t from the

head of the hidden part.

We count the number of colors in use at thi

point. Each process on the exposed part of the

queue might have a different color, so that

accounts for at most 2l + 2k -1 colors. All of

the processes on the hidden part of the queue



from q(i',j), i+l processes from among those in

{Pl'...'Pi} u {Pt+l'...'PN} move into their crit-

ical regions and stop, (Since t < N, there are

sufficiently many processes.) This is possible,
by (C2), because only t-i' « i~i} processes are

critical and no process other than those in the

given sets is in its protocols. But q(i,j) looks

like q(i',j) to Pl'...'Pi and Pi+l'...'PN' so

h causes the same behavior from q(i,j). But

Pi+l'...'Pt are critical at q(i,j); thus h applied

from q(i,j) causes a violation of t-exclusion.

The proofs in this section proceed by contra-

diction; assuming too few values of V, certain

i.d.'s look like other i.d.'s to certain sets of

processes. This leads those processes to exhibit

behavior which violates one of the needed condi-

tions. In order to prove a lower bound correspond-

ing to Theorem 4.2, we first require a construc-

tion and a lemma. Let l, N E ~ , N > l+2, Let

S be a system of N processes, q an i~d. such that

S is l-queuelike (C6) from q. Let q' E n Ri

iE[N]
be reachable from q. Fix i,j, l < j < i < N-l.

Construct a schedule as follows. -Starting at q'

each of Pl'...'Pl goes in turn to its critical

region. Then each of Pl+l'...'PN takes one step,

going to its trying region. (Let PN'S state

after its entry be denoted by x, for later ref-

erence.) Then one of the critical processes

returns to its remainder region (leaving one empty

critical slot). (Call the resulting i.d. q", for

later reference.) Next, each of Pl+l'...'Pi in

turn takes two steps (thereby returning to its

remainder region). Finally, each of Pl+l '...'Pj

takes one step (thereby entering its trying region

once again). The resulting i.d. is denoted

q(i,j). Note that Pi+lis critical-enabled at

q(i,j).

Corresponding to Theorem 4.l(b), we have:

Theorem 5.1. Let l, N E ~ , I < l < N. Let S be a
--.

system of N processes with null exit reglons, and q

an i.d. such that S satisfies l-exclusion (Cl), is

(I,l)-deadlock-free (C2) and satisfies bounded

waiting (C4) from q. Then IV! ~ l(N-l).

Proof. The theorem is trivial for l = N, so assume

z-:;c--N. Let q' be reachable from q with all pro-,

cesses in their remainder regions (by (C2». Fix

i, j, I < i < l, O < j < N -l- I. Construct a

schedule-as Tollows~ rrom q', each of Pl'...'Pl

in turn goes to its critical region (by (C2» and

stops. Next, each of Pl+l'...'Pl+j takes one step,

moving to its trying re9ion (by(Cl), since the

critical region is full). Then each of Pl'...'Pi

takes one step, going to its remainder region

(since there are no exit regions). The resulting

i.d. is denoted q(i,j); it has Pl'...'Pi and

Pl+j+l'...'PN in their remainder regions,

Pi+l'...'Pl in their critical regions and Pl+l'...'

Pl+j in their trying regions. In particular, the

critical region is not full at q(i,j), and PN has

not appeared in the described schedule from q' to

q(i,j). We show that the shared variable has a

distinct value for each q(i,j).

Lemma 5,1.Let i, N E ~ , N > i+2. Let S be a

system of N processes, q an-i.d. with S i-

queuelike (C6) from q. For each i,j,

I < j < i < r~-l, construct q(i ,j) as above. Then

the variable has a distinct value for each q(i,j)

Proof: Assume the contrary, and consider two

cases.

Case 1. V( i',j')) and i < i'

Pi'+l is critical-enabled at q(il,j'), hence

is critical-able at q(i,j). But also Pi+l is

critical-enabled at q(i,j). Thus, the schedule

(i'+l)(i+l) when applied at q(i,j) causes both

Pi'+l and Pi+l to enter their critical regions,

violating l-exclusion.

Case 2. V(q(i,i)) = V(q(i,j'» and j < j'

Consider schedule h constructed as follows.

Starting from q(i,j), P., takes one step (there-
J +1

by entering the trying region). Then each of

Pi+l'...'PN' Pl+l'...'Pj takes two steps (thereby

Assume the contrary and consider two cases.

Case 1. V(Q(i,j» = V(Q(i'.j'» and j < j'

Construct schedule h as follows. Starting
from q(i,j), Pt+l'... ,Pt+j go through critical

regions to their remainder regions (by (C2». Then

PN cycles b+l times (from remainder to critical

region), where b is such that S satisfies b-bounded

waiting from q (by (C2». But q(i',j') looks like

q(i,j) to Pt+l'. ..'Pt+j and PN' so h causes the

same behavior from q(i' ,j'), Thus, Pj+l (b+l)-waits

for PN' so that b-bounded waiting (C4) is violated.

Case 2. V(q(i,j» = V(Q(i',j» and i < i'

Construct schedule h as follows. Starting
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returning to its remainder region), Then P,,
+J 1

is critical-enabled after application of h to

q(i,j).

Now consider the application of h to q(i,j')o

It must be that Pj'+l is critical-able at

ql = r(q(i,j' ),h). But also Pj+l is critical-

enabled at ql° As in Case 1, [-exclusion can be

violated. o

Now corresponding to Theorem 4.2, we have:

Theorem 5.2. Let i., N e: 1N , N > i.+2. Let S be a

system of N processes, q an i.~ with S i.-queuelike

(C6) from q. Then I vi .?:. i.(N-~-I) = ¥(N-i.-l)(N-i.-2).

frQQ!. By induction on l.

~: By Lemma 5.1, there are at least

(N21) ~ 1 x (N2:2) distinct values.

~: By Lemma 5.1, there are (N-~-l} distinct

values of the variable for the i.d.'s q(i,j}, where

l ~ j < i ~ N-2. Moreover, PN is not critical-

able at any of these i.d.'s. That is,

cSN(V(q(i,j»,x) t GN for all i,j, l~ j < i < N-2.

Proof. The theorem is trivial for I = N, so

a"S"""5Ujiie I < N .

Let q' E u Ri be reachable from q. Define

iE[N]
a "primary" schedule h and a sequence of i.d.'s

q{i,l), 1 ~ i ~ I, which appear in order when h is

applied from q'. Each q{i,l) has the i-l pro-

cesses Pl'...'Pi-l critical-enabled in their try-

ing regions, Pi in its trying region, Pi+l'...'

PI+l in their critical regions, and all other

processes in their remainder regions. Namely,

starting at q', each of P2'...'PI+l in turn enters

its critical region and stops. Then Pl takes one

step, enterin9 its trying region. The resulting

i.d. is q{l,l). Assume inductively that q{i,l)

has been defined, i < I. Starting at q{i,l), both

Pi+l and Pi+2 leave their critical regions and go

to their remainder regions without any other pro-

cesses taking steps {by {C2». Then Pi+2 cycles

b+l times {from remainder to critical), where b is

such that S satisfies b-bounded waiting for

enabling from q. This forces P. to become
1

critical-enabled {or {C4') would be violated).

Then Pi+l takes one step, entering its trying

region {since a total of t processes are
already either critical or critical-enabled). The

resulting i.d. is q{i+l,l).

Now reconsider the construction preceding

Lerllna 5.l.Starting at q", each of Pi+l'... ,PN-l

takes two steps, thereby returning to its remainder

region. Call the resulting i.d. q"'. From q"', con-

sider Pl'... ,PN-l as comprising a system T of N-l

processes. Since S is i-queuelike from q, it can

be shown that T is (i-l)-queuelike from q"' .

Thus, by induction, the number of values which can

be taken on by T's variable is at least

(i-l)((N-l)2(i-l)-1) = (i-l)(N-f-l). But PN is

critical-enabled at q"' , so that °N(v,x) E CN for

all v which can be taken on by the variable in

i.d.'s reachable from q"' using only Pl'...'PN-l.

Thus, the total number of values of V is at

least (N-~-l) + (i-l)(N-~-l) = i(N-}-l), as needed.

c

Theorem 5.3. Let k, t, N E: ~ , 1 < t < k < N. Let

S be a system of N processes, q an-i.~ such that

S satisfies t-exclusion (Cl), is (k,t)-deadlock-

free (C2) and satisfies bounded waiting for enab-

ling (C4') from'q. Then I vi ~ t(N-t).

Now fix i. j. 1 2 i 2 l. 1 2 j 2 N-l. Con-

struct a "secondary" finite schedule as follows.

Starting at q(i.l). each of Pl+2 Pl+j in turn

takes one step. entering its trying region (by

Lemma 5.2).Call the resulting i.d. q(i.j). Each

q(i.j) has Pl Pi-l critical-enabled in their

trying regions. Pi+l .Pl+l in their critical

regions. Pi and Pl+2 Pl+j in their trying

regions. and all other processes in their remain-

der regions. We show that the variable has a

distinct value for each q(i.j).

Assume the contrary. and consider two cases.

Case 1. V(Q(i.j)) = V(Q(i'.j')) and i < i'

Pl Pi are all critical-enabled in their

trying regions at q(i'.j'). so that the schedule

hl = 12...i applied to q(i'.j') moves Pl Pi

to their critical regions. None of Pl'...'Pi

takes a step either in the defined secondary

schedule from q(i.l) to q(i.j). or in h from

q(i.l) to q(i'.l). or in the secondary schedule

from q(i'.l) to q(i'.j'). Thus. q(i.j) looks like

q(i'.j') to Pl Pi and so hl has the same

effect when applied from q(i.j). But

Pi+l Pl+l are critical at q(i.l) and there-

fore also at q(i)j). Thus. hl applied from q(i.j)
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those which deal with the failure-proofing. The

study of other problems such as Dining Philosophers

[Di2] and Readers-Writers [CHP]in the context of

limited process failure should help clarify these

distinctions.
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