
A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 633–648, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Resource Calculations with Constraints, and Placement
of Tenants and Instances for Multi-tenant SaaS

Applications

Thomas Kwok and Ajay Mohindra

IBM Research Division
Thomas J. Watson Research Center

19 Skyline Drive, Hawthorne, NY 10532
{kwok,ajaym}@us.ibm.com

Abstract. Cost of customization, deployment and operation of a software appli-
cation supporting multiple tenants can be lowered through multi-tenancy in a
new application business model called Software as a Service (SaaS). However,
there are a number of technical challenges that need to be tackled before these
benefits can be realized. These challenges include calculations of resource re-
quirements for multi-tenants with applied constraints in a shared application in-
stance, the optimal placement of tenants and instances with maximum cost
savings but without violating any requirements of service level agreements for
all tenants in a set of servers. Moreover, previously reported capacity planning
and resource allocation methods and tools are not tenant aware. This paper will
address and provide novel solutions to these challenges. We also describe the
first of a kind, a multi-tenant placement tool for application deployment in a
distributed computing environment.

Keywords: capacity planning, resource allocation and management, tenant
placement, constraint, multi-tenant, software as a service, SaaS.

1 Introduction

Recently, a new business model of software applications called Software as a Service
(SaaS), which offers benefits of lower cost of customization, deployment and operation
over the Internet has evolved [1-3]. In general, SaaS is associated with business software
applications that are Web-based, deployed and operated as a hosted service accessed by
users over the Internet. Multi-tenants in addition to multi-users support, installation of
application on a managed Internet data center with remote management capability are a
few characteristics of a multi-tenant SaaS application [4-8]. In the SaaS business model,
the ownership of technology infrastructure and management responsibility of the applica-
tion has moved to application service providers (ASPs) from tenants. The multi-tenant
SaaS model benefits ASPs by reducing hosting costs as the same application is shared
among multi-tenants. It also benefits tenants through eliminating their costs of owning
and managing the infrastructure and applications. Tenants can gain immediate access to
the latest information technology (IT) innovations and improvements provided by the

634 T. Kwok and A. Mohindra

Fig. 1. Four levels of the multi-tenant support model in an application layer

ASP without spending their own IT budgets. In the SaaS business model, usages of the
application can either be on a per user basis or pay as you go basis.

In a multi-tenant SaaS model, the multi-tenant support can be applied to four dif-
ferent software layers: application, middleware, virtual machine (VM) and operating
system [4]. For the application layer, there are four levels of the multi-tenant support
model as shown in Figure 1 [5]. Level 1 has a separate instance for each tenant’s
customized code base and it is similar to the ASP model. Level 2 also has a separate
instance for each tenant but all instances come from a single code base with configu-
ration options. With a single application code base to support several tenants, the total
deployment time is shorter. Level 3 has a single instance for all tenants with configur-
able metadata for each tenant. In this level, the updating of application features and
functions are simpler and centralized because there is only one instance of a single
source code base. Level 4 has a load-balanced farm of identical instances with con-
figurable metadata for its tenants. There are many benefits of multi-tenant application
deployment in Levels 3 and 4. The main benefits are the reduction of IT expenses,
and cost savings in software license fees and hardware expenses by reducing the
number of development, staging, training, disaster recovery servers. Other benefits
are in deployment, provision, on-board and maintenance by reducing IT processes,
such as server and application setup and configuration, and reducing support staffs in
server and application tuning, backup, patch and upgrade. Costs in cooling and
HVAC, power and lighting are reduced due to fewer servers [9].

However, several initial setup and configuration steps have to be carried out in or-
der for the application to support multi-tenants in a SaaS operational structure [8].
There are also a number of challenges that require solutions before full benefits of
multi-tenant application deployment can be realized. First, it is difficult to calculate
resource requirements for each additional new tenant with a number of new users, and
at the same time meeting constraints for all tenants in a shared application instance.
Second, limiting factors or bottlenecks on computing resources required for multiple
instances, each with multi-tenants having different constraints, have to be determined.

 Resource Calculations with Constraints, and Placement of Tenants 635

Third, an administrator needs the advice on the placement of a group of multi-tenant
applications on a set of servers without violating any service level agreement (SLA)
requirements of all tenants. Fourth, the placement of tenants and instances in a dis-
tributed computing environment has to be automated. Fifth, cost savings among dif-
ferent multi-tenant placements have to be compared and optimized even though there
are many variables involved. Other challenges are multi-tenant data models, tenant
isolation and security related issues. This paper will address and provide novel solu-
tions to the first four challenges. We also describe the first of a kind, a placement tool
for multi-tenant application deployment in the third level of the multi-tenant support
model.

2 Prior Related Work

Capacity planning and resource allocations to satisfy application requirements, and
resource constrained project scheduling are a generalization of the static job shop
problem, and have been reviewed thoroughly by researchers [10-12]. Most of these
studies are based on traditional exact methods, priority rule schedule [13] and meta-
heuristic approach [14]. A priority rule schedule consists of two parts, a priority rule
and a scheduling scheme. In the meta-heuristic approach, an activity list is usually
first created. Then, a neighboring schedule is identified by changing the order of tasks
in the list. A quality of service (QoS) based resource allocation model has also been
used to make sure that different constraints of concurrently running applications are
satisfied [15]. However, all these research reports are not tenant aware, and do not
take into account characteristics of multi-tenant application with a single instance
supporting multi-tenants. Calculations of computing resources, such as central proc-
essing units (CPU) and memory, required for an instance supporting multi-users are
rather straight forward and simple [10]. Calculations of resources required for an
instance supporting multi-tenants with multi-users in each tenant are new and compli-
cated. Up to now, there is no reported multi-tenant resource data model that can be
used to calculate resource requirements for multi-tenants in a shared instance. Again,
calculations of the maximum number of users in an instance on any server of specific
resources without violating any SLA requirements for a single tenant has been out-
lined [11]. Calculations of maximum numbers of users and tenants on a shared in-
stance in any server of specific resources satisfying all constraints listed on SLAs of
all tenants are new and complicated.

A hierarchical and extensible resource management system has been built to allow
the execution of multiple scheduling paradigms concurrently [16]. A number of
commercial software tools for capacity planning, resource allocation and performance
analysis for multiple applications on a set of servers are also available [16,17]. How-
ever, these commercial tools do not apply to the placement of tenants and instances
for multi-tenant SaaS applications. They primarily focus on the placement of applica-
tions to available servers based on physical resources. Since they do not know how
much resource requirements for a shared instance with additional tenants and con-
straints, a new application instance is always created and deployed for each new ten-
ant. Furthermore, most manual resource capacity estimates on servers that work
satisfactorily are those that are oversized and thus more expensive [9].

636 T. Kwok and A. Mohindra

3 Resource Calculations for Multi-users and Multi-tenants

An application can demand a number of computing resources, such as CPU, memory,
storage disk and network bandwidth, from physical hardware of the host server in a
distributed computing environment. There are several different characteristics of these
computing resources. A hard disk is considered the primary permanent storage device.
An application instance requires an initial amount of storage, such as initialization of
tables. These tables are shared among tenants and users. Additional amount of storage
is required to store data for each additional tenant or user, such as adding additional
tables and/or rows in different tables. Thus, storage usage can be assumed to be load
dependent and proportional to numbers of tenants or users. Similarly, significant
amount of memory in dynamic random access memory (DRAM) is consumed by an
instance even if there is no active tenant or user. There are paged and non-paged
memory. Non-paged memory consists of a range of virtual addresses guaranteed to be
in DRAM at all times, and paged memory can be swapped to slower system re-
sources, such as hard disk. As a result, it is very difficult to accurately project mem-
ory usage based on the number of tenants and users in a shared instance. Above all,
many applications cannot run when the system is out of memory. Thus, only the
maximum memory usage can be assumed slightly dependent on the number of tenants
and users. Hence, an estimated upper limit on memory usage is often used. In some
advance VMs, each instance may be able to use multiple CPUs if the host hardware
physically contains multiple CPUs. Unlike storage and memory, CPU usage with
same clock speed and same amount of Levels 1, 2 and 3 static RAM (SRAM) caches
can be assumed to be linearly proportional to the number of active tenants and users
because the processing speed of a CPU depends on both clock speed and cache.

For practical reasons, CPU and storage are used to illustrate calculations of re-
source requirements in this paper. For an instance supporting multi-users, calculations
are rather straight forward and simple [10]. Let r be the number of users, and C(r) and
M(r) be the CPU and storage required by an instance with multi-users, respectively.
Then,

C(r) = fCU(r) .
M(r) = M0 + fMU(r) .

(1)

where fCU(r) and fMU(r) are functions of r, assuming that the CPU instance is idle if
there is no active user. M0 is a constant representing overhead storage used by the
instance without any users. However, calculations of resources required for a shared
instance supporting multi-tenants and multi-users are new and complicated. Let t be
the number of tenants in a shared instance and n be the total number of users. Then,

C(n,t) = fCU(n) + fCT(t) .
M(n,t) = M0 + fMU(n) + fMT(t) .

(2)

where fCT(t) and fMT(t) are functions of t. These two functions are additional CPU
and storage required to isolated tenants from each other in a shared instance. For a
special case where there are two tenants t = 2 and the number of users in the two
tenants are both equal to r such that n = 2r. Let us compare resources required in this

 Resource Calculations with Constraints, and Placement of Tenants 637

special case deployed in two different computing environments. First, in two applica-
tion instances, each with a tenant and r users, and from Equations (1):

2C(r,1) = 2C(r) = 2fCU(r) .
2M(r,1) = 2M(r) = 2M0 + 2fMU(r) .

(3)

Second, in one application instance with two tenants and r users in each tenant, and
from Equations (2):

C(2r,2) = fCU(2r) + fCT(2) .
M(2r,2) = M0 + fMU(2r) + fMT(2) .

(4)

Assuming fCU(r) and fMU(r) are linearly proportional to r, taking the first order ap-
proximation:

fCU(2r) = 2fCU(r) .
fMU(2r) = 2fMU(r) .

(5)

Since a certain amount of storage is shared by both tenants, and additional amount of
storage required to isolate tenants from each other is relative small in a shared in-
stance, then:

fMT(2) << M0 . (6)

According to Equations (5) and (6):

fCU(2r) + fCT(2) > 2fCU(r) .
M0 + fMU(2r) + fMT(2) << 2M0 + 2fMU(r) .

(7)

Thus from Equations (3), (4) and (7):

C(2r,1) > 2C(r,1) .
M(2r,2) << 2M(r,1) . (8)

As a result, there are relatively large savings in those resources shared by multi-
tenants, such as storage and memory, but at the same time a little bit more usage of
resources, such as CPU and network bandwidth, for deploying multi-tenants in a
shared instance. Accordingly, many tenants should be deployed in a shared instance
instead of only one tenant per instance in a server for a multi-tenant SaaS application.

4 Resource Data Models for Multi-tenants in a Shared Instance

Up to now, there is no reported computing resource data model for multi-tenants in a
shared application instance. Functions fCU(n), fMU(n), fCT(t) and fMT(t) can be in the
form of curves or tables of measured data. Equations based partially on theory and
partially on these empirical data can be obtained by fitting these curves or tables with
interpolation or extrapolation algorithms [18]. These semi-empirical equations can be
linear, polynomial, power, exponential, logarithmic or any other types depending on
fractions of different activities, such as Web, computation, transaction and database,
involved in the application. Hypothetical data of storage requirements as a function of

638 T. Kwok and A. Mohindra

Fig. 2. Hypothetical data of storage requirements as a function of active and passive users, and
tenants

users and tenants in a shared instance are shown in Figure 2. Assuming that storage
usage by each user is independent from other users, and from the total number of
users, semi-empirical parameters based on the first order approximation are obtained
by fitting solid curves in Figure 2. However, storage usage by each tenant may in-
crease with the total number of tenants in the shared instance because additional stor-
age is required to isolate each tenant from the increasing number of other tenants.
Thus, semi-empirical parameters based on the second order approximation are ob-
tained by fitting the dotted curve in Figure 2.

As shown in Figure 2, passive users also demand storage usage but their usage is
much less than that of active users. This is also true for memory usage. Let x be the
concurrent user or peak load rate of an application instance and y be the utilization
rate of a server. Lowering the utilization rate below 1.0 will provide higher service
reliability and increase uptime, which will eliminate or reduce fines caused by missed
SLA requirements. Let u and p be total numbers of active and passive users in a
shared instance, respectively. Thus,

u = n * x .
p = n * (1.0 – x) . (9)

According to Equations (2) and (9), the total storage required by t tenants with total
number of users n in a shared instance is given by

M(n,t) = (fMU(u) + fMU(p) + M0 + fMT(t)) / y . (10)

where fMU(u) and fMU(p) are obtained from two solid curves while M0 and fMT(t) are
obtained from the dotted curve. As shown in Figure 2, M0 is the intercept on the Y-
axis when t = 0 or 1 as an application instance either requires no tenant or a minimum
of one tenant for initialization. Similarly, the total CPU required by t tenants with
total number of users n in a shared instance is given by

C(n,t) = (fCU(u) + fCT(t)) / y . (11)

 Resource Calculations with Constraints, and Placement of Tenants 639

assuming that the CPU instance is idle if there is no active user. Other computing
resources, such as memory and network bandwidth, required by multi-tenants in a
shared instance can be calculated in similar ways using either Equations (10) or (11).

5 Constraints on a Multi-tenant Application Instance

From previous two sections, calculated computing resources, such as CPU and stor-
age, based on the number of users and tenants in a shared instance are the basic or
minimum requirements of available resources in any server on which the shared in-
stance would run. However, there are also a number of constraints on limiting the
maximum number of users and tenants on this shared instance running in any server
of specific resource. These constraints can be response time, availability, user arrival
and page view rates, business transaction rate, request and transfer rates for database,
input and output operational rates on file system, as well as disaster recovery, cost and
reporting metrics, in SLA specifications. Operating the shared instance within these
constraints will reduce or eliminate fines caused by missed SLA requirements.

Fig. 3. Hypothetical data of response time as functions of user and tenant numbers

Again, calculations of the maximum number of users on an instance in any server
of specific resources without violating any SLA requirements have been outlined
[11]. However, calculations of maximum numbers of users and tenants on a shared
instance running in any server of specific resources satisfying all constraints listed on
SLA specifications of all tenants are new and complicated. For practical reasons,
response time is used to illustrate calculations of resource requirements with applied
constraints in this paper. Hypothetical data of response time limiting the maximum
number of users and tenants on a shared instance in any server of specific resources is
shown in Figure 3. Semi-empirical parameters based on the exponential approxima-
tion are obtained by fitting these two curves. Let the constraint on response time listed
on SLA specifications be 500 ms, then the maximum number of users allowed in an
instance with only 1 tenant is around 92x103 while that in a shared instance with 50
tenants is around 75x103. The maximum number of users on a shared instance with t
tenants can be found by interpolation or extrapolation of these two curves [18]. The

640 T. Kwok and A. Mohindra

maximum number of users and tenants allowed in a shared instance running on any
server of specific resources for other constraints listed on SLA specifications of all
tenants can be carried out in a similar way.

The algorithm for multi-tenant resource calculations with applied constraints is il-
lustrated with block diagrams in Figure 4. There are three main parts of this algo-
rithm. Let J be the total number of resource types and its index j is from 1 to J. For
practical reasons, only two resource types (J=2), CPU C(j=1) and storage M(j=2), are
used to demonstrate multi-tenant resource calculations in this paper. Other resource
parameters, such as network bandwidth and memory, can be added into these calcula-
tions in similar ways. Let S be the total number of available servers and its index s is
from 1 to S. In the first part, the multi-tenant active placement sensor will provide
information on current resource usages of tenants Ti with users Ni in each i of shared
instances I of applications A, as well as residual resources in available servers S. This
first part is to calculate resource demands due to new tenants ΔTi with new users ΔNi

on an active instance i of an application a in a specific server s. Let C0i(N+ΔN,T+ΔT)
and M0i(N+ΔN,T+ΔT) represent two sets of resource demand vectors for minimum
CPU and storage requirements due to additional tenants ΔT and additional users ΔN
on an instance i of an application a in a server s. According to Equations (2),

Fig. 4. An algorithm for multi-tenancy resource calculations with applied constraints

C0i(N+ΔN,T+ΔT) = C0i(N+ΔN) + C0i(T+ΔT);
M0i(N+ΔN,T+ΔT) = M0i(N+ΔN) + M0 + M0i(T+ΔT); i ∈ I .

(12)

The second part is to calculate resource demand vectors due to each of tenants T+ΔT
with users N+ΔN in an active instance i with each k of a set of applied constraints K,

 Resource Calculations with Constraints, and Placement of Tenants 641

such as response time and transaction rate. Then, the maximum resource demand
vectors are selected from k = 1 to K and t = 1 to T + ΔT:

Cmax,i(N+ΔN,T+ΔT) = Max{C0i(N+ΔN,T+ΔT),Cki(t)}; ∀ k ∈ K .
 Mmax,i(N+ΔN,T+ΔT) = Max{M0i(N+ΔN,T+ΔT),Mki(t)}; ∀ t ∈ T+ΔT .

(13)

where Cki(t) and Mki(t) are resource demand vectors of CPU and storage due to con-
straint k on tenant t of instance i. The third part is to re-calculate a set of resource
demand vectors for each i of shared instances I with tenants T+ΔT and users N+ΔN.
Then, the resource demand for a server s is calculated by sum over i = 1 to I and a =
1 to A on each s of available servers S. The residual resource of a server s is given by
Equations (14):

Cresidual(s) = Cinitial(s) - ∑ia Cmax,i(N+ΔN,T+ΔT); s ∈ S .
Mresidual(s) = Minitial(s) - ∑ia Mmax,i(N+ΔN,T+ΔT) ; ∀ i ∈ I, ∀ a ∈ A .

(14)

where Cinitial(s) and Minitial(s) are the initial resource of CPU and storage in a server
s, respectively. Cresidual(s) and Mresidual(s) are the residual resource in CPU and stor-

age in a server s, respectively if additional tenants ΔTi and users ΔNi are deployed in
its shared instance i of an application a. The initial source must meet or exceed the
total resource demand of a server s for each j of all resource types J. The effective
residual resource score Eresidual(s) for all resource types J in a specific server s can
then be calculated using several different methods. In our multi-tenant resource
placement tool, a total score over all resource types J with their weighting factors wj
between 0.0 and 1.0 is used. From equations (14):

Eresidual(s) = wj=1 * Cresidual(s) + wj=2 * Mresidual(s) + ... ; s ∈ S .
∑j wj = 1.0; ∀ j ∈ J .

(15)

Priority rules can be used to set weighting factors wj of resource type j in the order of
its importance and contributions to the effective residual resource score in the list of
resource types J. Finally, specific server s* with minimum effective residual resource

score is selected for deployment of additional tenants ΔTi and users ΔNi in its shared
instance i of an application a.

6 The Multi-tenant Placement Model

The placement of multiple applications in a set of available servers with optimization
is illustrated in Case 1 of Figure 5. There are six available servers, namely S1, S2, S3,
S4, S5 and S6 with different initial resources and five applications, namely A1, A2,
A3, A4 and A5. Four instances of the same application A1, namely I1, I2, I3 and I4,
have been deployed on S1, S2 and S4. Instances of applications A2, A3, A4 and A5
have also been deployed on S2, S3 and S5. The principle rule of optimization in the
placement is to deploy a new instance on the server with the smallest residual re-
source left after meeting the resource requirement of this new instance. As a result,
larger chunks of residual resource will be retained in other servers for later use by an

642 T. Kwok and A. Mohindra

Fig. 5. Comparison of our new multi-tenant placement model with other previously reported
placement models for multiple applications

application instance with a higher resource demand. First, let us assume that these
application instances in Case 1 only support multi-users but not multi-tenants. Thus, a
new instance I5 of A1 has to be created and deployed for a new tenant T5 even
though there are existing instances I1, I2, I3 and I4 of the same application A1 run-
ning in S1, S2 and S4. Obviously, servers that have large enough residual resource to
meet the resource requirement of I5 are S3, S5 and S6. With optimization, the tradi-
tional placement methods [12-14] or commercial products [16,17] will deploy I5 on
S5 to leave larger chunks of residual resource on S3 and S6.

Now, let us assume that all these applications also support multi-tenants in addition
to multi-users. Once again, traditional placement methods [12-14] or commercial
products [16,17] with optimization will still deploy I5 on S5. However, the placement
result using our new multi-tenant placement model is very different. As illustrated in
Case 2, we may not need to create a new instance I5 of A1 for a new tenant T5 be-
cause there are existing instances I1, I2, I3 and I4 of the same application A1 running
on S1, S2 and S4. First, we need to test whether the residual resource in one of servers
S1, S2 and S4 would be large enough to meet the expanded resource requirement of
I1, I2, I3 or I4 with an additional new tenant T5. As shown in Case 2, the expanded
resource requirement of I1 with two tenants T1 and T5 will be within the resource
limit on S1 while that of I2 with two tenants T2 and T5 will exceed the resource limit
on S2. The expanded resource requirement of either I3 or I4 with two tenants T3 and
T5 or T4 and T5 will also exceed the resource limit on S4. Obviously, our multi-
tenant placement model with optimization will deploy the new tenant T5 into the
instance I1 as the second tenant without creating another application instance I5. Case
3 illustrates the placement of another new tenant T6 for an application A1. Once
again, the expanded resource requirement of I1 with three tenants T1, T5 and T6 will
exceed the resource limit on S1 while that of I2 with two tenants T2 and T6 will be

 Resource Calculations with Constraints, and Placement of Tenants 643

within the resource limit on S2 this time because the resource requirement for T6 is
smaller than that of T5. The expanded resource requirement of either I3 or I4 with
two tenants T3 and T6 or T4 and T6 will also exceed the resource limit on S4. Instead
of creating a new instance I6, this new tenant T6 for an application A1 will be placed
on an existing instance I2 as the second tenant.

7 The Framework and Algorithm of a Multi-tenant Placement
Tool

In an Internet data center, multiple SaaS offerings of application instances are active
on shared physical resources, such as CPU and storage, of a set of computing servers
in a distributed computing environment. When new tenants subscribe to a new SaaS
offering, these new tenants need to be assigned to new or specific active instances
under constraints due to SLA specifications of all tenants. Any server devoted to a
new offering must have the required capacity of computing resource to host a new
instance or an active instance with additional tenants and users without compromising
SLA requirements of all tenants. Moreover, security restrictions on tenants in a shared
instance cannot be violated. However, traditional application placement tools are not
tenant aware [16,17]. Their approaches primarily focus on static or dynamic place-
ment of applications to available servers based on their physical resources with or
without load balance or rebalance. In these placement tools, a new application in-
stance is always created and deployed for a new tenant. They cannot assign a new
tenant into an active instance because they do not know how much extra resource
requirements of an active instance with additional tenants and users.

An architectural framework of our multi-tenant placement tool is shown as block
diagrams in Figure 6. This framework provides capabilities of multi-tenant resource
calculations with applied constraints and the placement of tenants and instances for

Fig. 6. An architecture framework of a multi-tenancy placement tool

644 T. Kwok and A. Mohindra

multi-tenant application deployment. It consists of one output and three input mod-
ules, six essential functional modules and a multi-tenant database. The flow diagrams
in Figure 6 also show the logical flows of information among modules and database.
The “New Multi-tenant Application” module provides graphical user interface (GUI)
and scripts for an administrator to input specifications and multi-tenant data models of
a new software application or to modify existing ones. The “New Tenants and Users”
module provides GUI for an administrator to enter numbers of new tenants and users
in each tenant, and select the application required for deployment. The administrator
also enters the SLA specification for each new tenant. The “Multi-tenant Application
and SLA specification, & Data Model Container” module holds, stores, retrieves and
deliveries these multi-tenant data from and to other modules and the multi-tenant
database. The “Run Time Data Monitor” module constantly monitors and collects
resource usage profile of each active instance in each server. It also provides informa-
tion on performance parameters and utilization rate of each server. The “Multi-tenant
Active Placement Sensor” calculates resource usages of each active instance and
residual resource of each server. The “Placement Matrix Generator” constructs and
stores resource usage and residual matrices. The dimension of these matrices is two
with J x I, where J is the number of resource types and I is the number of instances in
a server. The initial resource matrix Oinitial(j,s) and residual resource matrix Ore-

sidual(j,s) of resource type j and server s are then constructed based on information
from the active placement sensor. They are used in Equations 15 of Section 5. The
“SLA Constraint Generator” module constructs and stores constraints due to SLA
requirements for new tenants, and retrieves constraints for active tenants on a shared
instance in a specific server s. The “Resource Calculations with Constraints” module

Fig. 7. A multi-tenancy placement algorithm

 Resource Calculations with Constraints, and Placement of Tenants 645

calculates required physical resources, such as CPU, memory, storage and network
bandwidth, with applied constraints for new and active tenants in a shared instance on
a specific server as described in Sections 3, 4 and 5. This is to make sure that SLA
requirements are meet for all tenants in a shared instance. Moreover, cross tenant
security restrictions are not violated, such as prohibition of tenant T1 and T2 deployed
in the same application instance I1 and/or on the same server S1.

The “Multi-tenant Placement Tool” module constructs a package for placements of
new tenants on specific instances and/or new instances on specific servers for multi-
tenant application deployment according to our proposed multi-tenant placement
model described in Section 6. The flow chart of a multi-tenant placement algorithm is
shown in Figure 7. First, resource usage of all instances I, initial and residual re-
sources of all available servers S are calculated based on information from the active
placement sensor. Second, the maximum resource demand for each shared instance i
with tenants T+ΔT and constraints K are calculated as described in Section 5. Third,
the total resource demand for each server s with its shared instance i of tenants T+ΔT
and its other instances I-1 are calculated. Fourth, a particular server s* with its par-
ticular instance i* of tenants T+ΔT is located because its residual resource is the
minimum among all servers s, and within its resource limit. Fifth, a new instance i* is
created for new tenants ΔT if a particular s* is not found. Sixth, a particular server s*
with the new instance i* is located because its residual resource is the minimum
among all servers s with the same new instance i*, and within its resource limit. Fi-
nally, a new instance i* is created in a new server s* for new tenants ΔT if a particular
s* is still not found.

8 Implementation and Industrial Experiences

Most features and functions of the multi-tenant placement tool described in this paper
have been implemented in Java. A generic sorting algorithm has been used to match
the demand list from high to low with the residual source list from low to high. The
residual source list is sorted once again after each match or placement. Optimizations
based on the placement of one, two or three tenants at a time have been investigated.
This multi-tenant placement tool is being integrated within the provisioning subsys-
tem of an IBM internal project. Since the tool is integrated in a fully automated end-
to-end provisioning, it saves time for administrators, increases their efficiency and
productivity in managing the placement of tenants and instances for multi-tenant
application deployment by simplifying and automating the placement processes. Its
performance with two applied constraints, CPU and storage, as a function of new
tenants or servers is shown in Figure 8. The number of new tenants equals the number
of servers while the number of active tenants equals to half the number of servers.
The CPU spent on the placement algorithm is found to depend on the number of new
and active tenants, and the number of servers. Our preliminary data based just on one
set of data has indicated that the CPU spent on the placement increases linearly with
the number of new tenants or servers up to 100 tenants or servers. Results from more
data sets will be collected in the future. Our preliminary results have confirmed the
stability and usefulness of this multi-tenant placement tool. This tool has shown to
minimize the number of servers deployed, resulting in maximum cost savings, in a

646 T. Kwok and A. Mohindra

Fig. 8. The performance of multi-tenant placement tool

distributed computing environment. It has also shown to meet constraints of all ten-
ants, and provide higher service reliability and increase uptime.

For our industrial experiences, we have found that it is very time consuming and
tedious to measure tenant or user specific resource data for a new multi-tenant appli-
cation. It will be useful if we can calculate new resource data based on available re-
source data of other active multi-tenant applications using their activity correlation
functions. We have also found that it is hard to accurate project memory requirement
for multiple tenants in a shared instance. As a result, an estimated upper limit on
memory requirement is often used. Our preliminary results have revealed that several
crucial constraints, such as response time and transaction rate, always play important
roles in determining multi-tenant resource requirements. They have also indicated
that limiting factors or bottlenecks in multi-tenant applications depend on its comput-
ing activities, such as Web, transaction, computing and database. Moreover, users of
this multi-tenant placement tool have request additional functions, such as adding an
additional placement rule to assign each server with a minimum load, merging several
instances of the same application in a server into one, and migrating tenants among
instances. They would also like to use this placement tool to tell whether a specific
application would benefit from the multi-tenant deployment.

9 Conclusion and Discussion

In this paper, we have outlined calculations of resource requirements for multiple
tenants in a shared application instance with applied constraints using our hypotheti-
cal multi-tenant resource data models. We have also described novel methods for the
optimal placement of tenants and instances based on our proposed multi-tenant
placement model without violating any SLA requirements of all tenants in a set of
servers. We have architected and implemented the first of a kind, a multi-tenant
placement tool for application deployment using a minimum number of servers, and
thus with maximum cost savings in a distributed computing environment. However,
other challenges, such as database security and data isolation, tenant view filter and
data encryption, remain un-tackled. In the future, these challenges should be
addressed with proved solutions.

 Resource Calculations with Constraints, and Placement of Tenants 647

Characteristics of multi-tenancy in four different software layers: application, mid-
dleware, VM and operating system, are important factors in studying and understand-
ing limiting factors or bottlenecks in multi-tenant SaaS applications. Based on our
intuitions, the resource sharing and cost savings are relatively high for multiple ten-
ants in a shared instance while the security isolation is high and performance impact
is low for multiple instances or VMs per server. In the future, this multi-tenant place-
ment tool can be used to verify these multi-tenant characteristics once multi-tenant
resource usage data on these four different layers have been measured.

Acknowledgments. The authors would like to thank A. Karve for his work on the
integration of this multi-tenant placement tool with other IBM internal projects. The
authors would also like to thank J. Batstone for her support.

References

1. Iod: Sotware as a Service, Director Publications Ltd., London (2002)
2. Iyar, S.: Why Buy the Cow, Santa Clara (2007)
3. Kobilsky, N.: SAP CRM on-demand, SAP Forum (2006)
4. Gianforte, G.: Multiple-Tenancy Hosted Applications: The Death and Rebirth of the Soft-

ware Industry. RightNow Technologies Inc. (2005), http://wwww.rightnow.com
5. Chong, F., Gianpaolo, C., Wolter, R.: Multi-Tenant Data Architecture, Microsoft Corpora-

tion (2006), http://www.msdn2.microsoft.com/
6. Fisher, S.: The Architecture of the Apex Platform, salesforce.com’s Platform for Building

On-Demand Applications. In: Proc. of the 29th IEEE Int’l Conference on Software Engi-
neering, p. 3. IEEE Press, New York (2007)

7. Guo, J.G., Sun, W., Huang, Y., Wang, Z.H., Gao, B.: A Framework for Native Multi-
Tenancy Application Development and Management. In: Proc. of the 9th IEEE Int’l Con-
ference on E-Commerce Technology, pp. 551–558. IEEE Press, New York (2007)

8. Kwok, T., Nguyen, T., Lam, L.: A Software as a Service with Multi-Tenancy Support for
an Electronic Contract Application. In: Proc. of IEEE Int’l Conference on Services Com-
puting, pp. 28–33. IEEE Press, New York (2008)

9. Mendoza, A.: Utility Computing Technologies, Standards, and Strategies. Artech House
Publishers, Norwood (2007)

10. Herroelen, W., Reyck, B.D., Demeulemeester, E.: Resource-Constrained Project Schedul-
ing: A Survey of Recent Developments. Computers and Operations Research 25(4), 279–
302 (1998)

11. Brucker, P., Drexel, A., Mohring, R., Neumann, K., Pesch, E.: Resource-Constrained Pro-
ject Scheduling: Notation, Classification, Models and Methods. European Journal of Op-
erational Research 112, 3–41 (1999)

12. Hartmann, S., Kolisch, R.: Experimental Evaluation of State-of-the-Art Heuristics for Re-
source-Constrained Project Scheduling Problem. European Journal of Operational Re-
search 127, 394–407 (2000)

13. Kolisch, R.: Efficient Priority Rules for the Resource-Constrained Project Scheduling
Problem. Journal of Operations Management 14, 179–192 (1996)

14. Bouleimen, K., Lecocq, H.: A New Efficient Simulated Annealing Algorithm for the Re-
source-Constrained Project Scheduling Problem and its Multiple Mode Version. European
Journal of Operational Research 149, 268–281 (2003)

648 T. Kwok and A. Mohindra

15. Rajkumar, R., Lee, C., Lehoczky, J., Siewiorek, D.: A Resource Allocation Model for QoS
Management. In: Proc. of the 18th IEEE Real-Time Systems Symposium, pp. 298–307.
IEEE Press, New York (1997)

16. Islam, N., Prodromidis, A., Squillante, M., Fong, L., Gopal, A.: Extensible Resource Man-
agement for Cluster Computing. In: Proc. of the 17th Int’l Conference on Distributed
Computing Systems, pp. 561–568. IEEE Press, New York (1997)

17. Bagchi, S., Hung, E., Iyengar, A., Vogl, N., Wadia, N.: Capacity Planning Tools for Web
and Grid Environments. In: Proc. of the 1st Int’l Conference on Performance Evaluation
Methodologies and Tools, pp. 25–34. ACM Press, New York (2006)

18. Bhatti, M.A.: Practical Optimization Methods. Springer, New York (2000)

	Resource Calculations with Constraints, and Placement of Tenants and Instances for Multi-tenant SaaS Applications
	Introduction
	Prior Related Work
	Resource Calculations for Multi-users and Multi-tenants
	Resource Data Models for Multi-tenants in a Shared Instance
	Constraints on a Multi-tenant Application Instance
	The Multi-tenant Placement Model
	The Framework and Algorithm of a Multi-tenant Placement Tool
	Implementation and Industrial Experiences
	Conclusion and Discussion
	References

