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Abstract
We propose a general dual-fitting technique for analyzing on-
line scheduling algorithms in the unrelated machines setting
where the objective function involves weighted flow-time,
and we allow the machines of the on-line algorithm to have
(1 + ε)-extra speed than the offline optimum (the so-called
speed augmentation model). Typically, such algorithms are
analyzed using non-trivial potential functions which yield
little insight into the proof technique. We propose that
one can often analyze such algorithms by looking at the
dual (or Lagrangian dual) of the linear (or convex) program
for the corresponding scheduling problem, and finding a
feasible dual solution as the on-line algorithm proceeds. As
representative cases, we get the following results :
• For the problem of minimizing weighted flow-time,

we show that the greedy algorithm of Chadha-Garg-
Kumar-Muralidhara is O

(
1
ε

)
-competitive. This is an

improvement by a factor of 1
ε

on the competitive ratio
of this algorithm as analyzed by them.

• For the problem of minimizing weighted `k norm of
flow-time, we show that a greedy algorithm gives an

O

(
k

ε
2+ 1

k

)
-competitive ratio. This marginally im-

proves the result of Im and Moseley.
• For the problem of minimizing weighted flow-time plus

energy, and when the energy function f(s) is equal to
sγ , γ > 1, we show that a natural greedy algorithm is
O(γ2)-competitive. Prior to our work, such a result was
known for the related machines setting only (Gupta-
Krishnaswamy-Pruhs).

1 Introduction

The problem of online scheduling of jobs on multi-
ple heterogeneous machines has been well-studied in
scheduling communities. A natural measure of perfor-
mance is to consider the average weighted flow-time of
jobs. The flow-time of a job is the total amount of time
it spends in the system, i.e., the difference between its
completion time and release date. For practical reasons,
it is not desirable to migrate jobs across machines. How-
ever, pre-emption of jobs is a much needed assumption.
Indeed there are strong lower bounds on the compet-
itive ratio of any on-line algorithm if we do not allow
pre-emption [14].

In the setting of unrelated machines, where the
time required to process a job j on machine i equals
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pij (and this could be an arbitrary quantity), Garg
and Kumar [10] showed that no on-line algorithm with
bounded competitive ratio is possible. In fact, their
example had only 3 machines, and jobs that had unit
processing time on 2 of the 3 machines.

In light of such strong lower bounds, Chadha et
al. [6] considered this problem in the speed augmen-
tation model. In this model, we allow each machine
in the on-line algorithm ε-fraction more speed than the
corresponding machine in the offline algorithm. In other
words, the work that a machine in the offline setting can
do in 1 unit of time will require only 1

1+ε time on the
corresponding machine in the on-line setting. They gave
an O( 1

ε2 )-competitive algorithm for this problem. Their
algorithm was greedy in nature : when a job arrives, it
is dispatched immediately to the machine for which the
increase in the weighted flow-time is smallest.

The objective function of minimizing the weighted
sum of flow-time has the disadvantage that it can be
very unfair to some jobs. One way of improving the
fairness criteria is to look at weighted `k norm of flow-
time of the jobs for some k ≥ 1. Im and Moseley [12]

gave an O
(

k

ε2+
2
k

)
-competitive algorithm for the prob-

lem minimizing weighted `k norm of flow-time in the
unrelated machines model. However, their algorithm
was based on a non-intuitive potential function.

Another recent line of research in this direction has
been to allow the machines to run at variable speeds.
A machine running at speed s incurs an energy cost of
f(s), where f is assumed to be a well-behaved function.
Initial work in this area assumed f to be of the form
sγ , γ > 1, and more recent work has allowed f to be
any increasing function (with some mild constraints).
This framework models modern processors, and also the
fact that multi-core architectures have the flexibility of
changing the number of processors which are running
at any time (see e.g., [11] and the references therein).
A natural objective in this setting is to minimize the
sum of weighted flow-time and energy consumed. In
this setting, when f(s) = sγ , Bansal et al. [3] gave an
O( γ

log γ )-competitive algorithm for this problem. Gupta

et al. [11] extended this to the case of related machines
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and gave an O(γ2)-competitive algorithm. Their results
hold for more general class of energy functions, and they
need the notion of speed augmentation. By giving extra
speed to the processors, one can hope to come within a
constant factor of the optimal flow-time, and increasing
the speed slightly leads to only a modest increase in
energy consumption.

Analyzing these algorithms turns out to be quite
tricky. When one does not allow speed augmentation,
one needs a very strong guarantee from any on-line
algorithm: at every point of time t, the number (or
total weight) of jobs waiting at any time in the on-line
algorithm must be close to that in the off-line optimum.
Indeed, if at time t, the gap becomes large, then the
adversary can make the on-line algorithm pay a lot by
maintaining this gap subsequently. However, with speed
augmentation, any temporary build-up in the queue
(as compared to off-line optimum) can be depleted
with time. The most powerful approach for analyzing
such algorithms has been to design clever potential
functions, and show that these algorithms behave well in
an amortized sense. Designing such potential functions
is quite non-trivial, and often, yields little insight about
how to design such functions for related problems. In
this paper, we give a more direct approach for analyzing
such algorithms.

All of these problems have a linear programming
(or convex programming) relaxation. In this paper, we
argue that often, it is much easier (and intuitive) to
analyze these algorithms by dual fitting, i.e., show that
there is a feasible solution to the corresponding dual
LP (or Lagrangian relaxation) whose objective value
is close to that of the on-line algorithm. In fact, we
strongly believe that this method is as powerful as the
potential function approach, and gives a much more
principled approach towards analyzing such algorithms.
As examples of our claim, we prove the following
results :

• For the problem of minimizing weighted flow-time
in the unrelated setting, we show that the greedy
algorithm of Chadha et. al [6] is O

(
1
ε

)
-competitive.

This is an improvement by a factor of 1
ε on the

competitive ratio of this algorithm as analyzed
by [6].

• For the problem of minimizing weighted `k norm of
flow-time, we show that a greedy algorithm along

the lines of [6] gives an O
(

k

ε2+
1
k

)
-competitive ratio.

This marginally improves the result of Im and
Moseley [12].

• For the problem of minimizing weighted flow-time
plus energy in the unrelated setting and when the

energy function f(s) is equal to sγ , γ ≥ 1, we
show that a natural greedy algorithm is O(γ2)-
competitive. Prior to our work, such a result was
known for the related machines setting only [11].
Our analysis also works for a more general class of
energy functions, but this is not the emphasis of
our result.

We emphasize that although our techniques either
improve or match the best known results for these prob-
lems, the main contribution of this paper is the tech-
nique of analyzing such algorithms by dual fitting. To il-
lustrate the ideas involved in some more detail, consider
the first problem above : minimizing weighted flow-
time in the unrelated setting. The LP relaxation for
this problem is given in Figure 1. The constraint (4.3)
requires that the job j should be processed completely.
Corresponding to this constraint we have a dual variable
αj . One interpretation of dual variables is the follow-
ing : suppose we violate the corresponding constraint in
the primal LP by a tiny amount, say δ. Then the change
in the objective function is roughly αjδ. Motivated by
this, we think of the change in the objective function if
we change the right hand side of constraint (4.3) from
1 to 0. Assuming no job is released after j, we should
define αj as the increase in the flow-time of all the jobs
because of the arrival of j (see Section 4.2 for more de-
tails). Similarly, the constraint (4.4) says that in any
unit time slot, a machine can process unit volume. If
we change the right hand side from 1 to 0, and assume
that no job arrives after time t, then the change in the
objective function is exactly equal to the total weight
of jobs waiting at time t – so, we define the correspond-
ing dual variable βit as equal to this quantity (scaled
by some factor). The only remaining thing is to check
that these dual variables are feasible. In the other set-
tings considered in this paper, one can similarly define
dual variables in a very natural manner. The bulk of
the work lies in checking feasibility of the dual variables
defined in this manner – but the approach remains very
intuitive and principled.

In Section 4, we consider the problem of minimizing
total weighted flow-time. We extend the result to the
problem of minimizing weighted `k norm of the flow-
time in Section 5. The problem of minimizing the sum
of weighted flow-time and energy consumed is discussed
in Section 6.

2 Related Work

The on-line problem of minimizing weighted flow-time
has no bounded competitive ratio. In fact, this lower
bound result holds even for the parallel machines set-
ting [7]. Better results are known for the setting of
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unweighted flow-time (see e.g., [9] and the references
therein). However, Garg and Kumar [10] showed that
strong lower bounds on the competitive ratio hold even
if all machines are identical and a job can go on a subset
of machines only.

Speed augmentation in the online setting was first
considered by Kalyanasundaram and Pruhs [13] who
used it to get O(ε−1)-competitive algorithm for min-
imizing flow-time on a single machine in the non-
clairvoyant setting. In the clairvoyant setting, Bansal
and Pruhs [2] showed that SRPT (Shortest Remain-
ing Processing Time first) is O(ε−1) competitive for
all `k-norms of flow time, k ≥ 1. They extended this
to weighted `k norms and showed that HDF (Highest
Density First) is O(ε−1)-competitive [4]. Chekuri et
al. [8] showed that the immediate dispatch algorithm of
Avrahamai and Azar [1] is O(ε−1)-competitive for all
`k-norms, k ≥ 1. Garg and Kumar [6] gave a natural
greedy algorithm for the setting of unrelated machines.
They showed that this algorithm is O(ε−2)-competitive
for weighted flow-time. Im and Moseley [12] extended

this to an O(kε−(2+
2
k ))-competitive algorithm for the

case of weighted `k norm for all k ≥ 1. Their algorithm,
however, is based on a non-trivial potential function.

For the objective of weighted flow-time plus energy

on a single machine, Bansal et al. [5] gave O
(

γ
log γ

)
-

competitive algorithm for fractional weighted flow plus

energy, which then implied O
(

γ2

log2 γ

)
-competitive al-

gorithm for integral weighted flow plus energy. Here,
the energy function was of the form sγ . The schedul-
ing algorithm was as follows : at any point of time,
the speed s is chosen such that the energy consumed
is equal to the total fractional weight of jobs waiting
in the queue. Further, the machine followed the HDF
scheduling policy. Recently, Bansal et.al. [3] considered
a very general class of energy functions, and gave a con-
stant factor competitive algorithm for the sum of frac-
tional weighted flow-time and energy. This implies an

O
(

γ
log γ

)
-competitive algorithm for the sum of integral

weighted flow-time and energy when the energy func-
tion is sγ . Gupta et al. [11] extended this to the setting
of related machines (the competitive ratio was O(γ2)).

3 Preliminaries

We are given a set of m machines, and a set of jobs
arrive over time. A job j is released at time rj and
requires pij units of processing if scheduled on machine
i. Further, job j has a weight wij if it is scheduled
on machine i. Let dij = wij/pij denote the density
of job j on machine i. A machine can process jobs
preemptively, but we do not allow jobs to be migrated

across machines. The flow-time of a job is the difference
between its completion time and release date. If a job
j gets processed on machine i, its weighted flow-time is
wij times its flow-time.

4 Weighted flow-time on Unrelated Machines

We consider the problem of minimizing the weighted
sum of flow-time of jobs. In Section 4.1, we describe the
greedy algorithm of Chadha et al. [6]. In Section 4.2,
we analyze this algorithm. We first describe the LP
relaxation and its dual. Then we show that the dual
variables can be set as the jobs arrive. These dual
variables need to satisfy two conditions : (i) they should
be feasible to the dual LP, and (ii) the dual objective
value should be close to the weighted flow-time of the
greedy algorithm.

4.1 The greedy algorithm
When a job arrives, the algorithm dispatches it

immediately to one of the machines. Let Ai(t) the
set of jobs which get dispatched to machine i and are
unfinished at time t. Consider a job j ∈ Ai(t). Let
pj(t) denote the remaining processing time of job j.
Define the residual density of j at time t, dj(t), as
wij
pj(t)

. Each machine follows the highest residual density

first (HRDF) algorithm : at any time t, machine i
processes the job in Ai(t) with highest residual density.
Observe that if all weights are 1, then the HRDF policy
becomes SRPT (Shortest Remaining Processing Time
first) policy. Also, it is worth noting, that arrival of
new jobs does not change the residual density of a job,
and hence, the relative ordering of jobs does not change
with time.

It remains to specify the dispatch policy. When a
job j arrives at time t, we compute, for each machine
i, the increase in weighted flow-time if we dispatch j to
machine i. More precisely, let Qij denote the quantity

1

1 + ε

wij · ∑
j′∈Ai(t):dj′ (t)≥dij

pj′(t) + wijpij

+ pij ·
∑

j′∈Ai(t):dj′ (t)<dij

wij′

 .(4.1)

The dispatch algorithm is greedy : it assigns j to the
machine i for which Qij is minimum. We shall use A
to denote this algorithm. We shall denote the weighted
flow-time of A by FA.

4.2 Analysis
We first write an LP relaxation for the problem of

minimizing weighted flow-time. We shall use the letters
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Primal LP

min
∑
i,j,t

wij · xijt ·
(
t− rj
pij

+
1

2

)
(4.2)

∑
i,t

xijt
pij

= 1 for all j(4.3)

∑
j

xijt ≤ 1 for all i, t(4.4)

xijt ≥ 0 for all j, i, t ≥ rj

Dual LP

max
∑
j

αj −
∑
i,t

βit(4.5)

αj
pij
− βit ≤ dij(t− rj) +

wij
2

for all i, j, t(4.6)

αj , βit ≥ 0 for all i, j, t(4.7)

Figure 1: The LP relaxation and its dual

i, j, t for machines, jobs, and (integral) time respectively.
We assume all release dates rj and processing times pij
are integers. We divide the time-line into slots of unit
length, i.e., intervals of the form [t, t + 1] for all non-
negative integers t. Let xijt denote the fraction of the
slot [t, t+1] used by machine i for processing job j. Note
that xijt is defined only if t ≥ rj . The LP relaxation is
described in Figure 1.

The quantity
∑
t
xijt
pij

refers to the fractional amount

of job j processed on machine i. Thus, constraint (4.3)
refers to the fact that job j is processed to a fraction of
one. Constraint (4.4) refers to the fact that a machine
can only perform one unit of processing during [t, t+1].
In the objective function, the first term can be thought
of as fractional flow-time –

xijt
pij

fraction of the job j

spends (t − rj) unit of time before it finishes. The
second term (ignoring the factor of 1/2) in the objective
function measures the total processing time – this term
is required because a solution to the LP above could
process a job simultaneously on multiple machines, and
so, the flow-time of a job could be much smaller than its
processing time. The following claim, which says that
the LP above is indeed a relaxation, was proved in [9].

Claim 4.1. [9] For a (non-migratory) schedule S, con-
sider the corresponding feasible solution to the LP above.
Then the objective value of this solution is at most the
weighted flow-time of S.

The dual LP of this relaxation is described in
Figure 1. The goal is to prove the following theorem.

Theorem 4.1. There exists a feasible solution αj , βit
to the dual LP such that the objective value of this
solution, i.e.,

∑
j αj −

∑
i,t βit, is Ω(ε · FA).

We now define these dual variables. The variable
βit is equal to 1

1+ε times the total weight of jobs which

are waiting at time t on machine i, i.e.,

βit =
1

1 + ε

∑
j∈Ai(t)

wij .

Observe that
∑
i,t βit is exactly equal to FA

1+ε . Now,
we define αj . Suppose j is released at time t and it
gets assigned to machine i. Then αj is equal to the
increase in weighted flow-time of jobs in Ai(t) (and job
j). In other words, αj is equal to Qij as defined in
equation (4.1).

Lemma 4.1.
∑
j αj −

∑
i,t βit is at least ε

1+ε · F
A.

Proof. The statement follows because
∑
j αj is equal to

FA and
∑
i,t βit is equal to FA

1+ε .

It now remains to prove that this is a feasible solution.

Lemma 4.2. The values αj/2, βit/2 form a feasible so-
lution to the dual LP.

Proof. Fix a job j and machine i. Let t denote the
release date of j and t′ be an arbitrary time after t. We
need to show that

αj
pij
− βit′ ≤ dij(t′ − t) +

wij
2
.(4.8)

We can assume that no new job arrives after j – indeed,
this will not affect the value αj , and will only decrease
βit′ . Let A1

i (t) denote the set of jobs j′ in Ai(t) for
which dj′(t) ≥ dij , and A2

i (t) be the jobs j′ in Ai(t)
for which dj′(t) < dij . We arrange the jobs in Ai(t)
in ascending order of residual density; let the sequence
of jobs be j1, . . . , jn. Note that machine i will process
the jobs in Ai(t) in this sequence. Let the set A1

i (t)
consist of jobs {j1, . . . , jr}, and (hence) the set A2

i (t)
be {jr+1, . . . , jn}.
Suppose at time t′, machine i is processing job jk. Two
cases arise :
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• jk ∈ A1
i (t) : Here, (t′ − t)(1 + ε) ≥

∑k′−1
l=1 pjl(t).

Further, all jobs among jk, . . . , jn belong to Ai(t′).
Recall that αj = mini′ Qi′j ≤ Qij . So,

(1 + ε)αj
pij

≤ (1 + ε)Qij
pij

≤
∑

j′∈A1
i (t)

dijpj′(t) + wij +
∑

j′∈A2
i (t)

wij′

= dij

(
k−1∑
l=1

pjl(t)

)
+ dij

(
r∑
l=k

pjl(t)

)
+ wij

+
∑

j′∈A2
i (t)

wij′

≤ dij(t′ − t)(1 + ε) +

r∑
l=k

wijl + wij +
∑

j′∈A2
i (t)

wij′

≤ dij(t′ − t)(1 + ε) + wij + (1 + ε)βit′

where the second last inequality follows from the
fact that if j′ ∈ A1

i (t), then dj′(t) ≥ dij , and so
pj′(t)dij ≤ wij′ .

• jk ∈ A2
i (t) : Again, (t′ − t)(1 + ε) ≥

∑k′−1
l=1 pjl(t),

and all jobs among jk, . . . , jn belong to Ai(t′). As
above,

(1 + ε)αj
pij

≤ (1 + ε)Qij
pij

≤ dij

 ∑
j′∈A1

i (t)

pj′(t)

+ wij +
∑

j′∈A2
i (t)

wij′

= dij

(
r∑
l=1

pjl(t)

)
+ wij +

k−1∑
l=r+1

wijl +

n∑
l=k

wijl

≤ dij

(
r∑
l=1

pjl(t)

)
+ wij + dij

(
k−1∑
l=r+1

pjl(t)

)
+ (1 + ε)βit′

≤ dij(t′ − t)(1 + ε) + wij + (1 + ε)βit′

Thus, we have shown that
αj
2 ,

βit
2 satisfy the inequal-

ity (4.8) the in both cases.

Proof of Theorem 4.1. The desired dual feasible solution
is αj/2, βit/2 (Lemma 4.2). Lemma 4.1 shows that the
dual objective value is at least ε

2(1+ε)F
A = Ω(ε) · FA.

5 Extension to `k norm

We now extend our result to weighted `k norm of the
flow-times of jobs. We state the objective function more

precisely. For a schedule S, let Cj be the completion
time of job j. Define the weighted `k-norm of the flow-
time vector as∑

j

wi(j)j(Cj − rj)k
 1

k

,

where i(j) is the machine on which j gets scheduled. It
will be easier to deal with the kth power of this quantity.
Let FS,k denote

∑
j wi(j)j(Cj − rj)k.

5.1 Scheduling Algorithm
We define the scheduling algorithm in two stages –

the first algorithm A is given a speed-up of (1 + ε), and
then the schedule B is given a speedup of (1 + ε) over
A.

Our algorithm A again behaves in a manner similar
to the greedy algorithm described in Section 4.1. When
a job arrives, it gets immediately dispatched to one of
the machines, and hence, we can define the quantities
Ai(t), pj(t), dj(t) as before. Again, each machine follows
the highest residual density first (HRDF) algorithm. It
remains to describe the dispatch policy.

For a job j′ ∈ Ai(t), let Rj′(t) be the remaining
time before j′ finishes. i.e., Cj′ − t, where Cj′ is the
completion time of j′ assuming no jobs arrive after time
t. Suppose a job j arrives at time t. Given a machine i,
define Qij as

wij ·

(∑
j′∈Ai(t):dj′ (t)≥dij

pj′(t) + pij

1 + ε

)k
+(5.9)

∑
j′∈Ai(t):dj′ (t)<dij

wij′ ·

((
Rj′(t) +

pij
1 + ε

)k
−Rj′(t)k

)
.

Now, assign j to the machine i for which Qij is smallest.
Note that this is different from the increase in FA,k if we
assign j to machine i – it does not look at the age of a
job. The quantity is just measuring the increase in flow-
time if we assume all jobs in Ai(t) are released at time
t. Clearly, this cannot yield a competitive algorithm
because if the age of a job is very high, then we should
process it soon. However, we will show that after giving
one more round of extra speed to the machines, the
resulting schedule becomes constant-competitive.

Before we describe the schedule B, we note one
property of the HRDF policy. Fix a machine i, and
consider the jobs which get dispatched to i in A –
the HRDF policy gives a total ordering on these jobs.
Indeed, consider two such jobs j1 and j2 which are
dispatched to i. Let t denote max(rj1 , rj2). Then HRDF
prefers j1 if dj1(t) ≥ dj2(t), otherwise it prefers j2. It is
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easy to show that this gives a total ordering on the jobs
dispatched to i, and the HRDF policy processes the jobs
according to this ordering.

In the schedule B, the set of jobs dispatched to any
machine i will be the same as in A. Fix a machine i.
In B, the jobs will be prioritized by the ordering given
by HRDF policy in A (as described above). Further the
machine i will process at (1 + ε)-times the speed of i in
A.

5.2 Analysis
We first establish some useful inequalities.

Lemma 5.1. Suppose a1, . . . , am are non-negative inte-
gers. Let bi denote a1 + · · ·+ ai. Then,

k ·
m−1∑
i=1

ai+1b
k−1
i ≤ bkm ≤ k ·

m∑
i=1

aib
k−1
i .(5.10)

Taking a1 = · · · = am = 1, we get

k ·
m−1∑
i=1

ik−1 ≤ mk ≤ k ·
m∑
i=1

ik.(5.11)

Proof. Consider the area under the curve y = xk−1

where x varies from 0 to bm. Then, it is easy to
check that this area is equal to 1

k b
k
m. Now, one way

of upper bounding this area is the following : for each
i = 1, . . . ,m, construct a rectangle of height bk−1i and
base between the points bi−1 and bi on the x-axis. It
is easy to check that the sum of the areas of these
rectangles is at least the area under the curve mentioned
above. The lower bound is proved similarly.

Lemma 5.2. Let a, b be non-negative integers. Then,
for any ε, 0 < ε < 1,

(a+ b)k ≤ (1 + ε)ak +

(
3k

ε

)k
· bk.(5.12)

Proof. If b ≤ ε·a
2k , then (a+b)k ≤ (1+ ε

2k )kak ≤ (1+ε)ak.

Otherwise, (a+ b)k ≤
(
2k
ε + 1

)k
bk.

We now write an LP relaxation for this problem.
Here, it will be convenient to think of time t as a
continuous variable. The LP relaxation is described in
Figure 2. The variable xijt should now be thought of as
the rate at which machine i is processing job j at time
t. The constraints are same as those in the LP for total
weighted flow-time case (Figure 1).
We now argue that it is indeed a relaxation.

Lemma 5.3. Consider a schedule S (where machines
run at their original speed), and let xijt be the corre-
sponding LP solution. Then, the objective value of this
LP solution is at most 2FS,k.

Proof. Consider a job j, and suppose its completion
time is Cj . Then its contribution to FS,k is wij(Cj−rj)k
– here i is the machine on which j gets scheduled. Now,

∫
t

wijxijt
pij

(t− rj)kdt ≤ wij(Cj − rj)k
∫
t

xijt
pij

dt

= wij(Cj − rj)k.

Thus the first term in the objective function is at most
FA,k. Now, if a job j is scheduled on machine i by
S, then

∫
t
xijtdt = pij , and so,

∫
t
wijp

k−1
ij xijtdt =

wijp
k
ij ≤ wij(Cj − rj)

k. Therefore, the second term

in the objective function is also at most FA,k.

Rest of the plan of the proof is to come up with a
feasible dual solution whose objective value is close to
FA,k. The dual LP is shown in Figure 2. We assume
that the machines in A have (1 + ε)-extra speed. For a
machine i and time t, define βit as

k ·
∑

j∈Ai(t)

wijRj(t)
k−1.

For a job j, define αj as the quantity Qij defined in in
(5.9) where i is the machine to which j gets dispatched.
The following lemma shows that the dual variables as
defined above have objective value close to the cost of
schedule B.

Lemma 5.4. The objective value for the solution αj , βit
defined above, i.e.,

∑
j αj−

∑
i

∫
t
βitdt is Ω

(
εk+1FB,k

)
.

Proof. Note that

∑
i

∫
t

βit = k
∑
i

∫
t

∑
j∈Ai(t)

wijRj(t)
k−1dt(5.19)

= k
∑
j

wi(j)j

∫
t≥rj

Rj(t)
k−1dt,

where i(j) is the machine to which j gets dispatched.
For a fixed j, let us try to understand the right hand
side above. Let t0 = rj < t1 < . . . < tr be the times
at which Rj(t) is discontinuous – this happens precisely
when a job of higher density than j gets dispatched to
machine i(j) at time t. If t is not one of such times,
then Rj(t) decreases linearly at the rate of 1 + ε. So
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Primal LP

min
∑
i,j

wij

∫
t

(
xijt
pij

(t− rj)k + pk−1
ij xijt

)
dt(5.13)

∑
i

∫
t≥rj

xijt
pij

dt = 1 ∀j(5.14) ∑
j

xijt ≤ 1 ∀i, t(5.15)

xijt ≥ 0 ∀j, i, t ≥ rj

Dual LP

max
∑
j

αj −
∑
i

∫
t

βitdt(5.16)

αj
pij
− βit ≤ dij(t− rj)k + wijp

k−1
ij ∀i, j, t(5.17)

αj , βit ≥ 0 ∀i, j, t(5.18)

Figure 2: The LP relaxation and its dual

(define tr+1 as Cj),∫
t≥rj

kRj(t)
k−1dt =

r∑
l=0

k

∫ t−l+1

t+l

Rj(t)
k−1dt

= k

r∑
l=0

∫ t−l+1

t+l

(
Rj(t

+
l )− (1 + ε)(t− tl)

)k−1
dt

=
1

(1 + ε)
·
r∑
l=0

(
Rj(t

+
l )k −Rj(t−l+1)k

)
=

1

(1 + ε)
·
r∑
l=0

(
Rj(t

+
l )k −Rj(t−l )k

)
(5.20)

where we define Rj(t
−
0 ) as 0. Let ∆(j) denote the

quantity
r∑
l=0

(
Rj(t

+
l )k −Rj(t−l )k

)
.

Now, observe that Qij as defined in (5.9) is exactly
measuring the increase in

∑
j′ wi(j′)j∆(j) if j gets

dispatched to machine i and no jobs arrive after j. Thus,∑
j αj is exactly equal to

∑
j wi(j)j∆j . Combining this

with (5.19) and (5.20), we see that∑
j

αj −
∑
i

∫
t

βit =
ε

1 + ε

∑
j

∆j .

It remains to prove that ∆j ≥ εkFB,kj , where FB,kj

denotes the kth power of the flow-time of j in the
schedule B.

We begin with a useful claim first.

Claim 5.1. For a job j and time t ≥ rj, if Rj(t) ≤
ε(t− rj), then job j finishes by time t in B.

Proof. For the sake of this proof, let RAj (t) denote
the remaining processing time of j at time t in A,
i.e., Rj(t), and RBj (t) be the corresponding quantity

for B. It is easy to check the invariant that for any
time t and job j, RBj (t) ≤ RAj (t). Now, at time

rj , let V A be the total remaining processing time of
jobs which have precedence over j (we have already
mentioned that HRDF induces a total ordering on jobs).
Define V B similarly for the schedule B. Our invariant
implies that V B ≤ V A. Suppose, for the sake of
contradiction, that j does not finish at time t in B. Then
B processes jobs of priority higher than j during [rj , t],
and the total processing done by B during this interval
is (1 + ε)2(t − rj). If V denotes the total processing
time of jobs of priority higher than j which get released
during [rj , t], it follows that

V + V B > (1 + ε)2(t− rj).

But then, the total remaining processing time of such
jobs in A at time t will be at least

V+V A−(1+ε)(t−rj) ≥ V+V B−(1+ε)(t−rj) > ε(t−rj).

This implies that Rj(t) > ε(t− rj), a contradiction.

Fix a job j, and let t0 = rj < t1 < . . . < tr < tr+1 =
Cj be as defined above (with respect to scheduleA). Let
Fj(t) be the flow-time of j assuming no jobs arrive after
time t (in schedule A). So, Fj(t) = Rj(t) + (t − rj).
Let t be the first time in A such that Rj(t) ≤ ε(t− rj).
Since Rj(t), as a function of t, is continuous except with
finite discrete positive jumps, it must be the case that
at time t, Rj(t) = ε(t− rj). Claim 5.1 shows that j will
finish by time t in B. Therefore,

εkFB,kj ≤ εk(t− rj)k ≤ Rj(t)k

Suppose t lies between tm and tm+1. Then Rj(t) ≤

7



Rj(t
+
m), and observe that

Rj(t
+
m)k ≤ Rj(t+m)k +

m−1∑
l=0

(
Rj(t

+
l )k −Rj(t−l+1)k

)
=

m∑
l=0

(
Rj(t

+
l )k −Rj(t−l )k

)
≤ ∆j .

Now, we prove that αj , βit are nearly feasible to the dual
LP.

Lemma 5.5. The values αj/γ, βit/γ form a feasible

solution to the dual LP, where γ is
(
Ω
(
k
ε

))k
.

Proof. Fix a job j and machine i. Let t denote the
release date of rj , and fix a time t′ ≥ t. We will show
that

αj
pij
− βit′ ≤

(
Ω

(
k

ε

))k
· dij((t′ − t) + pij)

k.(5.21)

This will imply the lemma because

dij((t
′ − t) + pij)

k ≤ 2kdij(t
′ − t)k + 2kwijp

k−1
ij .

We will make one simplifying assumption – no new job
arrivals happen during [t, t′] – indeed such job arrivals
will not change αj , but would only increase βit′ . Now,
arrange the jobs j′ in Ai(t) in descending order of dj′(t)
values – let this order be j1, . . . , jm. We first observe
that at time t′, dj1(t′) ≥ dj2(t′) ≥ . . . ≥ djm(t′). Indeed,
machine i processes jobs in this order. So at time t′, if it
is processing job jl, then, dj1(t′) = · · · = djl−1

(t′) =∞,
djl(t

′) ≥ djl(t) and djl+1
(t′) = djl+1

(t), . . . , djm(t′) =
djm(t).

We develop some more notation. Let A1
i (t) denote

those jobs j′ in Ai(t) for which dj′(t) ≥ dij , and A2
i (t)

be the remaining set of jobs. Assume that A1
i (t) =

{j1, . . . , jr}, and so, A2
i (t) = {jr+1, . . . , jm}.

Recall that αj = miniQij . So,

αj
pij
≤ Qij

pij
= dij

(∑
j′∈A1

i (t)
pj′(t) + pij

1 + ε

)k

+

∑
j′∈A2

i (t)
wij′

(
(Rj′(t) +

pij
1+ε )k −Rj′(t)k

)
pij

(5.22)

Now, we simplify each of the terms above.

Claim 5.2.

dij

(∑
j′∈A1

i (t)
pj′(t) + pij

1 + ε

)k
≤ k

∑
j′∈A1

i (t)

wij′Rj′(t
′)k−1

+

(
3k

ε

)k
· dij((t′ − t) + pij)

k.

Proof. During the period [t, t′], (t′ − t)(1 + ε) amount
of processing is done. So,

∑
j′∈A1

i (t)
(pj′(t) − pj′(t′)) =∑

j′∈A1
i (t)

pj′(t) −
∑
j′∈A1

i (t
′) pj′(t

′) ≤ (1 + ε)(t′ − t).

Also, observe that Rjl(t
′) = 1

1+ε

∑l
s=1 pjs(t

′). There-
fore,

(∑
j′∈A1

i (t)
pj′(t) + pij

1 + ε

)k

≤

 ∑
j′∈A1

i (t
′)

pj′(t
′)

1 + ε
+ pij + (t′ − t)

k

(5.12)

≤ (1 + ε)

 ∑
j′∈A1

i (t
′)

pj′(t
′)

1 + ε

k

+

(
3k

ε

)k
(pij + (t′ − t))k

(5.10)

≤ k
∑

j′∈A1
i (t
′)

pj′(t
′)Rj′(t

′)k−1+

(
3k

ε

)k
(pij + (t′ − t))k.

Now, multiplying both sides by dij , and using the
fact that j′ ∈ A1

i (t), we get pj′(t
′)dij ≤ pj′(t)dij =

wij′
dij
dj′ (t)

≤ wij′ . This implies the lemma.

Bounding the second term in equation (5.22) is more
non-trivial. We begin with the following claim.

Claim 5.3.

∑
j′∈A2

i (t)

wij′

pij

((
Rj′(t) +

pij
1 + ε

)k
−Rj′(t)k

)

≤ k

1 + ε
2

∑
j′∈A2

i (t)

wij′Rj′(t)
k−1 + 3

(
8k

ε

)k
dijp

k
ij

8



Proof. Using binomial expansion,

(
Rj′(t) +

pij
1 + ε

)k
−Rj′(t)k

= k · pij
1 + ε

·Rj′(t)k−1 +

k∑
l=2

(
k

l

)
Rj′(t)

k−l
(

pij
1 + ε

)l
.

If pij ≤ ε
8kRj′(t), then it is easy to check that the above

expression is at most k
1+ε/2 · pij ·Rj′(t)

k−1. So, assume

that Rj′(t) ≤ 8k
ε pij – let J ′ denote the set of such

jobs. For such jobs, it is again easy to check (using
the binomial expansion) that

∑
j′∈J′

wij′

pij

((
Rj′(t) +

pij
1 + ε

)k
−Rj′(t)k

)(5.23)

≤ k

1 + ε

∑
j′∈J′

wij′Rj′(t)
k−1 + 2

(
8k

ε

)k−1
pk−1ij

∑
j′∈J′

wij′

Observe that there is a job in J ′ (the one which
is processed last by i) for which (1 + ε)Rj′(t) ≥∑
j′∈J′ pj′(t). So, we get

∑
j′∈J′

wij′ ≤
∑
j′∈J′

pj′(t)dij ≤
8k(1 + ε)

ε
wij ,

where the first inequality follows from the fact that
j′ ∈ A2

i (t). Substituting the above in (5.23) implies
the lemma.

We now simplify the expression in the claim above.
Recall that the set of jobs in Ai(t) are ordered j1, . . . , jr,
and those in A2

i (t) are jr+1, . . . , jm. Also, note that
(1 + ε)Rjs(t) =

∑s
s′=1 pjs′ (t). Let ` be the highest

index for which Rj`(t) ≤
16k(t′−t)

ε . We now split the
sum in the right hand side of Claim 5.3 in two parts,
and analyze each of them.

Claim 5.4.

k
∑̀
s=r+1

wijsRjs(t)
k−1 ≤

(
Ω

(
k

ε

))k
dij · (t′ − t)k.

Proof. Consider jobs js, s = r + 1, . . . , `. Since js ∈

A2
i (t), wijs ≤ pjs(t) · dij . Now,

k
∑̀
s=r+1

pjs(t)

1 + ε
Rjs(t)

k−1

= k
∑̀
s=r+1

pjs(t)

1 + ε

(
Rjs−1

(t) + pjs(t)
)k−1

≤ k2k
∑̀
s=r+1

pjs(t)

1 + ε
Rjs−1

(t)k−1 +
k2k

1 + ε

∑̀
s=r+1

pjs(t)
k

(5.10)

≤ 2kRj`(t)
k +

k2k

1 + ε

( ∑̀
s=r+1

pjs(t)

)k

Since
∑`
s=r+1 pjs(t) = (1 + ε)Rj`(t), and Rj`(t) ≤

16k(t′−t)
ε , we get the result.

Claim 5.5.

k

m∑
s=`+1

wijsRjs(t)
k−1 ≤

(
1 +

ε

2

)
k

m∑
s=`+1

wijsRjs(t
′)k−1.

Proof. For such jobs js, Rjs(t) ≥
16k(t′−t)

ε . During [t, t′]
machine i can process at most (1 + ε)(t′ − t) ≤ 2(t′ − t)
volume of jobs. So, Rjs(t

′) ≥
(
1− ε

8k

)
Rjs(t).

Combining Claims 5.2, 5.3, 5.4, 5.5, we get the
statement of the lemma.

Finally, we have our main theorem.

Theorem 5.1. Algorithm A is an O
(

k

ε2+
1
k

)
-

competitive algorithm for minimizing the weighted
`k-norm of flow-time.

Proof. Let O denote the optimal schedule. We have

Ω

(
εk+1FB,k

γ

)
Lemma 5.4
≤ αj

γ
−
∑
i

∫
t
βitdt

γ

Lemmas 5.3, 5.5

≤ 2FO,k.

Taking kth root gives the theorem.

6 Weighted Flow-time + Energy on Unrelated
Machines

We now consider the problem of minimizing the sum of
weighted flow-time and energy. We are also given an
energy function which has the form f(s) = sγ , where
γ ≥ 1 is a constant parameter. In other words, if a
machine runs at speed s, then the energy consumed per
unit time is sγ . We define ε = 1

γ . We again need a

notion of speed augmentation. Let f̃ denote the function

f̃(s) = f (s(1− ε)) .

9



Note that f̃ allows us to incur the same energy cost as
f , however with an extra speed-up of 1

1−ε . We shall

allow our algorithm to use f̃ , whereas the optimal off-
line algorithm will use f . Note that the notion of f̃
is just for the purpose of designing and analyzing the
algorithm. The algorithm will of course incur the cost
as dictated by f .

For technical reasons, which will become clear later,
it will be easier for us to work with fractional weighted
flow-time of jobs. Let pj(t) be the remaining processing
time of job j at time t (in a schedule). The fractional
remaining weight of the job at time t is defined as

wj(t) =
pj(t)
pj

wij = dijpj(t), where dj is the density of

job j and i is the machine to which it gets dispatched.
The fractional weighted flow-time of job j is defined as∫

t≥rj
wj(t)dt.

Our algorithm will be designed for minimizing the
sum of total fractional weighted flow-time of jobs and
the energy consumed. It will follow from standard
arguments that one can derive a competitive algorithm
(with an extra γ-factor in the competitive ratio) for
minimizing the sum of total weighted flow-time of jobs
and the energy consumed.

6.1 The algorithm
In this section, we describe the scheduling algo-

rithm. A. For a machine i and time t, recall that Ai(t)
denotes the set of waiting jobs at time t in the queue of
machine i. Let Wi(t) denote the total fractional remain-
ing weight of the jobs in Ai(t). At time t, a machine i
will run at the speed st which satisfies f̃(st) = Wi(t).
The machine follows HDF (Highest Density First) pol-
icy : at any time, it processes the job in its queue with
highest density. When a job j, arrives we compute for
each machine i the increase in the fractional flow-time
if we dispatch j to i – call this quantity Qij . The job is
dispatched to the machine for which Qij is smallest.

Note that the total fractional weighted flow-time of
our algorithm is equal to the total energy consumed (if
we use f̃). This algorithm is essentially the same as that
of Bansal et al. [5].

6.2 Analysis
We first give some intuition behind the analysis.

One can write a convex program for this problem. The
idea is again to set the variables in the Lagrangian
dual. Recall one crucial (and easy to see) property we
used while analyzing the algorithms in previous section :
if after some time t, we do not dispatch any jobs to
a machine i, then the total weight of remaining jobs
at a time t′ ≥ t on machine i can only decrease as

compared to the case when more jobs get dispatched
to i after time t. This monotonicity property may not
hold here because as more jobs get dispatched to a
machine, its speed also increases. In fact, it turns out
that such a property may not hold if we are working
with the HRDF policy and look at the total weight of
remaining jobs. However, if we work with the HDF
scheduling policy and only look at the total remaining
fractional weight of jobs, then such a property holds. We
first show this result. Then we analyze the scheduling
algorithm as done in previous sections. The fact that
we are now working with a convex rather than a linear
program makes the calculations more non-trivial, but
the definition of dual variables remains the same.

In the following discussion, we shall assume, for ease
of notation, that there is only one machine. We can then
apply the result to any of the machines in our input
instance.

Given an input instance (with only one machine),
we shall define several other instances, which we shall
denote by I or I ′. We shall apply our algorithm A
on each of these instances. For an instance I, we shall
let AI(t) to be the set of jobs waiting at time t in I
(when we run A on I). Define wIj (t), pIj (t) similarly.

We shall use W I(t) to denote the total fractional weight
of jobs in AI(t), i.e.,

∑
j∈AI(t) w

I
j (t). If we do not put

a superscript instance I, then we will be refering to the
actual input instance. Suppose in an instance I, no
job gets released after a certain time t. For a value W ,
0 ≤ W ≤ W I(t), we define the job jI(W, t) as follows :
run the algorithm A on I, and consider the time t′ ≥ t
when W I(t′) = W . Then jI(W, t) is the job which is
being processed at time t′.
A monotonicity property : Consider two instances
I1 and I2 which are identical except that there is a job
j in I2 which does not appear in I1. Further, assume
that no jobs are released after time rj in either of the
instances.

Claim 6.1. For all W , 0 ≤W ≤W I1(rj),

djI2 (W,rj) ≤ djI1 (W,rj)
Proof. The set of jobs AI1(rj) and AI2(rj) are identical
except for the job j which appears in the latter set.
Arrange the jobs in AI1(rj) by decreasing density. Let
this ordering be j1, . . . , jr. The corresponding order for
AI2(rj) will be same but with j inserted somewhere in
the sequence. Since the two instances are identical till
rj , w

I1
jl

(rj) = wI2jl (rj) for all l. Now, jI1(W, rj) is the
job jl, where the index l satisfies :

wI1jl (rj)+ . . .+wI1jr (rj) ≤W < wI1jl+1
(rj)+ . . .+wI1jr (rj).

Since the corresponding sequence in I2 will contain j
as well, the job jI2(W, rj) would be a job which comes
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after jl (it could be jl as well) in the sequence. This
proves the inequality.

Corollary 6.1. For any time t′ ≥ rj,

W I1(t′) ≤W I2(t′)

Proof. Suppose the inequality is not true – let T be the
set of time t′ which violate this inequality. Let t∗ be the
infimum of T . Since, W I1(t′),W I2(t′) are continuous
with t′, we must have W I1(t∗) = W I2(t∗) – call this
quantity W . Thus, the speed at time t∗ is the same in
both the schedules. But Claim 6.1 shows that density
of jI2(W, t∗) is at most the density of jI1(W, t∗). Thus,
we are processing a job of higher density at time t∗

in I1 than that in I2. So, for arbitrary small ε > 0,
W I1(t∗ + ε) ≤ W I2(t∗ + ε). This contradicts the
definition of t∗.

We now prove the monotonicity property. Consider
two instances I and I ′ with the following properties.
There is a time t such that till t, both instances are
identical. In I, no job gets released after t, whereas I ′
may see some more jobs after time t (including t). We
would like to prove that W I(t′) ≤ W I

′
(t′) for all time

t′ ≥ t. Note that this is not entirely obvious because
addition of new jobs will speed up the machines, and so
jobs will get processed faster.

Lemma 6.1. Let I, I ′ and time t be as above. Then for
any time t′ ≥ t, W I(t′) ≤W I′(t′).

Proof. The proof is by induction on the number of jobs
in I ′ which get released during [t, t′]. If there are no
such jobs, then I and I ′ are identical, and so we are
done.

Now, let j be the last job which is released in I ′
during (t, t′]. Let I ′′ be the instance which is same
as I ′ except for the job j. By induction hypothesis,
W I(t′) ≤W I′′(t′). So we just need to compare W I

′′
(t′)

and W I
′
(t′). But this follows from Corollary 6.1, where

I1 = I ′′, I2 = I ′.

The Convex Program and its Lagrangian Dual :
We first write a convex programming relaxation. For a
job j, let sijt be the speed with which we are processing
it at time t on machine i. The convex program is given
in Figure 3. We show that it is indeed a relaxation.

Lemma 6.2. Consider a non-migratory schedule S for
an instance I of this problem. Let sijt be the correspond-
ing solution to this convex program. Then the objective
value of the solution sijt for this convex program is at
most a constant times the sum of the weighted fractional
flow-time and the energy consumed by S.

Proof. The constraint 6.25 is stating that a job j must
be processed to full extent. So, sijt must satisfy this
constraint. Let us look at the objective value. For a job
j, its fractional weighted flow-time of j can be written
as ∑

i

∫
t≥rj

dijpj(t)dt = dij

∫
t≥rj

(∫
t′≥t

sijt′dt
′
)
dt

=

∫
t′≥rj

dijsijt′(t
′ − rj)dt.

Thus, the first term in the objective function is captur-
ing the weighted fractional flow-time, and the second
term represents the total energy consumed. Let us now
show that the third term is at most a constant times
the cost of S.

Suppose S schedules a job j on machine i. Let T
be the time by which i processes half of j, i.e., does
pij/2 amount of processing on j. Let s be the average
speed of i while processing j during [rj , T ], i.e., s =

1
T−rj ·

∫ T
rj
sijtdt =

pij
2(T−rj) . Since the energy function is

a convex function, it is easy to check that the energy
consumed while processing j is at least (T − rj)s

γ =
pij
2s s

γ . Also, the total energy consumed by S is at least
the sum over all jobs j of the energy consumed while
processing j only. Further, the fractional weighted flow-
time of j is at least (T − rj) · wij2 =

wijpij
4s . Now observe

that

pij ·
(
sγ−1

2
+
wij
4s

)
≥ 1

4
w1−ε
ij pij .

So, we see that the cost of S is at least 1
4

∑
j w

1−ε
i(j)jpi(j)j ,

where i(j) is the machine on which j gets dispatched by
S. Now the third term in the objective function is∑

j,i

w1−ε
ij

∫
t≥rj

sijtdt =
∑
j

w1−ε
i(j)j

∫
t≥rj

si(j)jtdt

=
∑
j

w1−ε
i(j)jpij .

This proves the lemma.

The Lagrangian dual where we have Lagrangian
variables for the constraints (6.25), is shown in Figure 3
(the sijt variables are defined only for t ≥ rj).
Setting the Dual Variables We now show how to
set the αj variables. Fix a job j. We define αj as
the increase in weighted fractional flow-time assuming
no new job arrives after j, i.e., αj = miniQij , where
Qij is the increase in weighted fractional flow-time if we
dispatch j to machine i. Our result will follow from the
following theorem.
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Primal Relaxation

min
∑
j

∫
t≥rj

sjtdj(t− rj)dt+

∫
t

f

(∑
j

sjt

)
dt

+
∑
j,i

w1−ε
ij

∫
t≥rj

sijtdt(6.24)

∑
i

∫
t≥rj

sijt
pij

dt = 1 ∀j(6.25)

sijt ≥ 0 ∀i, j, t ≥ rj(6.26)

Lagrangian Dual

max
αj

∑
j

αj −
∑
i

∫
t

max
sijt

[∑
j

sijt(
αj
pij

−dij(t− rj)− w1−ε
ij )− f

(∑
j

sijt

)]
dt(6.27)

sijt ≥ 0 ∀i, j, t(6.28)

Figure 3: The convex programming relaxation and its Lagrangian dual

Theorem 6.1. Fix a time t′ and machine i. Then, the
maximum value of∑

j

sijt′

(
αj
pij
− dij(t′ − rj)− w1−ε

ij

)
(6.29)

− f

∑
j

sijt′

 ,

where the maximum is taken over sijt′ for all jobs j,
sijt′ ≥ 0, is at most Wi(t

′)(1− ε).

Before we prove this theorem, let us see why it implies
the desired result.

Corollary 6.2. The algorithm A is O(γ)-competitive
for the objective of minimizing the sum of weighted
fractional flow-time and energy. This yields an O(γ2)-
competitive algorithm for the objective of minimizing the
sum of weighted flow-time and energy.

Proof. Let FA be the total weighted fractional flow-
time of the algorithm A. Then the theorem above
shows that the value of the Lagrangian relaxation is
at least

∑
j αj − (1− ε)FA. But,

∑
j αj is equal to FA,

and hence, the value of the Lagrangian relaxation is at
least εFA. But, we know that the optimal value of the
Lagrangian dual is O(opt), where opt denotes the value
of the optimal solution (Lemma 6.2). Thus, FA is at
most O(opt/ε). Now, we need to compute the energy
incurred by A. If we assume that the energy function
is f̃ , then the energy consumed is same as FA. This is
so because at any point of time t, we choose the speed
s such that f̃(s) = W (t). However, the energy function

is f , and so we pay an extra factor of
(

1
1−ε

)γ
, which is

only a constant. This proves the first statement.
For the second statement, we run the algorithm A,

but now we speed up each machine by a factor of (1+ε).

Call this schedule B. Using standard arguments (see
e.g., [6]) the total weighted flow-time of B is at most
O(γ) times the total weighted fractional flow-time of A.
Further, the energy consumed by B is only a constant
factor more than that by A.

We now prove Theorem 6.1. Fix a time t′ and
machine i for the rest of this discussion. Consider the
values sijt′ which maximize the quantity (6.29). We
first observe that exactly one of these values will be
non-zero. Indeed, suppose there are two jobs j1 and
j2 such that sij1t′ , sij2t′ > 0. Then either the values
sij1t′+δ, sij2t′−δ, or sij1t′−δ, sij2t′+δ will improve the
quantity in (6.29). Thus, we will be done if we prove
the following lemma.

Lemma 6.3. For any job j, rj ≤ t′, and s ≥ 0,

s

(
αj
pij
− dij(t′ − rj)− w1−ε

ij

)
− f(s) ≤Wi(t

′)(1− ε).

Proof. Fix a job j which gets released at time t.
Rearranging terms, it is enough to show that for all
s,

αj
pij
− dij(t′ − t)− w1−ε

ij ≤ sγ−1 +
Wi(t

′)(1− ε)
s

.

We would like to find the value of s which minimizes
the right-hand side. By using differentiation, one can
easily check that the right hand side above is at least
Wi(t

′)1−ε. Thus, we will be done if we show that

αj
pij
− dj(t′ − t)− w1−ε

ij ≤Wi(t
′)1−ε

Using Lemma 6.1, we can assume that no jobs arrive
after time t (because this will not change the left hand
side above, and will only increase the right hand side).
At time t, let the jobs in Ai(t) arranged by descending
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order of density be j1, . . . , jm, and suppose the density
of j lies between those of jk and jk+1. Assume that j
does not get dispatched to i – the other case is similar.
Let J1 denote the set of jobs {j1, . . . , jk} and J2 be
the jobs in {jk+1, . . . , jm}. Let W 1

i (t) be the total
fractional remaining weight of jobs in J1 at time t, i.e.,∑k
l=1 wjl(t). Define W 2

i (t) for J2 similarly. Suppose it
took xj units of time to process job j if j were dispatched
to i (note that j would be processed after J1 and before
J2). Further let T0 be the time at which the jobs in J1
finish processing on machine i. Then we can bound αj
by

αj ≤ wij(T0 − t) + wijxj +W 2
i (t)xj .(6.30)

Indeed, because of the arrival of j, the fractional flow-
time of jobs in J1 will decrease because the machines will
now run at faster speed. So the increase in fractional
weighted flow-time can be bounded by the weighted
flow-time of j plus the increase in that of jobs in J2.
The latter is at most xj · W 2

i (t) because the delay in
the completion of a job in J2 is at most xj (note that
the jobs in J1 will finish earlier). We now consider two
cases depending on the time t′.

First assume that t′ ≤ T0. So, the machine i is
processing a job in J1 at time t′.

Claim 6.2.

T0 − t′ ≤
1

dij

(
Wi(t

′)1−ε −W 2
i (t)1−ε

)
.

Proof. Fix a time u between t′ and T0. Let Wi(u) be
the total remaining fractional weight at time u. Then,

the speed of machine i at this time is Wi(u)
ε

1−ε . So, in a

small amount of time du, we process Wi(u)
ε

1−ε du volume
of jobs. Since the density of these jobs is at least dij , the
decrease in the total fractional remaining weight, dW is
at least

dijWi(u)ε

(1− ε)
du.

So we can set up the differential equation∫ Wi(t
′)

W 2
i (t)

(1− ε)dW
dijW

1
γ

≥
∫ T0

t′
du.

Integrating this gives the claim.

Corollary 6.3. xj is at most min
(
pijw

−ε
ij ,

pij(1−ε)
W 2
i (t)

ε

)
.

Proof. If j were dispatched to machine i, we can show by
the same proof as that of Claim 6.2 that the machine
i will process j for 1

dij

(
(W 2

i (t) + wij)
1−ε −W 2

i (t)1−ε
)

amount of time. But the latter is at most w1−ε
ij . This

proves the first inequality.

The second inequality follows because while the job
j is getting processed, the remaining fractional weight
is at least W 2

i (t). So the speed will be at least W 2
i (t)ε.

Now, Corollary 6.3 and inequality (6.30) imply that

αj
pij
≤ dij(T0 − t) + dijpijw

−ε
ij +

xjW
2
i (t)

pij

≤ dij(T0 − t) + w1−ε
ij +W 2

i (t)1−ε(1− ε)
= dij(T0 − t′) + w1−ε

ij + dij(t
′ − t)

+ W 2
i (t)1−ε(1− ε)

Claim 6.2
≤ dij(t

′ − t) + w1−ε
ij +Wi(t

′)1−ε

This implies the lemma. Now, we consider the case
when t′ > T0, i.e., the machine i is processing a job of
J2 at time t. So, W (t′) is same as W 2

i (t′).

Claim 6.3.

t′ − T0 ≥
1

dij

(
W 2
i (t)1−ε −Wi(t

′)1−ε
)

Proof. Consider a time u between T0 and t′. Let Wi(u)
be the remaining fractional weight at time u. Then,
as in the proof of Claim 6.2, the total processing done

during [u, u+ du] is Wi(u)
ε

1−ε du. Since the density of jobs
in J2 is at most dij , the total fractional weight dW

processed during this time is at most
dijWi(u)

ε

1−ε du. Thus
we get the differential equation :∫ W 2

i (t)

Wi(t′)

(1− ε)dW
dijW ε

≤
∫ t′

T0

du.

Integrating this gives the result.

Again, using Corollary 6.3 and inequality (6.30), we get

αj
pij
≤ dij(T0 − t) + dijpijw

−ε
ij +

W 2
i (t′)xj
pij

≤ dij(t′ − t)− dij(t′ − T0) + w1−ε
ij

+ (1− ε)W 2
i (t′)1−ε

Claim 6.3
≤ dij(t

′ − t) + w1−ε
ij +W 2

i (t′)1−ε

This implies the result.
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