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Abstract. We consider load balancing in the following setting. The on­

line algorithm is allowed to use n machines, whereas the optimal off-line 

algorithm is limited to m machines, for some fixed m < n. We show that 

while the greedy algorithm has a competitive ratio which decays linearly 

in the inverse of n/m, the best on-line algorithm has a ratio which decays 

exponentially in n/m. Specifically, we give an algorithm with competitive 
ratio of 1+1/2-!!i:(l-o(lll, and a lower bound of 1 + l/e;;';-(l+o(l)) on the 

competitive ratio of any randomized algorithm. 

We also consider the preemptive case. We show an on-line algorithm with 

a competitive ratio of 1+1/e~(l+o(lll. We show that the algorithm is 

optimal by proving a matching lower bound. 

We also consider the non-preemptive model with temporary tasks. We 

prove that for n = m + 1, the greedy algorithm is optimal. (It is not 

optimal for permanent tasks). 

1 Introduction 

Competitive analysis has been criticized for being too pessimistic. This worst 

case analysis sometimes fails to differentiate between algorithms whose perfor­

mance is observed empirically to be very different. A general method to circum­

vent these shortcomings was introduced by KALYANASUNDARAM and PRUHS 

[13]: resource augmentation. For certain scheduling problems with unbounded 

competitive ratio, they show that it is possible to attain a good competitive ratio 

if the machines of the on-line algorithm are slightly faster than the machines of 

the off-line algorithm. 

Resource augmentation has been applied to a number of problems. It was al­

ready used in the paper where the competitive ratio was introduced [20]: here the 

performance of some paging algorithms was studied, where the on-line algorithm 

has more memory than the optimal off-line one. 

In several machine scheduling and load balancing problems [4, 8, 13, 14, 16, 

18), the effect of adding more or faster machines has been studied. 
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\Ve consider the following load balancing problem. Jobs arrive on-line, where 

job j has a certain weight wj. The job has to be assigned immediately to a 

machine, adding Wj to the machine's load. The on-line algorithm has n identical 

machines, aud it is compared to an optimal offline algorithm which has m < n 

identical machines. 

For a job sequence a \Ve write A,, (a) for the ma .. ximum load of A on n 

machines when it is given this job sequence. Analogously, we >vrite OPTm(a). We 

denote the competitive ratio of an online algorithm A with n machines relative 

to an optimal offiine algorithm with m machines by Cm,n (A). Specifically, 

A,.(a) 
Cm,n(A) = m~x OPTm(a) 

The classical case of n = m was considered in a series of papers [11, 12, 3, 15, 

l]. The best upper bound is 1.923 due to ALBERS [1] and the best lower bound 

is 1.853 [10] based on [l]. The case n > m was introduced by BREHOB et al [5]. 

They showed that no matter how many machines the on-line algorithm has, it 

can never perform optimally: Cm,n(A) > l for all n > rn :'.'.'. 2. However, one may 

expect that for reasonable algorithms cm,n(A) would approach 1 when t = n/m 
increases. In fact, [5] showed that the greedy algorithm has a competitive ratio 

which approaches 1 in a rate depending linearly on l/t. 

In contrast, while the greedy algorithm has a competitive ratio which ap­

proaches 1 in a rate depending linearly on 1/t, we design a non-greedy algo­

rithm whose competitive ratio approaches 1 in a rate depending exponentially 

on t. More specifically, we give an algorithm of competitive ratio 1 + 2 ,c 1! 0 cii). 

Moreover, we show that the competitive ratio of any on-line algorithm cannot 

decrease faster than exponentially in t by proving a lower bound of I+ e, 0 ; 0111 ) 

on the competitive ratio of any on-line algorithm. vVe also show for n = 2m a 

lower bound of 5/4. 

\Ve also consider the preemptive case. Here we view load as time. Each job 

may be assigned to one or more machines and time slots, where the time slots 

have to be disjoint. The assignment has to be determined completely at the 

arrival of a job. Using similar techniques as in [6, 7, 19] we prove a lower bound 

of 1/(1- (rr~~ 1 ) 11 ) = 1 + et(iL(iJJ on the competitive ratio of any randomized 
preemptive algorithm. We also show a matching upper bound by adapting the 

optimal preemptive algorithm of [7] to our problem. 

We can also view time as a separate axis and not as the load axis. Here jobs 

arrive and depart at arbitrary times and the cost of an algorithm is the maximum 

load over time and machines. This model is called the temporary tasks model 

(the case where jobs only arrive is called the permanent tasks model). It was 

proved in [2] that for n = rn the greedy algorithm, which is 2 -1/rn competitive, 

is optimal for this model. We show that if n is just slightly larger than m, i.e., 

n = m + 1, then greedy which is 2 - 2/(m + 1) competitive is also optimal. Note 

that the results in [1] implies that the greedy algorithm is not optimal in general 

for permanent tasks also for n > rn. 
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2 Permanent Tasks 

In this section we check the growth of the competitive ratio as a function of 

t = n/m. We start with the competitive ratio of the greedy algorithm. This 

algorithm was first given by GRAHAM [11], and assigns each new job to the least 

loaded machine. The following lemma is shown in [5] using a similar analysis as 

in [11]: 

Lemma 1. The competitive ratio of the greedy algorithm is 1 + m;l. 

The above theorem implies a competitive ratio which is a linear function in 1/t. 

Surprisingly, we can give an algorithm called Buckets which has a competitive 
ratio 1 + 1/2t(l-o(l)). 

2.1 Algorithm Buckets 

For describing the algorithm Buckets we assume that t > 3. (If t :::; 3 we use the 

greedy algorithm.) Let 0 < € < 1 some parameter to be fixed later. We partition 

all machines into buckets: k = lt - ~ J small buckets, each of which contains m 

machines, and one big bucket that contains all other machines. Note that the 

big bucket contains at least 2;' machines. 

Algorithm Buckets maintains a value >... Denote by >..i the value of>.. after 

the arrival of i jobs and by OPTi the optimal load after i jobs. The algorithm 

consists of phases. During a phase j, the algorithm can use only the big bucket 

and the small bucket number j mod k. We assign the first job to the first small 

bucket and initialize >.. 1 = w 1 . We modify>.. only when a new phase starts while 

keeping the following two invariants on >..: 

- maxj:::;i wj :'.S >..; 
- (2 - €)OPT· > >.. ' - ' 

On arrival of a job i (starting from i = 2), we do the following: If w; :::; >..;_if2 

assign i greedily to the least loaded machine in the big bucket. If A;-i/2 < w; ~ 

>..;_ 1, and there is a machine in the small bucket which was not used in the 

current phase, assign i to this machine. Finally, if all m machines in the current 

small bucket were used in the current phase, or if w; > >..;_ 1 , then a new phase 

begins: we define >..; = max( (2 - e )>..;_ 1, w;) and the job is assigned to a machine 

in the next small bucket. 

Theorem 1. The algorithm Buckets is 1 + 2,( 1! 011 )) competitive for an appro­

priate choice of e. 

Proof We start by showing that both invariants hold after the arrival of a job 

(and thus hold throughout the execution of Buckets). After the assignment of 

the first job, >.. 1 = OPT1 = w1, and both invariants hold since e < 1. 

The first invariant always holds, since when a job which is larger than >.. 

arrives, >.. is modified. To show that the second invariant holds, we show that >.. 
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is increased only when the previous>. is smaller than the current OPT, and that 

A. is not increased too much. If >. is increased since Ai- l < wi, then 0 PTi 2 wi 

and since A; = max((2 - c)>.i-li wi) then >.; :::; (2 - t:)wi S (2 - t:)OPT;. If>. 

is increased since all the machines in the small bucket were used in the current 

phase, then there are at least m + 1 jobs of weight more than A'2 1 and hence the 

optimal schedule has to assign two of them on one machine, yielding OPT; > 
.A;-1. Thus.\ S (2 - t:)OPT;. 

Next we show that the maximum load in the big bucket never exceeds OPTi 

at step i (after arrival of job i). It is easy to see that the maximum load of 

running greedy on am machines is at most O~T; + maxj::;i Wj· Since Wj s A'2 1 

and >.i-i/(2 - c) S OPT;-1, th.e load is bounded by(~+ 22")0PT;-1 S (~ + 
22<)QPT; =OPT;. 

Last, we bound the maximum load on the small bucket machines. When a 

new phase starts, the value of>. is multiplied by at least 2 - c. Each machine in 

a small bucket is used at most once in each phase. 

Consider a job which is assigned to a small bucket machine in the last time 

it is used. Denote this job by i', and let>.'= >.i'· Then the previous job assigned 

to the same machine is of weight at most >.' /(2 - c)k. Moreover, a job that 

was assigned r 2 1 jobs before i' to the same machine is of weight at most 

>.' /(2 - ctk. Thus the total weight of all jobs on this machine, except i', is at 

most 2>.' /(2 - t:)k. Since OPT 2 ( 2 ~") >.'we get that the total weight of jobs on 

this machine is at most 

., 40PT 4 4 
w(J) + (2 - t:)k S (1 + (2 - t:)k )OPT::; (1 + (2 - e-)t-2/e-1 )OPT. 

Choosing an appropriate value of e would give the required competitive ratio 

(for example c = ~is a suitable value). D 

2.2 Lower Bounds 

We begin by giving a simple exponential lower bound: 

Theorem 2. The competitive ratio of any deterministic on line algorithm is at 

least 1 + l/22t-l. 

Proof. We give a proof for even m and for integer t. It is easy to extend the proof 

for all cases. The sequence consists of n + !§' jobs that arrive in 2t + 1 phases. 

Phase 1 consists of !§' unit jobs, and phase i for i > 1 consists of '; jobs of weight 

2i-2 . The sequence stops after a phase in which the on-line schedules two jobs 

on one machine. (If the algorithm reaches the last phase, there are more jobs 

than on-line machines, therefore the on-line has two jobs on one machine). The 

optimal off-line load after every phase is the weight of the last job. If the on-line 

has two jobs on one machine, its load it at least 1 + x where x is the weight of 

the last job. The minimum value of .1:p. would be 1 + 2 .~ 2 where i = 2t + 1, 

hence 1+1/22t-l is a lower bound on the competitive ratio. D 
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We can give a slightly better lower bound, this bound holds for deterministic 

and randomized algorithms. In fact, we show a lower bound on preemptive algo­

rithms versus a non-preemptive optimal algorithm. Hence our lower bound holds 

both for the preemptive and non-preemptive models. The lower bound builds on 

the lower bounds given by SGALL [19] and independently by CHEN, VAN VLIET 

and WoEGINGER [6, 7]. 

The main idea here is to use small jobs and a sequence of n big jobs Ji for 

1 :S i :S n of increasing weight so that the optimal off-line load after job J;, which 

we denote by OPTi, is exactly equal to the weight of J;. Hence, the weight of 

each big job is equal to the total weight of all previous jobs divided by m - 1. 

Specifically, the sequence begins by very small jobs of total weight m - 1 followed 

by the sequence of then big jobs. The weight of J; for 1 :S i :S n is µi-l where 

µ=m"~1· 

Lemma 2. The optimal off-line load for the above sequence is µk-l after the 

arrival of the job Jk, for· 1 :S k :Sn. 

Proof We consider an algorithm which assigns all jobs on off-line machines, and 

show that the resulting load is µk- l. 

The algorithm assigns jobs to the off-line machines greedily, in non-increasing 

order (sorted according to weight). This is equivalent to using the LPT rule. We 

show that no big job is assigned in a way that some load exceeds µk-l. Note 

that the total weight of all small jobs and first j big jobs is p1(m -1) = µJ- 1m. 

Assume that the assignment of job j causes the maximum load to exceed 

µk- 1 . This means that all other machines are loaded by more than µk-l - µ1- 1 . 

Since the total weight of jobs smaller or equal to 11 is µJ- 1m, we get that the 

total weight of jobs is more than µk- Lm which is a contradiction. Hence, the 

assignment of the small job results in balanced machines, each with load of µk-I. 

D 

The following lemma, adapted from [19, 9], is the key of lower bounding the 

competitive ratio. 

Lemma 3. Fo·r any deterministic or randomized, preemptive or non preemptive 

algorithms for the sequence above the following holds: r ;::: L:;'=~OPT,, where r is 

the competitive ratio and H7 is the total weight of the jobs. 

Proof. Denote by A( J;) the maximum load of the on-line algorithm A after the 

assignment of the job J;. Then 

L::~ 1 E(A(J;)) < L:;~ 1 r ·OPT; 

L~=l OPT; - L::~l OPTi 

Hence it is enough to show that L~=I E(A(J;)) 2 W. 

=r. 

Assume that A is deterministic. For 1 ::; l :S n let T1 be the load on the l'th 

machine at the end of the sequence after sorting the machines by non-increasing 
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load. Removing any l - 1 jobs still leaves a machine with load at least Tz and 

thus A(Jz) ~ Tn-l+l· Since W = L:;~=l Tk we conclude that 

n n 

LA(Ji) ~ LTn-1+1 = W 
i=l i=l 

as needed. If A is randomized, we average over the deterministic algorithms and 

conclude that 
n 

L E(A(Ji)) ~ w. 
i=l 

0 

Theorem 3. The competitive ratio of an on-line algorithm, deterministic or 

randomized, preemptive or non-preemptive, is at least 1/(1 - (m~l )n) = 1 + 
l/e.;;,(i+o(l)). 

Proof We use the above job sequence and apply Lemma 3. We have 

and 

as needed. 0 
We can improve the bound for the special case t = 2 for the non-preemptive 

deterministic case. 

Claim. The competitive ratio of any on-line algorithm for n = 2m, where m ~ 8, 

is at least ~. 

Proof We use a job sequence consisting of four phases: 

- m jobs of weight 1 

l ~ J jobs of weight 3/2 

- l T(f J + 1 jobs of weight 3 

- l mtl J + 1 jobs of weight 4. 

The sequence stops after a phase in which the on-line schedules two jobs on one 

machine. Note that the sequence contains more than 2m jobs. 

mmod 6 0 1 2 3 4 5 

Amount of jobs 2m + 2 2m + 1 2m + 1 2m + 1 2m + 1 2m + 1 
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We show that the optimal load in phase i is i. This is clear for phases 1 and 

2. In phase 3, if the machines are packed to a maximum load of 3, at most 2.5 

of space can be lost: 2 if a job of weight 1 has to go on its own machine, and 

0.5 if there is an odd number of jobs of weight 1.5. The total weight is at most 

m + 3:;" + (m + 3) = l~m + 3, which is at most 3m - 2.5 form ~ 22. This implies 

that the machines can be packed with a maximum load of 3 for m ~ 22. By 

inspection, the machines can be packed for 8 :::; m :::; 21 too. 

In phase 4, the total weight is at most 11;' + 3 + 4 ~n + 1:,4 . In the optimal 

packing, at most 3.5 of space is lost. We have £~ m + 2] :::; 4m - 3.5 which holds 

for m ~ 20. Therefore the optimal algorithm can maintain a load of 4 in phase 

4, if m ~ 20. By inspection, it works for 8 :::; m :::; 19 as well. 

As an example, we give the optimal schedules for phases 3 and 4 when m = 8 

and m = 9 (see Figure 1). 

m=S m=9 

111111111 I I 11111111 

phase 3 phase 3 

-

- -

phase 4 phase 4 

Fig. 1. The last phases for m = 8, 9 

Depending on the phase in which the on-line algorithm puts two jobs on the 

same machine, we find competitive ratios of 2, %, 1 and %·Hence the competitive 

ratio is at least 5 / 4. 0 

2.3 An Optimal Preemptive Algorithm 

The last part of this section presents an optimal preemptive on-line algorithm. 

The algorithm is similar to the algorithm in [7]. 

Let r = 1/(1 - +. ). We denote the load on machine 'i at time T by L[. The 
µ 

algorithm maintains three invariants, which hold at any step T: 

- LT:::; L§:::; ... :::; L'f,. 
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- L'f', ::; r · OPTT. 

- For 1 ::; k ~ n, 

where wr is the total weight of jobs which arrived till time T. 

Similarly to the algorithm in [7], we try to maintain a ratio of m~l between ma­

chine loads. We show how to assign a new job j with weight Wj, arriving at time 

T + 1, ton machines. First the new optimal load is computed by max(WT+l /m, 

maxi<i<T+l wi) [17], and then the following intervals are reserved for j: for 

1 ::; l ;;-n -1, we reserve [Lf, Lf+ 1], and for l = n, reserve [L'[',, r · OPTT]. Note 

that these intervals are disjoint. Next, for j = n down to 1, assign a portion out 

of Wj of size equal to the size of the reserved interval. We do that until we run 

out of wi. (The last portion assigned might be smaller than the interval.) 

It is easy to follow the proof in [7], replacing the number of machines used by 

the on-line algorithm from m ton. The proof shows that each job is completely 

distributed to the machines and that the invariants hold. By that we conclude 

that the algorithm is r-competitive as required. 

3 Temporary Tasks 

Recall that for n = m the greedy algorithm is (2 -1/m)-competitive for perma­

nent tasks as well as for temporary tasks. Greedy is not optimal for permanent 

tasks, but is optimal for temporary tasks. Also for n > m, it is easy to see that 

greedy has the same competitive ratio for temporary tasks as for permanent 

tasks, which is 1 + (m - l)/n. However, in contrast to the case n = m, greedy 

is not optimal for temporary tasks, since algorithm Buckets (defined on tempo­

rary tasks) achieves a better competitive ratio for large n. Specifically, it is easy 

to see that the same analysis of the competitive ratio of algorithm Buckets for 

permanent tasks also holds for temporary tasks. However, we show that if the 

online algorithm has one more machine than the optimal offi.ine algorithm then 

the greedy is still optimal. 

Theorem 4. Greedy is optimal for temporary tasks for n = m + 1. 

Proof. We need to show a lower bound of ~'.;' 1 on the competitive ratio of any 

on-line algorithm. The proof consists of two parts: one for odd m and one for 

even m. In the proof we mention the value of the optimal load only when the 

value increases. 

Case A. m is odd. We start the sequence by (m - l)m2 unit-weight jobs. The 

optimal load is m(m - 1). We distinguish between two cases: 
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Case Al. The online algorithm places at least m(m - 1) jobs on one machine, 

say machine x. 

In this case, all the jobs leave except m(m - 1) jobs on x. Then, m(m - 1) 

jobs of weight m - 1 arrive. Since the optimal load is again m(m - l),at most 

m - 2 of them can go on x. Otherwise the load would be (2m - l)(m - 1) on x, 

and (2m -1)/m > 2m/(m + 1). So (m -1)2 + 1 of these jobs must go on them 

empty machines. We distinguish between two sub-cases: 

Case Ala. One machine (not x) has at least m jobs of weight m - 1. 

All jobs of weight m - 1 leave except m job of weight m - 1 on one machine, 

and m-1 jobs of weight m(m-1) arrive. The new optimal load is (m+l)(m-1). 

Therefore all these jobs must go on different machines. Finally, a job of weight 

m(m + 1) arrives. This completes the proof since the online load is 2m2 , while 

the optimal load is m(m+ 1): the last job has it own machine, the other machines 

have one job of weight m(m -1), one or two jobs of weight m -1 and some jobs 

of weight 1, so that the load is precisely m(m + 1). 

Case A 1 b. All machines (except machine x) have at least one job of weight 

m-1. 

All jobs of weight m -1 leave except m jobs, one such job is on each machine 

except machine x. Next, m 2 -~m-l jobs of weight 2(m - 1) arrive. The optimal 

load is again m(m - 1). At most m-3 are assigned to machine x, otherwise the 

load there is too large. There are m/'3 + ~ jobs on average on the other machines, 

so there is at least one machine (not x) with at least m2l jobs of this weight 

and a load of at least m(m - 1), say machine y. All jobs leave except the unit 

jobs on x and jobs of total weight precisely m(m - 1) on machine y. 

Finally, m,-1 jobs of weight m(m-1) arrive and one job of weight m(m+ 1). 

Clearly, the online algorithm must assign each job of weight m(m-1) to an empty 

machine and hence its final load is 2m 2 • The optimal algorithm can balance its 

jobs to a load of m(m + 1) since there are at least 2(m - 1) jobs of weight 1, 

which completes the proof. 

Case A2. All machines now have load at least m - 1. 

All jobs leave except m - 1 jobs on each machine, and m2 - m - 1 jobs of 

weight m - 1 arrive. The average number of jobs of weight m -1 on the machines 

ism - 2 + m~l, and hence there is a machine with m - 1 jobs of weight m - 1 

and a load of m(m -1). The loads are now the same as in Case Alb just before 

the arrival of the jobs of weight 2( m -1). Hence, we can continue as in that case. 

Case B. m is even. We start the sequence by (m - l)m2 unit jobs. The optimal 

load is m(m - 1). We distinguish between two cases: 

Case Bl. One machine, say x, has at least m(m -1) jobs. All jobs leave except 

m(m - 1) jobs on x, and (m - 1)2 jobs of weight m arrive. The optimal load is 

again m(m - 1). We distinguish between two sub-cases: 



198 Y. Azar, L. Epstein, and R. van Stee 

Case Bia. Another machine (not x) has load at least m(m - 1). Then all jobs 

of weight m leave except m - 1 jobs on one machine, and m - 1 jobs of weight 

m(m - 1) arrive followed by a job of weight m(m + 1). Clearly, the online load 

is 2m2 , while the optimal load is m(m + 1) which completes the proof. 

Case Bib. Each machine except x has one job of weight m. All jobs of weight 

m leave except m jobs, one on each machine except on machine x. Next m
2

; 3m 

jobs of weight 2m arrive. At most m; 2 can go on machine x. Hence, the average 

number of jobs of weight 2m on machines different than x is T - 2 + ~- Thus, 

one machine must have T - 1 jobs of weight 2m and a load of at least m( m - 1). 

All jobs leave except the unit jobs on x and jobs of total weight m(m - 1) on 

the other machine. Finally, m - 1 jobs of weight m(m - 1) arrive and one job 

of weight m(m + 1). Clearly, the online load is 2m2 , while the optimal load is 

m(m + 1) which completes the proof. 

Case B2. There are at least m jobs on each machine. 

All jobs leave except m jobs on each machine. Next, m2 Cm; 2l-m jobs of 

weight 2 arrive. If there is a machine with load at least m(m - 1), we continue 

as in Case Bl. Otherwise, each machine has load at least 2m. Then, some jobs 

of weight 2 leave in such a way that the load on each machine is 2(m -1). Next, 

m2 - 2m - 2 jobs of weight m - 1 arrive. Then, one machine will have a load of 

at least m(m-1). Jobs of weight m-1 on that machine leave such that the load 

becomes m(m - 1). All non-unit jobs on the other machines leave. We continue 

as in Case Blb. D 

4 Con cl us ions 

We have examined the effects of resource augmentation for several load balancing 

problems. For the problem of scheduling jobs on identical machine, we have 

shown an algorithm with a competitive ratio which decreases exponentially in 

n/m, while greedy has a competitive ratio that is linear in n/m. 
An open question is whether it is possible to close the gap between the lower 

bound and the upper bound on identical machines. Both bounds are decreasing 

exponentially, and we conjecture that the true value of the competitive ratio is 

closer to the lower bound. 
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