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Abstract. One of the obstacles to widely using first-order logic languages is the fact that relational inference
is intractable in the worst case. This paper presents an any-time relational inference algorithm: it proceeds by
stochastically sampling the inference search space, after this space has been judiciously restricted using strongly-
typed logic-like declarations.

We present a relational learner producing programs geared to stochastic inference, named STILL, to enforce
the potentialities of this framework. STILL handles examples described as definite or constrained clauses, and
uses sampling-based heuristics again to achieve any-time learning.

Controlling both the construction and the exploitation of logic programs yields robust relational reasoning,
where deductive biases are compensated for by inductive biases, and vice versa.
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1. Introduction

H. Simon distinguishes two ways of dealing with complex real-world situations (Simon,
1982). In the first one, “the description of the real world is radically simplified until reduced
to a degree of complication that the decision maker can handle”. The second approach is
based onsatisficing: “Satisficing seeks simplification in a somewhat different direction,
retaining more of the detail of the real-world situation, but settling for a satisfactory, rather
than approximate-best, decision”.

This paper focuses on one particular complex real-world situation: designing Artificial
Intelligence (AI) applications in relational domains. As we restrict ourselves to classification
applications, this situation is that of Machine Learning (Mitchell, 1997): the goal is to design
a set of rules which can be efficiently exploited to classify accurately all or most instances
of the problem at hand.

First thing is to choose a representation language. First Order Logic (FOL) languages,
based on the theory of Logic Programming (LP) (Lloyd, 1987), allow one to concisely and
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accurately model many relational domains. For instance, in the domain of chemistry, a
molecule is most conveniently expressed as a Prolog clause (Clocksin & Mellish, 1981),
describing its atoms and the bonds relating these atoms (Srinivasan et al., 1996). Similarly,
in the domain of natural language processing, grammars can be conveniently described in
terms of Prolog clauses (Cussens, 1997). Inductive Logic Programming (ILP) (Muggleton
& De Raedt, 1994) has extensively studied in the last few years theory and applications of
learning programs and concepts in various restrictions of FOL.

On the other hand, the more expressive the language, the more computationally expensive
reasoning is within this language (Russell & Norvig, 1995). All languages based on the
LP framework share the fact that inference is exponential with respect to the length of the
available knowledge.1 For instance, consider a clause stating that a chemical molecule is
toxic if it contains a given pattern of atoms: checking whether this pattern occurs in an
actual molecule amounts to graph matching, with exponential complexity in the size of the
pattern.

In summary, in a truly relational representation language, inference is intractable unless
knowledge can be decomposed into small-size clauses. An alternative is to use languages
that are more manageable than those based on Logic Programming, such as KL-1 or its
descendants (Brachman, 1977). But, these languages offer less expressive power than LP
(Borgida, 1996).

In all such approaches, the complexity of knowledge is “reduced to a degree of compli-
cation that the decision maker can handle”.

This paper follows instead the other branch of the alternative discussed by Simon, and
investigates what a “satisficing” framework for relational applications could be, in the line of
resource bounded reasoning (Zilberstein, 1996). Our approach preserves a truly relational
description of the domain. But standard inference is replaced by asatisficinginference,
based on two components: First, expert-supplied declarations are used to better delineate
the search space explored by standard inference. These declarations, meant to simplify the
structural-matching task (Kodratoff & Ganascia, 1986) are similar in spirit to strongly typed
declarations, as used in Escher (Lloyd, 1999), and they similarly restrict the exploration to
a meaningful subspace. Still, this subspace remains of exponential size.

The second component of satisficing inference thus is astochastic mechanism, extracting
random samples from the inference search space. Whereas standard inference exhaustively
explores its search space, satisficing inference only considers a limited number of samples
in this space, thus obtaining an incomplete inference procedure with linear complexity in the
(user-supplied) number of samples considered. And satisficing inference goes to standard
inference when the allotted number of samples goes to infinity.

What remains is to ensure that designing programs/eliciting knowledge fitting this satisfic-
ing relational framework can be done in reasonable time. Indeed, the knowledge acquisition
was acknowledged to be the bottleneck of AI (Feigenbaum, 1977). This makes it desir-
able to provide, besides any novel programming framework, some ways of automatically
generating programs within this framework.

For these reasons, we describe a relational learner named STILL, first presented in
(Sebag & Rouveirol, 1997), that pertains both to ILP and bounded reasoning. STILL con-
structs constrained logic programs from relational examples (Horn or constrained clauses).
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Contrasting with all other ILP learners, STILL is not limited to short clauses: it employs
satisficing inductive and deductive inference to extract and exploit (long) clauses within
reasonable time and space resources. This way, the syntax biases, (Muggleton, 1995;
Giordana & Neri, 1994; Zucker & Ganascia, 1996; Anglano et al., 1998) and search biases
(Quinlan, 1990; Pazzani & Kibler, 1992; Muggleton, 1995; Blockeel & Raedt, 1999) tradi-
tionally used in ILP to enforce the discovery of short clauses and the learning tractability,
are replaced by a stochastic bias.

As far as we know, the works related to bounded reasoning concern either the approx-
imation of an existing knowledge base (Selman & Kautz, 1996; Boufkhad, 1998; Cadoli,
1993) or the restriction of inference (Patel-Schneider, 1990; Crawford & Kuiper, 1989;
Crawford & Etherington, 1998). The originality of STILL in this respect is to address both
the declarative and the procedural aspects of a relational knowledge-based system. In that
sense, STILL fully pertains to theLearning to Reasonparadigm (Khardon & Roth, 1997):
knowledge is captured in whichever format makes its characterization and/or processing
more efficient. The limitation of this approach is a loss of intelligibility, due to the fact that
clauses are expressed in a compact way for the sake of efficiency. Future work will attempt
to remedy this drawback, and determine what further functions should be added to STILL
in order for it to display a satisficing intelligibility.

The paper is organized as follows. Section 2 briefly describes the limitations of standard
inference. Section 3 shows how type declarations allow one to restrict the search space
of inference, and section 4 studies a satisficing inference mechanism exploring this search
space. Section 5 is devoted to constructing logic programs geared toward a satisficing
inference. Section 6 gives a proof of the principle of the approach potentialities. The paper
last situates this work with respect to the state of the art, and sketches some perspectives
for further research.

2. Standard relational inference

The core of machine reasoning and learning is thesubsumption procedurewhich basically
decides whether the premises of a rule (a candidate hypothesis) covers an instance. This
section briefly describes and discusses subsumption in a relational language.

2.1. Standard subsumption

The rules and hypotheses considered through the paper are described in a Datalog language,
i.e. a definite clause language without function symbols other than constants.2 Instances
are existentially quantified conjunctions of literals as in (de Raedt, Idestam-Almquist, &
Sablon, 1997).

For the sake of simplicity, let us consider only the elementary case: checking whether
a given clause covers a given instance. In the general case in such languages, the clause
is said tocoveror subsume the instance, if this instance logically implies the body of the
clause. A further simplification, consistently used throughout learning in relational logic
(Muggleton & De Raedt, 1994), is to use a weaker form of logical implication, namely the
θ -subsumption defined by Plotkin (Plotkin, 1970).
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Let us recall the definition ofθ -subsumption and discuss its limitations, trying to keep the
presentation as intuitive as possible. The reader is referred to (Lloyd, 1987) and (Muggleton
& De Raedt, 1994) for a comprehensive presentation of LP and ILP.

Definition 1. A formula C θ -subsumes a formulaD, noted D≺C, iff there exists a
substitution (ormapping) σ on variables inC such thatCσ is included inD (Cσ ⊆ D). C
is said to subsumeD according toσ .

The mutagenesis domain (King, Srinivasan, & Sternberg, 1995) will be used to illustrate
our purpose through the paper (see Section 6). Instances represent molecules, described by
a set (a conjunction) ofatomandbondliterals.

Example 1: The body of a clause(C) and an instance description(D).

C : atom(Y′, carbon, Z′), atom(Y′′, hydrogen, Z′′), bond(Y′,Y′′, simple)
D : atom(d1, hydrogen, .144), atom(d2, carbon, .014),

atom(d3, carbon, .33), bond(d2, d1, simple)

C subsumes Daccording toσ = { Y′/d2, Z′/.014, Y′′/d1, Z′′/.144}

Subsumption testing is known to be NP-complete (Kapur & Narendran, 1986). In practice,
subsumption testing is either affordable or impractical depending on whether the domain
description is strongly or weakly structured. Typically, a weakly structured domain is such
that instances are described in terms of a small number of predicate symbols, each predicate
symbol occurring very often in every instance. Consider for instance the chemistry domain
again, and letC be a clause involving 10atomliterals and 5bondliterals. LetD describe
a medium-size molecule, involving 100 atoms and 180 bonds. Checking whetherC covers
D is in the worst case in 10010× 1805≈ 2 · 1031.

In strongly structured domains, high-level concepts are used to organize and summa-
rize the information (e.g. thebenzenic-ring predicate summarizes six carbon atoms and
their links). Predicate symbols for high level concepts occur much less often in instances
description and as a result, the subsumption complexity dramatically decreases.

2.2. Limitations of (inductive) Logic Programming

The preceding section implies that the use of Logic Programming in weakly structured
domains is severely limited: only short clauses can be used.

Human programmers prefer writing short clauses as these are easier to debug and more
efficient to execute. Learnerscannotproduce long clauses, as it would be intractable to
assess them w.r.t. the training set. Practically, ILP learners restrict themselves to only
exploring short clauses, by means of syntactic or search biases (see (N´edellec et al., 1996)
for a comprehensive presentation of learning biases in ILP):

• Syntax biases: PROGOL (Muggleton, 1995) sets an upper bound on the number of literals
in the clauses it produces. REGAL and G-NET (Giordana & Neri, 1994; Anglano et al.,
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1998) consider a user-supplied template of the sought hypotheses (fully variabilized
clause), and use Genetic Algorithms to optimize domain constraints on the variables.
REMO (Zucker & Ganascia, 1996) similarly uses a relational template, termedmorion,
to limit the form of the sought clauses.
• Search biases: FOIL (Quinlan, 1990) and TILDE (Blockeel & Raedt, 1999) follow a top-

down approach, and gradually specialize the current hypothesis until its quality is judged
satisfactory. The specialization greedily adds the most discriminant literal/variable link-
ing or grounding in each step. The drawbacks of this greedy search are partly overcome
by lookahead in FOCL (Pazzani & Kibler, 1992). PROGOL uses a MDL criterion
(Rissanen, 1978) favoring short clauses, to stop the search.

To illustrate the practical limitations of induction within FOL, all the above learners re-
strict themselves to clauses involving up to two or threeatomliterals e.g. in the mutagenesis
domain, while example molecules involve up to 40atoms(King, Srinivasan, & Sternberg,
1995).

In such domains, the alternative is to either accommodate short bits of knowledge only,
or to design another relational framework.

3. The search space of inference

This section presents some assumptions based on the semantics of relational domains, to
restrict the search space explored by standard inference.

3.1. What is relational?

The remainder of the paper relies on the following remark: the arguments of predicates
can be divided into two categories depending on the nature of their instantiation domain.
Some domains could be modified without in any way affecting the information contained
in the examples; for instance, the first argument of predicateatom, and the first and second
arguments of predicatebondhave{d1, d2, d3, . . .} for instantiation domain (Example 1).
These constants stand for the atom identifiers in the molecules. These constants do not
have any meaning in the domain, they are indeed Skolem constants: the semantics of a
molecule is invariant up to a consistent renaming of its atoms. Arguments instantiated in
such domains are calledrelational.

Other arguments are calledvalued: e.g. the second argument of predicateatomindicates
the element of the atom and has{carbon, hydrogen, oxygen, . . .} for instantiation domain.
Clearly such domains are not invariant by renaming (permutingcarbonandhydrogenatoms
in a molecule would definitely change the nature of the molecule).

We assume the category of the predicate arguments to be explicitly declared by the
expert (e.g. category(atom (Relational, Valued, Valued)); category(bond (Relational,
Relational, Valued))). These declarations are similar to themodedeclarations used in
PROGOL (Muggleton, 1995) to restrict the learning search to correct (executable) clauses.
In contrast, thecategorydeclarations will be used to restrict the inference search space, i.e.
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the set of possible substitutions between a clause and an instance, to correct (meaningful)
mappings.

Two more assumptions are made.

• If a predicate does not involve any relational argument, there exists at most one literal
built on this predicate in each clause (e.g. the description of a molecule involves at most
one literal built on thelowest-unoccupied-molecular-orbitalpredicate). In other words,
this predicate corresponds to an attribute.
• If a predicate involves at least one relational argument, there cannot be two literals built

on this predicate in a clause, having the same instantiation of the relational arguments,
and different instantiations of the valued arguments (e.g. one does not haveatom(d1,
carbon) andatom(d1, oxygen)). In other words, the valued arguments in a predicate are
functions of the relational arguments of this predicate.

3.2. Functional logic

These assumptions together imply that a relational formulaC can be expressed without
loss of information as a set of objects and an attribute-value description of some tuples
of these objects. For instance, in Example 1 (Section 2.1), and according to the category
declarations in the previous section, formulaC is described as a set of two objects (the
Skolem constants associated to variablesY′ andY′′, notedc1 andc2) and the value of unary
or binary functions of these objects (the atomic type of the objects, e.g.type(c1) = carbon,
and the bonds of the objects, e.g.bond(c1, c2) = simple). FormulaD is transformed, or
functionalized, in the same way:

Example 2: Functional Description of C and D.

C: O(C) = {c1, c2} [type(c1) = carbon],
[type(c2) = hydr.], [bond(c1, c2) = simple]

D: O(D) = {d1, d2, d3} [type(d1) = hydr.], [charge(d1) = .144]
[type(d2) = carbon], [charge(d2) = .014]

[type(d3) = carbon], [charge(d3) = .33], [bond(d2, d1) = simple]
[eqtype,type(d2, d3) = true]

Functionalization aims at expressing any given formula as an attribute-value description of
object tuples.

Functionalization algorithm . Let C be a relational formula and CS its Skolemized form
(derived from C by replacing all occurrences of every variable by a Skolem constant). Let
O(C) denote the set of all instantiations of relational arguments in CS (including Skolem
constants), called objects of C. With no loss of generality, each literal t built on a predicate
symbol p in C can be expressed as

p
(
ot

1, . . . ,o
t
R, v

t
1, . . . , v

t
V

)
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where R and V respectively denote the number of relational and valued arguments in
p; ot

i is an object of C;vt
j instantiates the j th valued argument in p. From Section 3.1,

vt
j can be considered a function of the tuple ot

1, . . . ,o
t
R. Without loss of generality, we

assume that p involves exactly one valued variable: e.g. atom(d1 hydrogen, .144) is rewrit-
ten type(d1 hydrogen), charge(d1, .144). In case p involves no valued variable, p(ot

1, . . . ,

ot
R) is rewritten p(ot

1, . . . ,o
t
R, true).

The relational formula C is finally rewritten into an attribute-value description of object
tuples:

• To each literal p(ot
1, . . . ,o

t
R, v

t ) in C, we associate the attribute p?(ot
1, . . . ,o

t
R), taking

valuevt in C. The information conveyed by the variables grounding in C is thus equivalent
to the attribute-value conjunction of the[ p?(ot

1, . . . ,o
t
R) = vt ].

• The links (equality) between relational arguments are directly encoded through the set
of objects of C, since objects are in one-to-one correspondence with the instantiations of
relational variables.
• The links (for both) valued arguments are accounted for by additional attributes. To each

pair of valued arguments in C with same instantiation(e.g. p(ot
1, . . . ,o

t
R, v

t ), p′(ot ′
1 , . . . ,

ot ′
R′ , v

t ′) such thatvt = vt ′ ), we associate an extra boolean attribute (noted eqp,p′(ot
1, . . . ,

ot
R, o

t ′
1 , . . . ,o

t ′
R′)). The functional description of C is thus augmented by the conjunction

of [eqp,p′(ot
1, . . . ,o

t
R, o

t ′
1 , . . . ,o

t ′
R′) = true] over all such attributes.

Functional logic is defined as follows:

Definition 2. A formulaC in functional logic is described as:

• a set of objectsO(C) = {o1, . . . ,oK },
• a set of constraints of the type: [g(oi1, . . . ,oi L ) = V ], whereg is a function of arityL,
(oi1, . . . ,oi L ) is a L-tuple of objects inO(C), andV is a subset of the domain of value
of g.

The functionalization algorithm demonstrates that Datalog clauses can be expressed in
functional logic with no loss of information. Further, it is clear that functional logic may
accommodate various types of links between valued arguments (e.g. domain constraints
[dom(X) = (a, b)] or binary constraints [X < Y]), making it easy to handle numerical
information.

3.3. Discussion

Functionalization can be viewed as being opposite to another change of representation
known asflattening(Rouveiro1, 1994). Flattening removes all function symbols present in
a relational formula, by transforming them into predicate symbols:

color(X, blue) becomes color(X,Y), bluep(Y)

to avoid specific problems related to dealing with function symbols (De Raedt & Dˇzeroski,
1994).
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Functional Logic resembles the strongly typed logic language Escher (Lloyd, 1999) in
many respects. The difference is the following:

Escher uses type declarations. An elementary type is defined by its value domain (e.g.,
atom-label is valued in{d1, d2, . . .}; atom-typeis valued in{hydrogen, oxygen, . . .}). Types
are defined by combining previously defined types (e.g.atomis composed ofatom-label
andatom-type) or as functions between types (e.g.bondis a function from a list of atoms
ontobond-type, which is itself valued in{simple, double}). Arbitrarily complex terms can
be defined.

Functional Logic involves one elementary type (the objects), and only considers functions
of object tuples. It does not need any further type declaration, the types being carried by the
functions themselves. Its expressiveness is less than that of Escher, though sufficient for
all domains considered by ILP so far: chemistry (Srinivasan, 1997; Emde & Wettscherek,
1996) (the objects being the labels of the atoms in a molecule), finite element methods
(Dolsak & Muggleton, 1991) (the objects being the labels of the vertices in a mesh), train
problems (Michalski, 1983; Botta, Giordana, & Piola, 1997) (the objects being the labels
of the cars in a train), family problems (the objects being the names of the persons in a
family), etc.

3.4. Subsumption in functional logic

Functionalization is meant to properly delineate the scope of relational vs attribute-value
description: what is relational is the fact that the description of formulaC is invariant by
permutation ofO(C); setting an order onO(C) induces an attribute-value description ofC.
Checking whetherC subsumesD thus involves two separate elementary steps: considering
one mappingσ fromO(C) ontoO(D); comparing the attribute-value description ofσC to
that of D.

Definition 3. LetC andD be two formulas in functional logic. In the following,6(C, D),
or 6 for short, will denote the set of mappings fromO(C) ontoO(D). A mappingσ of
6 is consistent, if for each constraint [g(ci1, . . . , ci L ) = V ] in C, there exists a constraint
[g(dj1, . . . ,djL ) = W] in D, with:

∀k = 1 . . . L , σ
(
cik

) = djk and W ⊆ V

Proposition 1. Let C and D existentially qualified conjunction of literals, and let C and
D be the corresponding formulas in functional logic. Then, Cθ -subsumes D iff there exists
a consistent mapping in6(C, D).

The proof straightforwardly follows from the definition ofθ -subsumption and the function-
alization procedure.

The complexity of subsumption testing in functional logic thus isO(nC × nD × |6|)
where: nC andnD respectively denote the number of constraints inC and D; |6| is the
number of mappings fromO(C) onto3 O(D), hence exponential in the size ofO(C).
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4. Satisficing inference

In functional logic, the inference search space is clearly defined though its size remains ex-
ponential. An alternative to standard subsumption, first investigated in (Sebag & Rouveiro1,
1997), is to replace the exhaustive exploration of the search space6 by a sampling-based,
Monte-Carlo like, exploration. This section studies the properties and limitations of the
satisficing inference.

Practically, one only checks the consistency of some mappings sampled in6 with uni-
form probability. This defines a randomized estimate of the subsumption test, calledK-
subsumption.

Definition 4. Let C and D be two formulas in functional logic, and letK be an integer.
To eachK -tupleσ1, . . . , σK in 6K , we associate the boolean relation

D ≺σ1,...,σK C

taking valuetrue iff at least one mapping among theσi is consistent.K -subsumption, noted
≺K , is then defined as a stochastic boolean relation, with:

IP(D ≺K C) = IP
(
D ≺σ1,...,σK C

)
whereK -tuplesσ1, . . . , σK are drawn in6K according to distribution IP. Unless specified
otherwise, IP will denote the uniform sampling in6K .

RealizingK -subsumption is done with complexityO(K×nC×nD). As desired, inference
based onK -subsumption, calledsatisficing inference, allows the user to control the time
resources of inference through parameterK . And by constructionK -subsumption goes to
θ -subsumption asK goes to infinity.

Let us examine the approximation cost, that is, the probability thatK -subsumption
differs from standardθ -subsumption.K -subsumption is obviously correct: ifC happens to
K -subsumesD, thenC θ -subsumesD. As the converse is not true,K -subsumption is not
complete.

The chance of error is the probability of havingD 6≺K C conditioned byD ≺ C. Let p
denote the fraction of mappings in6 consistent withD; p is strictly positive asD ≺ C.
With regards to the uniform sampling with replacement in6, the probability of selecting
K mappingsnotconsistent is(1− p)K ; therefore

IP(D 6≺K C | D ≺ C) = (1− p)K

The probability of error thus goes to 0 asK goes to infinity. But unfortunately, the con-
vergence is slow: in our toy example,6(C, D) contains 9 mappings (from{c1, c2} onto
{d1, d2, d3}), with p = 1/9. Hence, to detect thatD ≺K C with confidence 95%,K must
be greater than log(.05)/log(8/9)≈ 26. . .

In order to enforce the potentialities of the approach, we thus supply a way of constructing
logic programs geared to satisficing inference.
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5. Satisficing inductive inference

This section describes the relational learner STILL, first presented in (Sebag & Rouveiro1,
1997). STILL upgrades a propositional learner inspired from the Version Space (Mitchell,
1982), termedDisjunctive Version Space(DIVS) (Sebag, 1996), which is first briefly re-
called in order for the paper to be self-contained.

5.1. Disjunctive Version Space

We assume the reader’s familiarity with the Version Space framework (Mitchell, 1982).
This framework has inspired a number of theoretical works (see (Smith & Rosembloom,
1990; Norton & Hirsh, 1993; Smirnov & Braspenning, 1998) among many others), but is
severely limited due to its complexity (Haussler, 1988); further, its strict completeness and
correction requirements are ill-suited to real problems.

Disjunctive Version Space remedies these limitations by combining the “primitives”
D(E, F) of Version Space, whereD(E, F) denotes the disjunction (or set) of all hypothe-
ses covering exampleE and discriminating exampleF . Let the hypothesis language be
constructed from selectors [att= value] (resp. [att∈ interval]) whereatt denotes a nominal
(resp. ordered) attribute.D(E, F) is characterized with linear complexity in the number
of attributes, from its upper bound (the disjunction, or set, of all maximally discriminant
selectors):

Example 3: Attribute-value examples E and F, and D(E, F)

type electric-charge prim-group sec-group
E carbon .144 benzen —
F oxygen .33 — methyl

D(E, F) = [type= carbon] ∨ [charge< .33]∨ [prim-group= benzen]

The disjunctionVS(E) of all correct hypotheses covering any exampleE might thus be
characterized from the conjunction of allD(E, Fi ), for Fi ranging over the training exam-
ples F1, . . . , Fn not belonging to the same target concept asE, termedcounter-examples
of E:

VS(E) = D(E, F1) ∧ · · · ∧ D(E, Fn)

CharacterizingVS(E) (or more precisely its upper-bound) from theD(E, Fi ), i.e. in Dis-
junctive Normal Form (DNF), can be done with linear complexity in the number of attributes
and the number of examples—while the complexity ofVS(E) in Conjunctive Normal Form
(CNF) is known to be exponential (Haussler, 1988).

The Disjunctive Version Space is composed of allVS(E) for E ranging over the training
set. Further instancesU of the problem domain are classified according to the majority
vote of the training examplesE such thatU is covered by, or belongs to,VS(E). The
classification procedure is parameterized to accommodate the noise and sparseness of the
data (see (Sebag, 1996) for more details):
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• Noise.U belongs toVS(E) if it satisfies most (instead of, all)D(E, Fi );
• Sparseness.U satisfiesD(E, F) if it satisfies at leastM (instead of, one) selectors in

D(E, F).

5.2. Relational Disjunctive Version Space

Implementing the Disjunctive Version Space in any representation language, only requires
the construction of the setD(E, F) of hypotheses coveringE and discriminatingF . The
first thing to be done here is to define discrimination in functional logic.

Definition 5. Let E andF be two formulas in functional form. A mappingσ belonging
to 6(E, F) is inconsistent if there exists a pair of constraints [g(ei1, . . . ,ei L ) = V ] in E
and [g( f j1, . . . , f jL ) = W] in F , such that:

∀l = 1 . . . L , σ
(
eil

) = f jl and W ∩ V = φ

Definition 6. Let E andF be two formulas in functional form.E discriminatesF if all
mappings in6(E, F) are inconsistent.

Let E andF be examples expressed in functional logic (this corresponds to the learning
from entailment setting (de Raedt, 1996)).

E :O(E) = {e1, e2, . . .};
[
gi
(
ei1, . . . ,ei K

) = Ui
]
, i = 1, . . . ,nE

F :O(F) = { f1, f2, . . .};
[
g′j
(

f j1, . . . , f jL

) = Vj
]
, j = 1, . . . ,nF

LetAVL(E) denote the attribute-value language defined by attributesgi (ei1, . . . ,ei Ki
), noted

gi for short. InAVL(E), E is simply the conjunction of the selectors [gi = Ui ].
To eachσ in 6(E, F) we associate an attribute-value example notedσ F , described in

AVL(E) as the conjunction of all [gi = Vi ] such that: constraint [gi ( fi1, . . . , fi Ki
) = Vi ]

belongs toF ; andσ(ei j ) = fi j for j = 1, . . . , L.

Example 4: Functional examples E and F, and language AVL(E)

1• Description ofE andF .
E : O(E) = {e1, e2} [type(e1) = carb.], [type(e2) = hydr],

[bond(e1, e2) = true]

F O(F) = { f1, f2, f3} [type( f1) = hydr.], [type( f2) = carb],
[type( f3) = cl], [bond( f3, f1) = true]

2• ExpressingE, σi F andD(E, σi F) in AVL(E).
for σ1 = { e1/ f3, e2/ f1} andσ2 = { e1/ f2, e2/ f1}

atm(e1) atm(e2) bond(e1, e2)

E carb. hydr. true
σ1F cl. hydr. true
σ2F carb. hydr. —

D(E, σ1F) = [type(e1) = carb.]
D(E, σ2F) = [bond(e1, e2) = true]
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We then defineD(E, F) in functional logic with respect to the conjunction of theD(E, σ F),
expressed inAVL(E):

Proposition 2. A hypothesis H belongs to D(E, F) iff its representation in the attribute-
value language defined from E, belongs to (implies) all attribute-value hypotheses D(E,
σ F), for σ ranging over6(E, F). For short, we note:

D(E, F) =
∧

σ∈6(E,F)
D(E, σ F)

Proof: Without loss of generality, any hypothesisH that coversE is put as:

H :O(H); [
gi
(
ei1, . . . ,ei K

) = Wi
]
, i = 1, . . . ,nH

withO(H) ⊆ O(E), nH ≤ nE, and ∀i = 1, . . . ,nH ,Ui ⊆ Wi

In languageAVL(E), H simply is the conjunction of [gi = Wi ] for i = 1 tonH .
⇒ Assuming thatH belongs toD(E, F), it discriminatesF , i.e. for every mappingσ in4

6(H, F), there exists a constraint [g(ei1, . . . ,ei K ) = Wi ] in H and a constraint [g( f j1, . . . ,

f jK ) = Vj ] in F such that:

∀k = 1, . . . , K , σ
(
eik

) = f jk and Wi ∩ Vj = φ

The above implies that (theAVL(E) description of)H is discriminated fromσ F , henceH
belongs toD(E, σ F). As this holds for allσ in 6(E, F),

H ∈ D(E, F) H⇒ H ∈
∧

σ∈6(E,F)
D(E, σ F)

⇐ Inversely, letH be a hypothesis coveringE and assume thatH belongs toD(E, σ F).
Then, there exists an attributegi in AVL(E) discriminating (the attribute-value description
of) H from σ F , henceσ is inconsistent. AsH belongs to allD(E, σ F), all mappings in
6(H, F) are inconsistent, i.e.H discriminatesF . 2

In Example 4, one sees fromD(E, σ1F) thate1 atomic-type must be carbon; and from
D(E, σ2F), that there must be a bond betweene1 ande2. Taking their conjunction would
lead tothere exists a carbon atom linked to some other atom, which indeed coversE and
rejectsF .

The complexity ofD(E, F) finally is linear in the numbernE of constraints inE, and
linear in the size of6(E, F).

5.3. Discussion

Mapping relational onto attribute-value examples was first explored in a systematic way in
the LINUS system (Lavraˇc & Džeroski, 1994). Several assumptions are made in LINUS to
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ensure that each relational example is mapped onto one attribute-value example (one-to-one
mapping). In our framework, these assumptions are equivalent to assuming that formulas
can be expressed in functional logic with a single object.

Along the same lines, REMO relies on a user-supplied template, termedmorion, to
map every relational example onto (a set of) attribute-value examples (Zucker & Ganascia,
1996). REMO gets rid of the syntactic restrictions used in LINUS: as a relational example
may include several occurrences of a given morion, it is accordingly mapped onto as many5

attribute-value examples.
Note that the morion-based reformulation unfolds a positive relational example into a

set of attribute-value examples, thereby creating a Multiple Instance Problem (Dietterich,
Lathrop, & Lozano-Perez, 1997). This makes the learning problem significantly more dif-
ficult: one searches hypotheses covering at least one, but not necessarily all, attribute-value
examples derived from each multiple positive example.

Inversely, the reformulation presented here operates on a local scale: it only considers a
single exampleE and the counter-examples thereof. As the target attribute-value language
depends onE itself, this reformulation does not create any such thing as the Multiple Instance
Problem:E is transformed into a single attribute-value example inAVL(E) language.

However, our approach is not directly applicable since it maps any counter-exampleF
onto exponentially many attribute-value examples (the size of6(E, F) is exponential in
the size ofO(E)).

5.4. Induction in STILL

This limitation is again overcome by a sampling-based exploration of6(E, F). We first
construct a stochastic boolean relation, defining a satisficing equivalent of discrimination.

Definition 7. Let C and D be two relational formulas in functional form. To eachσ
in 6(C, D), we associate the boolean relation noted6≺σ , taking value true if allσ is
inconsistent.

D 6≺σ C

Satisficing discrimination, noted6≺sat, is then defined as a stochastic boolean relation, with

IP(D 6≺sat C) = IP(D 6≺σ C)

whereσ is drawn in6(C, D) according to distribution IP.

The STILL (forSTochastic Inductive Logic Learning) algorithm constructs a setDK (E, F)
of hypotheses coveringE and approximatively satisficingly discriminatingF .

Proposition 3. E and F being relational formulas, letσ1, . . . , σK be a K-tuple selected
in 6(E, F)K with distributionIP⊗ K. Then let DK (E, F), be characterized as:

DK (E, F) = D(E, σ1F) ∧ · · · ∧ D(E, σK F)
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DK (E, F) covers E by construction and the probability that DK (E, F) satisficingly dis-
criminates F goes to1 as K goes to infinity.

The proof follows from Definition 7 and Proposition 2.
By taking the conjunction of theDK (E, F) over all counter-examplesF of E, STILL

characterizes a setVSK (E) of hypotheses coveringE and approximatively satisficingly
discriminating allF . AsVSK (E) is constructed for all training examplesE, the complexity
of induction in STILL isO(N × K × nMax), N being the number of training examples and
nMax an upper bound on the number of constraints in any example.

The user controls the trade-off between the induction cost and the quality of the hypotheses
through the numberK of samples considered: the computational cost increases linearly
with K , andVSK (E) goes toVS(E) asK goes to infinity.

Any-time Relational Induction STILL
For eachE in the training set, initialization

VS0(E) = True;

For k = 1 to K interruptible at any-time
For eachE in the training set,

SelectF not belonging to the same target concept asE
Randomly selectσ in 6(E, F)
ConstructD(E, σ F) Section 5.1
VSk(E) = VSk−1(E) ∧ D(E, σ F)

It is worth noting that in most sampling-based learners, the stochastic mechanism only
intervenes during the learning phase. For instance in (Kivinen & Mannila, 1995), candidate
integrity constraints are checked against some samples of the training data; and provided
the number of samples is large enough, the incorrect integrity constraints will almost surely
be discarded.

In contrast, STILL uses a stochastic sampling mechanism during both the learning and
the exploitation phases: even though they were constructed in polynomial time, hypotheses
in VSK (E) cannot be exploited by standard subsumption in polynomial time. This is because
the hypotheses learned are potentially as long as the examples; therefore, they can only be
exploited, e.g. to classify further instances, through satisficing inference (Section 4).

6. Validation: a proof of the principle

It is long known that instances of NP-hard problems are not all equally hard (Mitchell,
Selman, & Levesque, 1992): the actual complexity matches the worst-case complexity
under some particular circumstances. This phenomenon, known asPhase Transition, has
been extensively studied in the framework of relational subsumption, on artificial problems
(Giordana et al., 1999).

In this section, we study instead how satisficing inference addresses the problem of re-
lational learning and reasoning in an actual domain, well-known as mutagenesis problem
(King, Srinivasan, & Sternberg, 1995), which has been used as benchmark for all ILP
learners.
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6.1. The domain and reference results

The mutagenesis problem is concerned with nitroaromatic molecules occurring in car ex-
haust fumes; some of them have a carcinogenic effect due to their high mutagenicity, and the
literature has not yet offered any theory for predicting the mutagenicity of molecules. By the
way, the field of chemistry and particularly predictive toxicology evaluation, offers many
inspiring and challenging applications for Machine Learning (Srinivasan, 1997).

The following will only consider the subset of 188 molecules known asregression-
friendly. Several descriptions of the mutagenicity domain have been considered. An attribute-
value description of the domain (background knowledgeB0) has been considered by CART
(Breiman et al., 1984), linear regression (LR) and 1-hidden layer neural nets (NN). Their
predictive accuracy estimated by 10fold cross-validation and reported from (Srinivasan &
Muggleton, 1995), ranges from 88± 2 percent (CART) to 89± 2 percent (LR, NN).

Several relational descriptions of the domain are available. A weakly structured descrip-
tion termedB2 (Srinivasan & Muggleton, 1995) only involves the atoms and bonds of the
molecules:

atm(m1, c, 22,−.116), . . . ,atm(m2, o, 40,−.386), bond(m1,m2, simple), . . . ,

A refined descriptionB3 involves four additional boolean or numerical attributes, e.g. de-
scribing the hydrophobicity of the molecule. A strongly structured descriptionB4 also
involves high level chemical concepts (e.g. benzenic rings, nitric groups) that are present
in the molecules.

As noted earlier on, rewritingB2,B3 or B4 in functional form is straightforward: the
objects in a molecule are its atom namesmi , and all information can be expressed through
functions of these objects.

Relational learners display a high degree of sensitivity with respect to the description
of the domain (Table 1). Typically, Progol results increase from 81%± 3 for the weakly
structured descriptionB2, to 88%± 2 for the strongly structuredB4. Simultaneously, the run
time decreases from 64,350 seconds (on HP-735 workstation) withB2 to 40,950 withB4.

6.2. Experimental aim and setting

Our primary intention is to see whether reasonable results can be obtained within a rea-
sonable time on weakly structured domains, using satisficing inductive and deductive
inference. We therefore only consider background knowledgesB2 andB3.

Table 1. Reference results on the 188 dataset.

B2 B3 B4

FOIL (Quinlan, 1990) 61± 6 83± 3 86± 3

Progol (Muggleton, 1995) 81± 3 83± 3 88± 2

Fors (Karalic, 1995) NA NA 89± 6

G-Net (Anglano et al., 1998) NA NA 92± 8
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A second point regards the sampling mechanism used to stochastically explore the infer-
ence search space. Satisficing inference is defined with respect to uniform sampling without
replacement of6(E, F): while possible, an atomei in E is drawn with uniform probability
without replacement inO(E) and mapped onto some atomf j in F , selected with uniform
probability without replacement inO(F).

We can also incorporate some knowledge in this sampling mechanism, by selectingf j

depending onei : typically, one would rather map a carbon atom inE onto a carbon atom
in F . The uniform selection off j is thus replaced by a deterministic selection of the not
yet selected atom inO(F) that is “most similar”6 to ei .

STILL involves four parameters:

• The numberK and K ′ of samples considered respectively by inductive and deductive
stochastic inference (Sections 5 and 4).K and K ′ are respectively set to 300 and 1;
complementary experiments (not shown here) demonstrate that doublingK andK ′ does
not significantly improve the results.
• Parametersε andM used to control respectively the consistency and the generality of the

hypotheses (withε = 0 for perfect consistency, andM = 1 for maximal generality; see
(Sebag, 1996) for more details);ε varies in [0, 2];M varies in [1, 7].

STILL predictive accuracy is evaluated by 10 fold cross-validation. As recommended
for stochastic algorithms, the result associated to each fold is averaged over 15 independent
runs (same parameter setting, distinct random seeds). STILL is written inC++.

6.3. Results and discussion

Table 2 shows the results obtained with uniform sampling onB2 andB3, for M ranging in
{1, 2} andε ranging in{0, 1, 2}. Run-times are given in seconds on a Pentium II 166.

The average accuracy is fairly stable from one run to another; the high variance of the
results is due to the fact that some folds (always the same) are easy for STILL (e.g. the 6th)
and others are difficult (e.g. the first). An automatic adjustment of parametersM andε (e.g.,
as proposed in (Kohavi & John, 1995)) is highly desirable, as these parameters command
the overall performance of the algorithm. Still, the above experiments demonstrate that
satisficing results can be obtained through stochastic relational inference on this problem:

Table 2. STILL results with uniform sampling,K = 300,K ′ = 1.

M ε Accuracy

Uniform Sampling onB2 1 0 73.7± 9.3

(time: 32 seconds) 1 1 80.8± 7.3

1 2 83± 7.9

Uniform Sampling onB3 2 0 86.5± 6.3

(time: 27 seconds) 2 1 84.2± 8.1

2 2 82.2± 9.3
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Table 3. STILL results with informed sampling,K = 300,K ′ = 1.

M ε Accuracy Time

Informed sampling onB2 3 0 85.2± 7.6 40

4 0 86.2± 7.7 43

5 0 86.5± 6.9 45

6 0 85.2± 6.3 47

Informed sampling onB3 3 0 85± 8.1 34

4 0 86.9± 7.5 38

5 0 88.6± 8 41

6 0 88.8± 7 43

the computational cost is lower by three orders of magnitude compared to the state-of-the-
art ILP learner PROGOL. STILL, processing a poor description of the domain, obtains
results comparable to those obtained by PROGOL and FOIL, that were processing a richer
description. As might have been expected, the optimal value ofM (the right degree of
specificity of the hypotheses) increases as more information is available (fromB2 toB3).

Interestingly, the results obtained with an informed sampling are better, but not much
more than with uniform sampling (Table 3).

Obviously, many more experiments need to be done to study the “niche” of satisficing
inference. These limited experiments were only meant to show it was worth the study. In
particular, further work will examine howε and M are related to the example noise and
distribution, and how their optimal value could be estimated.

7. Related work

The satisficing approach pervades many areas of Artificial Intelligence and Operational
Research (Zilberstein, 1996). Satisficing reasoning, also termed bounded reasoning, has
been explored along two main lines in logic. In the first line, we call itoff-lineor syntactical,
the goal is to put a knowledge base (KB) into a form allowing one to efficiently answer all
(or most) queries using standard inference. Pertaining to this field is knowledge compilation
(Reiter & Kleer, 1987; Marquis, 1995). Other works are devoted to finding tractable upper
and lower bounds of a given intractable KB (KBl ≺ KB ≺ KBu). These bounds allow one
to answer part of the queries with tractable complexity (KB |= c if KBl |= c andKB 6|= c if
KBu 6|= c) (Selman & Kautz, 1996). The point is to find the best bounds, i.e. the best space
of tractable approximations of an intractable KB (Boufkhad, 1998). However, the cost of
compilation seems to be taken into minor consideration since compilation is viewed as an
off-line process (Cadoli, 1993).

In the second line, we call iton-line or operational, the KB is left unchanged, but the
standard inference is restricted (and becomes thus incomplete) in such a way that deduc-
tion from this KB becomes tractable. The point is to identify the causes of intractability
and to prevent their activation. For instance, the length of the deduction chains might
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be restricted (Patel-Schneider, 1990); one could restrict the exploration to some paths of
the KB (Crawford & Kuiper, 1989), or deductions beyond the bounds of a fixed context
could be pruned (Crawford & Etherington, 1998). One drawback is that the time needed
by meta-reasoning (e.g. deciding which branches of the reasoning tree can be cut), might
offset the time actually gained at the reasoning level.

Our work tackles a different issue. First of all, it concerns predicate logic while bounded
reasoning has been mainly restricted to propositional logic so far.

Second, the cited works either concern the reformulation of the KB, or the design of a
tractable inference algorithm. However, the overall efficiency of a KBS depends on the KB,
on the inference engine, and on how both fit together. As far as efficiency is concerned,
the syntactical and the operational aspects should be considered together. The main nov-
elty of the presented work is to address, in the same satisficing spirit, the construction and
the exploitation of a relational KB. Reasoning biases become unavoidable during the ex-
ploitation of a KB, as standard inference is replaced by satisficing, classically-incomplete
inference. And biases are also unavoidable during the construction of a KB, be they machine
learning or human expert biases. Taking in charge both the construction and the exploitation
of a KBS allows both sources of bias to counteract each other.

Our work closely resembles the Learning to Reason (L2R) framework, as opposed to the
more traditional Learning to Classify (L2C) one (Khardon & Roth, 1997). L2C is essentially
concerned with producing knowledge in order to fuel an existing reasoning system; this
requires using CNF representations; but, as shown in Section 5.1, CNF representations might
cause interesting concepts to be intractable. In opposition, Learning to Reason focuses on
acquiring reliable and usable knowledge; it does so by using some interface to the world,
based on oracles and queries.

The difference between Learning to Reason and Satisficing Inference is twofold. First,
L2R takes advantage of some interface to the world, offering sophisticated ways to alter the
distribution of the examples depending on the current hypotheses of the system, and guide
the hypothesis construction. In opposition, satisficing inference works so far in batch mode
only, handling all examples at once.

Second, L2R only considers propositional representations, where learnable concepts are
de factousable. In opposition, satisficing inference is concerned with relational represen-
tations: one can polynomially learn approximate concepts, which cannot yet be exploited
with polynomial complexity (Section 5.4).

8. Perspectives and satisficing intelligibility

The pitfall of our approach is a severe loss of intelligibility at the operational and syntactical
levels. At the operational level, satisficing inference is bound to be less intelligible than
standard inference, due to its stochasticity.

At the syntactical level, the theory produced by STILL is compactly expressed in DNF
form. Our future work will be to remedy this lack of intelligibility. And, as the notion
of intelligibility can hardly be captured by absolute criteria, we distinguish three profiles
of users. Addressing their demands defines several perspectives for further research. One
perspective concerns scientific discovery (Srinivasan et al., 1996): the scientist user waits
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for an insight into the nature of the problem. To this aim, a first step would be to reduce
the dimensionality of the problem, as in (Sebag, 1994; Lavraˇc, Gamberger, & Dˇzeroski,
1995). The scientist may find the selection of the most important features to be almost as
insightful as the discovery of the rules.

Another perspective is that of the knowledge engineer, who wants to debug an existing
KBS. Assuming that the knowledge engineer is assisted by a machine learning system, one
way of refining a KB is to provide new examples. But, determining which new examples
would be most helpful, can be done without an intelligible theory. Instead, the actual theory
can be used to determine the most informative instances to be labelled by the expert. In this
perspective, the ideas of theory revision will be adapted to the revision of a dataset.

A third perspective is that of the end-user, who asks the system to explain its classification
of the current instance. If the KB were in intelligible form, the answer would be a general
rule, covering the instance at hand. But again, the actual theory can be used to compute
a most general and informative rule covering the example at hand. We have called weak-
intelligibility the aptitude for a system to explain each of its judgments by an intelligible
excerpt of its unintelligible theory (Sebag, 1995). It is worth noting that most human experts,
though unable to write down their entire knowledge, use weak intelligibility in a satisficing
way. . .

Hopefully, the user’s demands regarding the intelligibility of knowledge construction
and exploitation can be formulated in terms of questions to be answered. (Expressing one’s
needs in such operational terms might eventually prove easier than setting requirements on
the form of the acceptable theory). Answering these questions in a satisficing way would
be a sign of satisficing machine intelligence.
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Notes

1. Another weakness is that LP poorly handles numerical information. This limitation can be addressed by using
a Constraint Logic Programming formalism, which is a superset of LP supporting interpreted predicates (Jaffar
& Lassez, 1987).

2. Clauses including domain and binary constraints (e.g. [X ∈ (a, b)], [X<Y]) in order to better handle numerical
information, will be considered in 3.2.

3. Among other attempts to restrict the complexity of inference, let us mentionSubsumption under Object Identity
(Esposito et al., 1996) which would correspond to considering only injective mappings in6. One sees that this
restriction decreases the cost of subsumption, yet without making it tractable.

4. AsO(H) is included inO(E), 6(H, F) is naturally embedded in6(E, F). No distinction is made in the
following.
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5. Assuming that the current morion includesm objects (as defined in 3.1), an example withp objects is mapped
onto p!/p−m! attribute-value examples.

6. Such preferences naturally derive from the description of atoms: Choosef j such that it has the same electric-
charge (e.g.,−.116) asei ; otherwise, the same atomic-number (e.g., 22); otherwise, the same atomic-type
(e.g., carbon).
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