
Resource Aware ML

Jan Hoffmann1, Klaus Aehlig2, and Martin Hofmann2

1 Yale University
2 Ludwig-Maximilians-Universität München

Abstract. The automatic determination of the quantitative resource
consumption of programs is a classic research topic which has many
applications in software development. Recently, we developed a novel
multivariate amortized resource analysis that automatically computes
polynomial resource bounds for first-order functional programs.

In this tool paper, we describe Resource Aware ML (RAML), a func-
tional programming language that implements our analysis. Other than
in earlier articles, we focus on the practical aspects of the implementa-
tion. We describe the syntax of RAML, the code transformation prior
to the analysis, the web interface, the output of the analysis, and the
results of our experiments with the analysis of example programs.

Keywords: Functional Programming, Static Analysis, Resource Con-
sumption, Quantitative Analysis, Amortized Analysis.

1 Introduction

A quantitative analysis of a program determines the amount of resources, such
as memory and time, that the program consumes during its evaluation. Quanti-
tative analyses are needed to compare different algorithms for the same task, to
design efficient programs, and to identify performance bottlenecks in software.

Sometimes, it is sufficient to determine the asymptotic resource behavior of
a program. However, many applications in embedded systems, hard real-time
systems, and cloud computing require concrete (non-asymptotic) upper bounds
for specific hardware. The manual determination of such bounds is not only cum-
bersome and time consuming but also prone to errors, especially if the analysis
has to be repeated after an iteration of the development cycle. As a result, me-
chanical assistance for the determination of resource bounds is an important and
active area of research.

Classic methods for obtaining bounds on the number of loop iterations and
recursive calls are based on automatically extracting and solving recurrence re-
lations [1,2,3]. However, both, extracting and solving recurrence relations is a
difficult problem. As a result, alternative techniques for the inference of resource
bounds have been studied recently. Gulwani et al. propose counter instrumen-
tation and abstract-interpretation–based invariant generation to obtain bounds
on loop iterations and function calls [4]. To obtain loop bounds from disjunc-
tive invariants one can use size-change abstraction [5] or proof rules that employ

P. Madhusudan and S.A. Seshia (Eds.): CAV 2012, LNCS 7358, pp. 781–786, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

782 J. Hoffmann, K. Aehlig, and M. Hofmann

SMT-solvers [6]. Type-based techniques for automatically inferring bounds on
recursive functions are based on sized types [7,8] or amortized analysis [9,10],
and often restricted to linear bounds.

We have recently developed the first type-based resource analysis system that
automatically computes polynomial resource bounds [11,12,13]. It is inspired by
automatic amortized analysis for linear bounds [9]. In a nutshell, we annotate
function types with a priori unknown, non-negative rational numbers that rep-
resent coefficients of multivariate resource polynomials, a class of functions that
generalizes non-negative linear combinations of binomial coefficients.1 A syntax-
directed static type analysis then derives linear inequalities for the unknown
rational coefficients. Finally, a solution of the resulting linear program with an
off-the-shelf LP solver yields a resource polynomial that bounds the resource
consumption of the corresponding function. Such an automatic amortized anal-
ysis is favorable in the presence of (nested or intermediate) data structures and
function composition. See [13] for a detailed comparison with related approaches.

We implemented our multivariate amortized resource analysis in Resource
Aware ML (RAML), a first-order, functional language with an ML-like syntax.
While one can formalize algorithms and functional programs directly in RAML,
it can also be used as a target of resource-preserving translations from other
programming languages. In particular we have experimented with a translation
from C using the Frama-C framework2.

In this tool paper, we describe the current state of development of RAML
from a user’s point of view. For a description of the analysis technique that
we implemented, please refer to our previous papers [11,12,13,14]. Note that the
prototype implementation has been used in a previous paper for an experimental
evaluation [13]. However, we have never demonstrated the tool at a conference.

2 The Prototype Implementation

The prototype implementation of RAML is written in Haskell and consists of
a parser (546 lines of code), a standard type checker (490 lines of code), an
interpreter (333 lines of code), an LP solver interface (301 lines of code), and
the multivariate analysis system [13] (1637 lines of code). Overall, we needed 4.5
man-months for the implementation of the analysis.

The implementation is well documented and publicly available. The source
code of the latest RAML version can be downloaded on the web site of the
project [15]. Additionally, there is a web form that can be used to evaluate
RAML programs and to compute resource bounds directly on the web.

Extended Syntax. The RAML syntax in the prototype extends the syntax de-
scribed in our previous papers [11,13]. For example, expressions are not restricted
to let normal from. We also have more built-in operators and allow a destructive

1 The user has to provide a maximal degree of the polynomials to limit the number
of unknown coefficients.

2 http://frama-c.com

Resource Aware ML 783

pattern matching matchD that deallocates the memory cell associated with the
matched node of the data structure.

Data types τ are binary trees (T (τ)), lists (L(τ)), integers, Booleans, units,
and tuples as defined by the following grammar.

τ ::= int | bool | unit | (τ1, . . . , τn) | L(τ) | T (τ)
The following EBNF grammar defines expressions e. The reserved function tick
is used in the tick metric which is described later. The argument q of tick denotes
a floating point literal. The operations binop and unop are the usual standard
operations for integers and Booleans.

e ::= () | True | False | n | x | tick(q) | e1 binop e2 | unop e | f(e1, . . . , en)
| let x = e1 in e2 | if e then et else ef | [] | [e1, . . . , en] | (e1, . . . , en)
| match e1 with (x1, . . . , xn) → e2 | let (x1, . . . , xn) = e1 in e2

| nil | cons(eh, et) | (match | matchD) e with
⎪
⎪
⎪nil → e1

⎪
⎪
⎪ cons(xh, xt) → e2

| leaf | node(e0, e1, e2) | (match | matchD) e with
⎪
⎪
⎪leaf → e1

⎪
⎪
⎪ node(x0, x1, x2) → e2

A RAML program consists of a (possibly empty) list of declarations followed by
a main expression. A declaration is either a type declaration f : τ1 → τ2 or a
function definition f(x1, . . . , xn) = e, where f is a function name, τi are data
types, xi are variables, and e is an expression. There must be exactly one type
declaration for every function definition. For every identifier, at most one type
declaration and at most one function definition is allowed. Note that one has to
provide a monomorphic type for every function in a program. The reason why
we avoid polymorphic functions is that the resource consumption of a function
depends on its type. Alternatively, we could allow polymorphic functions and
analyze a function for each concrete type it is used with in the program.

Destructive Pattern Match. A destructive pattern match—written using
matchD—can be used to deallocate memory cells. For instance, in the evaluation
of the expression matchD x with | nil → e1 | cons(x, xs) → e2 the memory cell
that is referenced in the variable x is deallocated. If memory cells are allocated
during the evaluation of e2 then the deallocated cell may be used to store a new
value. So if a deallocated value is accessed during the evaluation of an expression
then the behavior of the program is undefined. If used carefully, destructive
pattern matches can help to develop and analyze programs that use memory very
efficiently. A typical example is an in-place quick-sort algorithm which destructs
the input list [15].

Transformation to Let Normal Form. To simplify the resource analysis, we
transform the unrestricted RAML expressions of the prototype implementation
into expressions in let normal form as defined in [13]. An expression is in let
normal form if, whenever possible, term formers are applied to variables only.
Furthermore, we make sharing of variables explicit to enable the use of a syntax-
directed type rule for sharing of potential in the type inference.

The transformation to let normal from uses a special form of a let expression—
called freelet—that does not consume any resources. For every expression that

784 J. Hoffmann, K. Aehlig, and M. Hofmann

occurs in a position where only variables are allowed, we introduce a new variable
with a freelet. For technical reasons we also introduce a new variable if the
expression in such a variable only position in the source program is a variable
itself. In this way, it becomes easy to preserve the resource cost of the source
program because we know that all variables in the variable only positions have
been introduced by a freelet.

To make sharing explicit, we add an additional syntactic construct to the
expression each time a variable occurs multiple times. If a free variable x occurs
twice in an expression e, we replace the first occurrence of x with x1 and the
second occurrence of x with x2, obtaining a new expression e′. We then replace e
with share(x, x1, x2) in e′. In this way, the sharing rule becomes a conventional
syntax directed rule in the type inference.

Resource Metrics. Our analysis is parametric in the resource and can deal
with every quantity whose consumption in an atomic evaluation step is bounded
by a constant. We included three resource metrics in the prototype and it is easy
to define more by instantiating the resource constants for the evaluation steps.

The first included metric is the evaluation-step metric that counts the number
of evaluation steps in the big-step operational semantics described in [13].

The second metric we included is the heap-space metric. The heap-space used
by a node of a data structure depends on the type of the elements of the data
structure. That is why we allow the resource constants to depend on the types of
the respective expressions in the prototype. For instance, we do not simply have
Kcons which defines the resource usage of a cons but rather Kcons(A) where A
is the type of the elements of the list. We define

size(A) =

{
n if A = (A1, . . . , An)
1 otherwise

Then Kcons(A) = size(A)+1 is the number of memory cells that are used to store
a node of a list of type L(A). Similarly, KmatCD

1 (A) = size(A) + 1 memory cells
become available in a destructive pattern match. Since the types L(A) are known
at compile time, it makes no difference for the analysis whether the constants
depend on data types. In principle, the values of these constants could depend
on anything that is statically known about the program. However, the current
implementation limits this dependency to type information.

The third implemented metric measures the number of ticks that occur in an
evaluation. To this end, a programmer can insert expressions such as tick(3.5) or
tick(−4) into the code. Every time the expression tick(q) is evaluated, q resources
are consumed, or −q resources become available if q is negative. The tick metric
can be used to manually model specific resource metrics and is helpful for testing.

A table with the values of the constants in the metrics can be found in [14].

Web Interface. The source code of the prototype is available for download on
the RAML website [15]. Alternatively, programs can be executed directly on the
web with input in a text field or selection of example files from a drop-down
menu. A second text field contains the output of the RAML prototype.

Resource Aware ML 785

One can use the web interface to compute resource bounds for a program or
to evaluate the main expression. The following options are available.

1. The resource metric to be used in the analysis. It can either be heap-space
consumption, evaluation steps or ticks.

2. An upper bound on the maximal degree that can occur in the resource
bounds. If the degree is too low then the analysis reports that the linear
program is infeasible.

3. Whether to have verbose output. The verbose output shows for instance the
function definitions in let normal form.

Output of the Analysis. The result of a successful evaluation is the value of
the main expression as well as the number of heap cells, the number of evaluation
steps, and the number of ticks that have been used during the evaluation.

The output of a resource analysis is either a list of symbolic bounds along
with refined typing information—one for each function in the program including
the main expression—or an error message. If the program is type correct then
the only error that can occur is the message the linear program is infeasible. It
indicates that the LP solver finished unsuccessfully and that RAML was thus
not able to compute a bound for the program. This often, but not necessarily,
implies that the resource usage of the given program cannot be bounded by a
polynomial of the given degree.

Of course, as with any static analysis, there also exist polynomially bounded
programs for which RAML cannot compute bounds. For instance, the analysis
often fails if recursion is guarded by a Boolean function as opposed to the con-
structors of a data structure. This is often the case in programs whose resource
consumption depends on the values of integers. Nevertheless, the analysis works
well for recursive functions that use inductive data types and pattern matching.

Below is the output of the analysis with the evaluation-step metric for the
function quicksort in the file quicksort.raml which can be found online [15].

> raml analyse eval-steps 3 quicksort.raml

quicksort: L(int) -> L(int)

Positive annotations of the argument Positive annotations of the result

0 -> 3.0 1 -> 26.0 2 -> 24.0

The number of evaluation steps consumed by quicksort is at most:

12.0*n^2 + 14.0*n + 3.0

where n is the length of the input

It contains the type of the function and the potential annotations of the argu-
ment type and the result type. Finally, the potential annotations are converted
into a usual polynomial for the convenience of the user. This transformation is
a combination of a change of basis from binomial coefficients to the common
basis and the abstraction from sizes of individual inner data structures to their
maximal size. The exact meaning of the type annotations is described in our
earlier work [13]. Note, however, that they may carry more detailed information
then the symbolic bound. Also note that only non-zero annotations are shown
in the output and that the resource annotations of the output type are all zero.

786 J. Hoffmann, K. Aehlig, and M. Hofmann

3 Experiments

We successfully applied the analysis to a wide range of examples from functional
programming such as sorting algorithms, matrix multiplication, breadth-first
search, and longest common subsequence via dynamic programming.

In most cases, the derived evaluation-step and heap-space bounds were asymp-
totically tight. The analysis works efficiently and only needs a few seconds, even
on larger programs. We also compared our computed bounds with the measured
worst-case resource consumption of the programs and found that the constants
factors are often close or even identical to the optimal ones.

The analyzed programs, tables with running times and computed bounds, and
plots that show the bounds and the measured costs are available online [15] and
in the first author’s dissertation [14].

References

1. Wegbreit, B.: Mechanical Program Analysis. Commun. ACM 18(9), 528–539 (1975)
2. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost Analysis of

Java Bytecode. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 157–172.
Springer, Heidelberg (2007)

3. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Closed-Form Upper Bounds in
Static Cost Analysis. Journal of Automated Reasoning, 161–203 (2011)

4. Gulwani, S., Mehra, K.K., Chilimbi, T.M.: SPEED: Precise and Efficient Static
Estimation of Program Computational Complexity. In: 36th ACM Symp. on Prin-
ciples of Prog. Langs. (POPL 2009), pp. 127–139 (2009)

5. Zuleger, F., Gulwani, S., Sinn, M., Veith, H.: Bound Analysis of Imperative Pro-
grams with the Size-Change Abstraction. In: Yahav, E. (ed.) SAS 2011. LNCS,
vol. 6887, pp. 280–297. Springer, Heidelberg (2011)

6. Gulwani, S., Zuleger, F.: The Reachability-Bound Problem. In: Conf. on Prog.
Lang. Design and Impl. (PLDI 2010), pp. 292–304 (2010)

7. Chin, W.-N., Khoo, S.-C.: Calculating Sized Types. High.-Ord. and Symb.
Comp. 14(2-3), 261–300 (2001)

8. Vasconcelos, P.: Space Cost Analysis Using Sized Types. PhD thesis, School of
Computer Science, University of St Andrews (2008)

9. Hofmann, M., Jost, S.: Static Prediction of Heap Space Usage for First-Order
Functional Programs. In: 30th ACM Symp. on Principles of Prog. Langs. (POPL
2003), pp. 185–197 (2003)

10. Hofmann, M., Jost, S.: Type-Based Amortised Heap-Space Analysis. In: Sestoft, P.
(ed.) ESOP 2006. LNCS, vol. 3924, pp. 22–37. Springer, Heidelberg (2006)

11. Hoffmann, J., Hofmann, M.: Amortized Resource Analysis with Polynomial Poten-
tial. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 287–306. Springer,
Heidelberg (2010)

12. Hoffmann, J., Hofmann, M.: Amortized Resource Analysis with Polymorphic Re-
cursion and Partial Big-Step Operational Semantics. In: Ueda, K. (ed.) APLAS
2010. LNCS, vol. 6461, pp. 172–187. Springer, Heidelberg (2010)

13. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate Amortized Resource Analysis.
In: 38th Symp. on Principles of Prog. Langs. (POPL 2011) (2011)

14. Hoffmann, J.: Types with Potential: Polynomial Resource Bounds via Automatic
Amortized Analysis. PhD thesis, Ludwig-Maximilians-Universiät München (2011)

15. Hoffmann, J., et al.: RAML Web Site, http://raml.tcs.ifi.lmu.de

http://raml.tcs.ifi.lmu.de

	Resource Aware ML
	Introduction
	The Prototype Implementation
	Experiments
	References

