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Abstract1

The factors shaping the distribution of giant tropical trees are poorly understood, despite its importance as a link2

between evolutionary biology and ecosystem biogeochemistry. The recent discovery of clusters of trees over 803

metres tall in the Guiana Shield region of the Amazon rainforest challenges the current understanding of the factors4

controlling the growth and survival of giant trees. The new discovery led us to revisit the question: what determines5

the distribution of the tallest trees of the Amazon?6

Here, we used high-resolution airborne LiDAR ( Light Detection and Ranging) surveys to measure canopy height7
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across 282,750 ha of primary old-growth and secondary forests throughout the entire Brazilian Amazon to investigate8

the relationship between the occurrence of giant trees and the environmental factors that influence their growth and9

survival. Our results suggest that the factors controlling where trees grow extremely tall are distinct from those10

controlling their longevity. Trees grow taller in areas with high soil clay content (> 42%), lower radiation (< 13011

clear days per year) and wind speeds, avoiding alluvial areas (elevations higher than 40 m a.s.l), and with an optimal12

precipitation range of 1,500 to 2,500 mm yr-1. We then used an envelope model to determine the environmental13

conditions that support the very tallest trees (i.e. over 70 m height). We found that, as opposed to the myriad of14

interacting factors that control the maximum height at a large scale, wind speed had by far the largest influence on the15

distribution of these sentinel trees, and explained 67% of the probability of finding trees over 70 m in the Brazilian16

Amazon forest.17

The high-resolution pan-Amazon LiDAR data showed that environmental variables that drive growth in height are18

fundamentally different from environmental variables that support their survival. While precipitation and temperature19

seem to have lower importance for their survival than expected from previous studies, changes in wind and radiation20

regimes could reshape our forested biomes. This should be carefully considered by policy-makers when identifying21

important hotspots for the conservation of biodiversity in the Amazon.22

Introduction23

The Amazon is the largest rain forest on Earth, covering 5.5 million square kilometres, and stor-24

ing about 17% of all vegetation carbon. Ecologists have long taken an interest in comparing the25

structure and composition of rain forests across the tropics (Yang et al. 2016), and have reached a26

consensus that the Amazon supports shorter trees, and therefore stores a lower amount of carbon27

per hectare, than the forests of tropical Africa and Asia (Cao & Woodward 1998; Feldpausch et al.28

2012). However, the recent discovery of giant trees - up to 88 m tall - in the Amazon basin (Gor-29

gens et al. 2019) challenges this paradigm and poses new questions about the drivers causing the30

spatial distribution of tall trees in the Amazon.31

Previous studies have debated the factors which govern Amazon tree growth and have particularly32
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focused on productivity drivers related to the wet and dry seasons (Huete et al. 2006; Morton33

et al. 2014). This paper’s findings inform this important question but extend the investigation34

beyond these factors to include the influence of 18 climatic and other environmental conditions on35

achieving greatest tree height.36

Tree height is fundamentally linked to growth, survival, and reproduction strategies, and is ulti-37

mately related to the ability to pre-empt light resources and disperse diaspores (Dı́az et al. 2016).38

Xylem conduit diameter and total path length resistance to water flow increase with canopy height,39

making water transport to higher leaves more difficult (Koch et al. 2004; Givnish et al. 2014). To40

counteract this difficulty, taller species have higher xylem hydraulic conductivity but are more vul-41

nerable to xylem embolism (Liu et al. 2019). Across species, higher wood density, and stomata42

closure in response to water deficit are often positively related to embolism resistance (Bennett et43

al. 2015; McDowell & Allen 2015; Greenwood et al. 2017). Height growth is partly governed by44

small-scale factors such as water availability, temperature, rooting depth, and soil type (Anderegg45

et al. 2016; McDowell & Allen 2015; Coomes et al. 2006; Niklas 2007), with precipitation and46

potential evapotranspiration consistently reported as key factors determining plant height across47

biomes (Moles et al. 2009; Larjavaara 2013; Rueda et al. 2016).48

Forest giants are disproportionately vulnerable to disturbances and thus their conservation requires49

particular attention (Pennisi 2019; Yanoviak et al. 2019; Stovall et al. 2019; Enquist et al. 2020).50

To reach such immense sizes, trees must fulfill at least three conditions: they must (1) have an51

evolutionary design that is capable of transporting water to great heights and overcome highly52

negative water potentials to deliver that water toward tissues in the upper canopy; (2) inhabit an53

area with optimal environmental conditions (such as climate, soil properties, and water) that meet54

species-specific requirements (Simard et al. 2018; Scheffer et al. 2018) and (3) grow in regions55

with a low frequency of natural or anthropogenic disturbance events (Larjavaara 2013; Linden-56

mayer & Laurance 2016; Scheffer et al. 2018; Enquist et al. 2020). Resource availability (e.g.57
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sunlight, nutrients, CO2, and water) controls a tree’s ability to produce biomass through photosyn-58

thesis. Natural disturbances (e.g. windthrow, drought, or lightning) and history of anthropogenic59

actions (e.g. selective logging, forest fragmentation) increase the likelihood of mortality and limit60

the time available to trees to grow taller (Bennett et al. 2015; Powers et al. 2020; Yanoviak et61

al. 2019; Almeida et al. 2019). Tall trees are likely to have developed strategies for surviving62

diseases and pathogens (van Gelder et al. 2006; Aleixo et al. 2019) as well as climatic fluctu-63

ations (Sakschewski et al. 2016) and resisting wind damage (Jagels et al. 2018). However, the64

question of how resource supply and disturbances interact to determine canopy height across the65

Amazon has not been fully explored.66

The sheer size of the Amazon, its environmental heterogeneity and species diversity, pose chal-67

lenges and practical difficulties to understand general ecological relationships and biogeographical68

patterns (Tuomisto et al. 2019). Forest plots provide many valuable insights to investigate the69

influences of the environment on tree height but they can only represent a minuscule fraction of70

the total forest area (Chave et al. 2020). Currently, a network of 5,351 forest inventory plots71

established across the Brazilian Amazon, of known and published sites recently compiled by (Te-72

jada et al. 2019), represents only 0.0013% of the total forest area in this region. In addition, the73

plot distribution is spatially clustered in close proximity to major roads or large rivers (Stropp et74

al. 2020), implying a spatial distribution bias (Marvin et al. 2014) since about 42% of the total75

Brazilian Amazon lies over 50 km from the nearest forest inventory plots (Tejada et al. 2019). Re-76

mote sensing can remove sampling biases and uncertainty about ecological patterns (Schimel et al.77

2015) and provides large datasets with which to uncover the environment controls of forest struc-78

ture (Asner et al. 2010). In particular airborne LiDAR (Light Detection and Ranging) generates79

valuable high-resolution 3D information of forest canopy structure (Görgens et al. 2016; Coomes80

et al. 2017), and can be used as an intermediary to integrate field data with satellite sources (Asner81

2009; Bae et al. 2019).82
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The “Improving Biomass Estimation Methods for the Amazon” (EBA) project performed high-83

resolution LiDAR flights over 3 years, totaling more than 800 transects across mature and sec-84

ondary forests in the Brazilian Amazon (for more information about the EBA project see the85

Method section). The transects were randomly distributed considering both spatial location of the86

start point and flight direction, allowing us to conduct statistical design-based models of tree height87

since there is a growing consensus that ecosystem traits like tree height can be better measured with88

LiDAR than other methods (Valbuena et al. 2020). A total of 282,750 ha were covered, 0.183% of89

the Brazilian Amazon, which is 100 times the area of available permanent plot networks (Tejada90

et al. 2019). This unprecedented dataset has led to remarkable discoveries in Amazon (Gorgens et91

al. 2019; Pereira et al. 2019; Santos et al. 2019; Almeida et al. 2019). In this study, we employed92

it to contribute to our understanding of how resources and disturbances shape the maximum height93

distribution across the Brazilian Amazon. We conducted an extensive analysis relating remotely94

sensed environmental variables to the maximum height recorded in the transects. We concluded95

that drivers of height development are fundamentally different from those influencing the survival96

of tree giants. Thus changes in wind and light availability shape their distribution as much as97

precipitation and temperature, altogether shaping the demographics and composition of forested98

biomes.99

Material and methods100

Between 2016 and 2018, an airborne mission (held by National Institute for Space Research -101

INPE and funded by Amazon Fund) collected airborne LiDAR data from 906 transects of 375102

ha (12.5 x 0.3 km) each, randomly spread across primary and secondary forests defined by the103

PRODES database - layer mask of primary old-growth forests (PRODES, INPE, 2016) and by the104

TerraClass database - a layer mask of secondary forest (TerraClass, INPE, 2014).105

The LiDAR sensor was the Trimble Harrier 68i (Trimble, California, USA) aboard a Cessna 206106
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aircraft. The average pulse density was set at 4 pulses m-2, the field of view equal to 30°, and107

flying altitude of 600 m. The Global Navigation Satellite System (GNSS) collected data on a dual-108

frequency receiver (L1/L2). The pulse footprint was set to be below 30 cm, based on a divergence109

angle between 0.1 and 0.3 mrad. Horizontal accuracy was controlled to be under 1 m, and the110

vertical accuracy to be under 0.5 m.111

Details about LiDAR parameterization, processing, and the EBA project characteristics can be112

consulted in (Gorgens et al. 2019). Briefly, each transect was processed by identifying the re-113

turns backscattered from the ground and interpolating a 1m spatial resolution digital terrain model114

(DTM) from them. Then, the DTM was employed to calculate the heights above ground from the115

returns backscattered from the vegetation (Görgens et al. 2016). The uppermost vegetation heights116

were then employed to compute a canopy height model CHM at the same spatial resolution as117

the DTM. The height of the tallest tree per transect was identified from the CHM using a local118

maximum moving window algorithm (Dalponte & Coomes 2016). All transects were finally ma-119

nually inspected to exclude non-trees maximum derived from artifacts, ensuring that all the largest120

heights indeed depicted a tall tree.121

Environmental variables122

To investigate drivers influencing the spatial distribution of giant trees, we initially considered a123

total of 18 environmental variables: (1) fraction of absorbed photosynthetically active radiation124

(FAPAR; in %); (2) elevation above sea level (Elevation; in m); (3) the component of the horizon-125

tal wind towards east, i.e. zonal velocity (u-speed ; in m s-1); (4) the component of the horizontal126

wind towards north, i.e. meridional velocity (v-speed ; in m s-1); (5) the number of days not affected127

by cloud cover (clear days; in days yr-1); (6) the number of days with precipitation above 20 mm128

(days > 20mm; in days yr-1 ); (7) the number of months with precipitation below 100 mm (months129

< 100mm; in months yr-1 ) ; (8) lightning frequency (flashes rate); (9) annual precipitation (in130

6

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.15.097683doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.15.097683
http://creativecommons.org/licenses/by/4.0/


mm); (10) potential evapotranspiration (in mm); (11) coefficient of variation of precipitation (pre-131

cipitation seasonality; in %); (12) amount of precipitation on the wettest month (precip. wettest; in132

mm); (13) amount of precipitation on the driest month (precip. driest; in mm); (14) mean annual133

temperature (in °C); (15) standard deviation of temperature (temp. seasonality; in °C); (16) annual134

maximum temperature (in °C); (17) soil clay content (in %); and (18) soil water content (in %).135

The FAPAR was derived from land surface reflectance product calibrated and corrected from the136

National Oceanic and Atmospheric Administration’s (NOAA) Advanced Very High-Resolution137

Radiometer (AVHRR), which is a consistent time-series dataset spanning from the mid-1980s to138

present and suitable for climate studies (Tao et al. 2016). FAPAR is a primary vegetation variable139

controlling the photosynthetic activity of plants and is considered an essential climate variable (Ma-140

son et al. 2010). The algorithm to create this layer relies on artificial neural networks calibrated141

with the MODIS FAPAR dataset and validated using a set of globally-distributed sites. The inputs142

to generate the FAPAR were 1) the surface reflectance from NOAA-AVHRR which is measured143

in two wavelengths (red, 580–680 nm, and near-infrared, 725–1000 nm); 2) a reference dataset144

from MODIS FAPAR to calibrate the NOAA-AVHRR FAPAR; and 3) a land cover map classi-145

fication, used to stratify the outputs. Five land cover classes were included: evergreen broadleaf146

forest, deciduous broadleaf forest, needle leaf forest, shrubland, croplands and grasslands, and147

non-vegetated (Claverie et al. 2016).148

The elevation was computed based on the third version of the Shuttle Radar Topography Mission149

(SRTM) provided by National Aeronautics and Space Administration Jet Propulsion Lab (NASA150

JPL) (Farr et al. 2007; Liu et al. 2014). The SRTM mission was launched on Space Shuttle Endea-151

vor on 11th February 2000 and collected data during ten days of operations, using two synthetic152

aperture radars: NASA’s C band system (5.6 cm wavelength) and an X band system by DLR (3.1153

cm). The C-band digital elevation model (DEM) used in this study is now available at 30-m spati-154

al resolution from 60° north latitude and 56° south latitude, covering 80% of Earth’s land surface.155

7

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.15.097683doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.15.097683
http://creativecommons.org/licenses/by/4.0/


C-band partially penetrates the vegetation canopy, with depth varying with vegetation structure.156

Since Amazonian vegetation is dense throughout, for the purposes of this study the C-band DEM157

is assumed to vary consistently with topography across the region.158

We used the maximum daily mean wind speeds over the last 5 years from the fifth major glo-159

bal reanalysis (ERA5) produced by the European Centre for Medium-Range Weather Forecasts160

(ECMWF). The reanalysis combined model data with observations from across the world into a161

globally complete and consistent dataset (Olauson 2018). The products from a reanalysis include162

many variables such as wind speeds, temperature, and atmospheric pressure. They were produced163

on reduced Gaussian grids, by using a different number of grid points along different latitudes164

and thus keeping the grid point separation in metres approximately constant. ERA5 has an hourly165

resolution and spans from 1950 to near real-time. Two wind velocities were considered: u-speed166

which is the zonal velocity (i.e. the component of the horizontal wind towards east), and v-speed167

which is the meridional velocity (i.e. the component of the horizontal wind towards north). These168

products are used extensively for modelling wind power both in academia and industry (Olauson169

2018; Albergel et al. 2019; Ramon et al. 2019).170

The number of clear days was computed based on Moderate Resolution Imaging Spectroradio-171

meter (MODIS) surface reflectance products. MODIS products provide an estimate of the surface172

spectral reflectance as it would be measured at ground level in the absence of atmospheric scat-173

tering or absorption (Kang et al. 2005; Bisht & Bras 2010). MODIS operates onboard Terra and174

Aqua satellites. Terra satellite has a 10:30 am equator over-passing time, and the ±55° scanning175

pattern at 705 km altitude achieves a 2,330 km swath that provides global coverage every one to176

two days (Ruhoff et al. 2012). We used the Terra MOD09GA Version 6 product, which provides177

an estimate of the surface spectral reflectance of MODIS, corrected for atmospheric conditions178

such as gases, aerosols, and Rayleigh scattering.179

Temperature and precipitation were obtained from the WorldClim database of bioclimatic varia-180
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bles, which are derived from weather station data compiled for the 1950-2000 period (Hijmans et181

al. 2005; Fick & Hijmans 2017). The main source of data was the Global Historical Climatolo-182

gy Network (GHCN), complemented with other global, national, regional, and local data sources,183

which were added if they were further than 5 km away from stations already included in the GH-184

CN. After removing stations with errors, the final database consisted of precipitation records from185

47,554 locations, mean temperature from 24,542 locations, and minimum and maximum tem-186

peratures from 14,835 locations. To interpolate the weather station data, latitude, longitude, and187

elevation were used as independent variables.188

The lightning frequency was provided by Lightning Imaging Sensor (LIS) instrument onboard189

the Tropical Rainfall Measuring Mission provided by NASA Earth Observing System Data and190

Information System (EOSDIS) Global Hydrology Resource Center. The LIS was launched in No-191

vember 1997 into a precessing orbit inclination of 35° at an altitude of 350 km and was powered off192

in April 2015. The LIS datasets were collected during 16 years (1998–2013) and they are available193

at 0.1° spatial resolution (approx. 11km in the equator). The LIS provided the basis for the develop-194

ment of a comprehensive global thunderstorm and lightning climatology to detect the distribution195

and variability of total lightning occurring in the Earth. This information is used for severe storm196

detection and analysis, and also for lightning-atmosphere interaction studies (Albrecht et al. 2016).197

The potential evapotranspiration was provided by the TerraClimate dataset, a global monthly cli-198

mate and water balance for terrestrial surfaces spanning 1958–2015. The layer used climatically ai-199

ded interpolation (bilinear interpolation of temporal anomalies), combining high-spatial-resolution200

climatological normals from WorldClim with Climate Research Unit (CRU) Ts4.0 and the Japa-201

nese 55-year Reanalysis (JRA-55) data. The CRU Ts4.0 provides monthly average maximum and202

minimum temperature, vapor pressure, and cumulative precipitation from 1901–2015. The JRA-203

55 is the longest-running (1958-present) observing-system and provides spatially and temporally204

complete data for mean temperature, vapor pressure, wind speed, downward shortwave flux at the205
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surface, and accumulated monthly precipitation. The Reference Evapotranspiration was calculated206

using the Penman-Monteith approach (Abatzoglou et al. 2018).207

The number of months per year with precipitation below 100 mm and the number of days per ye-208

ar with precipitation above 20 mm was computed based on the Climate Hazards Group InfraRed209

Precipitation with Station data (CHIRPS) dataset. CHIRPS incorporated 0.05° resolution satellite210

imagery with in-situ station data to create gridded rainfall time series for trend analysis and seaso-211

nal drought monitoring (Funk et al. 2015). The CHIRPS process involves three main components:212

1) the Climate Hazards group Precipitation climatology (CHPclim), 2) the satellite-only Climate213

Hazards group Infrared Precipitation (CHIRP), and 3) the station blending procedure that produces214

the CHIRPS. Two sets of monthly historical long-term means were used to create the CHPclim.215

The first set was a collection of 27,453 monthly stations obtained from the Agromet Group of the216

Food and Agriculture Organization of the United Nations (FAO). The second set of 20,591 stati-217

ons was taken from version two of the Global Historical Climate Network (GHCN). The CHIRP218

relies on two global thermal infrared archives that are: the 1981–2008 Globally Gridded Center Sa-219

tellite (GriSat) produced by NOAA’s National Climate Data and the 2000-present dataset NOAA220

Climate Prediction Center. The CHIRPS station datasets were obtained from the GHCN month-221

ly, GHCN daily, Global Summary of the Day, Global Telecommunication System and Southern222

African Science Service Centre for Climate Change and Adaptive Land Management. The stati-223

on blending procedure that produces CHIRPS is a modified inverse distance weighting algorithm.224

Daily CHIRPS are then produced for the globe by using daily Cold Cloud Duration (CCD) data225

to identify non-precipitating days. Whenever the daily CCD is zero, precipitation is assumed to be226

zero.227

Edaphic variables were obtained from The OpenLandMap produced by the OpenGeoHub Founda-228

tion and contributing organizations. Soil texture is connected with soil granulometry or the com-229

position of the particle sizes (clay, silt, and sand), typically measured as volume percentages. The230
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clay content (fine particles < 2 μm) and water content layers, both with a spatial resolution of 250231

m, were created based on machine learning predictions from a global compilation of soil profiles232

and samples (Arsanjani et al. 2014).233

To help visualization of the regional-level, we divided the Brazilian Amazon into eight regions,234

according to the classification of (Morrone 2014): I - Para; II - Xingu-Tapajos; III - Roraima; IV -235

Guianan Lowlands; V - Madeira; VI - Yungas; VII - Pantepui; VIII - Imeri. This regionalization is236

based on biogeographic analyses of terrestrial plant and animal taxa of the Neotropical region and237

seeks to provide universality, objectivity, and stability, such that it can be applied when describing238

distributional areas of particular taxa or comparing different biogeographic analyses.239

Random Forest and Maximum Entropy240

To better understand the environmental requirements for development in tree height, we employed241

Random Forest modelling and marginal plots to observe the relative variable importance. Among242

the initial 18 environmental variables, two of them (precipitation on driest month and months <243

100mm) were excluded due to high correlation (> 0.80) to other independent variables (Table 1).244

Using the coordinates of the tallest tree within each lidar transect, we extracted the values from the245

variable layers. Tree height was then modeled against the factors using a random forest algorithm,246

which recursively computes classification and regression trees (CART) from random subsets, a247

k-fold (k = 15) cross-validation method, and 500 as the number of CART. The number of variables248

randomly sampled as candidates at each split was set to 10. The adjusted model was evaluated249

considering the mean absolute error (MAE), root mean squared error (RMSE), and coefficient of250

determination (R²) of cross-validated predicted versus observed values. To assess the overall rela-251

tive variable importance we used the mean decrease in Gini importance, which evaluates at each252

split in each tree, how much each variable contributes to decreasing the weighted impurity (i.e.,253

variance in the case of regression trees). The resulting Random Forest model was finally imple-254
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mented using the environmental variables to deliver a map of estimated heights of tallest trees255

across the Amazon. Then we focused on the tallest trees only - those over 70 m in height - to256

determine the conditions which allow them to survive. We employed a maximum entropy en-257

velope approach (MaxEnt) commonly applied to modelling species geographic distributions with258

presence-only data and indicate better discrimination of suitable versus unsuitable areas for the259

species (Phillips et al. 2006). The variable importance of the MaxEnt model was used to indicate260

the most relevant characteristics sustaining extreme height individuals and the potential location261

for new occurrence. The observations higher than 75 m were filtered out and used to adjust an262

envelope model based on maximum entropy. In its optimization routine, the algorithm tracked263

how much the model gain was improved when small changes were made to each coefficient value264

associated with a particular variable. Each variable was then ranked based on the proportion of265

all contributions. The resulting MaxEnt model was finally implemented using the environmental266

variables to deliver a map of probability of occurrence for trees taller than 70 m across the Amazon.267

Results268

Trees exceeded 50 m in height across many parts of the Brazilian Amazon, but trees over 80 m were269

only observed in the eastern Amazon (micro-region III, Roraima Province; Fig. 1). To examine270

why the trees grow taller in some regions and determine the environmental variables modulating271

height pattern in the Amazon, we predicted maximum tree height as a function of environmental272

variables using a Random Forest approach. The number of clear days, clay content in the soil,273

elevation and mean annual precipitation were found to be the strongest drivers of maximum tree274

height, while the average monthly temperature and soil water content were weak predictors (Ta-275

ble 2). The Random Forest model obtained MAE = 3.62 m, RMSE = 4.92 m, and R² = 0.735. A276

resulting map of Random Forest model predicted maximum tree height shows that occurrence277

is highest in eastern Amazon (Fig. 2), with the tallest trees more specifically achieving greatest278
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heights in the northeastern part of Roraima (III), in Pantepui (VII) and in the confluence of Ma-279

deira (V) and Xingu-Tapajos (II). Since low values of FAPAR are related to degraded forests and280

anthropogenic regions, we performed the same analysis after excluding areas with FAPAR values281

under 80%, which resulted in the elimination of 133 transects. Similar spatial distributions for ma-282

ximum tree height persisted similarly after removing these potential anthropogenic effects (Fig. 3),283

demonstrating that the underlying patterns we report are naturally driven by the environmental fac-284

tors.285

The marginal plot obtained for each environmental variable in the random forest model, allows286

us to interpret its influence on the height of tall trees directly in the units that correspond to each287

(Fig. 4). Lines close to horizontal indicate a given environmental factor having little effect on the288

height of tall trees. The number of clear days was the strongest predictor of maximum height289

(Table 2). The shape of this relationship resembles a step function (Fig. 4), in which regions with290

the number of clear days below 130 days per year support tall trees, above this level, we observe291

an abrupt decline in maximum height. Elevation was also a key predictor of tree height, with low-292

lying forests growing 7 m lower than trees in terrains above 40 m above sea level. An increase293

in soil clay content from 20% to 40% translated into a 7 m increase in maximum height. Our294

results also demonstrate mean annual precipitation as a key factor for trees to grow taller, with295

a tolerance curve peaking at around 2,300 mm yr-1 as optimal annual precipitation across the296

Brazilian Amazon. In comparison to these areas, we observe a 4 m decline in maximum tree297

height in regions with annual precipitation below 1,500 mm yr-1 or above 3,000 mm yr-1. From the298

intermediate importance variables, we highlight the zonal velocity (u-speed) and FPAR influencing299

height variation in ranges around 6 m.300

The results of the MaxEnt approach are focusing on the survival of trees taller than 70 m in height301

(Fig. 5). The extraordinarily tall trees had a unique niche, characterized by a much smaller set302

of environmental variables from those which drove the large-scale patterns of maximum height.303
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The maximum entropy model shows that the niche is dominated mostly by wind speed (relative304

importance of 67.7 % ). The second most important driver of tall tree survival was the elevation305

above sea level (relative importance of 12.3 %). It is worthwhile noting that relative importance306

values reflect the proportion of all contributions to explain the presence of the tallest trees. The307

resulting map of predicted occurrence of the tallest trees in the Amazon from the MaxEnt model308

shows that the probability of maximum tree height occurrence is highest in northeastern Amazon309

(Fig. 6), more specifically in the Roraima (III) and Guianan Lowlands (IV).310

Discussion311

The locations of the tall trees in the eastern and southern Amazon coincide with forests that have312

a high basal area predicted by statistical modelling of permanent plot data (Malhi et al. 2006).313

The basal area generally declines with increasing dry season length, for regions with dry seasons314

lasting four months or longer. Young soils nearer the Andes, as well as the sedimented and flooded315

lowlands, are richer in nutrients, thereby supporting fast-growing, low wood density species with316

high turnover rates and, as a result, the trees do not reach extremely large sizes (Marra et al. 2014;317

Quesada et al. 2011; Phillips et al. 2004). The species Dinizia excelsa (Ducke), for example,318

has been reported as the tallest trees in the Amazon reaching 88 m in height in the region of319

Roraima (Gorgens et al. 2019), and also has been reported as the highest average species-level320

wood density in the Amazon of 0.94 g cm-3 (Fauset et al. 2015) with a large contribution to the321

total forest biomass.322

Many physiological and structural traits in the Amazon have strong phylogenetic associations with323

effects on tree growth and mortality (Baker et al. 2004; Fyllas et al. 2012; Patiño et al. 2012).324

Forests of the western Amazon are more homogeneous in composition at the family (Myristi-325

caceae, Arecaceae, Moraceae) and species levels (Condit 2002; Pitman et al. 2001), while species326

from eastern Amazonian have broadly different patterns of family-level composition being dom-327
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inated by the Sapotaceae, Chrysobalanaceae, Fabaceae and Lecythidaceae (Chave et al. 2006).328

Wood density is driven by shifts in tree species composition (Terborgh & Andresen 1998) and tends329

to peak in the slow-growing forests on infertile soils in eastern Amazon and the Guyanas (Malhi330

et al. 2006). Soil physical properties in combination with limited nutrient supply in eastern Ama-331

zon favour slow-growing species and increases species that invest their resources in structures332

that can support taller and bigger trees with a long lifespan (Malhi et al. 2004; Quesada et al.333

2009). Temperature and dry season precipitation effects on the structure and wood density are334

more ambiguous (Quesada et al. 2012), although species with higher wood density are better able335

to resist drought-induced embolism (Hacke et al. 2001) and therefore tolerate longer periods of336

high vapor water deficit and evaporative demand (McDowell et al. 2018). This myriad of environ-337

mental variables with confounding effects on species composition, as well as on their physiological338

and structural traits, play a crucial role in the tree lifespan and the size of trees (Muller-Landau339

2004).340

Conditions supporting tall trees341

In our study, the low wind speed was determined as the single most important predictor of the342

occurrence of the tallest trees in the Brazilian Amazon. The fact that trees adapt to their wind en-343

vironment and are shorter in windy locations has been widely observed in temperate regions (Bon-344

nesoeur et al. 2016; Telewski 2006). We can see a similar effect across the Amazon, with trees over345

70 m tall having a 50-75% likelihood of surviving in the calmest areas but a sharply decreasing346

probability with stronger winds. This agrees with previous findings that disturbance rates are far347

higher in the Western Amazon (Espı́rito-Santo et al. 2014) and may demonstrate how significant348

the role of wind is in shaping the niche for extraordinarily tall trees. The importance of wind speed349

was also apparent in the Random Forest model which showed a 9 m reduction in the estimated350

tree height from the calmest to the windiest areas (Figure 2). The zonal velocity (i.e. the eastward351
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component), which is the prevailing wind direction in the region, drives this pattern. Interestingly,352

our data showed that the lightning rate was only weakly related to maximum forest height patterns353

in both the Random Forests and MaxEnt models. Despite being relevant to the death of individual354

trees (Marra et al. 2014; Bonnesoeur et al. 2016; Niklas 1998) and being the key factor causing355

tree deaths in tropical forests of Panama (Yanoviak et al. 2019), lightning and storms do not seem356

to impact the potential dominant tree of a region, nor to limit the survival of the tallest trees, in357

light of our results.358

A balance between tree structural strength and wind shearing forces contributes to set an upper359

limit to tree height development (Klein et al. 2015). The wind has a direct effect on tree height,360

since trees adapt their growth rates to their local wind environment, although the scale of this effect361

is unknown (Telewski 2006; Bonnesoeur et al. 2016). Extreme wind speeds, often associated362

with convective storms in the tropics, can also snap or uproot trees. Large-scale wind patterns363

in the Amazon are dominated by the easterly trade winds. Wind damage is most common from364

September to February (Negrón-Juárez et al. 2017) and taller trees have higher rates of mortality365

in wind storms (Rifai et al. 2016). Remote sensing analyses have shown that disturbance rates are366

much higher in the western Amazon compared to the east (Espı́rito-Santo et al. 2014).367

A decrease in cloud-free days goes together with an increase in solar radiation (Barkhordarian368

et al. 2019), which, along with changes in the Vapor Pressure Deficit, or atmospheric dryness,369

drive changes in the physiological function of trees (Williams et al. 2012; Nunes et al. 2019).370

The increase in diffuse radiation led by cloudy conditions induces an increase in photosynthetic371

activity (Gu 2003). Tree responses to direct solar radiation are dependent on the species and372

developmental stage, with physiological and structural changes to maximize either growth or sur-373

vival (Wright et al. 2004; Nunes et al. 2019; Poorter & Bongers 2006). As the traits of individual374

trees are at least conserved at the species level, additional variation is determined by the local en-375

vironment (Fyllas et al. 2009). As trees grow taller, increasing leaf water stress due to gravity and376
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path length resistance may limit leaf expansion and photosynthesis for further height growth (Koch377

et al. 2004). Tall trees have direct exposure to sunlight and high temperatures lead to higher stom-378

atal control to avoid excessive water loss (Drake et al. 2018; Rowland et al. 2015).379

Elevation was also a key predictor of tree height, with low-lying forests growing potentially less380

than trees in terrains over 40 m a.s.l. (Fig. 4). The topographic gradient is likely to be related to the381

likelihood of flooding in the low elevation transects on the lowlands. Rivers erode the terra firme382

terraces and create floodplains of variable sizes dating to the Miocene, with terrace–floodplain ele-383

vation differences decreasing eastwards from the Andes (Hamilton et al. 2007). Shifts in multiple384

canopy chemical traits between the terrace and floodplain forests in the Amazon are paralleled by385

species turnover, which reveals the micro-topography effects on the growth-defense trade-off in386

Amazonian forests, and its associated processes of nutrient mobilization and deposition (Asner et387

al. 2015). The species and trait shifts with topographical variation in the Amazon also confers388

an adaptive drought resistance, with species from the plateaus more susceptible to prolonged peri-389

ods with lower soil water content, and, therefore, investing in higher hydraulic safety with higher390

wood density, lower mean vessel hydraulic diameter, lower mean vessel area and smaller stem391

cross-sectional sapwood area than species in valley forests (Cosme et al. 2017).392

An increase in soil clay content also translated into an increase in maximum height. Clay content393

is usually highest on flat terrain (Laurance et al. 1999) decreasing from about 75% to 5% when394

moving from the plateau areas to the valleys (Ferraz et al. 1998; Toledo et al. 2016). Previous395

studies also indicated the presence of clayey soil in the plateau areas of the Amazon (Broedel et396

al. 2017; Cerri & Volkoff 1987; Marques et al. 2002; Marques et al. 2004; Marques et al. 2015).397

Our results suggest that 1) if the clayey soils of our study occur in the plateau areas with lower398

soil water content, a shift of species associated with the plateaus favoured species with higher399

hydraulic safety, otherwise 2) access to structured soils seems to be essential for trees to grow400

taller. A previous study showed an increase in wood density from stands on sandy soils in valleys401
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to clayey soils on plateaus at a local scale in Central Amazon, and lower tree mortality rates in402

clayey soils (Toledo et al. 2016). These patterns were primarily driven by soil moisture - correlated403

to depth to water table - causing shifts in tree community composition (Schietti et al. 2013), and404

favouring higher hydraulic safety in the lower soil moisture areas of the plateaus (Toledo et al.405

2016; Cosme et al. 2017). We suggest that the structured soils allow trees to obtain an additional406

volume of water during the dry season towards eastern Amazon, where soils tend to be richer in407

clay compared to central and western Amazon (Fisher et al. 2008; Hodnett et al. 1997). The408

dimorphic root systems associated with structured, clayey soils can redistribute water from deep409

layers to the soil surface during periods of drought (Broedel et al. 2017).410

Chemical and physical properties of soils across the Amazon Basin tend to correlate with variations411

in and type of parent material, and exhibit an east-west soil age gradient (Quesada et al. 2011).412

This edaphic variation across geological formations has strong influences on the floristic, structural413

and demographic patterns in the Amazon (Quesada et al. 2012; ter Steege et al. 2006), with abrupt414

changes in species composition following changes in soil properties and topography (Phillips et415

al. 2003; Higgins et al. 2011). These patterns reflect more than a simple east-west gradient, due to416

a complex history of deposition and erosion dating to the Miocene (Higgins et al. 2011). Despite417

the clear heterogeneity caused by abrupt edaphic variation, two main gradients explain 24% of the418

total variation in tree community composition: one from the Guiana Shield to the southwestern419

Amazon, congruent with variation in soil fertility and its effects on tree wood density and seed420

mass, and another gradient from Colombia to the southeastern Amazon related to the length of421

the dry season (ter Steege et al. 2006). These gradients have distinctions in terms of their most422

abundant genera and occurrence of the Fabaceae family, which contains most of the large trees and423

grow successfully in low-dynamics environments such as the Guiana Shields. Higher occurrence424

of the Fabaceae in these low-fertility soils may occur due to the ability to fix nitrogen in the soil425

and ectomycorrhizal association (Webb & Sprent 2002; Sprent 2009).426
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Our results also demonstrate mean annual precipitation as a key factor for trees to grow taller. A tol-427

erance curve associated the height of tall trees with precipitation, peaking at 2,300 mm yr-1 as op-428

timal, but also showing that areas too dry or too wet may both inhibit the growth of tall trees. Thus,429

we observed 4 m decline in maximum tree height in regions with annual precipitations below 1,500430

mm yr-1 or above 3,000 mm yr-1. The availability of soil water depends on both precipitation and431

evapotranspiration, and our results suggest that below 1,500 mm yr-1 evapotranspiration may ex-432

ceed precipitation in the Amazon (Scheffer et al. 2018), and mortality by the hydraulic failure may433

occur for trees near their maximum height (McDowell et al. 2008). Mean annual precipitation434

above 2,300 mm year-1 may be related to exceeding water, and the combination of high precip-435

itation and poorly drained soils may result in anaerobic conditions with negative effects on tree436

growth and survival (Quesada et al. 2009). Furthermore, higher precipitation tends to be related to437

the occurrence of storms and stronger winds with increases in tree mortality (Aleixo et al. 2019).438

Temperature and precipitation are key variables modulating the composition of species in the north-439

western to southeastern seasonality gradient (ter Steege et al. 2006). The mean precipitation in the440

Brazilian Amazon varies from less than 2,000 mm year-1 (in the south, east, and extreme north) to441

more than 3,000 mm year-1 (in the northwest) (Liebmann & Marengo 2001). The annual convective442

movement of the inter-tropical convergence zone results in distinct wet and dry seasons (Marengo443

& Nobre 2001). However, the dry season in the Amazon basin varies from virtually nonexistent444

to periods reaching up to seven consecutive months with less than 100 mm month-1 of rain (Som-445

broek 2001). A global analysis provided evidence for the control of water availability over forest446

canopy height around the world, but the predictability between wet/dry indicates the involvement447

of additional limiting factors as temperature or radiation (Klein et al. 2015).448
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Conclusion449

Plant size distributions can be understood as the demographic consequence of size-dependent vari-450

ation in growth and mortality in old-growth forests, and the mortality of large trees is independent451

of resource availability and competition (Coomes et al. 2003). Understanding the spatial dis-452

tribution of maximum tree height in tropical forests and how it is associated with environmental453

conditions and tree functional traits is of fundamental importance. Emergent trees that reach their454

maximum height are responsible for a significant amount of the transpired water flux and the above-455

ground carbon storage. Trees which reach these extraordinary heights are rare and only a small456

proportion of species have the necessary adaptions to achieve this. However, these adaptations are457

not sufficient alone, and maximum tree height is strongly influenced by environmental conditions.458

We found that, across the Brazilian Amazon, the most important conditions were a lower number459

of clear sky days (reducing stress from direct sunlight), and soil clay content (improving water460

retention). Our second analysis emphasized the importance of disturbance, showing that the tallest461

trees are only found in places with low wind speed, allowing trees to grow for centuries without462

substantial damage.463

Current climate models differ in their predictions of large-scale changes in wind patterns, although464

warmer temperatures will mean that the air can hold more moisture, which will likely make con-465

vective storms more intense. Whatever the change in environmental conditions, it is likely to occur466

faster than trees can adapt. Our results showed that precipitation and temperature have a lower467

importance than expected from previous studies. Nevertheless, changes in the precipitation and468

radiation regimes (strongly linked to the number of cloudy days) could reshape our forest biomes.469

Ultimately, the association between environmental conditions and mechanisms of natural selec-470

tion, where some traits have some advantages in comparison to others influencing the survival of471

the most adaptable, are key to understanding the complexity of this process in a changing climate.472
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Table 1: Correlation between the environmental variables.
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Layer Definition Related to Unit Source Importance

clearDays number of clear days per year energy balance - water balance - radiation days MODIS 14.7

clayCon-

tent

fraction of clay content soil structure - physical properties - water availability % Open-

LandMap

13.8

topogra-

phy

elevation above sea level distance to water - flooding zones - soil m SRTM 11.2

pannual average annual precipitation precipitation - precipitation intensity - precipitation distribution mm WorldClim 8.9

pseason precipitation seasonality precipitation - precipitation intensity - precipitation distribution mm WorldClim 6.9

fapar fraction of absorbed photosynthetically

active radiation

radiation - vegetation health - anthropic regions - soil exposure % NOAA

AVHRR

6.3

pwettest precipitation of the wettest month precipitation - precipitation intensity - precipitation distribution mm WorldClim 5.8

uspeed zonal speed (W-E) storms - convective winds m/s ECM-RWF 5.6

days20 days with precipitasion higher then 20

mm

storms - convective winds days CHIRPS 5.5

pet potential evapotranspiration energy balance - water balance - radiation - vegetation health -

anthropic regions - soil exposure

mm TerraCli-

mate

5.2

tseason temperature seasonality temperature - temperature distribution C WorldClim 4.6

tmax maximum temperatura storms - convective winds C WorldClim 4.2

vspeed meridional speed (N-S) storms - convective winds m/s ECM-RWF 3.6

lightning lightining rate storms - convective winds flashes

rate

LIS TRMM 3.5

tannual daily average annual temperature temperature - temperature distribution C WorldClim 0.3

water-

Content

fraction of water content soil structure - physical properties - water availability % Open-

LandMap

0

month100 month with precipitation below 100 mm precipitation - precipitation intensity - precipitation distribution months CHIRPS Removed by high

correlation

pdriest precipitation of the driest month precipitation - precipitation intensity - precipitation distribution mm WorldClim Removed by high

correlation

Table 2: Variables used to estimate maximum height distribution and evaluate its distribution,

ranked by variable importance results in the Random Forest model
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Figure Captions816

Figure 1. Maps of the Brazilian Amazon showing the location of trees > 50 m, > 60 m, > 70 m,

and > 80 m in height. Black circles indicate the presence of a tree above the height thresholds.

Background color indicates the biogeographical subdivisions proposed by (Morrone 2014): I -

Para; II - Xingu-Tapajos; III - Roraima; IV - Guianan Lowlands; V - Madeira; VI - Yungas; VII -

Pantepui; VIII - Imeri.

Figure 2. Maximum height estimation based on remote sensing variables estimated by Random

Forest method. Black lines indicate the biogeographical subdivisions: I - Para; II - Xingu-Tapajos;

III - Roraima; IV - Guianan Lowlands; V - Madeira; VI - Yungas; VII - Pantepui; VIII - Imeri.

Figure 3. Maximum tree height distribution when FAPAR values under 80% were excluded from

our analysis.

Figure 4. Marginal plot for each variable considering the Random Forest model for maximum

height estimation

Figure 5. Marginal plot for each variable considering the Maximum Entropy model for niche

determination

Figure 6. Ocurrence of giant trees (black dots) and niche capability to support the development of

tall trees (probability of tall tree ocurrence). Black lines indicate the biogeographical subdivisions:

I - Para; II - Xingu-Tapajos; III - Roraima; IV - Guianan Lowlands; V - Madeira; VI - Yungas; VII

- Pantepui; VIII - Imeri.
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Figures817

Figure 1: Maps of the Brazilian Amazon showing the location of trees > 50 m, > 60 m, > 70 m,

and > 80 m in height. Black circles indicate the presence of a tree above the height thresholds.

Background color indicates the biogeographical subdivisions proposed by (Morrone 2014): I -

Para; II - Xingu-Tapajos; III - Roraima; IV - Guianan Lowlands; V - Madeira; VI - Yungas; VII -

Pantepui; VIII - Imeri.
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Figure 2: Maximum height estimation based on remote sensing variables estimated by Random

Forest method. Black lines indicate the biogeographical subdivisions: I - Para; II - Xingu-Tapajos;

III - Roraima; IV - Guianan Lowlands; V - Madeira; VI - Yungas; VII - Pantepui; VIII - Imeri.

Figure 3: Maximum tree height distribution when FAPAR values under 80% were excluded from

our analysis.
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Figure 4: Marginal plot for each variable considering the Random Forest model for maximum

height estimation
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Figure 5: Marginal plot for each variable considering the Maximum Entropy model for niche

determination
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Figure 6: Ocurrence of giant trees (black dots) and niche capability to support the development of

tall trees (probability of tall tree ocurrence). Black lines indicate the biogeographical subdivisions:

I - Para; II - Xingu-Tapajos; III - Roraima; IV - Guianan Lowlands; V - Madeira; VI - Yungas; VII

- Pantepui; VIII - Imeri.
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