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ABSTRACT
Wireless and mobile network technologies often impose se-
vere limitations on the availability of resources, resulting
in poor and often unsatisfactory performance of the com-
monly used wireless networking protocols. For instance,
power and memory/storage constraints of miniaturized net-
work nodes reduce the throughput capacity and increase the
network latency. Through various approaches and techno-
logical advances, researchers attempt to somehow compen-
sate for such hardware limitations. However, this is not
always necessary. Sometimes, the required performance of
such networks does not need to adhere to the level of ser-
vices that would be required for performance-critical appli-
cations. For example, for some applications of sensor net-
works, minimal latency is not a critical factor and it could
be traded off for a more limited resource, such as energy
or throughput. Such networks are termed delay-tolerant
networks. Thus, to reduce the energy expenditure, trans-
mission range of such sensor nodes would be quite short,
leading to network topologies in which the average number
of neighbors of the network nodes is very small. If the sen-
sor nodes are mobile, then most of the time a node has no
neighbors; only infrequently another node migrates into its
neighborhood. This means that the classical networking ap-
proach of store-and-forward would not work well, as there is
nearly never an intact path between a source and a destina-
tion. Several routing protocols have been proposed for this
type of networking environment, one example is the Shared
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Wireless Infostation Model (SWIM), where a packet prop-
agates through the network by being copied (rather than
forwarded) from a node to a node, as links are sporadically
created. The goal is that one of the copies of the packet
reaches the destination. SWIM is an example of the way
that non-critical performance could be traded off for insuffi-
cient resources, such as the tradeoffs between energy, delay,
storage, capacity, and processing complexity. In this pa-
per, we examine some of these tradeoffs, exposing the ways
in which resources could be saved by compromising on the
level of performance, as to satisfy the particular limitations
of network technologies.
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H.1.0 [Models and Principles]: Resource Tradeoffs

General Terms
Algorithms, Design, Performance

Keywords
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1. INTRODUCTION
Sparse mobile wireless networks, where the average num-

ber of neighbors of a network node is small (typically less
than 1), suffer from frequent, often chronic, partitions. In
these networks, nodes are often isolated, unable to communi-
cate with any other network node due to small transmission
ranges of the nodes, power constraints, signal propagation
impairments (such as line-of-sight limitations or propaga-
tion obstacles), and large areas over which the nodes could
be located. Almost all traditional routing protocols, wired
and wireless[9], assume the existence of connected paths be-
tween the message sources and their destinations during the
transmission and forwarding1 of data. In this paper, we
analyze protocols that alleviate the problem of chronically

1Thus the name store-and-forward routing



disconnected paths by having a node store the packet, car-
rying it until meeting another relay node, and forwarding
the packet to the other relay node. We term this routing as
the store-carry-and-forward paradigm. A packet is consid-
ered successfully delivered, if the node carrying the packet
encounters the destination node and offloads the packet to
the destination node. Thus, using the mobility of the nodes
themselves, the network successfully delivers packets by for-
warding them along virtual links, which are created by the
movement of network nodes.

Similar approaches were considered before in the techni-
cal literature. For example, Grossglauser and Tse [5] showed
that the long-term throughput for a source-destination pair
in an ad hoc network can remain constant as the density
of nodes increases. Their algorithm is based on the idea
that maximizing throughput involves scheduling transmis-
sions over sufficiently good quality paths2 at any given time.
Although the message is guaranteed to be delivered in some
finite average time (given infinite storage capacity at nodes),
this time may be very long. Thus, [5] trades off network
delay for network capacity. Shah et al. [10] introduced a
three-tiered architecture to lessen the power requirements of
mobile sensors that wish to send data to collection stations.
The work establishes a collection of mobile entities called
dataMULEs (Mobile Ubiquitous LAN Extensions), placed
on creatures or devices that are already present in the envi-
ronment. Their scheme uses the natural motion of the nodes
and devices to create virtual links, in which the dataMULEs
approach the sensors, retrieve data, and deliver the data to
the collection stations. This scheme provides a low-power
transport medium to recover sensor data. Message ferrying
[14] uses special mobile nodes called message ferries to aid
communication services, similar to dataMULEs. However,
the ferries follow a non-random predetermined route (known
by the nodes), rather than relying on their natural motion.
This improves the latency significantly over the dataMULE
case. Whenever a source node generates a packet to be
delivered to an out-of-range destination node, the source
transmits the message to a ferry and the ferry delivers the
message.

Another approach to routing in sparse networks is the
Shared Wireless Infostation Model (SWIM)3 [12]. This model
is based on the same store-carry-and-forward routing, but
now each time that a node encounters another node, the
packet(s) stored in its buffer are replicated (copied), rather
than forwarded, to the encountered node. Thus the copies
of the packet can be seen as propagating by diffusion. Now,
a packet is considered successfully delivered, if any node car-
rying a copy of the packet encounters the destination node
and offloads the packet to the destination node. Since there
are typically many nodes that carry copies of the packet,
the time until offloading is significantly reduced. That is,
the network delay is reduced at the expense of additional
storage in the network nodes. As well, the system is more
reliable.4 .

Virtual links, and the associated store-carry-and-forward
networking paradigm are quite useful in establishing com-

2Where good quality refers here to a short path, one or two
hops long.
3Infostations refer to the particular type of collection sta-
tions. [4]
4Possibly, this routing paradigm should be termed store-
carry-and-replicate

munication in sparse networks. Unfortunately, it is also a
fact that this strategy often leads to high latency, since nodes
can carry the packets for long time while disconnected from
the network. Of course, when network latency is not criti-
cal, such as is the case in delay-tolerant networks, the store-
carry-and-forward paradigm can prove to be adequate. For
example, this is the case when the eventual delivery of the
messages is very important, possibly more important than
the delay. With the store-carry-and-forward communication
paradigm, the delays of packets depend on the rate at which
virtual links are created in the network, as well as availabil-
ity of network resources, such as storage space and energy.
Though some studies focus on reducing the energy usage
in delay-tolerant wireless networks,5 few explicitly exam-
ine tradeoffs between different aspects of the system: delay,
storage, energy, and capacity. In this work, we wish to ana-
lyze such tradeoffs.

In fact, many works exist that study the above tradeoffs
in wireless ad hoc and sensor networks, but the assumption
is that these networks do not undergo frequent partitions.
Bansal and Liu [1] showed that routing algorithms for ad
hoc networks can achieve close-to optimal capacity while
also keeping the delay small. Cui et al. [3] studied the
energy-delay tradeoff in sensor networks by adjusting the
transmission rates of the radios at the nodes and jointly
designing the routing and scheduling together. Herdtner and
Chong [6] consider not only the amount that the network can
carry, but also the amount of storage space that is needed
for the relayed packets. We hope to leverage some of these
works in our study of sparse, delay-tolerant networks.

In this paper, we specifically focus on the energy-delay
and the storage-delay tradeoffs. For simplicity, we center
our attention on a wireless mobile sensor network, where
packets are generated at mobile nodes and a small num-
ber of destination nodes that do not change are designated
sinks, which are called collection stations. We assume that
the applications of our sensor network are of delay-tolerant
type. We use the SWIM to model routing in these net-
works. For the remainder of this section, we describe the
mathematical model of SWIM and present the methods of
calculating the energy, storage, delay, and throughput of the
system. Section 2 describes a method of refining the scheme
to improve the storage-delay tradeoff. Section 3 introduces
a different enhancement scheme to adjust the energy-delay
tradeoff. Finally, Section 4 concludes the paper.

Our evaluation framework introduced in this paper allows
to evaluate the performance as we vary network parame-
ters, such as the number of nodes, without complex and
time-consuming simulations.6 However, since a complete
mathematical model is rather complicated, our framework
is based on a number of well justified simplifications. For ex-
ample, we claim [11] that it is sufficient to find a mathemat-
ical representation of propagation of an individual packet,
which can represent any (independent) packet of the net-
work, rather than modeling propagation of many packets in
the network. However, this single-packet model can repre-
sent potentially complicated mobility patterns through N

5For example, the dataMULEs [10] and Message Ferrying
[14] studies the reduction of energy.
6Similarly, if evaluation of an existing network is required,
our framework could be used, avoiding subjecting the net-
work to complicated and time-consuming measurements or
disrupting the network operation.



parameters that represent the contact rates between the
nodes and between the nodes and the collection stations.
The Markovian SWIM representation metrics match many
real life metrics such as the packet delays and queue sizes
in biological data acquisition shown in [11]. SWIM is an
extension of the S-I-R model from epidemic routing [13].

Epidemic routing is based on replication and propagation
of copies of a message to many mobile nodes. In epidemic
algorithms, mobile hosts forward their packets to randomly-
chosen relay nodes, as well as retaining a copy of the packet.
The name epidemic routing stems from the behavior of the
messages, which is similar to the behavior of an infectious
disease. A node carrying a packet is analogous to a carrier of
an infectious disease, a carrier which we deem both infected
and infective. A susceptible node does not carry the packet
but has the potential to do so. An infective node replicates
and forwards a message to a susceptible one, once they come
into communication range due to their movement.

Although many different mobility patterns could be used,
we chose the random directional mobility, similar to the pat-
tern described by Bettstetter [2], on a closed (toroidal) net-
work area. For a specified number of discrete time-steps,
nodes move with a speed chosen uniformly between vmin

and vmax and in a direction chosen uniformly at random.
This relatively simple mobility pattern allows nodes to move
anywhere in the network area. Of course, our framework is
general and can be applied to any mobility pattern.

The models from epidemic theory are adapted, so that
the Markov models of SWIM better and more flexibly rep-
resent our networking scenarios. As mentioned above, since
modeling of a system with many interactions is complicated,
we model the replication of a single packet at a time. If an
arbitrarily large number of packets can be sent in any “in-
teraction between nodes, then this method sufficiently well
describes the true behavior. This is so, because the repli-
cation of one unique packet does not affect the replication
of another packet in any way. The Markov chain shown in
Figure 1 models the replication of one individual packet in
the system.

Since it is easier to model a discrete-time system, in our
framework time is quantized into very small time intervals
of length ∆t allowing only one forwarding event in a single
∆t. Each state i represents the number of copies of the
packet in the system and R represents the system state in
which at least one of the copies has been offloaded to a
collection station. γ is the contact rate7 from one node to
any one collection station; this parameter appears in the
transitions from non-offloaded states i to the offloaded state
R. If the system is in state i, then i nodes carry copies of the
packet, so the rate of offloading is i · γ, and the probability
of offloading is i · γ · ∆t.

The ∆ti variables represent the average number of time-
steps that the system remains in state i (i.e., that there
are i copies of the packet) before it is further replicated to
another node. The transition probability for the geometric
trials from state i to state i+1 is ∆t

∆ti
. When within range of

another node, the packet is copied with probability p; this
accounts for the factor of p in the transitions from state i to
state i + 1. Based on the size of ∆t, a single node-to-node
forwarding event occurs per time-step; however, during that
time-step it is possible for a copy to be offloaded. The of-

7And, therefore, also the offloading rate
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Figure 1: Model representing transmission of a sin-

gle packet in an N−node system

floading event is given priority in the model, since offloading
is our primary goal. Therefore, the overall transition proba-
bility from state i to i+1 is the conditional probability that
the packet is shared between nodes and not offloaded. This
results in the (1 − iγ∆t) factor.

The parameter p can be used to manage the utilization
of resources in the system. For example, a node might have
restricted power, so it chooses to send packets during one
out of every three interactions. On average, each individ-
ual packet is sent in an interaction with probability 1

3
, so

we can account for this power-saving strategy by assuming
p = 1

3
. In this way, the power is reduced, but the delay of the

packets is increased. Additionally, the factor p can account
for failures in reception. If the communication channel in-
troduces bit errors (due to radio propagation impairments
or thermal noise), we would set p to be the probability of
successful reception of an entire packet.

This Markov model assumes that node-to-node encoun-
ters and node-to-station encounters occur at exponentially
distributed intervals and that all nodes have the same prob-
ability of reaching a relay or a destination. This is a rea-
sonable assumption for a sensor network with mobile nodes
whose motion is independent from the location of the data-
collecting stations. For example, consider a network of tags
on animals where the animals are foraging for food. Each
node independently follows a pseudo-random pattern and is
equally likely to meet another node or station in its area at
any time.

Using the model in Figure 1 and appropriate initial con-
ditions, we are able to find the time-dependent probability
distribution of the different states of the system. We define
the random variable T as the delay of a packet, which is
defined as the time from the packet creation (time t = 0)
until one of its copies is offloaded to a collection station
(i.e., when the system enters state R). Therefore, finding
the probability of the system in the state R as a function of
time provides us with the cumulative distribution function
for the delays of the packets, F (T ). The energy consump-
tion of the system is calculated by recording the number of
transitions between states in this model. The system stor-
age at time-step T , for a unique packet and its copies is
found by adding up the probabilities of the different states
multiplied by the number of packet copies in those states.

From the cumulative distribution of the delay, we are able
to determine the threshold probability Pthresh that repre-
sents the confidence with which we desire each packet to be
successfully offloaded to a collection station. For example,
if Pthresh = 0.5 and F−1(0.5) = 200, then the packets need



to remain in the system for 200 time-steps, after which time
they are successfully offloaded with probability 0.5, and all
the copies could (and should) then be removed from the sys-
tem. This is accomplished by adding a Time-To-Live (TTL)
field to each packet, which is decreased at each time-step.
When TTL = 0, the packet is erased. Note that only the
remaining TTL time is passed when the packet is shared
between nodes; i.e., there is no need for a global clock.

Let us assume that the initial probability of state i is ai

and that the initial probability of state R is aR. Clearly,
a1 + a2 + ... + aN + aR = 1. Let us consider probabilities
P (state, time).

In the following calculations, let di = p∆t
∆ti

(1−iγ∆t). First,

we calculate the probability of state 1 at any time-step j.

P (1, j∆t) = a1(1 − d1 − γ∆t)j (1)

With P (1, j∆t) known, we calculate the probabilities of state
2 as:

P (2, 0) = a2

P (2, j∆t) = P (2, (j − 1)∆t)(1 − d2 − 2γ∆t)

+d1P (1, (j − 1)∆t). (2)

Similarly, we find the probabilities of states i up to N − 1
to be:

P (i, 0) = ai

P (i, j∆t) = P (i, (j − 1)∆t)(1 − di − iγ∆t)

+di−1P (i − 1, (j − 1)∆t), (3)

and for i = N the probabilities are:

P (N, 0) = aN

P (N, j∆t) = P (N, (j − 1)∆t)(1 − Nγ∆t)

+dN−1P (N − 1, (j − 1)∆t). (4)

Finally, we find the cumulative distribution of the offloading
times, F (j∆t) = P (R, j∆t), to be:

P (R, 0) = aR

P (R, j∆t) = P (R, (j − 1)∆t)

+

N
X

i=1

(iγ∆t)P (i, (j − 1)∆t). (5)

2. IMPROVING STORAGE BY
INCREASING COMPLEXITY

The SWIM scheme can potentially lead to a large num-
ber of redundant packet copies in the system. We reduce
the storage at the nodes by eliminating packets that have
at least one copy already offloaded and thus, are no longer
necessary. There are numerous methods that could accom-
plish packet removal in this way, but we consider five pos-
sible methods here: JUST TTL, FULL ERASE, IMMUNE,
IMMUNE TX, and VACCINE. These methods progressively
extend and improve the performance of one another. In all
of these methods, the original packet and all of its copies
are erased by T = F−1(Pthresh) time-steps after the origi-
nal packet was created.

• JUST TTL is the simplest method. All packets re-
main in the system until T = F−1(Pthresh) time-steps
have elapsed from the original packet creation.
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Figure 2: Storage-delay tradeoff of SWIM using the

different methods of erasure

• FULL ERASE erases the copy of the packet from
the offloading node just after it has been offloaded to
a collection station. It is reasonable to erase the packet
because none of the copies are needed in the system
after one of them has been offloaded to a collection
station. It is, however, possible that other nodes still
carry the packet copies, once it has been erased from
the offloading node, so a node might receive the same
packet multiple times.

• IMMUNE erases the packet from the offloading node
when it is offloaded like FULL ERASE, but keeps an
identifier of the offloaded packet, so the node will not
receive that packet again. We refer to this identifier as
an “antipacket,8” since it prevents re-infection of the
node with the packets.

• IMMUNE TX erases the packet from the offloading
node when it is offloaded, keeping the antipacket, like
IMMUNE. It also shares this antipacket with other
nodes that carry copies of the offloaded packet. This
means a node may receive an identifier “antipacket”
from another node only if the node stores a copy of
the offloaded packet. At that time, the packet copy
would be erased and the “antipacket” identifier kept.

• VACCINE erases the packet from the offloading node
when it is offloaded, like previous methods. It also
shares all packets and antipackets between nodes. In
this case, a node may receive an antipacket from an-
other node even if the receiving node does not have a
copy of the packet stored.

Each of these methods corresponds to a different storage-
delay tradeoff in the system. Let us fix the desired Pthresh =
0.9. Depending on the number of nodes, the number of col-
lection stations, the mobility pattern and the probability of
sending p, we obtain different values for the network delay
and for the required node storage. We choose systems with
one collection station, a random directional mobility pat-
tern [8], and p = 1, then we vary the storage and the delay

8Similar to antibody of a biological agent



by changing the density of nodes. The higher node density
induces more copying of the packets between nodes; clearly,
to achieve shorter delay, one must invest more storage in the
system. Assuming that the small antipacket headers are 4
bytes and that the full packets are 330 bytes (as can be true
in some animal tagging applications), Figure 2 exhibits the
storage-delay tradeoff due to this increased packet copying.

3. IMPROVING ENERGY BY
RESTRICTING TRANSMISSIONS

SWIM uses replication to increase the probability that a
packet copy is offloaded to a collection station. Suppose
that there are Nc packet copies in a SWIM system; i.e., the
packet is transmitted Nc−1 times between nodes. If Nc were
constant over the entire lifetime of the packet, offloading
would be a geometric process with mean 1

Ncγ∆t
, following

the notation in Figure 1. Note that the difference ( 1
Ncγ∆t

−
1

(Nc+1)γ∆t
) is smaller when Nc is larger, but the difference

between Nc and Nc +1 is always 1. Therefore, the reduction
in average delay is smaller for the same energy expenditure
as the number of copies in the system grows. We wish to
improve SWIM by spending energy intelligently, so that each
transmission is likely to more significantly reduce the delay.

By insisting that a packet is replicated exactly Nc − 1
times, we ensure that the energy spent per packet never
exceeds a desired level.9 Each of the Nc copies acts in packet
replication as a subnetwork that behaves in the same manner
as the original SWIM scheme. If we wanted the original
system to offload a packet with probability Pthresh, then
each of the Nc independent SWIM systems only needs to
offload with probability 1 − (1 − Pthresh)1/Nc to provide
a probability of Pthresh overall. Using the Markov chain

of Figure 1 with p = 0, we can calculate TTLc = F−1[1 −

(1−Pthresh)1/Nc ] < TTL to achieve this desired probability
that each node carrying a packet copy will cause the packet
to be offload to a collection station by itself or by one of the
generations of its copy.

If these Nc copies of the packet could all be distributed
to different nodes independently at time 0 and remain for
TTLc time-steps, then this solution would be exact. Unfor-
tunately, such synchronized distribution cannot be practi-
cally implemented, though its performance provides a lower
bound for the delay. In the SWIM scheme, the packet is
generated at one node, and it must be transmitted to other
nodes in the node-to-node interactions to obtain indepen-
dent copies. Each time a node transmits a copy to another
node, it assigns the new copy a Time-To-Live of TTLc. In
this way, we will have Nc copies in the system for at least
time TTLc each, though they are not necessarily present at
the same time. We will call this process the retransmission
scheme. In the next sections, we discuss methods to obtain
these Nc copies using only local information at the nodes
and analyze the energy-delay tradeoff of the retransmission
scheme.

We claim that specifying the exact number of copies re-
duces variability in this system, reducing variability in the
delays of packets as well. That is, the cumulative distri-
bution of the delays for the retransmission scheme will be

9We assume that the lists of packet identifiers are shared
between the nodes at the beginning of each interaction, so
that packets are not unnecessarily transmitted.
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Figure 3: Possible tree structures for Nc = 7

steeper than those of the original SWIM system. Further-
more, we spend energy more intelligently by transmitting
only when there are small numbers of packets in the sys-
tem, so we expect a lower energy-delay tradeoff curve.

3.1 Distributing Nc Copies
The delays of the packets are minimized if we copy the

packet in every node-to-node interaction, replicating the packet
as fast as possible, but stopping after Nc − 1 copies are
present. However, this would require global synchronization
in the system. An alternative is based on the observation
that a node is aware of the number of hops that a packet
has already traveled and the number of times that the node
itself has replicated the packet. By pre-defining a tree with
Nc vertices, we can ensure that exactly Nc − 1 copies are
made.

Figure 3 shows two possible trees for Nc = 7: (a) the orig-
inal node delivers 6 copies of the packet to other nodes that
are only allowed to transmit to the collection station, (b)
every node must transmit copies to exactly 2 other nodes,
but the packet cannot travel more than 2 hops, unless it is
offloaded to the destination. Though we assign the Time-
To-Live of any packet to TTLc when it is created, if the
packet reduces its TTL to zero before the packet has been
transmitted the exact number of times specified by the tree
level, the packet is not erased. Such a packet copy remains
in the system until it has replicated sufficient times; then it
is removed.

We would like to choose the tree structure that best ap-
proximates the delay-minimized situation for each Nc. In-
tuitively, we realize that the 1−level tree is unlikely to be
the best approximation, because all nodes except the gen-
erating node will refuse retransmission of a packet in their
interactions. In a binary tree, more nodes are able to trans-
mit packets in their interactions; however, the nodes will
still refuse to transmit after two copies are made. We now
show how to design a tree based on the probabilities of in-
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teractions between nodes, so that the smallest number of re-
transmissions are refused. We call this locally-optimal tree.

At time t = 0, the original node, Node 1, carries the packet
and records that Nc − 1 replications are required. After the
first replication from Node 1 to Node 2, both nodes have
the same probability of meeting other nodes, so Nc−1

2
of the

remaining replications are allocated to Node 1 and its future
children, and Nc−1

2
are allocated to Node 2 and its future

children. In a similar way, if Node 2 transmits to Node 3,
then each node is given half of the remaining transmissions
(i.e., Nc−2

4
transmissions) for itself and its future children.

For example, Figure 4 shows a locally-optimal tree for
Nc = 8. This tree has log2(Nc)+1 levels, where the original

node is in the 0th level and 2i−1 nodes are in the ith level
∀i, 0 < i ≤ log2(Nc). The nodes on the same level take on
the average the same time to be distributed. We will say

that the ith epoch is the time between levels i − 1 and i.

3.2 Delays of Packets
We can think of the time for offloading of a packet as the

sum of two processes. First, there is the process of receiving
a copy of the packet at each of the Nc nodes. Second, there
is the process of offloading the packet from that node to a
collection station. From the Markov model of Figure 1 with
initial condition P (1, 0) = 1, p = 0 and Time-To-Live TTLc,
we already know the distribution of delays of the identical
offloading phases for each node. Let us estimate the length
of the reception phases Ri for each node i.

In any tree, the root node begins with a packet that it
wishes to replicate throughout the tree. Given an inter-
action, it is assumed that a node with a packet replicates
the packet to its left-most child that does not yet carry the
packet. To understand the details of the procedure, we con-
centrate first on the single-level tree case, where only the
root node is able to transmit the packet to another node.

The root node transmits to its first child following a geo-
metric process with probability ∆t

∆t1
, then two of the N total

nodes carry the packet. Since there are only N − 2 nodes
that do not carry the packet at that point, the chance for a
particular data-carrying node to meet a non-data carrying
node is reduced by a factor of N−2

N−1
. This means that send-

ing the packet to the root’s second child follows a geometric
process with probability (N−2

N−1
∆t
∆t1

). Similarly, sending the

packet to the third child follows a Geo(N−3
N−1

∆t
∆t1

) process and
so on. Therefore we can say that the mean reception phase
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Figure 5: Cumulative distribution of delays

at the ith node (assuming the original generating node is

Node 1) has length ERi = ∆t1
Pi−1

j=1(
N−1
N−j

).

Using the cumulative distribution F of our model (equa-
tion (5)) to represent the offloading phase, we are able to
predict the cumulative distribution for the total delay of a
packet. Recall that the delay, T , is the time until the first
offloading by any node, so:

F (T ) = 1 − P (no offload from Node 1 at T ) ∗ ...

∗P (no offload from Node Nc at T )

where P (no offload from Node i at T ) =

1−F{T −[∆t1
Pi−1

j=1(
N−1
N−j

)]}. Figure 5(a) shows good agree-
ment between the analytical and the empirical curves, where
we assumed Nc = 4 and Nc = 8 in a system with 40 nodes
and 1 collection station.

We use the same ideas to predict the delays for locally-
optimal Nc-trees, but recalling that the structure of the trees
allows some of the transmissions to occur concurrently. As
before, the first epoch follows a geometric process with prob-
ability ∆t

∆t1
. In the second epoch, the two data-carrying

nodes wish to copy their packets to two different non-data-
carrying nodes. This means that there are N − 3 available
nodes (since two of the N nodes carry data and the two
second-epoch nodes must be different) instead of the N − 1
nodes that were available in the first epoch. Therefore, the
second epoch follows a geometric process with probability
N−3
N−1

∆t
∆t1

. Similarly, the third epoch follows a geometric pro-

cess with probability N−7
N−1

∆t
∆t1

and so on. Therefore the cu-
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Figure 6: Energy-delay tradeoffs with confidence

level Pthresh = 0.9

mulative distribution of the delay is:

F (T ) = 1 − P (no offload from Node 1 at T ) ∗ ...

∗P (no offload from Node Nc at T )

where P (no offload from Node i at T ) =

1 − F{T − [∆t1
Pdlog

2
(i)e

j=1 ( N−1
N−2j−1

)]}. Figure 5(b) shows
that the analytical solution closely approximates the simu-
lation result.

3.3 Energy-Delay Tradeoff Results
Let us use a system with 40 nodes and 1 collection sta-

tion in a 150 ∗ 150 area, using random directional mobility
to compare the energy-delay tradeoffs of the retransmission
scheme using different distribution trees. The communica-
tion radii of both the nodes and the collection station are
7 units and we desire that 0.9 of the unique packets are
offloaded. By choosing different values for Nc, we achieve
different delays and different energy usage. For Nc small,
we use very little energy, but it takes a long time for the
packets to be offloaded with 0.9 probability. However, if
we increase Nc then we have more packets in the system;
there are more offloading opportunities and the delays are
reduced. As shown in Figure 6(a), the tradeoffs of schemes
using any of the distribution trees perform similarly for small
Nc, but the behavior varies considerably as Nc grows. These
longer latencies have to do with the delay in packet recep-
tions for nodes lower in the distribution tree.

Figure 6(b) compares the energy-delay tradeoffs of the
optimized retransmission scheme (with the locally-optimal

distribution tree) to the original SWIM scheme. As a refer-
ence, we also show the ideal lower bound of the energy-delay
curves, where the distribution of the Nc copies is instan-
teneous. The theoretical lower bound is calculated using
the model in Figure 1 with initial conditions P (Nc, 0) = 1
and setting p = 0. The simulated lower bound distributes
all Nc copies in the system uniformly at random at time
t = 0. In this figure, the lower bound and retransmis-
sion scheme curves are obtained by adjusting Nc, while the
SWIM scheme curve changes the probability p of sending a
packet in a particular interaction. We see that for higher
values of p and Nc, the retransmission scheme requires more
time to distribute the Nc independent copies. The delays
increase in this region and the original SWIM scheme out-
performs the retransmission scheme.

4. CONCLUSIONS AND FUTURE WORK
In this paper, we have examined the storage-delay and

energy-delay tradeoffs in delay-tolerant wireless networks,
and we have proposed a number of approaches to control
the tradeoffs. The use of antipackets, small headers that are
retained after a packet is offloaded to its destination, assists
the network in removing obsolete, already offloaded packets.
This reduces the utilized storage in the network, not only
without adversely impacting the packets’ delays, but in fact
causing some reduction in delays. As a point of reference,
by removing redundant data, the storage requirement in our
example system could be reduced by more than 50%.

The proposed retransmission scheme allows us to specify
the maximum energy that each packet is allowed to con-
sume. The protocol then bounds the energy consumption
to this selected maximum level and defines replication rules
in the system, so that the energy is most effectively used.
Therefore, by selecting different energy levels, different in-
stantiations of the energy-delay tradeoff are realized. For
low to moderate values of the energy usage, a system using
the retransmission scheme achieves nearly optimal delay.

In this paper, we have exposed some aspects of the re-
source and performance tradeoffs in delay-tolerant wireless
systems. Though we have examined these tradeoffs in the
context of delay-tolerant wireless networks (mostly with sen-
sor networks in mind) and using the Shared Wireless In-
fostation Model, our evaluation framework presented here
can be applied to analyze and develop the resource tradeoffs
of many delay-tolerant routing protocols. Our work could
also provide intuition for future protocol designs. We plan
on studying other tradeoffs and other techniques to con-
trol those tradeoffs. As a matter of fact, the immediate
focus of our future work is the analysis and refinement of
the capacity-delay tradeoff.
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