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Abstract—A visual sensor network (VSN) consists of a large
amount of camera nodes which are able to process the captured
image data locally and to extract the relevant information. The
tight resource limitations in these networks of embedded sensors
and processors represent a major challenge for the application
development. In this paper we focus on finding optimal VSN
configurations which are basically given by (i) the selection of
cameras to sufficiently monitor the area of interest, (ii) the setting
of the cameras’ frame rate and resolution to fulfill the quality of
service (QoS) requirements, and (iii) the assignment of processing
tasks to cameras to achieve all required monitoring activities.
We formally specify this configuration problem and describe an
efficient approximation method based on an evolutionary algo-
rithm. We analyze our approximation method on three different
scenarios and compare the predicted results with measurements
on real implementations on a VSN platform. We finally combine
our approximation method with an expectation-maximization
algorithm for optimizing the coverage and resource allocation
in VSN with pan-tilt-zoom (PTZ) camera nodes.

Index Terms—Visual sensor network; resource allocation;
camera coverage; task assignment; evolutionary algorithm

I. INTRODUCTION

Camera networks have been used for security monitoring

and surveillance for a very long time. In these networks, the

cameras act as distributed image sensors that continuously

stream video data to a central processing unit, where the

video is analyzed by a human operator. Visual sensor networks

(VSNs) consist of camera nodes, which integrate the image

sensor, embedded processor, and wireless transceiver [1]. In

a visual sensor network a large number of camera nodes

form a distributed system, where the cameras are able to

process image data locally and to extract relevant information,

to collaborate with other cameras on the application-specific

task, and to provide the systems user with information-rich

descriptions of captured events [2].

VSNs represent networks of embedded sensors and pro-

cessors with tight resource limitations. However, VSNs have
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to process large amounts of visual data in real-time and

perform rather complex algorithms to fulfill the application

requirements. To explore these requirements in some detail,

let’s have a closer look at a typical monitoring application

for VSN. The objective here is to cover (large parts of) the

monitoring area with the cameras while performing various

monitoring activities. Typical monitoring activities include

motion detection, object detection and tracking. Note that

these tasks vary in complexity and may change depending on

space and time. The selection of cameras and assignment of

monitoring tasks to these cameras is therefore a challenging

and important problem for VSNs.

In this paper we focus on camera selection and task assign-

ment in VSNs considering the strong resource limitations. We

describe this challenge as a coverage and resource allocation

problem with the objective to find an optimal configuration

of the VSN. A configuration is basically given by (i) the

selection of cameras to sufficiently monitor the area of interest,

(ii) the setting of the cameras’ frame rate and resolution to

fulfill the quality of service (QoS) requirements, and (iii) the

assignment of processing tasks to camera nodes to achieve all

required monitoring activities. In order to solve this coverage

and resource allocation problem we model the cameras’ ca-

pabilities and resources, the observation space and monitoring

activities as well as the available processing tasks and their

resource requirements. We search for approximate solutions

using an evolutionary computing approach which provides a

good compromise between search time and solution quality.

The solutions are evaluated on our embedded camera platforms

which will be deployed in a biologically sensitive environment.

This work contributes to the scientific knowledge in at

least the following aspects: The first contribution is based

on the specification of the VSN configuration as a camera

coverage and task assignment problem. To the best of our

knowledge, this is the first formulation which jointly considers

coverage, QoS and resource allocation in VSNs. The second

contribution includes our evolutionary algorithm which effi-

ciently finds good approximations of the coverage and task

assignment problem. Further, we combine our approximation

method with an expectation-maximization (EM) algorithm.

This combination is able to optimize camera coverage and re-

source allocation in VSNs with pan-tilt-zoom (PTZ) cameras,

supports an accurate spatial modeling and achieves a better

camera utilization than with static cameras in dynamically

changing environments. Finally, the achieved configurations

are mapped and executed on our embedded camera platforms

which enables a comparison of estimated and measured re-
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source consumption.

The remainder of this paper is organized as follows.

Section II discusses related work with regard to resource-

limited camera networks as well as sensor placement and

selection. Section III introduces the problem formulation in

detail. Section IV describes our evolutionary approach for the

approximation of the problem and presents our software tool

for specifying and solving the VSN coverage and resource

allocation problem. Section V discusses the achieved results

using different network settings and scenarios for the monitor-

ing activities. An experimental evaluation on camera platforms

is also presented. Section VI concludes this paper with a brief

summary and discussion about future work.

II. RELATED WORK

A. Resource-limited camera networks

In many multi-camera networks [3], the available resources

are limited. These resource limitations are especially prevalent

in distributed smart cameras [4] and visual sensor networks

[5], [2]. Different to the traditional camera networks, the pro-

cessing of the visual data is distributed among the individual

camera nodes. A major reason for this distribution of pro-

cessing is to avoid transferring raw data and hence to support

down-scaling the required communication infrastructure [6].

Optimizing the resource assignment in camera networks

has recently gained interest in different fields of research.

First, computing platforms and sensors are one such field.

Due to the advances in semiconductors, sensing and computing

performance have increased quite dramatically while reducing

the power consumption. Thus, power-efficient camera nodes

have emerged recently; examples include WiCa [7], Meerkats

[8] and Citric [9] platforms. Although these platforms vary in

the available sensing and processing performance, the trend

towards smaller, more capable and power-efficient camera

nodes can be clearly identified [6].

Second, dynamic resource management tries to change the

configuration of the camera nodes and the network during

operation to adapt to changes in the required functionality.

Maier et al. [10] introduce an online optimization methods for

dynamic power management in surveillance camera networks

where individual camera components changed their power

modes based on the current performance requirements of the

network. Winkler et al. [11] present camera nodes combining

low and high power radios. Karuppiah et al. [12] describe a

resource allocation framework to coordinate distributed object

tracking in camera networks. The fundamental block in this

framework is the fault containment unit which provides a

service using a redundant set of resources. This set of re-

sources supports local fault compensation but also hierarchical

resource updates by exchanging fault information. Dynamic

resource allocation is also applied to optimize the transfer

of (compressed or raw) video data over a camera network.

Shiang et al. [13] focus on how multiple cameras should

efficiently share the available wireless network resources and

transmit their captured information to a central monitor. They

compare a centralized approach, a game-theoretic and a greedy

approach for making the resource allocation decisions. The

objective of resource optimization is to adapt the available

resources such as energy, communication bandwidth, service

level and sensing capability, such that a given goal function

is maximized [2]. Typical goal functions are maximizing the

network lifetime and/or the coverage area. Zou et al. [14]

evaluates power consumption models for encoding, transmis-

sion and recovery of video data in a camera network and

optimize for network lifetime. Yu et al. [15] also maximize the

network lifetime by optimizing camera selection for coverage

and energy allocation to camera nodes. He et al. [16] present

a power-rate-distortion model to characterize relationship be-

tween power consumption of a video decoder and its rate-

distortion performance. Adaptive resource management is also

applied to realize camera selection and handoff for multi-

camera tracking applications [17], [18].

Middleware systems are yet another method for resource

optimization in camera networks [19]. Molla et al. [20] survey

recent research on middleware for wireless sensor networks.

These middleware systems focus on reliable services for ad-

hoc networks and energy awareness [21]. The spectrum ranges

from a virtual machine on top of TinyOS, hiding platform

and operating system details, to more data-centric middleware

approaches for data aggregation (i.e., shared tuplespace) and

data query. Agilla [22] and In-Motes [23], for example, use

an agent-oriented approach. Agents are used to implement the

application logic in a modular and extensible way and agents

can migrate from one node to another. Cougar [24] or TinyDB

[25] follow the data-centric approach, integrating all nodes of

the sensor network into a virtual database system where the

data is stored distributed among several nodes.

B. Sensor placement and selection

Placing and selecting sensors is an intensively studied area

for wireless sensor networks. The fundamental question is

where to place the sensors—or alternatively what sensor to

select—such that the area is appropriately covered while

keeping the network connected. The area of interest is often

described by a set of critical sites (referred to as control

points), and each control point has to be covered by at least k

sensor nodes. Optimal node placement is a very challenging

problem that has been proven to be NP-hard for most of

the formulations of sensor deployment [26]. To tackle such

complexity, several heuristics have been proposed to find sub-

optimal solutions (e.g., [27]). Placement problems are often

represented as an integer programming (ILP) model (e.g.,

[28]).

In contrast to traditional sensor networks which assume

omnidirectional sensors, camera networks facilitate directional

sensors which introduce additional complexity to the sensor

placement problem [29], [30]. Similar to the omnidirectional

case, this problem is often described as an ILP [31], and vari-

ous heuristics have been proposed to find good approximations

[32], [33]. The proposed approaches in literature differ in the

assumptions about the sensors (homogeneous vs. heteroge-

neous; fixed vs. mobile), assumptions about the environment

(static vs. dynamic), the sensor coverage modeling and the

optimization objectives. For example, sensor coverage is often
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modeled as simple 2D trapezoids or segments (e.g., [34] [29]

and [33]). Cai et al. [35] evaluate algorithms for solving the

multiple directional cover sets (MDCS) problems of setting

the directions of sensors into a group of nondisjoint cover sets

to extend the network lifetime.

In networks comprised of pan-tilt-zoom (PTZ) cameras,

the covered area can be actively controlled by changing the

cameras’ PTZ parameters [36]. This allows to keep ”moving”

control points within the coverage area—which is important

for various tracking applications. However, to steer PTZ cam-

eras appropriately for tracking applications, accurate coverage

modeling and efficient optimization are crucial. Such visual

coverage models have be described by Mittal et al. [37] and

Karuppiah et al. [12]. Examples for efficient algorithms for

PTZ configurations are based on expectation-maximization

[38], consensus and game theoretic approaches [39], [40], [41].

Typical sensor network problems (e.g., placement, coverage

and routing) have also been described as a multi-objective

optimization problem [42]. Rajagopalan et al. [43] discuss evo-

lutionary algorithms for wireless sensor networks to solve not

only sensor placement problems but also coverage, routing and

aggregation optimization tasks. Although the presented related

work has some similarities to the presented approach, there are

significant differences. First, we consider the coverage and task

assignment problem as finding an optimal VSN configuration

where the in-networking processing (i.e., task assignment) can

be changed as well. Second, resource consumption and sensor

coverage are modeled corresponding to the different require-

ments of the (PTZ) camera nodes. Finally, the hierarchical

evolutionary algorithm achieves an efficient approximation of

a rather complex configuration problem.

III. PROBLEM FORMULATION

A. Overview and assumptions

As discussed in Section II research has just recently focused

on resource-limited visual sensor networks. A fundamental

problem here is to determine an optimal network configuration

while satisfying various functional and resource requirements.

In contrast to typical optimization problems, we focus here on

a combined sensor selection and resource allocation problem.

The objective is (i) to select a subset of cameras which are

able to sufficiently monitor the area of interest, (ii) to set

the sensors’ frame rate and resolution appropriately and (iii)

to assign the necessary monitoring procedures to the camera

nodes. This configuration of the camera network has to satisfy

the resource constraints of all camera nodes and the monitoring

constraints of all observation points.

The considered network configuration problem is depicted

in Figure 1. A set of n camera sensors S is placed on a

2D space; the coverage area of each camera is represented

by a segment. Each observation point tj from the set T =
t1, . . . , tm has to be covered by at least one camera at a given

QoS. The QoS is determined by the frame rate (fps) and the

pixel resolution at the observation point, i.e., the pixels on

target (pot) of a unit sized object. The covering camera (si
covering tj) has to deliver the monitoring activity atj of the

observation point, i.e., a set of image processing procedures

Fig. 1. A graphical sketch of a simple sensor selection and resource allocation
problem. Five cameras s1, . . . , s5 with fixed FOV (red segments) are placed
on the monitoring area to cover four observation points t1, . . . , t4. The
objective is to find a network configuration, i.e., the set cameras which are
required to cover all observation points and the assignment of all necessary
image processing procedures to the covering cameras, which satisfies all
resource requirements and optimizes some target function. Potential optimiza-
tion criteria include minimizing global energy usage or maximizing overall
network lifetime.

P̃si must be executed at si while not exceeding the available

resources (processing, memory and energy) of the camera.

A potential solution to the configuration problem depicted

in Figure 1 is the selection of cameras s1, s3 and s5. Since t1
is covered by s1, this camera must be configured to achieve

at least 8 fps and 20 pot and executes a change detection

procedure. t2 and t3 are covered by s3; thus, this camera must

be configured with at least 18 fps and the resolution to achieve

at least 30 pot at t2 and 40 pot at t3. Change detection and

object tracking procedures must be executed on s3. Finally, s5
covers t4; this camera must be configured to achieve at least

8 fps and 30 pot and execute object detection procedures.

For modeling the network configuration problem we make

the following assumptions1:

• The camera network consists of directional sensors with

a fixed position and fixed field of view (FOV). The frame

rate and the resolution of the image sensor can be changed

within an a-priori known set of sensor configurations.

• Each camera is able to capture images (at the defined

resolution and frame rate), to execute a sequence of

image processing procedures and to transfer data/results

to other camera nodes in the network. This data transfer

is realized in a simple peer-to-peer manner. Complete

communication coverage among the nodes and a potential

base station is assumed.

• The observation points are static locations in the monitor-

ing area which must be covered by at least one camera’s

FOV at sufficient resolution, i.e., pixels on target. The

pixels on target are determined by the sensor resolution

and the distance between camera and observation point.

• We currently only consider convex 2D space without

obstacles restricting the camera’s FOV.

1In Section IV we describe an extension of our network configuration
approach to optimize PTZ camera configurations. Naturally, we are able to
relax some of these assumptions for this extension, i.e., fixed FOV and 2D
space modeling.
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Fig. 2. The 2D model of the camera’s field of view (gray area) defined by
covering angle δ (blue), covering distance ω (green) and orientation θ (red).
The location of the sensor is depicted by x and y.

B. Problem definition

We consider a set of n camera sensors

S = {s1, . . . , sn}

where for each sensor si we know its geographical position

(xsi , ysi), its available resources rsi = (csi ,msi , esi) describ-

ing processing, memory and energy resources and its l possible

data input configurations Dsi = {dsi1, . . . , dsil} where dsij is

a tuple (ressij , fpssij) representing a certain resolution and

the frame rate of the image sensor. D = {Ds1 , . . . , Dsn}
represents the set of input configurations for all cameras.

Furthermore, the orientation θsi of the camera and its field of

view—expressed by the covering angle δsi and the covering

distance ωsi—are known. This 2D model is illustrated in

Figure 2. The parameters θsi , δsi and ωsi are computed on

the basis of the real value of the height, pan angle, tilt angle

and focal length assigned to each camera by the EM-based

coverage computation.

Further, we define the set of m observation points as

T = {t1, . . . , tm}

where for each ti we know its geographical position (xti , yti),
the monitoring activity ati ∈ A (where A is the set of all

monitoring activities that the sensors are capable of) as well

as the required QoS expressed as pixels on target potti and

frame rate fpsti .

An activity represents a high-level monitoring task which

must be achieved at an observation point. Examples for such

activities are image compression and streaming, change de-

tection, object detection, person counting and object tracking.

These activities are realized by executing some image pro-

cessing procedures at the covering cameras. In general, there

exist many different combinations of single image processing

procedures which realize a certain activity. For example, in

order to achieve object tracking, we can combine a background

subtraction procedure (e.g., mixture of Gaussian or frame

differencing), an object detection procedure (e.g., connected

components) with a tracking algorithm (e.g., CamShift or KLT

tracking). Different combinations of these procedures achieve

the desired activity, but naturally impose different resource

requirements.

For each activity a ∈ A we define the set Pa =
{

pa1
, . . . , pap

}

representing alternative procedures for achiev-

ing a. Thus, each alternative pai
∈ P is a set of procedures

pai1
, . . . , paib

, and the execution of all these procedures is

necessary to achieve a. A camera can perform multiple activ-

ities simultaneously, and for each activity ai covered by that

camera we must select an appropriate pk from Pai
. The set of

sets P̃sj contains all pai
assigned to sj . If P̃si = ∅ no image

procedure is assigned to si, and this camera can be switched

off to save resources.

The function r̃(P̃si , dsi) → (c̃si , m̃si , ẽsi) specifies the

required processing, memory and energy resources for the

individual procedures for a specific data input configuration.

The required resources are specified on a single frame basis.

To compute the pixels on target for a certain ti we use the

function f(D×T ) which is based on our simple 2D geograph-

ical model. The pixels on target can be calculated by using

the angular size of a unit sized object at the given distance

disti,j =
√

(xsi − xtj )
2 + (ysi − ytj )

2 between camera si
and observation point tj .

By taking into account the camera’s resolution resi and the

camera’s covering angle δi, we can estimate the 1D resolution

at the target, i.e., the pixels on target of a unit sized object of

1m. This simple estimation is based on the ratio between the

angular size of the target within the camera’s FOV (which can

be approximated by 360

2π·disti,j
) and the covering angle δi.

f(di, tj) =

{

resi ·
360

2π·disti,j
· 1

δi
if si is covering tj .

0 otherwise.
(1)

C. Feasible configuration

We search for feasible configurations of the complete

network. This means that all resource requirements, QoS

requirements and activity requirements must be satisfied. Thus,

for each sensor si, the required memory and processing

resources of all assigned procedures P̃si must not exceed the

available resources. The required resources for the given input

data configuration can be computed by r̃(P̃si , dsi). Thus, the

following condition must hold:

∀s ∈ S : c̃s ≤ cs ∧ m̃s ≤ ms (2)

In order to satisfy the QoS requirements, every observation

point must be covered by at least one sensor. This point must

be within the field of view of the camera. The sensor must be

configured to guarantee a certain number of pixels on target:

∀t ∈ T∃si ∧ ∃dsi : fi(dsi , t) ≥ pott ∧ fpsd ≥ fpst (3)

where l represents the number of sensor configurations.
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Finally, to satisfy the activity constraints, every observation

point must be covered by at least one sensor which must

execute the set of image processing procedures that achieve

the desired activity for that observation point:

∀t ∈ T∃sj ∧ ∃p ∈ P̃sj : p ∈ Pat
(4)

D. Optimization criteria

In general, there are multiple feasible configurations possi-

ble for a given network configuration problem. Thus, we are

interested in configurations which optimize some criteria. This

optimization can be performed in multiple optimization criteria

and with different optimization objectives. In this paper, we

are focusing on three different criteria: (i) quality, expressed

as pixels on target, frame rate and surveillance activity; (ii)

energy usage; and (iii) processed data volume. Naturally,

different criteria can be defined as well.

Since r̃ calculates the resource usage for processing a single

frame, we define the remaining lifetime of a node using the

required and available energy as well as the frame rate:

Lsi =
esi

ẽsi · fpssi

In terms of energy usage, the optimization can follow different

criteria. Examples criteria include:

• Minimum global energy usage:

min

(

n
∑

i=1

ẽsi · fpssi

)

(5)

• Maximum lifetime for a specific node si:

max (Lsi) (6)

• Maximum overall network lifetime:

max (min (Lsi)) (7)

Considering the data volume processed on a node we can

minimize the data volume with respect to resolution and frame

rate.

min

(

n
∑

i=1

ressi · fpssi

)

(8)

To express surveillance quality at the task level, we assign a

quality rating to the processing procedures using the function

q(P̃ ). This function then maps a set of image processing proce-

dures to a quality ranking. By accumulating all quality values,

we achieve a global quality measure for our surveillance tasks.

max

(

n
∑

i=1

q(P̃si )

)

(9)

IV. APPROXIMATION WITH EVOLUTIONARY ALGORITHM

A. Approach

The search space for the combined coverage and resource

allocation problem is typically very large and thus, a combi-

natorial search strategy becomes infeasible. Since this search

problem is also multi-dimensional, the solution is no single

point in the search space but a set of Pareto-optimal solutions.

A popular approach to tackle multi-dimensional optimization

problems is the use of evolutionary algorithms [44] which are

inspired by biological processes and apply the ”survival of the

fittest” principle in an iterative way [45].

In an evolutionary algorithm, one permutation of the prob-

lem space variables is called a chromosome or individual.

Many chromosomes form a population (the working set of

the algorithm). In every iteration (also referred to as epoch)

a certain number of chromosomes is altered by the genetic

operators mutation and/or crossover. The mutation generates a

copy of a single chromosome and alters some variables of the

copied chromosome. The crossover recombines parts of two

chromosomes to generate a new one.

During the breed of a new generation by mutation and

crossover, the population may grow. To keep the population

size constant, the fittest chromosomes must be selected at the

end of each epoch. The selection strategy is an elementary part

of the evolutionary algorithm and consists of two phases: (i)

assigning a fitness value to each individual, and (ii) selecting

a subset of the population based on the fitness values and the

applied selection strategy. If the selected population is smaller

than the targeted population size, dominated individuals may

be added to the population again to ensure a maximum

diversity.

The execution of an evolutionary algorithm can be influ-

enced by changing the targeted population size (i.e., the num-

ber of individuals present after selection), the mutation rate and

the crossover rate (i.e., the number of mutation and crossover

operations in one epoch). Evolutionary algorithms make heavy

use of random variables (e.g., to select a chromosome to

mutate).

B. Evolutionary modeling and approximation

We approximate the combined camera coverage and task

assignment problem in a hierarchical, evolutionary approach

(cp. Figure 3). As illustrated in Figure 3, the algorithm takes

the sets of sensors S, observation points T and activities A

as inputs and returns a set of selected sensors S′ ⊆ S with

assigned sensor configuration D′ and procedures P̃ .

In the first step, we focus on the coverage problem and

search only for sensor selections and input configurations

satisfying the coverage requirements (Equ. 3). At the end

of each epoch, these ”covering” solutions are passed over to

a second evolutionary algorithm searching for feasible task

assignments. This second step focuses on the resource and ac-

tivity constraints (Equ. 2 and 4). Thus, the joint output of both

steps satisfies all conditions for feasible solutions which are

ranked according to the specified fitness functions. Although

our problem formulation considers scenarios with uncovered

observation points (i.e., points which are outside the FOV of
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Algorithm coverage and assignment()
INPUT: S, T, A

OUTPUT: active sensors S′ with assignments for D′ and P̃
ENCODING: for every sensor si its status and input config. di ∈ Di

set initial population
for every epoch do

MUTATE sensor status and input configuration
EVALUATE coverage (Equ. 3)
SELECT

call task allocations(”covering” solutions)
perform elitist selection

until termination

Algorithm task allocation()
INPUT: sensor selections satisfying ”coverage”
OUTPUT: feasible solutions with ranking
ENCODING: for every sensor si ∈ S′ its assigned procedures p̃i

set initial population
for every epoch do

MUTATE procedure assignment
EVALUATE resources and activity (Equ. 2 and 4)
SELECT

perform elitist selection
until termination

Fig. 3. Hierarchical evolutionary algorithm for approximating the camera
coverage and task assignment problem.

all cameras) as infeasible, our algorithm implementation is

able to eliminate these points in a preprocessing step and still

present solutions for all covered points.

Note, that the camera coverage and task assignment problem

can also be approximated by a standard, non-hierarchically

evolutionary algorithm. However, our hierarchical approach

helps to significantly reduce the number of calls to the

fitness functions which are computationally expensive and

dominate the overall runtime of the evolutionary algorithm.

In the following, we describe both steps of our approach in

more detail. Note, that in both algorithm steps, we generate

the initial population randomly. To generate random sensor

configurations, we randomly select initial resolutions, frame

rates and activities from a given set. To generate an initial set

of tasks for a certain activity (task assignment), we randomly

select initial procedures that fulfill the given activity.

1) Camera coverage and input data configuration: In the

first step we try to select the necessary sensors and set the

resolution and frame rate such that every observation point is

covered appropriately. The optimization goal is to minimize

the data volume processed on all camera nodes.

For the genetic encoding, a chromosome is represented by

the status (on/off) and the input data configuration dsi of

each sensor si. The available input data configurations are

represented in the set D. We only apply mutation as genetic

operator which simply corresponds to randomly changing

the sensors’ status and input data configuration. The fitness

function is given by Equ. 3. The decision vector generated

by the fitness function is defined by two parameters. The

first parameter is equal to the number of observation points

”covered” by the chromosome, i.e., the number of observation

points which have a properly configured camera covering

them. The second parameter corresponds to a cost metric

referring to the data volume processed at all sensors. It is

calculated by the maximum possible data volume of all nodes

normalized by the total data volume processed at all nodes.

costratio =

n
∑

i=1

(resmaxsi
· fpsmaxsi

)

n
∑

i=1

(ressi · fpssi)
(10)

2) Task assignment: The ”covering” solutions at each

epoch of the first step serve as input to the second step. Here

we try to find a task assignment for every camera such that

each activity of the covered observation points can be achieved

and the resource requirements of the cameras are fulfilled.

The optimization goal is the energy consumption and lifetime

as specified in the optimization objectives (Equ. 5, 6, 7, 9,

respectively).

A chromosome is represented by the set of assigned pro-

cedures p̃i to all activated cameras si ∈ S′. The potential

assignments of procedures are specified in P . In this step

we also perform only mutation as genetic operator. Thus, the

assignments of procedures to cameras are changed randomly.

The fitness function is defined by Equ. 2 and Equ. 4. For each

solution we can calculate the processing, memory and energy

requirements, i.e., for each feasible assignment P̃ the required

resources c̃
s′
i

, m̃s′
i
, ẽs′

i
are computed for all cameras s′i ∈ S′

by applying the function r̃.

The function r̃ can be realized either by a mathemat-

ical model of the resource consumptions or by empirical

measurements of the resource consumptions on the target

hardware. For our algorithm we adhere to the second approach

and measured the required resources for all algorithms and

input data configurations on the available camera platforms

(cp. Figure 12). These resource values are stored in a table.

Thus, the resource function r̃ can then be realized as a simple

table lookup.

The fitness function for this algorithm checks if the resource

requirements are met on all cameras. The first parameter

in the decision vector is the total globally achieved quality

calculated according to equation 9. The second parameter

is computed according to the resource-related optimization

goal. For criterion 5, we calculate the global energy usage

eglobal and use 1

eglobal
as fitness value. For criterion 6, we

calculate the lifetime for node si use it as fitness value. For

criterion 7, the minimum lifetime is taken as fitness value. This

fitness function also calculates the resulting quality according

to Equation 9.

3) Elitist selection: For both steps we use an elitist selec-

tion [45] method which stores the best found chromosome

independently of the main population in order to avoid the

loss of already found good chromosomes. In every epoch we

add chromosomes to the elite which are not dominated by

any other element in this elite. Note that chromosomes may

remain in the elite. Thus, if the same chromosome is still in the

elite in later epochs, we (re-)use the stored task assignment for

that chromosome and can avoid the expensive execution of the

second step, i.e., a call of the algorithm ”task allocation()”.

If a feasible task assignment is found, the chromosome

remains in the elite, otherwise it will be removed. Since

there may be allocations which represent feasible solutions
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to the sensor selection and sensor configuration problem, but

for which no feasible task allocation exists, this additional

step is necessary. By restricting the use of the task allocation

algorithm to only the members in the elite (and not to all

members in the population) we need to test only a small subset

of the whole population. In fact, this approach guarantees, that

only the chromosomes with the best performance will be tested

for resource and activity requirements.

C. PTZ optimization

Our approach for sensor selection and resource allocation

considers only static cameras. To be able to use it in PTZ

scenarios, we combine our approach with the expectation max-

imization algorithm described in [38]. To solve the problem

of the optimal coverage as in [38] a set of relevance maps,

2-dimensional discrete functions in the form of m : N2 7→ R

representing a relevance value for each point of a discrete map

of the scene, has been computed. Since, assuming a planar

scene, the intersection of the field of views (represented as

cones) with the ground plane are ellipses, finding the optimal

camera configuration can be reduced to a data fitting problem.

Such a problem consists in finding a set of ellipses of the

cardinality of the number of cameras that best fits the relevance

maps and maximizes their coverage. In order to determine only

available solutions, in [38] a space projection is performed. In

particular, for each camera a surrounding sphere is defined

and the corresponding relevance map is projected into such a

sphere. In this way, the problem is transformed in finding for

each sphere (camera) a circle whose center specifies the pan

and tilt angles of the camera and the diameter its FOV angle.

In order, to converge to the optimal solution, the maximization

step executed by each camera needs to know the probability

that a point in the relevance map is in the FOV of other

cameras. Since the relevance maps, to handle the occlusions,

can be different from camera to camera, this information

can be made available by sharing the relevance maps among

the cameras in the network. Then, each camera runs locally

the EM-based reconfiguration considering all the cameras.

Being a deterministic process, all the cameras will reach the

same solution that will represent the optimal configuration to

maximize the coverage given the relevance maps.

The result of the PTZ optimization is transformed into a

suitable input for our evolutionary algorithm by taking the

camera positions, orientations and zoom factors into account.

Observation points can be generated from activity maps i.e.,

an observation points are placed in areas of high activity, but

also manually placed by users.

D. Simulation environment

To accelerate the development of algorithms and to min-

imize change effort, we have implemented a generic frame-

work for evolutionary single- and multi-objective optimization

problems2. It facilitates reuse of core evolutionary algorithms,

encoding of the chromosomes, and the specification of fitness

2http://nemo.codeplex.com

Point pot fps activity

t1 10 8 change detection
t2 10 4 change detection
t3 20 18 object tracking
t4 15 8 object detection

TABLE I
THE QUALITY REQUIREMENTS OF OBSERVATION POINTS 1-4 EXPRESSED

AS PIXELS ON TARGET, FRAMES PER SECOND AND ACTIVITY.

functions for decision vectors of arbitrary lengths (≥ 1). Con-

sequently, our framework is able to perform multi-dimensional

approximations.

We implemented our algorithms in a way, that every model

used in the calculations (e.g., the camera model and the

calculation of QoS parameters) can easily be exchanged with

more sophisticated models if necessary.

In order to adapt our framework to a new optimization

problem the following tasks need to be performed:

1) Define the model and implement a corresponding chro-

mosome along with suitable mutation and crossover

operations

2) Define the fitness function

The framework will then run the evolutionary optimiza-

tion autonomously. The framework comes with predefined

selection single- and multi-criteria strategies. However, the

selection strategy can be modified if necessary as well.

The core algorithm of the framework performs mutation,

crossover and selection in each epoch. Large parts of the

algorithm can automatically be parallelized to achieve higher

performance on multi-processor systems. The framework is

implemented in C#.Net and is compatible to Mono3 and can

thus be used an various platforms including Windows, Linux

and MacOS.

V. RESULTS

To evaluate our approach, we performed systematic tests of

our algorithm using a simple, a medium and a complex sce-

nario. We evaluate the impact of parameters such as population

size, mutation rate and number of epochs on the performance

of the evolutionary algorithm. We further study the runtime

of our algorithm, explore the tradeoff between surveillance

quality and resource utilization and compare the predicted

resource of the assigned tasks with the measured resource

consumption on the target platform. Finally, we evaluate the

integration of the PTZ optimization.

A. Scenarios

1) Simple scenario: Our first scenario is the example setup

from Section III (see Figure 1). This simple scenario consistis

of five cameras and four observation points on a 100×100

meter area. The requirements of the observation points can be

seen in Table I. The algorithms used in the task assignment

are shown in Table III (these apply to all scenarios).

For this simple scenario, a single optimal solution for sensor

selection and sensor configuration exists (if all processing

3http://www.go-mono.org
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Sensor res fps activity

s1 SQCIF 8 change detection
s2 QCIF 4 change detection
s3 QVGA 18 object tracking
s4 off off off
s5 VGA 8 object detection

TABLE II
THE OPTIMAL SOLUTION FOR THE SIMPLE SCENARIO ASSUMING NO

PREVIOUSLY ALLOCATED RESOURCES ON THE NODES.

Fig. 4. The randomly scenario with 100 cameras and 20 observation points.

tasks have an equal quality assigned): assuming that all nodes

have 100% free resources and at most one activity per sensor,

s4 is switched off and object tracking is assigned to s3. This is

because s3 is closer to t3 and can thus cover this observation

point at lower resolution. The optimal configuration for this

scenario is shown in Table II. The total global data volume is

at about 5.6% of the maximum global data volume.

If the amount of free resources of s3 is reduced to 10%

of the available resource, the task of object tracking can only

be assigned to s4 and s3 should be switched off. We tested

multiple such allocations to ensure that the task allocation

eliminates solutions which would use more resources than

available.

2) Complex scenario: We tested our approach in a more

complex scenario of 100 sensors and 20 observation points in

an area of 250×250 meters (see Figure 4). The observation

points require between 10 and 30 pixels on target.

3) PTZ scenario: We demonstrate the combination of our

approach with the PTZ coverage optimization in a medium

sized scenario with eight cameras and five observation points

on an area of 100×80 meters. Wefirst perform the expectation-

maximization algorithm to find the optimal PTZ-parameters of

each sensor. Then, we run our evolutionary algorithm to find

the optimal sensor configuration and task allocation.

4) Impact of increasing number of solutions: We further

evaluate the behavior of our algorithm in scenarios that are

within the same level of complexity but which have different

Fig. 6. The relation between number of epochs and the rate of finding
optimal and feasible results (success rate), respectively.

number of possible solutions. In a basic scenario of seven

observation points we vary the number of covering sensors.

Every additional covering sensor increases the number of

solutions. This impacts the runtime and the final result. Our

basic scenario has five cameras placed such that every point

is covered by exactly one camera. We then add cameras to

achieve degrees of overlap of two, three and five. Addition-

ally, we constructed two scenarios that have additional non-

covering cameras. The scenarios are shown in Figure 5.

For these scenarios we show multi-criteria approximation

including the quality ratings of algorithms. We manually

assigned a quality rating to each algorithm for our second

algorithm stage (see Table III).

Algorithm Quality

Simple Frame Differencing 0.5
Double Frame Differencing 0.8

Mixture of Gaussians 1
Blobfinder 1

Kalman Tracker 2
CCCR Tracker (openCV) 0.6

TABLE III
QUALITY RATING FOR ALGORITHMS.

B. Evaluation of the evolutionary approximation

1) Number of epochs: Typically, in evolutionary algo-

rithms, the results improve with increasing number of epochs.

It can easily be seen that an increased population size will also

require increasing the number of epochs to achieve the same

results at the same mutation rate.

In Figure 6 we show the change in number of feasible and

optimal results with increased number of epochs. By choosing

a suitable population size, a predictable rate of feasible results

can be achieved. Depending on the complexity of the task, a

larger number of epochs may be required.

2) Population size: The population size represents the

number of different permutations present at a certain point

in time. A larger population size increases the probability that

the population contains good individuals.

For our algorithm, it is necessary to increase the population

size with increasing complexity of the scenario. As our results

show, a population size of 5000 individuals is sufficient to

achieve good results even for the complex scenario. For less

complex tasks, population sizes of between 100 and 1000 are
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Fig. 5. Scenarios with a degree of overlap of a) one, b) two, c) two with noncovering sensors, d) three, e) three with noncovering sensors and f) five.

Fig. 7. Relation between population size and the rate of finding feasible results (success rate) for a) Simple b) Medium and c) Complex scenario.

sufficient. ¡ Figure 7 shows the impact of larger population

sizes on the resulting rate of finding feasible solutions. It can

be seen that the solution quality of complex scenarios can be

improved by increasing the population size.

3) Mutation rate: Since the mutation rate determines how

many chromosomes are altered per epoch, it greatly influences

the number of epochs needed to find good results.

Figure 8 shows the influence of mutation rate on the

achieved rate of feasible solutions. It can be seen that larger

mutation rates not necessarily yield higher success rates. Thus,

the mutation rate must be chosen carefully.

C. Algorithm runtime

Evlolutionary algorithms typically have a very large search

space which causes long runtimes. We show that our algorithm

has a linear runtime w.r.t. population size (Figure 9a), number

of epochs (Figure 9b) and mutation rate (Figure 9c).Note that

the runtime values shown are independent of the scenario

complexity, i.e., to run 1000 epochs at 0.5 mutation rate and

population size 1000 takes the same amount of time for the

complex and the simple scenario, respectively.

We performed the tests on a standard PC equipped with an

Intel Core2Duo processor with 2.5 GHz. For each scenario we

ran at least 1500 test runs at different combinations of mutation

rate and population size and took dumps of the algorithm state

at certain epochs.

Runtimes for scenarios with increasing degree of FOV

overlap are shown in Figure 10. It can be seen that an

increasing number of solutions has a small impact on the

runtime (whereas this also means that feasible solutions might

be found earlier). Increasing the scenario complexity by adding

non-covering cameras however, has almost no impact on the

runtime.

D. Surveillance Quality

By assigning quality ratings to algorithms, we can explore

the tradeoff between surveillance quality and resource utiliza-
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Fig. 8. The relation between mutation rate and the rate of finding feasible results (success rate) for a) Simple b) Medium and c) Complex scenario.

Fig. 9. Runtime with respect to population size, number of epochs and mutation rate for a) Simple b) Medium and c) Complex scenario..

Fig. 10. The runtimes for our overlap scenarios.

tion. Figure 11a shows the Pareto front for the scenario of

medium complexity for an elite size of 20 (i.e., we choose 20

non-dominated solutions from the pareto front).

Figure 11b shows an example Pareto front for the scenario

with five overlapping cameras per observation point. We used

an elite size of 100 for this experiment. This shows that there is

a large number of possible solutions that our algorithm is able

to find. All those solutions must be regarded as equally good

tradeoffs between quality and resource usage. From those,

possible solution one has to be selected. This may be done

according to a predefined weighting of quality versus resource

usage or by any other metric or selection function.

E. Measurements of resource usage

The result of our evolutionary algorithm is a feasible camera

configuration and a task allocation along with a prediction of

the resource usage. To evaluate the accuracy of the resource

prediction, we experimentally tested the resource usage of the

assigned tasks on a real platform. Based on the hardware

platform used in our tests (see below), we constructed the

mapping r̃ from measuring algorithm performance on this

hardware. We did this by running the algorithms with videos

of different resolutions as inputs while measuring resource and

Node Tasks

1 SingleGaussian
2 FrameDoublediff
3 FrameDoublediff, Blobfinder, Kalman
4 off
5 FrameDoublediff, Blobfinder

TABLE IV
THE RESULT OF THE TASK ALLOCATION FOR THE SIMPLE SCENARIO.

energy usage.

We can then use r̃ as a lookup table in the algorithm

to predict the resource usage of a certain combination of

algorithms. We implemented the application according to the

task assignment in Table IV and measured the CPU load

and power usage. For these tests, the application read images

from a video file of the calculated resolution and executes the

assigned tasks.

We use Atom-based embedded boards as target platforms.

We tested all algorithms on pITX-SP 1.6 plus board manufac-

tured by Kontron4. The board is shown in Figure 12 and serves

as processing platform for our camera nodes. It is equipped

with a 1,6 GHz Atom Z530 and 2GB RAM.

As it can be seen from Table V, our predictions match with

the measured results.

F. Integration of PTZ configuration

In PTZ scenarios we want to i) find feasible configurations

and task allocations and ii) to select the subset of sensors

which is required to cover the observation points. The sensors

which are not required, can then be commanded to basic

coverage while the other sensors can focus on detection and

tracking at the observation points.

4http://www.kontron.com
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Fig. 11. Pareto fronts for a) medium scneario and b) scenario with 5 overlapping cameras. The resource optimization goal is Global minimum energy usage

Fig. 14. Scenario evolution. First row shows the evolution of the environment by introducing trajectory clusters TR1, TR2, TR3, TR4, TR5. Second row
show the evolution of the activity map as consequence of the evolution of the environment represented in the image above. Third row as for first row but for
introducing clusters TR6, TR7, TR8, TR9, TR10. Fourth row as for second row but concerning the evolution presented in the third row.

Fig. 12. The pITX-SP hardware platform used in our tests.

Node CPUp[%] Powerp[W] CPUm[%] Powerm[W]

1 4.32 0.09 3.6 0.1
2 0.34 0.01 0.21 0.01
3 17.55 0.35 16.2 0.3
5 12.28 0.25 11.6 0.2

TABLE V
THE PREDICTED AND MEASURED RESOURCE USAGE FOR NODES IN THE

SIMPLE SCENARIO. CPUp AND Powerp ARE PREDICTED VALUES,
CPUm AND Powerm ARE MEASURED VALUES.

1) PTZ optimization: To test the automatic configuration of

the pan, tilt and zoom parameters of the proposed PTZ network

a map representing the university area has been selected. On

such a map eight different cameras have been deployed to
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Fig. 13. Deployment of the cameras (black circles) on the monitored
environment. Each camera is placed at height 14m.

Scenario EM Coverage
Evolution Iterations

Empty 174 97, 5%

TR1 67 98, 5%

TR2 93 98, 4%

TR3 83 99%

TR4 46 98.5%

TR5 66 97.9%

TR6 109 98.3%

TR7 64 97.8%

TR8 49 87.7%

TR9 73 99.8%

ALL 98 97.2%

TABLE VI
EM BASED RECONFIGURATION PERFORMANCE. THE TABLE SHOWS THE

REQUIRED ITERATIONS TO CONVERGE TO THE OPTIMAL SOLUTION AND

THE COVERAGE ACHIEVED BY THE SOLUTION.

cover the entire environment. In Figure 13 a representation of

the testbed area together with the deployment configuration of

the PTZ network is presented.

Initially, a camera configuration has been achieved by run-

ning the EM based network configuration on a homogeneous

activity map (e.g., each cell of the map has the same activity

density). Then, ten different trajectory clusters have been

defined as shown in Figure 14.

As clusters have been added to the scenarios, the EM based

reconfiguration has been executed on the new data. Hence,

while the scenario evolves by considering new trajectories,

thus new activities occurred inside the monitored environment,

the PTZ network adapts its parameters to focus on the areas

with higher probability of activity. In Table VI, the number of

iterations required by each camera to compute its parameters

together with the final coverage of the monitored area are

presented in relation to the inclusion of the trajectory clusters.

It is worth noticing, that the number of iteration is quite low

(around 100) and that the coverage of the area is always kept as

close as possible to 100%. This means that the reconfiguration

can be done distributedly on each camera with lower compu-

tational requirements and that the new configuration better fits

the activity probability without reducing the area coverage.

Fig. 16. Input for the sensor selection and resource allocation optimizer.

The PTZ network reconfiguration process on the adopted

data achieved the configuration presented in Figure 15. Table

VII presents the PTZ parameters for the initial configuration

achieved on an empty map and for the final configuration. It

is interesting to notice how all the parameters have changed

significantly, i.e., the FOV of the cameras for the final config-

uration is much narrower than that for the initial configuration.

The FOVs of the cameras have been narrowed of about 45%
on average. This means that the magnification of each camera

has been increased thus the resolution with which the objects

of interest moving inside the areas of activity is increased as

well.

Camera Pan Pan Tilt Tilt FOV FVV
Initial Final Initial Final Initial Final

1 35.02 8.868 77.820 80.859 35.516 27.6258

2 -21.28 -22.370 80.170 80.967 44.7594 35.2792

3 14.93 37.427 79.223 82.467 38.4954 38.8806

4 111.50 94.758 78.845 81.499 41.8634 31.0868

5 138.57 148.612 80.868 82.202 34.1896 12.4892

6 -75.38 -133.639 80.619 81.615 37.2104 14.9248

7 -78.34 -97.754 81.414 80.794 45.5406 11.0936

8 178.30 174.446 79.416 82.220 36.8536 24.3778

TABLE VII
PTZ PARAMETERS OF THE CAMERAS AFTER THE INITIALIZATION AND

THE LAST CONFIGURATION. THE FIELD OF VIEW (FOV) IS EXPRESSED IN

DEGREES AND IT DESCRIBES THE ANGLE OF THE MINIMUM CONIC FIELD

OF VIEW THAT INSCRIBES THE REAL CAMERA FIELD OF VIEW.

2) Sensor selection and resource allocation: Taking the

result of the PTZ optimization as input, we have run the sensor

selection and resource allocation optimizer. In the areas of high

activity, we have placed observation points requiring object

detection or object tracking. The resulting input for algorithm

is shown in Figure 16.

Table VIII shows the results for the sensor selection and

sensor configuration. Table IX shows a resulting task alloca-

tion. The resulting Pareto front for the task allocation is shown

in Figure 11a.
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Fig. 15. Configuration of the eight cameras (one to eight from left to right top to bottom) after the EM based reconfiguration algorithm on the final activity
map.

Sensor res fps activitiy

1 SQCIF 4 object detection
2 VGA 18 object tracking
4 QVGA 4 object detection
7 SQCIF 12.5 object tracking
8 QCIF 2 object detection

TABLE VIII
THE RESULT FOR SENSOR SELECTION AND SENSOR CONFIGURATION.

SENSORS 3, 5, 6 ARE OFF.

Sensor Tasks CPU [%] Mem. [MB] Power [W]

1 FDD, BF 0.24 0.77 0.005
2 FDD, BF, K 70.22 18 1.4
4 FDD, BF 1.65 1.49 0.03
7 FDD, BF, K 2.03 0.73 0.04
8 FDD, BF 1.01 1.49 0.02

TABLE IX
THE RESULTING TASK ALLOCATION. FDD: FRAME DOUBLE DIFF. BF:

BLOBFINDER. K: KALMAN. SENSORS 3, 5, 6 ARE OFF.

VI. CONCLUSION

In this paper we have presented a formulation and an

approximation method for the camera selection and task

assignment problem for visual sensor networks. We have

analyzed our approximation method on different scenarios and

compared the predicted results with measurements on real

implementations on a VSN platform. The tradeoff between

surveillance quality and resource utilization has further been

demonstrated with our multi-criteria approximation algorithm

which achieves a Pareto-front of non-dominating results. We

have finally combined our approximation method with an

expectation-maximization algorithm for optimizing the cover-

age and resource allocation in VSN with Pan-Tilt-Zoom (PTZ)

camera nodes.

Our results demonstrate that feasible and near-optimal solu-

tions can be found within few seconds even for our complex

test scenario. Furthermore, the predicted resource utilization

matches very well with the measured resource utilization. For

our five camera scenario, the deviation for the CPU utilization

was less than 1.3 %, and the deviation for the power consump-

tion was less than 0.05 W. Our PTZ camera scenario shows

that our method can be used to find camera configurations

for complex monitoring activities, i.e., to select PTZ cameras

which can best cover specific observation points and cameras

which can cover wider areas. As with our standard method,

the combined method also approximates the task assignment

for all cameras.

There are several possibilities for improving our approach.

Thus, future work includes (i) the improved modeling of the

VSN resources such as communication bandwidth and delay,

(ii) further evaluations using both manually generated test

data and scenarios from actually deployed VSNs, and (iii) the

integration in an VSN application. Further, we will present

a distributed solution for this problem as part of our future

work. It will also be able to dynamically update the network

according to changed environmental parameters like moving

objects or changed PTZ configurations.
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