
Resource Augmentation in Load Balancing

Yossi Azar1•*, Leah Epstein1 •**, and Rob van Stee2 •* * *

1 Dept. of Computer Science, Tel-Aviv University. {azar,lea}©math.tau.ac.il
2 Centre for Mathematics and Computer Science (CWI). Rob. van. Stee©cwi.nl

Abstract. We consider load balancing in the following setting. The on­

line algorithm is allowed to use n machines, whereas the optimal off-line

algorithm is limited to m machines, for some fixed m < n. We show that

while the greedy algorithm has a competitive ratio which decays linearly

in the inverse of n/m, the best on-line algorithm has a ratio which decays

exponentially in n/m. Specifically, we give an algorithm with competitive
ratio of 1+1/2-!!i:(l-o(lll, and a lower bound of 1 + l/e;;';-(l+o(l)) on the

competitive ratio of any randomized algorithm.

We also consider the preemptive case. We show an on-line algorithm with

a competitive ratio of 1+1/e~(l+o(lll. We show that the algorithm is

optimal by proving a matching lower bound.

We also consider the non-preemptive model with temporary tasks. We

prove that for n = m + 1, the greedy algorithm is optimal. (It is not

optimal for permanent tasks).

1 Introduction

Competitive analysis has been criticized for being too pessimistic. This worst

case analysis sometimes fails to differentiate between algorithms whose perfor­

mance is observed empirically to be very different. A general method to circum­

vent these shortcomings was introduced by KALYANASUNDARAM and PRUHS

[13]: resource augmentation. For certain scheduling problems with unbounded

competitive ratio, they show that it is possible to attain a good competitive ratio

if the machines of the on-line algorithm are slightly faster than the machines of

the off-line algorithm.

Resource augmentation has been applied to a number of problems. It was al­

ready used in the paper where the competitive ratio was introduced [20]: here the

performance of some paging algorithms was studied, where the on-line algorithm

has more memory than the optimal off-line one.

In several machine scheduling and load balancing problems [4, 8, 13, 14, 16,

18), the effect of adding more or faster machines has been studied.

* Research supported in part by the Israel Science Foundation and by the United

States-Israel Binational Science Foundation (BSF).

** Part of the research was done while this author was visiting the Centre for Math­

ematics and Computer Science (CWI), supported by a grant from the Netherlands

Organization of Scientific Research.

* * * Research supported by the Netherlands Organization for Scientific Research (NWO),

project number SION 612-30-002.

M.M. Halldorsson (Ed.): SWAT 2000, LNCS 1851, pp. 189-199, 2000.

© Springer-Verlag Berlin Heidelberg 2000

190 '{.Azar, L. Epstein, and R. van Stee

\Ve consider the following load balancing problem. Jobs arrive on-line, where

job j has a certain weight wj. The job has to be assigned immediately to a

machine, adding Wj to the machine's load. The on-line algorithm has n identical

machines, aud it is compared to an optimal offline algorithm which has m < n

identical machines.

For a job sequence a \Ve write A,, (a) for the ma .. ximum load of A on n

machines when it is given this job sequence. Analogously, we >vrite OPTm(a). We

denote the competitive ratio of an online algorithm A with n machines relative

to an optimal offiine algorithm with m machines by Cm,n (A). Specifically,

A,.(a)
Cm,n(A) = m~x OPTm(a)

The classical case of n = m was considered in a series of papers [11, 12, 3, 15,

l]. The best upper bound is 1.923 due to ALBERS [1] and the best lower bound

is 1.853 [10] based on [l]. The case n > m was introduced by BREHOB et al [5].

They showed that no matter how many machines the on-line algorithm has, it

can never perform optimally: Cm,n(A) > l for all n > rn :'.'.'. 2. However, one may

expect that for reasonable algorithms cm,n(A) would approach 1 when t = n/m
increases. In fact, [5] showed that the greedy algorithm has a competitive ratio

which approaches 1 in a rate depending linearly on l/t.

In contrast, while the greedy algorithm has a competitive ratio which ap­

proaches 1 in a rate depending linearly on 1/t, we design a non-greedy algo­

rithm whose competitive ratio approaches 1 in a rate depending exponentially

on t. More specifically, we give an algorithm of competitive ratio 1 + 2 ,c 1! 0 cii).

Moreover, we show that the competitive ratio of any on-line algorithm cannot

decrease faster than exponentially in t by proving a lower bound of I+ e, 0 ; 0111)

on the competitive ratio of any on-line algorithm. vVe also show for n = 2m a

lower bound of 5/4.

\Ve also consider the preemptive case. Here we view load as time. Each job

may be assigned to one or more machines and time slots, where the time slots

have to be disjoint. The assignment has to be determined completely at the

arrival of a job. Using similar techniques as in [6, 7, 19] we prove a lower bound

of 1/(1- (rr~~ 1) 11) = 1 + et(iL(iJJ on the competitive ratio of any randomized
preemptive algorithm. We also show a matching upper bound by adapting the

optimal preemptive algorithm of [7] to our problem.

We can also view time as a separate axis and not as the load axis. Here jobs

arrive and depart at arbitrary times and the cost of an algorithm is the maximum

load over time and machines. This model is called the temporary tasks model

(the case where jobs only arrive is called the permanent tasks model). It was

proved in [2] that for n = rn the greedy algorithm, which is 2 -1/rn competitive,

is optimal for this model. We show that if n is just slightly larger than m, i.e.,

n = m + 1, then greedy which is 2 - 2/(m + 1) competitive is also optimal. Note

that the results in [1] implies that the greedy algorithm is not optimal in general

for permanent tasks also for n > rn.

Resource Augmentation in Load Balancing 191

2 Permanent Tasks

In this section we check the growth of the competitive ratio as a function of

t = n/m. We start with the competitive ratio of the greedy algorithm. This

algorithm was first given by GRAHAM [11], and assigns each new job to the least

loaded machine. The following lemma is shown in [5] using a similar analysis as

in [11]:

Lemma 1. The competitive ratio of the greedy algorithm is 1 + m;l.

The above theorem implies a competitive ratio which is a linear function in 1/t.

Surprisingly, we can give an algorithm called Buckets which has a competitive
ratio 1 + 1/2t(l-o(l)).

2.1 Algorithm Buckets

For describing the algorithm Buckets we assume that t > 3. (If t :::; 3 we use the

greedy algorithm.) Let 0 < € < 1 some parameter to be fixed later. We partition

all machines into buckets: k = lt - ~ J small buckets, each of which contains m

machines, and one big bucket that contains all other machines. Note that the

big bucket contains at least 2;' machines.

Algorithm Buckets maintains a value >... Denote by >..i the value of>.. after

the arrival of i jobs and by OPTi the optimal load after i jobs. The algorithm

consists of phases. During a phase j, the algorithm can use only the big bucket

and the small bucket number j mod k. We assign the first job to the first small

bucket and initialize >.. 1 = w 1 . We modify>.. only when a new phase starts while

keeping the following two invariants on >..:

- maxj:::;i wj :'.S >..;
- (2 - €)OPT· > >.. ' - '

On arrival of a job i (starting from i = 2), we do the following: If w; :::; >..;_if2

assign i greedily to the least loaded machine in the big bucket. If A;-i/2 < w; ~

>..;_ 1, and there is a machine in the small bucket which was not used in the

current phase, assign i to this machine. Finally, if all m machines in the current

small bucket were used in the current phase, or if w; > >..;_ 1 , then a new phase

begins: we define >..; = max((2 - e)>..;_ 1, w;) and the job is assigned to a machine

in the next small bucket.

Theorem 1. The algorithm Buckets is 1 + 2,(1! 011)) competitive for an appro­

priate choice of e.

Proof We start by showing that both invariants hold after the arrival of a job

(and thus hold throughout the execution of Buckets). After the assignment of

the first job, >.. 1 = OPT1 = w1, and both invariants hold since e < 1.

The first invariant always holds, since when a job which is larger than >..

arrives, >.. is modified. To show that the second invariant holds, we show that >..

192 Y. Azar, L. Epstein, and R. van Stee

is increased only when the previous>. is smaller than the current OPT, and that

A. is not increased too much. If >. is increased since Ai- l < wi, then 0 PTi 2 wi

and since A; = max((2 - c)>.i-li wi) then >.; :::; (2 - t:)wi S (2 - t:)OPT;. If>.

is increased since all the machines in the small bucket were used in the current

phase, then there are at least m + 1 jobs of weight more than A'2 1 and hence the

optimal schedule has to assign two of them on one machine, yielding OPT; >
.A;-1. Thus.\ S (2 - t:)OPT;.

Next we show that the maximum load in the big bucket never exceeds OPTi

at step i (after arrival of job i). It is easy to see that the maximum load of

running greedy on am machines is at most O~T; + maxj::;i Wj· Since Wj s A'2 1

and >.i-i/(2 - c) S OPT;-1, th.e load is bounded by(~+ 22")0PT;-1 S (~ +
22<)QPT; =OPT;.

Last, we bound the maximum load on the small bucket machines. When a

new phase starts, the value of>. is multiplied by at least 2 - c. Each machine in

a small bucket is used at most once in each phase.

Consider a job which is assigned to a small bucket machine in the last time

it is used. Denote this job by i', and let>.'= >.i'· Then the previous job assigned

to the same machine is of weight at most >.' /(2 - c)k. Moreover, a job that

was assigned r 2 1 jobs before i' to the same machine is of weight at most

>.' /(2 - ctk. Thus the total weight of all jobs on this machine, except i', is at

most 2>.' /(2 - t:)k. Since OPT 2 (2 ~") >.'we get that the total weight of jobs on

this machine is at most

., 40PT 4 4
w(J) + (2 - t:)k S (1 + (2 - t:)k)OPT::; (1 + (2 - e-)t-2/e-1)OPT.

Choosing an appropriate value of e would give the required competitive ratio

(for example c = ~is a suitable value). D

2.2 Lower Bounds

We begin by giving a simple exponential lower bound:

Theorem 2. The competitive ratio of any deterministic on line algorithm is at

least 1 + l/22t-l.

Proof. We give a proof for even m and for integer t. It is easy to extend the proof

for all cases. The sequence consists of n + !§' jobs that arrive in 2t + 1 phases.

Phase 1 consists of !§' unit jobs, and phase i for i > 1 consists of '; jobs of weight

2i-2 . The sequence stops after a phase in which the on-line schedules two jobs

on one machine. (If the algorithm reaches the last phase, there are more jobs

than on-line machines, therefore the on-line has two jobs on one machine). The

optimal off-line load after every phase is the weight of the last job. If the on-line

has two jobs on one machine, its load it at least 1 + x where x is the weight of

the last job. The minimum value of .1:p. would be 1 + 2 .~ 2 where i = 2t + 1,

hence 1+1/22t-l is a lower bound on the competitive ratio. D

Resource Augmentation in Load Balancing 193

We can give a slightly better lower bound, this bound holds for deterministic

and randomized algorithms. In fact, we show a lower bound on preemptive algo­

rithms versus a non-preemptive optimal algorithm. Hence our lower bound holds

both for the preemptive and non-preemptive models. The lower bound builds on

the lower bounds given by SGALL [19] and independently by CHEN, VAN VLIET

and WoEGINGER [6, 7].

The main idea here is to use small jobs and a sequence of n big jobs Ji for

1 :S i :S n of increasing weight so that the optimal off-line load after job J;, which

we denote by OPTi, is exactly equal to the weight of J;. Hence, the weight of

each big job is equal to the total weight of all previous jobs divided by m - 1.

Specifically, the sequence begins by very small jobs of total weight m - 1 followed

by the sequence of then big jobs. The weight of J; for 1 :S i :S n is µi-l where

µ=m"~1·

Lemma 2. The optimal off-line load for the above sequence is µk-l after the

arrival of the job Jk, for· 1 :S k :Sn.

Proof We consider an algorithm which assigns all jobs on off-line machines, and

show that the resulting load is µk- l.

The algorithm assigns jobs to the off-line machines greedily, in non-increasing

order (sorted according to weight). This is equivalent to using the LPT rule. We

show that no big job is assigned in a way that some load exceeds µk-l. Note

that the total weight of all small jobs and first j big jobs is p1(m -1) = µJ- 1m.

Assume that the assignment of job j causes the maximum load to exceed

µk- 1 . This means that all other machines are loaded by more than µk-l - µ1- 1 .

Since the total weight of jobs smaller or equal to 11 is µJ- 1m, we get that the

total weight of jobs is more than µk- Lm which is a contradiction. Hence, the

assignment of the small job results in balanced machines, each with load of µk-I.

D

The following lemma, adapted from [19, 9], is the key of lower bounding the

competitive ratio.

Lemma 3. Fo·r any deterministic or randomized, preemptive or non preemptive

algorithms for the sequence above the following holds: r ;::: L:;'=~OPT,, where r is

the competitive ratio and H7 is the total weight of the jobs.

Proof. Denote by A(J;) the maximum load of the on-line algorithm A after the

assignment of the job J;. Then

L::~ 1 E(A(J;)) < L:;~ 1 r ·OPT;

L~=l OPT; - L::~l OPTi

Hence it is enough to show that L~=I E(A(J;)) 2 W.

=r.

Assume that A is deterministic. For 1 ::; l :S n let T1 be the load on the l'th

machine at the end of the sequence after sorting the machines by non-increasing

194 Y. Azar, L. Epstein, and R. van Stee

load. Removing any l - 1 jobs still leaves a machine with load at least Tz and

thus A(Jz) ~ Tn-l+l· Since W = L:;~=l Tk we conclude that

n n

LA(Ji) ~ LTn-1+1 = W
i=l i=l

as needed. If A is randomized, we average over the deterministic algorithms and

conclude that
n

L E(A(Ji)) ~ w.
i=l

0

Theorem 3. The competitive ratio of an on-line algorithm, deterministic or

randomized, preemptive or non-preemptive, is at least 1/(1 - (m~l)n) = 1 +
l/e.;;,(i+o(l)).

Proof We use the above job sequence and apply Lemma 3. We have

and

as needed. 0
We can improve the bound for the special case t = 2 for the non-preemptive

deterministic case.

Claim. The competitive ratio of any on-line algorithm for n = 2m, where m ~ 8,

is at least ~.

Proof We use a job sequence consisting of four phases:

- m jobs of weight 1

l ~ J jobs of weight 3/2

- l T(f J + 1 jobs of weight 3

- l mtl J + 1 jobs of weight 4.

The sequence stops after a phase in which the on-line schedules two jobs on one

machine. Note that the sequence contains more than 2m jobs.

mmod 6 0 1 2 3 4 5

Amount of jobs 2m + 2 2m + 1 2m + 1 2m + 1 2m + 1 2m + 1

Resource Augmentation in Load Balancing 195

We show that the optimal load in phase i is i. This is clear for phases 1 and

2. In phase 3, if the machines are packed to a maximum load of 3, at most 2.5

of space can be lost: 2 if a job of weight 1 has to go on its own machine, and

0.5 if there is an odd number of jobs of weight 1.5. The total weight is at most

m + 3:;" + (m + 3) = l~m + 3, which is at most 3m - 2.5 form ~ 22. This implies

that the machines can be packed with a maximum load of 3 for m ~ 22. By

inspection, the machines can be packed for 8 :::; m :::; 21 too.

In phase 4, the total weight is at most 11;' + 3 + 4 ~n + 1:,4 . In the optimal

packing, at most 3.5 of space is lost. We have £~ m + 2] :::; 4m - 3.5 which holds

for m ~ 20. Therefore the optimal algorithm can maintain a load of 4 in phase

4, if m ~ 20. By inspection, it works for 8 :::; m :::; 19 as well.

As an example, we give the optimal schedules for phases 3 and 4 when m = 8

and m = 9 (see Figure 1).

m=S m=9

111111111 I I 11111111

phase 3 phase 3

-

- -

phase 4 phase 4

Fig. 1. The last phases for m = 8, 9

Depending on the phase in which the on-line algorithm puts two jobs on the

same machine, we find competitive ratios of 2, %, 1 and %·Hence the competitive

ratio is at least 5 / 4. 0

2.3 An Optimal Preemptive Algorithm

The last part of this section presents an optimal preemptive on-line algorithm.

The algorithm is similar to the algorithm in [7].

Let r = 1/(1 - +.). We denote the load on machine 'i at time T by L[. The
µ

algorithm maintains three invariants, which hold at any step T:

- LT:::; L§:::; ... :::; L'f,.

196 Y. Azar, L. Epstein, and R. van Stee

- L'f', ::; r · OPTT.

- For 1 ::; k ~ n,

where wr is the total weight of jobs which arrived till time T.

Similarly to the algorithm in [7], we try to maintain a ratio of m~l between ma­

chine loads. We show how to assign a new job j with weight Wj, arriving at time

T + 1, ton machines. First the new optimal load is computed by max(WT+l /m,

maxi<i<T+l wi) [17], and then the following intervals are reserved for j: for

1 ::; l ;;-n -1, we reserve [Lf, Lf+ 1], and for l = n, reserve [L'[',, r · OPTT]. Note

that these intervals are disjoint. Next, for j = n down to 1, assign a portion out

of Wj of size equal to the size of the reserved interval. We do that until we run

out of wi. (The last portion assigned might be smaller than the interval.)

It is easy to follow the proof in [7], replacing the number of machines used by

the on-line algorithm from m ton. The proof shows that each job is completely

distributed to the machines and that the invariants hold. By that we conclude

that the algorithm is r-competitive as required.

3 Temporary Tasks

Recall that for n = m the greedy algorithm is (2 -1/m)-competitive for perma­

nent tasks as well as for temporary tasks. Greedy is not optimal for permanent

tasks, but is optimal for temporary tasks. Also for n > m, it is easy to see that

greedy has the same competitive ratio for temporary tasks as for permanent

tasks, which is 1 + (m - l)/n. However, in contrast to the case n = m, greedy

is not optimal for temporary tasks, since algorithm Buckets (defined on tempo­

rary tasks) achieves a better competitive ratio for large n. Specifically, it is easy

to see that the same analysis of the competitive ratio of algorithm Buckets for

permanent tasks also holds for temporary tasks. However, we show that if the

online algorithm has one more machine than the optimal offi.ine algorithm then

the greedy is still optimal.

Theorem 4. Greedy is optimal for temporary tasks for n = m + 1.

Proof. We need to show a lower bound of ~'.;' 1 on the competitive ratio of any

on-line algorithm. The proof consists of two parts: one for odd m and one for

even m. In the proof we mention the value of the optimal load only when the

value increases.

Case A. m is odd. We start the sequence by (m - l)m2 unit-weight jobs. The

optimal load is m(m - 1). We distinguish between two cases:

Resource Augmentation in Load Balancing 197

Case Al. The online algorithm places at least m(m - 1) jobs on one machine,

say machine x.

In this case, all the jobs leave except m(m - 1) jobs on x. Then, m(m - 1)

jobs of weight m - 1 arrive. Since the optimal load is again m(m - l),at most

m - 2 of them can go on x. Otherwise the load would be (2m - l)(m - 1) on x,

and (2m -1)/m > 2m/(m + 1). So (m -1)2 + 1 of these jobs must go on them

empty machines. We distinguish between two sub-cases:

Case Ala. One machine (not x) has at least m jobs of weight m - 1.

All jobs of weight m - 1 leave except m job of weight m - 1 on one machine,

and m-1 jobs of weight m(m-1) arrive. The new optimal load is (m+l)(m-1).

Therefore all these jobs must go on different machines. Finally, a job of weight

m(m + 1) arrives. This completes the proof since the online load is 2m2 , while

the optimal load is m(m+ 1): the last job has it own machine, the other machines

have one job of weight m(m -1), one or two jobs of weight m -1 and some jobs

of weight 1, so that the load is precisely m(m + 1).

Case A 1 b. All machines (except machine x) have at least one job of weight

m-1.

All jobs of weight m -1 leave except m jobs, one such job is on each machine

except machine x. Next, m 2 -~m-l jobs of weight 2(m - 1) arrive. The optimal

load is again m(m - 1). At most m-3 are assigned to machine x, otherwise the

load there is too large. There are m/'3 + ~ jobs on average on the other machines,

so there is at least one machine (not x) with at least m2l jobs of this weight

and a load of at least m(m - 1), say machine y. All jobs leave except the unit

jobs on x and jobs of total weight precisely m(m - 1) on machine y.

Finally, m,-1 jobs of weight m(m-1) arrive and one job of weight m(m+ 1).

Clearly, the online algorithm must assign each job of weight m(m-1) to an empty

machine and hence its final load is 2m 2 • The optimal algorithm can balance its

jobs to a load of m(m + 1) since there are at least 2(m - 1) jobs of weight 1,

which completes the proof.

Case A2. All machines now have load at least m - 1.

All jobs leave except m - 1 jobs on each machine, and m2 - m - 1 jobs of

weight m - 1 arrive. The average number of jobs of weight m -1 on the machines

ism - 2 + m~l, and hence there is a machine with m - 1 jobs of weight m - 1

and a load of m(m -1). The loads are now the same as in Case Alb just before

the arrival of the jobs of weight 2(m -1). Hence, we can continue as in that case.

Case B. m is even. We start the sequence by (m - l)m2 unit jobs. The optimal

load is m(m - 1). We distinguish between two cases:

Case Bl. One machine, say x, has at least m(m -1) jobs. All jobs leave except

m(m - 1) jobs on x, and (m - 1)2 jobs of weight m arrive. The optimal load is

again m(m - 1). We distinguish between two sub-cases:

198 Y. Azar, L. Epstein, and R. van Stee

Case Bia. Another machine (not x) has load at least m(m - 1). Then all jobs

of weight m leave except m - 1 jobs on one machine, and m - 1 jobs of weight

m(m - 1) arrive followed by a job of weight m(m + 1). Clearly, the online load

is 2m2 , while the optimal load is m(m + 1) which completes the proof.

Case Bib. Each machine except x has one job of weight m. All jobs of weight

m leave except m jobs, one on each machine except on machine x. Next m
2

; 3m

jobs of weight 2m arrive. At most m; 2 can go on machine x. Hence, the average

number of jobs of weight 2m on machines different than x is T - 2 + ~- Thus,

one machine must have T - 1 jobs of weight 2m and a load of at least m(m - 1).

All jobs leave except the unit jobs on x and jobs of total weight m(m - 1) on

the other machine. Finally, m - 1 jobs of weight m(m - 1) arrive and one job

of weight m(m + 1). Clearly, the online load is 2m2 , while the optimal load is

m(m + 1) which completes the proof.

Case B2. There are at least m jobs on each machine.

All jobs leave except m jobs on each machine. Next, m2 Cm; 2l-m jobs of

weight 2 arrive. If there is a machine with load at least m(m - 1), we continue

as in Case Bl. Otherwise, each machine has load at least 2m. Then, some jobs

of weight 2 leave in such a way that the load on each machine is 2(m -1). Next,

m2 - 2m - 2 jobs of weight m - 1 arrive. Then, one machine will have a load of

at least m(m-1). Jobs of weight m-1 on that machine leave such that the load

becomes m(m - 1). All non-unit jobs on the other machines leave. We continue

as in Case Blb. D

4 Con cl us ions

We have examined the effects of resource augmentation for several load balancing

problems. For the problem of scheduling jobs on identical machine, we have

shown an algorithm with a competitive ratio which decreases exponentially in

n/m, while greedy has a competitive ratio that is linear in n/m.
An open question is whether it is possible to close the gap between the lower

bound and the upper bound on identical machines. Both bounds are decreasing

exponentially, and we conjecture that the true value of the competitive ratio is

closer to the lower bound.

Acknowledgements

The authors wish to thank Han La Poutre for helpful discussions.

References

1. S. Albers. Better bounds for on-line scheduling. In Proc. 29th A CM Symp. on

Theory of Computing, pages 130-139, 1997.

Resource Augmentation in Load Balancing 199

2. Y. Azar and L. Epstein. On-line load balancing of temporary tasks on identical

machines. In 5th Israeli Symp. on Theory of Computing and Systems, pages 119-

125, 1997.

3. Y. Barta!, A. Fiat, H. Karloff, and R. Vohra. New algorithms for an ancient

scheduling problem. In Proc. 24th A CM Symposium on Theory of Algorithms,

pages 51-58, 1992. To appear in Journal of Computer and System Sciences.

4. P. Berman and C. Coulston. Speed is more powerful than clairvoyance. In Nordic

Journal of Computing, pages 181-193, 1999.

5. M. Brehob, E. Torng, and P. Uthaisombut. Applying extra-resource analysis to

load balancing. Manuscript, 1999.

6. B. Chen, A. van Vliet, and G. J. Woeginger. Lower bounds for randomized online

scheduling. Information Processing Letters, 51 :219-222, 1994.

7. B. Chen, A. van Vliet, and G. J. Woeginger. An optimal algorithm for preemptive

on-line scheduling. Operations Research Letters, 18:127-131, 1995.

8. J. Edmonds. Scheduling in the dark. In Proceedings of the 91st ACM Symposium

on Theory of Computing, pages 179-188, 1999.

9. L. Epstein and J. Sgall. A lower bound for on-line scheduling on uniformly related

machines. To appear in Oper. Res. Lett., 2000.

10. T. Gormley, N. Reingold, E. Torng, and J. Westbrook. Generating adversaries for

request-answer games. In Proc. 11th ACM-SIAM Symp. on Discrete Algorithms,

2000.

11. R.L. Graham. Bounds for certain multiprocessor anomalies. Bell System Technical

Journal, 45:1563-1581, 1966.

12. R.L. Graham. Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math,

17:263-269, 1969.

13. B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. In

Proceedings of 96th IEEE Symposium on Foundations of Computer Science, pages

214-221, 1995.

14. Bala Kalyanasundaram and Kirk Pruhs. Maximizing job completions online. In
European Symposium on Algorithms, pages 235-246, 1998.

15. D. R. Karger, S. J. Phillips, and E. Torng. A better algorithm for an ancient

scheduling problem. In Proc. of the Sth ACM-SIAM Symposium on Discrete Al­

gorithms, pages 132-140, 1994.

16. Tak Wah Lam and Kar Keung To. Trade-offs between speed and processor in hard­

deadline scheduling. In A CM/SIAM Symposium on Discrete Algorithms, pages

623-632, 1999.

17. R. McNaughton. Scheduling with deadlines and loss functions. Management Sci.,

6:1-12, 1959.

18. Cynthia A. Philips, Cliff Stein, Eric Torng, and Joel Wein. Optimal time-critical

scheduling via resource augmentation. In Proceedings of the 29th ACM Symposium

on Theory of Computing, pages 140-149, 1997.

19. J. Sgall. A lower bound for randomized on-line multiprocessor scheduling. lnf.

Process. Lett., 63(1):51-55, 1997.

20. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules.

Communications of the ACM, 28:202-208, 1985.

