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As computing-intensive mobile applications become increasingly diversified, mobile devices’ computing power is hard to keep up
with demand. Mobile devices migrate tasks to the Mobile Edge Computing (MEC) platform and improve the performance of task
processing through reasonable allocation and caching of resources on the platform. Small cellular networks (SCN) have excellent
short-distance communication capabilities, and the combination of MEC and SCN is a promising research direction. -is paper
focuses on minimizing energy consumption for task migration in small cellular networks and proposes a task migration energy
optimization strategy with resource caching by combining optimal stopping theory with migration decision-making. Firstly, the
process of device finding the MEC platform with the required task processing resources is formulated as the optimal stopping
problem. Secondly, we prove an optimal stopping rule’s existence, obtain the optimal processing energy consumption threshold,
and compare it with the device energy consumption. Finally, the platform with the best energy consumption is selected to process
the task. In the simulation experiment, the optimization strategy has lower average migration energy consumption and higher
average data execution energy efficiency and average distance execution energy efficiency, which improves task migration
performance by 10%∼ 60%.

1. Introduction

With the continuous update of mobile smart devices,
computing-intensive mobile applications are increasingly
diversified, such as augmented reality, virtual reality, mobile
video call, and gesture recognition. Computation-intensive
applications require strict latency and mighty processing
power, implying tremendous pressure on mobile devices
with limited resources and energy [1]. How to solve the
insufficient computing power of mobile devices is an ex-
tremely critical problem.-erefore, MEC is born at the right
time.

MEC evolved from centralized cloud computing, which
allows mobile devices to offload computing tasks to the edge
of the network, such as small base station (SBS), rather than
local computing [2]. -en the MEC platform managed
uniformly device computing tasks resource to reduce
computing latency and energy consumption. However, the

MEC server’s computing capacity is usually limited. How to
effectively allocate the limited computing resources of the
MEC server to terminal devices is a crucial problem. When
the local device’s computing power is insufficient, the device
migrates the computing task to a nearby MEC platform and
uses its rich resources and supercomputing power to ensure
the high-performance execution of the migrated terminal
program. However, if MEC platform’s resources are not
used reasonably, it will cause a waste of resources and is not
conducive to saving the device’s energy consumption. For
example, in a small cellular network, mobile user A performs
computing by accessing the MEC platform, which down-
loads the device’s required resources from the SBS. When
the task of mobile user A is completed, the required re-
sources will be released immediately. Simultaneously, when
mobile user B visits, the MEC platform downloads the re-
quired resources for mobile user B and performs the next
step. However, if user A and user B access the MEC platform
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for the same resources, repeated download and release of
resources will cause unreasonable use of resources and in-
crease the MEC platform’s operational burden. -erefore,
the reasonable allocation and utilization of resources
through the MEC platform can improve task migration
performance.

In recent years, because MEC has powerful computing
and storage performance and small cellular networks have
excellent short-distance communication capabilities, the
combination of MEC and SCN has become a potential re-
search direction. In a small cellular network, because the
types and quantities of resources requested by each user are
different, the resources cached by the MEC platform are also
different. -e SBS always maintains the maximum coverage
area which will cause unnecessary waste of resources.
-erefore, using cell range extension (CRE) to adjust each
SBS’s coverage helps save devices’ energy consumption.

-is paper focuses on minimizing the energy con-
sumption of task migration in small cellular networks. We
propose a task migration energy consumption optimization
strategy with a resource cache by combining the optimal
stopping theory with the migration decision. Firstly, the
process of device finding the MEC platform with the re-
quired task processing resources is formulated as the optimal
stopping problem. Secondly, we prove an optimal stopping
rule’s existence, obtain the optimal processing energy
consumption threshold, and compare it with the device
energy consumption. Finally, the platform with the best
energy consumption is selected to optimize migration
performance and reduce related devices’ overall energy
consumption. -e main contributions of this paper are as
follows.

(i) We combine MEC with SCN to study the problem
of resource caching and task migration and select
the most frequently used resources to be stored as
the precached resources of the platform within the
next time interval t

(ii) We formulate the process of finding a platform with
the required resources for task processing by the
equipment as an optimal stopping problem and
select the platform with the best energy con-
sumption to process the task

(iii) Finally, the simulation experiment shows that the
strategy proposed in this paper has lower average
migration energy consumption and higher average
data execution energy efficiency and average dis-
tance execution energy efficiency, and the task
migration performance is greatly improved

-is paper’s organizational structure is as follows: Sec-
tion 2 reviews the relevant research work; Section 3 describes
the problem and establishes the model. Section 4 describes
the task migration strategy with resource caching; Section 5

presents the simulation experiment and the experimental
results analysis. Section 6 summarizes the whole paper.

2. Related Work

To reasonably useMEC platform resources and improve task
migration performance, researchers have done a lot of re-
search on resource management of the MEC platform task
migration process. Based on the summary and analysis of the
existing optimization strategies, the current research can be
roughly divided into two categories.

-e first category is the study of how MEC’s computing
resources are effectively allocated to requesting users. Tasks
on mobile devices are processed by migrating to the MEC
platform when they are difficult to perform. If there are
multiple users migrating tasks to the MEC platform at the
same time, it is important to reasonably allocate MEC re-
sources to ensure that users’ requests are completed with
high quality. Zhang [3] modeled the problem of computing
resource management as a profit maximization problem.
And by analyzing the relationship between reserved re-
sources, migration tasks, and repurchase costs, they pro-
posed a fast-convergent real-time repurchase scheme for
mobile edge servers to minimize the repurchase costs. Li [4]
proposed a high computational density model for single-
user multitasking based on the multitask unloading envi-
ronment. -ey adopted a simulated annealing algorithm to
effectively improve the unloading rate and save energy
consumption. Similarly, Dai et al. [5] proposed a new two-
layer computing offloading framework for heterogeneous
networks. On this basis, by jointly optimizing user associ-
ation and computing offloading, computing resources and
transmission power are reasonably allocated to minimize the
total energy consumption of each device. Besides, Jing et al.
[6] proposed a heterogeneous network distributed joint
computing offloading and resource allocation optimization
(JCORAO) scheme for the allocation of uplink subchannels
and transmission power and the scheduling of computing
resources. At the same time, a cloud and wireless resource
allocation algorithm is designed to realize the joint allocation
of the above resources. -e simulation results show that the
proposed scheme can effectively reduce the system energy
consumption, task completion time, and system complexity.
Considering the characteristics of small cellular networks
and mobile edge computing, Guo [7] used a distributed
three-stage iterative method based on the energy harvesting
SCN combined with the MEC environment to realize the
network’s green load management and computing resource
allocation. Elgendy et al. [8] conducted joint processing of
wireless resources and computing resources, adopted JPEG
andMPEG4 compression algorithms to reduce transmission
overhead, and introduced a security layer to protect
transmitted data from network attacks. On this basis, an
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efficient unloading algorithm is designed to save about 46%
of the system overhead consumption. Most of the above
research works are based on how the resources existing on
the MEC platform can be effectively allocated to users who
need to request task migration, but the scenarios of how the
resources of the MEC platform can be cached in the process
of task migration on mobile devices have not been con-
sidered. If all resources are stored on the MEC platform, this
will require high storage costs, increase the burden on the
MEC platform, and reduce the performance of the task
migration.

-e second category is the study of how MEC’s com-
puting resources are effectively cached. Due to the different
number of users in the area covered by the cellular network
and their different task requests, the MEC platform’s re-
sources need to be updated frequently. It is important to
effectively cache and provide users with appropriate re-
sources. Bi [9] used edge service caching and computational
offloading for joint optimization. -erefore, based on a
network environment with an edge server, they proposed
mixed-integer nonlinear programming to jointly optimize
the service cache layout, computational offloading, and
system resource allocation. But they do not consider the size
of the MEC platform and how to efficiently cache the re-
sources required by the device. Different from the above
scheme, Zhao et al. [10] cached the execution results of
completed tasks on the MEC platform. -ey used the active
caching algorithm to determine the cache state of the task
and proposed a heuristic algorithm based on the greedy
strategy to solve the problem of remaining resource allo-
cation and task execution. Yang et al. [11] proposed a long-
short-term memory (LSTM) network to predict the task
popularity. And a single-agent Q-learning (SAQ-learning)
algorithm is invoked to learn a long-term resource allocation
strategy. Zhang et al. [12] proposed a blockchain-based
caching and delivery market (CDM) as an incentive
mechanism for distributed caching systems. On this basis,
they constructed the cache sharing and transaction execu-
tion consistency models and further took cache placement
and scenario selection as Markov decision process problems.
Zhang [13] studied the collaborative task unloading and data
caching model. -ey proposed an effective Lyapunov online
algorithm that can perform joint task unloading and dy-
namic data caching strategies for computing tasks or data
content. Elgendy et al. [14] cached the completed applica-
tions and related codes on the edge server. On this basis, two
effective algorithms based on Q-learning and deep-q-network
are used to solve the approximate optimal solution of the
problem, effectively reducing the overhead of mobile devices.
Peng [15] designed an intelligent federated caching and
offload strategy under the assumption that the application can
exist as a divisible service chain. Unlike the common method
of reducing response delay for users only, their system took
the rental cost into account and used the open Jackson
queuing network to construct the joint optimization problem
under the long-term cost constraints. A cost adaptive algo-
rithm is designed to effectively reduce the average service
delay of MEC system and kept the average rental cost low.
Most of the above-mentioned research work is based on the

resources required for precaching tasks and does not consider
whether the cache resources are reused. -e repeated
download and release of resources will not only cause un-
reasonable use of resources but also increase the operational
burden of the MEC platform Related work is list in Table 1.

In addition, the combination of MEC and SCN is also a
feasible solution. MEC has powerful computing and storage
performance, and small cellular networks have excellent
short-distance communication capabilities, so researchers
combine MEC with SCN. Wang et al. [16] jointly optimized
the video service cache decision and wireless computing
resource allocation. -ey adopted robust optimization to
obtain the optimal caching decision and allocated radio and
computing resources for video transcoding accordingly. Cai
[17] studied an offloading method of parallel communica-
tion and computation in amultiuser system tominimize task
delay. Jia et al. [18] proposed an energy-saving computing
offloading scheme with edge computing and device-to-de-
vice (D2D) communication in 5G cellular networks. -ey
defined the computational offloading problem as a stochastic
optimization problem and used the Lyapunov optimization
technology framework to solve the problem.

-e security issues of MEC in the process of computing
migration should also draw the attention of researchers.
Elgendy et al. [19] introduced AES encryption technology as
a security layer to protect sensitive information from net-
work attacks. On this basis, they proposed an integrated
model that comprehensively considers security, computa-
tional offloading, and resource allocation and improved the
performance of the entire system through optimal com-
putational offloading decisions. Abd El-Latif [20] proposed a
new authentication encryption protocol based on Quantum
Excited Quantum Walk (QIQW) and used this protocol to
build a blockchain framework to ensure secure data between
IoTdevices transmission. Besides, the researchers developed
a novel VANET architecture by combining MEC, SDN, and
D2D to solve the challenges of high traffic density and blind
spots in the vehicle network [21]. -ey also used the
powerful computing of the MEC platform to solve the
optimization of video application migration performance
[22] and resource constraints of industrial IoT equipment
[23] and other issues.

3. Problem Description and Model Building

3.1. Problem Description. Assuming the small cellular net-
work in theMEC network environment is shown in Figure 1,
in which the cell of SCN has a small base station, the number
of MEC platform and mobile users is N, and the devices will
simultaneously perform a task migration in each time in-
terval t. Mobile devices have independent channels when
accessing theMEC platform through the SBS, so this paper is
not considered channel interference. Usually, the SBS needs
to maintain the maximum signal transmission power to
cover the whole community so that all mobile devices’
communication quality can be guaranteed. However, the
user’s location is continually changing, and the SBS always
maintains the maximum power, which will cause a waste of
base station energy.-erefore, the SBSmust adjust the signal
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coverage area appropriately according to the community’s
user position. Learning from the method of Guo [7] to solve
this problem, this paper also uses cell range extension (CRE)
to adjust the coverage range of each SBS. CRE is a technique
to expand a picocell range virtually by adding a bias value to
the pico received power, instead of increasing transmit
power of pico base station, so that coverage, cell-edge
throughput, and overall network throughput are improved.
Simultaneously, the communication power between devices
will also be adjusted adaptively based on device spacing.

In addition, the research on task migration in this paper
is based on the background of resource cache. In previous
studies, the resource requested by the MEC platform is
cached in advance by the mobile device. When the device’s
task program migrated to the MEC platform, the platform
will directly call resources for processing. However, there are

many mobile devices in the cell, and the MEC platform
caches the required resources for all devices in advance,
which will inevitably cause the MEC platform itself to run
too much. It does not efficiently utilize resources to release
the previous resources directly after completing task pro-
gram processing. -is paper assumes that each cell’s MEC
platform in SCN will use the most frequently used resource
in the last time interval t as the MEC platform’s precached
resource in the next time interval t. Besides, when the mobile
device in cell A migrates the task program to the current
MEC platform, it first detects whether the local platform’s
resources meet the processing requirements. If yes, the
platform caches all the resources requested by the device and
the platform directly processes the task. If not, the platform
partially caches or does not cache the resources requested by
the device; the platform will continue to detect the resources

Table 1: Summary of the above resource management literature

Type Literature Key research points

Resource allocation

3 (i) Fast-convergent real-time repurchase scheme
4 (ii) Simulated annealing algorithm
5 (iii) Two-layer computing offloading framework for heterogeneous networks

6
(iv) Heterogeneous network distributed joint computing offloading and resource

allocation optimization (JCORAO) scheme
7 (v) Distributed three-stage iterative method
8 (vi) Comprehensive model of resource allocation, compression, and security

Resource cache

9 (i) Mixed-integer nonlinear programming
10 (ii) Active caching algorithm, greedy strategy
11 (iii) Long-short-term memory (LSTM) network
12 (iv) Markov decision process
13 (v) Lyapunov online algorithm
14 (vi) Q-learning and deep-q–network algorithm
15 (vii) Open Jackson queuing network and a cost adaptive algorithm

Cloud 

server 

SBS with

MEC server 

Figure 1: SCN model based on MEC.
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of other cell platforms until it meets the required resources
for cross-cell task processing. If the last cell is detected and
no platform meets the processing requirements, the MEC
platform of the cell where the user is located downloads the
required resources from the small base station. -e research
goal of this paper is to minimize the overall energy con-
sumption of all devices during task migration under the
premise of resource cache.

-ere are N cells with a coverage area radius of l in the
small cell network in the task migration scenario. -e cell set
is cells � cell1, cell2, cellj, . . . , cellN{ } and the resource in-
formation set with the most frequent access to devices in the
last time interval t cached on the MEC platform of each cell
is Rscache � Rs1,Rs2,Rsj, . . . ,RsN{ }, jϵ[1, N]. As shown
in Figure 2, there are M mobile devices in the cell and the
information set of mobile devices is UEs � UE1{
(d1, C1),UE2(d2, C2), . . . ,UEi(di, Ci), . . . ,UEM(dM, CM)},
i ∈ [1, M]. -e UEi location information is di and Ci is the
information of the UEi task to be processed. Because there
are many cells and devices in SCN, this paper only selects all
devices in one cell as the research object of task migration to
reduce the research complexity.

Taking the UEi task migration process in cellj as an
example, when the taskCi(Ai, Bi, Di) (Ai is the task data size,
Bi is the task requiring the resource type, and Di is the task
requiring the resource size) is migrated to the MEC plat-
form, the resource cache information Rsj is detected. When
Rsj � Bi, that is when the cached resources meet the needs of
Di task running and the MEC platform is idle. -e MEC
platform will start executing the program. Otherwise, it will
continue to detect the resource cache information for the
next cell (Rsj+1). Assuming the communication power of
mobile devices is PUEi, the energy consumption per detec-
tion of the device is Ed.-e task execution power of theMEC
platform is Pmeci and is randomly distributed. -e SBS
coverage power is Pcell. And the maximum coverage power
of the SBS (Pmax) is equal to its download power (Psbs). -e
transmission rate on the wireless channel between UEs and
MEC platform is R, the task processing rate of the MEC
platform isVci, and the resource downloading rate of the SBS
is Vs. -e time of transferring device task to the platform
Tuetrans ,i

� Ai/R, the MEC platform executing time
Tmecexe ,i

� Di/Vci, and the time for the MEC platform to
return resources to the device Tmecback ,i

� Di/R. -e SBS
resource downloading time Tsbsoff ,i

� Di/Vs, and the time for
SBS to return resources to the device Tsbsback ,i

� Di/R.
-erefore, the total energy consumption of the task mi-
gration (EUEi) is obtained as follows:

EUEi � nEd + PUEiTuetrans ,i

+ Pmeci Tmecexe ,i
+ Tmecback ,i

( )
+ Psbs Tsbsoff ,i

+ Tsbsback ,i
( ).

(1)

-e total energy consumption (Eall) of all devices in the
SCN during the task migration of M users within the time
interval t is given as follows:

Eall �∑M
i�1

EUEi. (2)

3.2. Model Establishment

3.2.1. Distance Power Model of Device Communication.
According to the migration energy consumption of a single
UE shown in formula (1) and the total energy consumption
of SCN-related devices in formula (2), it can be observed that
the amount of energy consumption depends on the com-
munication power and SBS coverage power. -e received
signal of the mobile terminal during the communication is
obtained as follows:

β(t) � gη(t) + φ(t). (3)

According to the literature [24], g is the attenuation
factor of the wireless channel, η(t) is the amplitude of the
signal emitted by the mobile terminal, and φ(t) is the
Gaussian white noise of the channel and its noise power is σ.

According to Shannon’s formula,

R �W log2 1 +
S

N
( ). (4)

As shown in Shannon’s formula (4), R is the rate of task
data transmission, W is the bandwidth of the mobile ter-
minal, and S/N is the signal-to-noise ratio. Set R to constant
in this paper. -e signal-to-noise ratio is derived as follows:

S

N
� 2R/W − 1. (5)

-ere is a mathematical relationship between the signal-
to-noise ratio S/N and the received power Prec of the device
and the noise power σ:

S

N
�
Prec

σ
. (6)

-erefore, combining formulas (5) and (6) can obtain
the received power Prec of the device: Prec � σ(2

R/W − 1).
According to the amplitude of the received signal����

Prec

√
/g and the relationship between the transmitted power

and the received power of the mobile terminal, the transmit
power is derived as follows:

Psen �
Prec

g2
�
σ 2R/W − 1( )

g2
. (7)

Moreover, the relation between attenuation factor g,
communication distance d, and coefficient λ is g � λ/d.-e
expression of g is taken into formula (7) to obtain the
following:

Psen �
σ 2R/W − 1( )d2

λ2
. (8)

-e transmit power of UEi that can be derived from
formula (8) is
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PUEi �
σ 2R/W − 1( )di2

λ2
. (9)

Besides, this paper uses CRE to adjust the coverage of the
SBS. Since the UEs in the cell are randomly distributed, the
size of the SBS internal signal coverage area depends on the
farthest device. Let dj,max � max d1, d1, . . . , di, . . . , dM{ }
and, according to formula (9), the coverage radius l of the
cell derives the coverage power of the SBS Pcell. -e max-
imum power is Pmax, and Pmax � Psbs.

Pcell �
σ 2R/W − 1( )dj,max

2

λ2
,

Pmax �
σ 2R/W − 1( )l2

λ2
.

(10)

3.2.2. CachingModel. As described in Section 3.1, in the task
migration scenario, the cell set in the small cellular network
is cells � cell1, cell2, cellj, . . . , cellN{ }, and
Rscache � Rs1,Rs2,Rsj, . . . , RsN{ }, j ∈ [1, N] is the re-
source information set with the most frequent access to
devices within the last time interval t cached on each cell’s
MEC platform.

Taking the resource caching process of cellj within the
time gap t as an example, when the task Ci(Ai, Bi, Di) is

migrated to the MEC platform and it is found that the
required resources are not cached, the MEC platform will
download the required resources Bi for task processing from
the SBS. Similarly, MEC will also download the required
resources for others in the cell. Considering the problem of
reasonable utilization of storage space in the MEC platform,
it only downloads uncached resources. When all the MEC
platform tasks are processed, the most frequently used re-
sources are selected and stored as the platform’s precached
resources in the next time interval t, and other task pro-
cessing resources are released. Let δj,i denote the call weight
of resources in the cellj on the MEC platform, so
δj � δj,1, δj,2, δj,3, δj,i, . . . , δj,N{ }. And as the next time in-
terval t, the cache Rsj is the resource with the largest call
weight δjmax on the MEC platform, that is,
δjmax � max δj,1, δj,2, δj,3, δj,i, . . . , δj,N{ }.
3.2.3. Task Execution Energy Consumption Model.
-rough the research model of computing offloading and
resource allocation based on active buffering proposed by
Zhao et al. [10], the cross-platform task processing model of
the MEC is assumed for the research content in this paper. It
is shown in Figure 3.

Assuming the SCN studied in this paper has a total of
N cells, when the user migrates the task Ci(Ai, Bi, Di) to the
MEC platform on the cell, the cached resource Rs(1,1) of the
current MEC platform is detected first (Rs(1,1)� Rsj�1). If

Cloud 

server 

UE2

UE3

UE1

UEi

UEM

UEM–1

A cell of the SCN

SBS with 

MEC server 

d
M

–1
d
i

dM
l

d
3

d
2

d
1

Figure 2: Communication scene model in SCN.
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Rs(1,1) �Bi and the platform is idle, the task is processed. If
not, the device continues to detect the resource information
on the MEC platform from cell(2,1) as shown by the arrow in
Figure 3, where

nnN � 3k(k − 1) + 1

nnj � 3k(k − 1)(k − 2) + h + 1
{
(k ∈ [1, 3], h ∈ [1, 6(k − 1)]).

(11)

If Rs(k,h) � Bi, the task Ci(Ai, Bi, Di) will perform im-
mediately, and the result will be returned after the processing
is finished. Otherwise, the MEC platform continues to detect
the next cell. If Rs(k,h) ≠Bi, that is, the mobile device does not
find the resource matching platform after detecting the NTH
cell, the MEC platform of cell(1,1) will download the required
resource Bi from the SBS and return the resource to the
device.

According to formula (1), the energy consumption of
MEC platform execution is PmecinTmec_exe,i. Task
Ci(Ai, Bi, Di)must incur additional network overhead if it is
not processed on the local MEC platform. According to the
cell distribution of SCN, the extra cost of cross-platform
processing of tasks is related to the location of cell(k,h); the
farther away from cell(1,1), the greater the cost. -e cross-
platform execution cost α is proposed to replace the complex
cross-platform processing process in this paper.

-erefore, the execution energy consumption of the task
is derived as follows:

(1 + α)k− 1PmeciTmecexe ,i
�(1 + α)k− 1Pmeci

Di

Vci
. (12)

Considering after UEi detecting all cell(k,h), if there is no
matching resource, it still chooses the MEC platform on
cell(1,1) to complete the task processing. -e resource

download marker β is proposed to be adopted for de-
scription, where

β �
nn0 k≠ 1
nn1 k � 1 andRs(1,1) ≠Bi

 (k[1, 3]). (13)

-erefore, the downloading energy consumption of
resource UEi is derived as follows:

βnPsbsTsbsoff ,i
�
βnσ 2R/W − 1( )l2Di

λ2Vs
. (14)

-e total energy consumption of EUEi task migration is
derived as follows:

EUEi � nEd +
σ 2R/W − 1( )di2Ai

λ2R

+(1 + α)k− 1nPmecin
Di

Vci

+
Di

R
( )

+
βnσ 2R/W − 1( )l2

λ2
n
Di

Vs
+
Di

R
( ).

(15)

Further simplification can be obtained as follows:

EUEi � nEd +
σ 2R/W − 1( )

λ2
n
di

2Ai
R

+ βl2
Di

Vs
+
Di

R
( )( )

+(1 + α)k− 1nPmecin
Di

VE
+
Di

R
( ).

(16)

Cloud 

server 

Cell (2, 5)

Cell (1, 1) Cell (2, 1)Cell (2, 4)

Cell (2, 2)Cell (2, 3)

Cell (2, 6)

Cell (3, 1)

Cell (3, 2)

Cell (3, 7)

Cell (3, 6)

Cell (3, 5) Cell (3, 4) Cell (3, 3)

Cell (3, 12)Cell (3, 8)

Cell (3, 9) Cell (3, 10) Cell (3, 11)

Figure 3: SCN task cross-platform execution model.
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Let the energy consumption Epro � σ(2
R/W − 1)/

λ2n((di
2Ai/R)+ βl

2((Di/Vs) + (Di/R))) + (1 + α)
k− 1nPmecin

((Di/Vci) + (Di/R)), so EUEi � nEd + Epro.

4. Task Processing Strategy with Energy
Consumption Optimization

4.1. Construction of Optimal Stopping Rule Problem for
Minimizing Energy Consumption. In the research model in
this paper, the mobile terminal can obtain the resource
information Rsj cached on the MEC platform of the sur-
rounding cell through random detection, and the maximum
number of detections is N. Assume the detection number
when the mobile terminal stops detection is n, n ∈ N, where
N � N: 1≤ n≤N{ } is the collection of detection times.

Previous research on task migration showed that after
the mobile terminal migrates the task, the MEC platform of
the current cell downloads and processes the resources
required for the task. In this paper, the cross-platform task
processing is carried out by looking forMECwith other SCN
cells’ required resources. Because of the extra cost of cross-
platform processing tasks, this paper comprehensively
considers each cell MEC’s energy consumption to select a
platform with lower overall energy consumption to achieve
task processing requirements.

If the current detected platform resources are not re-
quired for task processing or the mobile terminal is not
satisfied with the task processing performance, it can con-
tinue to detect. So the expected payoff for the cost of mi-
gration is given as follows:

YN � Epro,n−1 − Epro,n − nEd. (17)

Let XN � Epro,n−1 − Epro,n, then the goal of optimal en-
ergy consumption migration is to maximize the expected
return. It is given as follows:

maxE YN[ ] � maxE XN − nEd[ ]. (18)

-e purpose of the maximization problem (19) is to
obtain the optimal comprehensive cost of dynamic migra-
tion by finding the optimal stop detection times N∗ to
minimize the energy consumption of service migration.
-erefore, the problem of the device choosing the optimal
migration platform is transformed into the problem of the
optimal stopping rule, and the optimal stop detection
number N∗ is obtained as follows:

N∗ � argsupN∈N∗E YN[ ]. (19)

4.2. Proof and Solution of Optimal Stopping Rules. To solve
the optimal stopping rule problem of optimal energy con-
sumption of migration task, we must first prove an optimal
stopping rule for the problem and then solve the optimal
stopping rule problem.

Proposition 1. Formula (18) has an optimal stopping rule.

Proof. According to the literature [25], if the optimal
stopping rule of the proposition exists, it must meet the
following two conditions:

A1.E supnYn[ ]<∞,
A2. lim

n⟶∞
supYn ≤Y∞a.s.

(20)

According to the definition of formula (17), the expected
reward YN that stops at the NTH detection can be expanded
as

YN � XN − nEd

�(1 + α)k− 1n Pmeci−1n
Di

Vci−1

+
Di

R
( ) − Pmecin

Di

Vci

+
Di

R
( )[ ] − nEd.

(21)

Because α, Di, andR are fixed values for the device and
the sequence, k, Pmeci, andVci are a sequence of random
variables with a limited range, so YN <∞. So
E[supnYn]<∞ is established, and condition A1 is satisfied.
When n⟶∞, nEd⟶∞, so YN � XN − nEd⟶ −∞.
Obviously, Y∞⟶ −∞, so limsupn⟶∞Yn ≤ −∞ � Y∞,
and condition A2 is satisfied. In summary, formula (18)
satisfies conditions A1 and A2; therefore, the optimal
stopping rule exists.

According to literature [25], when the mobile terminal
obtains the optimal expected reward V∗ � supN∈N∗E[YN],
the stop detection number N is the solution of the optimal

stopping rule question formula (18). -erefore, the optimal
number of stop detection N∗ is

N∗ � min N≥ 1: YN ≥V∗{ }. (22)

where the optimal expected reward V∗ satisfies the optimal
formula as follows:

V∗ � E max XN, V
∗( )[ ] − Ed. (23)

Formula (23) compares the detected optimized valueXN

with the expected reward V∗ and takes the maximum value
to obtain the new most desirable reward. In addition, the
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optimized value XN has the same function distribution over
all stop detection times N. -en, formula (23) is changed to

Ed � E max XN, 0( )[ ]. (24)

In SCN, each task can be cross-processed by selecting the
cell with the optimal cross-platform processing energy
consumption, which can minimize the task migration’s
energy consumption and improve migration
performance. □
4.3. Algorithm Description. In SCN under the MEC envi-
ronment, UEi in celln will migrate taskCi(Ai, Bi, Di) to MEC
platform in the same cell for processing. When the MEC
platform receives the task of migrating, it starts to detect the
status information Sci(Rsi, Pmec,i) of the MEC platform,
where Rsi is the resource information cached in the cell, and
Pmec,i is the executive power of the MEC platform in the cell.

If the platform cache resource matches the resource
required for task processing, the MEC platform obtains the
expected energy consumption of the task that was executed
on the current platform. If the MEC platform finds that the
task’s energy consumption is less than or equal to the op-
timal energy consumption expectation and the state is idle,
the MEC platform stops detection and selects this platform
for task processing. If the platform cache resource does not
match the resource required for task processing, the MEC
platform will randomly detect the MEC platform’s status
information in the next cell. If the MEC platform detects the
last cell and still does not find the cell whose expected energy
consumption is less than or equal to the optimal energy
consumption expectation, then the task will be cross-plat-
form processed by those cells which have cached the re-
sources needed for the task execution and have the lowest
expected energy consumption. If the cell detected before
does not cache the resources required for task execution, the
local MEC platform downloads the resources needed for task
execution from the SBS and then processes the task.

In the above Algorithm 1, the bandwidth is w, the
transmission rate is R, the cross-platform cost is α, the noise
power is σ, the distance and power relation factor is λ, the
radius of the cell is l, the layer number of SCN is k, the
detection energy consumption is Ed, the number of resource
type is Rsj, the number of device request resource type is Bi,
the status of each platform is statusj, the number of suc-
cessful platformmatches is op, the flag of resource download
is β, the minimum energy consumption is EUEi,min, and the
detection platform ordinal is j ∈ [1, N]. If the last cell is
detected, that is, the detection of N times and the task is not
processed, it is the algorithm’s worst case. -erefore, the
time complexity of this strategy is O (N).

5. Simulation Results and Analysis

-is paper proposes the optimal stopping migration strategy
(OSTMS) with energy consumption optimization to mini-
mize migration energy consumption. To test this strategy’s
performance in task migration, this experiment uses a laptop
with CPU i5 – 8300H, 2.30GHZ, a memory of 8G, and the
operating system of Windows10. We use the MatlabR2016a

simulation tool to simulate the proposed migration strategy
and compares it with other task migration strategies. -is
section will compare each strategy from three aspects: av-
erage migration energy consumption, average data execu-
tion energy efficiency, and average migration distance
energy efficiency. -e following is a brief description of the
two migration strategies used for comparison.

(1) FMTMS (first match of task migration strategy): the
mobile device selects the migratable MEC platform
that first matches a resource required by the device
and is idle for task migration.

(2) FDTMS (first detection of task migration strategy):
the mobile device selects the local MEC platform that
was first detected for the task migration.

In the simulation experiment carried out in this section,
the three optimization strategies’ migration performance is
tested respectively by taking the task upload rate, detection
energy consumption, cell radius, number of resource type,
and SCN layer number as variables.

-e parameters in the simulation experiment are shown
in Table 2.

5.1. Average Migration Energy Consumption. -e average
migration energy consumption refers to the average value of
the total energy consumption of multiple groups of devices
during the task migration process. -e average migration
energy consumption can objectively reflect the devices’ total
energy consumption in the three strategies. -e smaller the
average migration energy consumption is, the more effective
it is to reduce computing tasks’ burden and further optimize
migration tasks’ performance.

Figure 4 shows the changes in the average migration
energy consumption of different variables under the three
strategies. We can see from Figure 4. -e OSTMS strategy
consistently has the optimal migration energy consumption.
With the increase of the abscissa parameters, the three
strategies also change accordingly. In Figure 4(a), as the
transmission rate increases, the gap between OSTMS and
FDTMS becomes larger, while the gap between OSTMS and
FMTMS becomes smaller. FDTMS is due to its large
download power resulting in a large energy consumption
gap. FMTMS is because the increase of transmission rate will
reduce the gap between data transmission energy con-
sumption of different platforms. In Figures 4(b) and 4(e), the
energy consumption of OSTMS is optimized by 10%∼ 60%,
while the energy consumption of FDTMS is mostly at a high
level. -e reason for FDTMS is that it does not consider
whether the local MEC platform holds the required re-
sources of the device. If not, the resources need to be
downloaded from the SBS, significantly increasing the de-
vice’s energy consumption. FMTMS does not take into
account the differences in execution power and speed be-
tween MEC platforms. -ere is no need to download re-
sources from the SBS when the platform successfully
matched that first match, but its high execution power will
also increase energy consumption. OSTMS uses the
threshold value obtained by the optimal stopping theory to
compare with users’ energy consumption. -en it selects the

Mobile Information Systems 9



MEC platform with the optimal energy consumption for
processing, which has a good performance optimization
performance. In Figure 4(c), the energy consumption of
FDTMS increases sharply with the increase of cell radius.
-is is because the distance between the user and the base
station increases resulting in greater download power. In
Figure 4(d), there are few types of resources in the early
stage, so there is a high probability that the local platform
can successfully match the resources, so the difference is not
big. In the midterm, with the increase of types, the prob-
ability of successful matching for each platform is moderate,
so OSTMS has higher performance optimization. -ere are
too many types of resources in the later stage, so there is a
high probability that unsuccessful platform resource
matching will cause resources to be downloaded, so the gap
between the three strategies is reduced and the energy
consumption is high.

5.2. Average Data Execution Energy Efficiency. In the sim-
ulation experiment of multigroup task migration, because of
the difference in resource types of each device request, the
data volume of device requests is also caused. -erefore, the
index of average data execution energy efficiency is intro-
duced for comparison. Its value is the average value of the
ratio of the data volume (bit) of multigroup device request
resources to the total energy consumption (J) of task mi-
gration. Its unit is bit/J, which is the amount of data that the
device can migrate per unit of energy consumption. -e
average data execution energy efficiency better reflects the
energy utilization of the devices, and the higher the value, the
better the optimization performance of the strategy.

Figure 5 shows the changes in average data execution
efficiency under three strategies with different variables. We
can see from Figure 5. -e OSTMS strategy consistently has
the highest average data execution energy efficiency. In
Figure 5(a), as the transmission rate continues to increase,
the average data execution energy efficiency of OSTMS
increases sharply. -is is because the larger the transmission
rate, the lower the data transmission energy consumption
and the greater the data execution energy efficiency under
the same amount of data. FDTMS is due to the large
download power and large total energy consumption,
resulting in its average data execution energy efficiency
basically unchanged. In Figures 5(b) and 5(c), the average
data execution energy efficiency of OSTMS is stable by about
50% higher than that of FMTMS.-e results showed that the
data execution energy efficiency of FMTMS and FDTMSwas
low. Because the two strategies do not consider device energy
consumption, they only focus on completing the device’s
task. Inestimable consequences may occur if the energy load
of the device is excessive. OSTMS has a large amount of data
migration per unit of energy consumption and a high energy

Input: w, R, α, σ, λ, l, k, Ed,Rsj,Bi

Output: EUEi,min

Begin
op� 0

Calculate V∗ by formula (23)
for j � 1, 2, 3 . . . ,N

If Rsj � Bi and statusj � 0
op� op + 1
β � 0
Calculate EUEi by formula (15)
If EUEi ≤V∗

EUEi,min � EUEi

Break
else

EUEi,min � min(EUEi)

else
If j�N and op� 0
β � 1

Calculate EUEi,min by formula (15)
end for

End

ALGORITHM 1: An energy consumption optimization strategy for task migration with resource cache

Table 2: Simulation experiment parameter value

Parameters Describe Values

W Bandwidth (MHZ) 20
R Transmission rate (m/s) 2
α Cross-platform cost 0.1
σ -e noise power 2
λ Distance and power relation factor 2

di
Distance between MEC and mobile

device (m)
50～ 200

l Cell radius (m) 200
Rsi Number of resource type 6
Bi Number of device request resource type 4
k -e layer number of SCN 6
Ed Detect energy consumption (J) 1

Pmec MEC platform power (W)
100～
1000
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utilization rate. In Figure 5(d), each platform has a moderate
probability of matching success in the medium term, and
OSTMS performs less energy consuming so its average data
execution efficiency is higher than other strategies. In the
later stage, the matching rate of platform resources is low, so
the three strategies are similar. In Figure 5(e), as the number
of layers in the small cellular network increases, the number
of platforms also increases, and the energy consumption of
the OSTMS optional platform will be lower, so the gap with
other strategies will be greater.

5.3. Average Distance Execution Energy Efficiency. In SCN,
the distance between the mobile device and the MEC
platform performing the task is different, and the cross-

region processing also has to pay a specific cost. -erefore,
the use of average distance performance efficiency indicates
the degree of performance optimization. Its value is the
average of the ratio of the distance between multiple groups
of devices and the MEC platform performing the task to the
total energy consumption of the taskmigration. Its unit is m/
J. It means the distance that the device can migrate per unit
of energy consumption. -e higher the value is, the better
the optimization performance of the strategy is.

Figure 6 shows the variation of average distance exe-
cution energy efficiency under three strategies with different
variables. It can be observed from Figure 6 that the OSTMS
strategy consistently has the highest average distance exe-
cution energy efficiency. It can be seen from Figures 6(a) and
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Figure 5: Average data execution energy efficiency. (a) R� (2−10)∗M/S, (b) Ed� (1− 20) J, (c) cell radius� (210− 400)m, (d) resources
categories, (e) average migration energy consumption.
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6(e) that with the increase of the device task transmission
rate and the number of SCN layers, the average distance
execution energy efficiency of OSTMS and FMTMS also
increases correspondingly, and the optimization degree of
OSTMS is higher than FMTMS. However, the FDTMS
strategy is always at a low level with little fluctuation. Al-
though the FDTMS is executed on a local platform and the
distance between it and the execution platform is minimal, it
is always low due to high energy consumption. FMTMS does
not take into account the advantages and disadvantages of
the platform. In contrast, OSTMS has higher average dis-
tance execution energy efficiency. In Figure 6(b), with the
increase of detection energy consumption, FDTMS has little
fluctuation because it only needs to detect once. While
OSTMS has a performance optimization of about 40%
compared with FMTMS because it can select the platform
with the lowest processing energy consumption through
continuous detection. In Figure 6(c), as the cell radius in-
creases, the distance between the user and the execution
platform will also increase. -e average distance execution
energy efficiency of OSTMS and FMTMS also has an upward
trend, while FDTMS is relatively stable due to its excessive
energy consumption. In Figure 6(d), there are few resource
types in the early stage, so the local platform can match
resources successfully with high probability, and there is
little difference in performance of the three strategies. -e
performance of OSTMS is much better than that of FMTMS
when the resource type is 9 in the middle stage. In the later
stage, there are more types of resources, and the success rate
of platform resource matching is small, and the performance
gap of the three strategies is reduced.

In conclusion, the optimal stopping task migration
strategy proposed in this paper can effectively reduce the
energy consumption of task migration and optimize task
migration performance while ensuring the high perfor-
mance and high-quality execution of the task.

6. Conclusions and Future Works

-is paper studies the energy consumption of resource
caching and task migration in small cellular networks. A task
migration energy consumption optimization strategy with
resource caching is proposed by combining the optimal
stopping theory with the migration decision. Firstly, the
process of device finding the MEC platform with the re-
quired task processing resources is formulated as the optimal
stopping problem. Secondly, we prove an optimal stopping
rule’s existence, obtain the optimal processing energy
consumption threshold, and compare it with the device
energy consumption. Finally, the platform with the best
energy consumption is selected to process the task. -e
simulation experiment proves that OSTMS has lower av-
erage migration energy consumption, higher average data
execution energy efficiency, and average distance execution
energy efficiency, which realizes the optimization of task
migration performance.

In future work, we will consider the following research
issues: (1) optimization of time delay during task migration;
(2) channel interference during task migration; (3) how to

optimize the task migration performance in the scenario of
multiple cells and multiple devices; (4) security issues in the
process of task migration.
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