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ABSTRACT
In this paper we present a spoken query detection method
based on posteriorgrams generated from Deep Boltzmann
Machines (DBMs). The proposed method can be deployed
in both semi-supervised and unsupervised training scenarios.
The DBM-based posteriorgrams were evaluated on a series
of keyword spotting tasks using the TIMIT speech corpus.
In unsupervised training conditions, the DBM-approach im-
proved upon our previous best unsupervised keyword detec-
tion performance using Gaussian mixture model-based pos-
teriorgrams by over 10%. When limited amounts of labeled
data were incorporated into training, the DBM-approach re-
quired less than one third of the annotated data in order to
achieve a comparable performance of a system that used all
of the annotated data for training.

Index Terms— spoken query detection, posteriorgram,
Deep Boltzmann Machines

1. INTRODUCTION

Spoken query detection can be viewed as a pattern matching
problem. If both the spoken query and speech documents
use the same representation, finding a query match is equiv-
alent to searching for similar patterns in the documents. A
straightforward way of representing both the query and the
documents is to convert the speech to text via automatic
speech recognition. Detection then becomes a text based
search (potentially with confusion networks [1], etc). One
of the disadvantages of this approach, however, is poor gen-
eralization to arbitrary languages, (or more general audio),
since it typically requires a trained speech recognizer. Thus,
for under-resourced languages, there is a time/cost issue to
obtain enough annotated data to build a recognizer with ac-
ceptable recognition performance [2, 3].

In our prior work [4], we have demonstrated an ability to
perform spoken query detection without using a speech recog-
nizer. By converting both queries and documents to a poste-
rior probability-based representation called a Gaussian poste-
riorgram, an efficient lower-bounded Dynamic Time Warping
(DTW) algorithm [5] can be used to locate matches in speech

documents. The Gaussian posteriorgram is a series of proba-
bility vectors computed on frame-based speech features such
as MFCCs. Specifically, for each speech frame, a posterior-
gram vector is generated by calculating the posterior proba-
bility of the MFCCs being generated by each component in a
Gaussian mixture model (GMM). The GMM is trained on all
MFCCs without requiring any labels.

Although GMM-based posteriorgram produced encourag-
ing results on spoken query detection tasks, we are interested
in reducing the performance gap between supervised and un-
supervised methods for training posteriorgrams. In this paper
we investigate an alternative method for training a posteri-
orgram representation that is based on Deep Boltzmann Ma-
chines (DBMs). We also investigate training the DBM in both
unsupervised, and semi-supervised scenarios where a fraction
of the training data has been labeled. The DBM is attractive as
it has recently been shown to produce good classification re-
sults in a variety of domains, including computer vision and
information retrieval [6]. The DBM also has the appealing
property that it can be trained in a semi-supervised setting.

In this paper we describe the DBM-based posteriorgram
representation which we have incorporated into our DTW-
based spoken query detection framework. We report the re-
sults on several spoken query detection experiments using the
TIMIT corpus. In the semi-supervised setting, we observed
that 30% of the labeled data are enough to obtain a detec-
tion performance that is comparable to the case in which all
labeled data are used. In the unsupervised training scenario,
we found that a GMM seeded DBM posteriorgram resulted
in a 10% relative improvement in equal error rate detection
performance over the GMM-posteriorgram baseline.

2. DEEP BOLTZMANN MACHINES

In recent years, deep learning models have been used for
phonetic classification and recognition on a variety of speech
tasks and showed promising results [7, 8]. A Deep Boltzmann
Machine is a network of symmetrically coupled stochastic bi-
nary units [6, 9]. It contains a set of visible units !v ∈ {0, 1}D
and a sequence of layers of hidden units !h1 ∈ {0, 1}F1 ,



!h2 ∈ {0, 1}F2 ,...,!hL ∈ {0, 1}FL . There are undirected con-
nections only between hidden units in adjacent layers, as well
as between the visible units and the hidden units in the first
hidden layer (with no within layer connections).

Consider learning a Deep Boltzmann Machine with two
hidden layers (i.e. L = 2), the energy of the joint configuration
{!v,!h1,!h2} is defined as:

E(!v,!h1,!h2; θ) = −!vTW1
!h1 − !hT

1 W2
!h2 (1)

where θ = {W1,W2} are the model parameters, representing
visible-to-hidden and hidden-to-hidden symmetric interaction
terms. (We omit the bias terms for clarity of presentation).
The probability of an input vector !v is given by

P (!v; θ) =
1

Z(θ)
∑

!h1,!h2

exp(−E(!v,!h1,!h2; θ)) (2)

where Z(θ) is the normalization term defined as

Z(θ) =
∑

!v

∑

!h1,!h2

exp(−E(!v,!h1,!h2; θ)) (3)

Exact maximum likelihood learning in this model is in-
tractable, but efficient approximate learning of DBMs can be
carried out by using a mean-field inference together with an
MCMC based stochastic approximation procedure. Further-
more, the entire model can be efficiently pre-trained one layer
at a time using a stack of modified Restricted Boltzmann ma-
chines. When modeling real-valued data, we use Gaussian-
Bernoulli DBMs. The learning procedure is very similar to
the standard binary-binary DBMs (for more details see [6]).

An important property of a DBM is that parameter learn-
ing does not require any supervised information. Hierarchi-
cal structural information can be automatically extracted as
an unsupervised density model to maximize the data likeli-
hood. If any amount of labelling information is given, a stan-
dard back-propagation algorithm [10] for multi-layer neural
network can be applied to fine-tune the model discrimina-
tively [6]. Furthermore, the back-propagation can be imple-
mented in an online update scheme, hence any future addi-
tional labels could be used in online fine-tuning.

3. POSTERIORGRAM GENERATION

In this section, we first review the unsupervised Gaussian pos-
teriorgram generation and then move to semi-supervised and
unsupervised DBM based posteriorgram generation.

3.1. Gaussian Posteriorgram
The unsupervised Gaussian posteriorgram is a feature repre-
sentation of speech frames generated from a GMM. Given a
set of N speech frames, let !x1, . . . , !xN represent MFCCs for
each speech frame. A D-mixture GMM G is trained on all N

frames without using any labels. Then, for each speech frame
!xi, a posterior probability, pji = P (gj |!xi), can be calculated
where gj denotes j-th Gaussian component in GMM G. Col-
lecting D posterior probabilities, each speech frame !xi is then
represented by a probability vector !pi = {p1i , . . . , pDi }, where∑

j p
j
i = 1 ∀i.

3.2. Semi-supervised DBM Posteriorgram
Like the phonetic posteriorgrams used in [11, 12], a super-
vised or semi-supervised DBM posteriorgram is a probability
vector representing the posterior probabilities of a set of la-
beled phonetic units for a speech frame. Formally, if we de-
notes N speech frames as !x1, . . . , !xN and their corresponding
phonetic labels ph1, . . . , phN , a posterior probability, pji =
P (phj |!xi; θ), can then be calculated for any speech frame,
!xi, for each phonetic label phj , given DBM model parame-
ters θ and using softmax activation function. If there are V
phonetic labels, a speech frame !xi can then be represented
by a V -dimensional probability vector, !pi = {p1i , . . . , pVi },
where

∑
j p

j
i = 1 ∀i.

Compared with the Gaussian posteriorgrams which can
be generated by a GMM trained without any supervised infor-
mation, DBM posteriorgrams require some annotated data for
training. In the semi-supervised training procedure we use in
this work, we first train the DBM model using all data without
labels (i.e., unsupervised), followed by the fine-tuning step
that requires some amount of labeled data.

3.3. Unsupervised DBM Posteriorgram
In machine learning, a weak classifier can be used to initial-
ize a strong classifier to accelerate the training process. For
example, in conventional Expectation-Maximization (EM)
training of a GMM, K-means clustering is often used to ini-
tialize the target GMM. Inspired by this idea, we investigate
a fully unsupervised DBM posteriorgram by training a DBM
from labels generated from an unsupervised GMM. Given
a set of N speech frames with an MFCC representation,
!x1, . . . , !xN , a D-mixture GMM G is trained on all frames
without using any labels. For each frame !xi, we provide a
labeler function L as

L(!xi) = argmax
j

P (gj |!xi) (4)
where gj is the j-th Gaussian component in G. In other
words, each speech frame is labeled by the index of Gaus-
sian component which maximizes the posterior probability
given !xi. Then a DBM is trained on those “artificial” labels.
This DBM posteriorgram generation is similar to the semi-
supervised case except that the human produced phonetic
label phj for each frame is replaced by the GMM produced
“artificial” label j. Through this two-stage training process,
we leverage the DBM’s rich model structure to produce bet-
ter posteriorgrams than a GMM, while still keeping the entire
training framework compatible with the unsupervised setting.



4. SPOKEN QUERY DETECTION

After representing spoken queries and speech documents us-
ing posteriorgrams, an efficient DTW algorithm is used to de-
tect possible matches of the query in the documents. The
similarity between the keyword query posteriorgram Q =
{!q1, . . . , !qM} with M frames and a speech segment poste-
riorgram S = {!s1, . . . ,!sN} with N frames is defined by the
best warping distortion score as

DTW(Q,S) = min
φ

Aφ(Q,S) (5)

where φ denotes a particular point-to-point alignment warp
and A is the alignment scoring function. The local distance
metric used between two frames is an inner product. To ac-
celerate the search efficiency, we developed two lower-bound
estimates to help the DTW search [5].

5. EVALUATION

We performed three different evaluations of the DBM-based
posteriorgram representation. In the first evaluation, we in-
vestigated how different layer configurations of the DBM
would affect the quality of the generated posteriorgram as
well as the query detection performance. The DBM for this
experiment was trained in a fully supervised setting. In the
second evaluation, we examined how query detection perfor-
mance is affected when using partially labeled data for DBM
training. In the third evaluation, we compared the query
detection performance of the fully unsupervised DBM poste-
riorgram with our previous Gaussian posteriorgram baseline.

5.1. Spoken Query Detection Task

The spoken query detection task was based on the 630 speaker
TIMIT corpus which includes a training set of 3,696 utter-
ances and a test set of 944 utterances. As in [4, 5], 10 query
keywords were randomly selected and 10 examples of each
keyword were extracted from the training set. For each key-
word example, the query detection task was to rank all 944
utterances from the test set based on the utterance’s possibil-
ity of containing that keyword. Performance was measured by
the average equal error rate (EER): the average rate at which
the false acceptance rate is equal to the false rejection rate.

5.2. Supervised Results

In the supervised experiments, we used all labeled data (3,696
utterances) in order to maximize the performance while
changing different DBM layer configurations. For DBM
training, each training utterance was segmented into a series
of 25ms windowed frames with a 10ms shift (i.e., centisecond
analysis). Each frame was represented by 39 MFCCs stacked
with the neighboring 10 frames (5 on each side). In total, the
feature dimension for each frame is 429 (39 x 11). All 61

Table 1. Different DBM configurations.
DBMs Avg. EER

500 10.6%
300x300 10.3%
500x500 9.8%

1000x1000 10.4%
500x500x500 10.1%

phonetic labels were used for training. After training, each
frame in the training and test set was decoded by the DBM,
producing a posteriorgram vector of 61 dimensions. Query
detection was done by comparing the keyword example pos-
teriorgrams with the test set posteriorgrams using the DTW
method described in Section 4.

Table 1 presents the results for different DBM configu-
rations and their resulting average EER. In the first column,
500 indicates a DBM that has one layer with 500 hidden units,
while 500x500 denotes a DBM with two layers each of which
has 500 hidden units. The forward layer training in each con-
figuration was set to stop at the 100th iteration, while the fine-
tuning using back-propagation was set to stop at the 50th iter-
ation. The results indicate that detection performance was not
overly sensitive to DBMs with different layer settings. This
implies that we need not be overly concerned about the DBM
layer configurations in subsequent experiments.

5.3. Semi-supervised Results

In the second experiment, we used a two-layer DBM with 500
hidden units for each layer. We first trained our model on all
3,696 unlabeled utterances, followed by the fine-tuning stage
that only used partially labeled data. Figure 1 demonstrates
the results. On the x-axis, a training ratio of 0.1 indicates
that only 10% of the labeled data were used in the fine-tuning
stage, while a training ratio of 1.0 means all labeled data were
used. It can be observed that the average EER curve drops
dramatically from 0.01 to 0.2 and becomes steady between
0.3 to 0.8. This is an interesting result because in scenarios
where fully labeled data are not cost effective to obtain, 20%
to 30% of labeled data are enough to produce a system that is
only slightly worse than the system trained on all labeled data.
Moreover, since in the fine-tuning step, the back-propagation
algorithm has to go through each data point for each iteration,
using a smaller portion of labeled data also saves a significant
amount of computing time.

5.4. Unsupervised Results

In the unsupervised training experiment, a 500x500 DBM
was trained by using labels generated from a GMM with 61
Gaussian mixtures. Specifically, a GMM was first trained on
frame-based MFCCs without using any labels. To be consis-
tent with our prior work, only 13 MFCCs per frame were used
to train the GMM. Once the unsupervised GMM had been
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Fig. 1. Average EER against different training ratios

Table 2. Comparison of Gaussian and DBM posteriorgram
Posteriorgram Avg. EER

Gaussian 16.4%
DBM 14.7%

DBM (1%) 13.3%

created, each frame was subsequently labeled by the most
likely GMM component (Eq. 4). A DBM was then trained
on 429 MFCCs per frame using the GMM-generated labels.
We then compared the unsupervised posteriorgram detection
performance between the GMM and the DBM-based poste-
riorgrams, as shown in Table 2. As we have reported pre-
viously [4], the Gaussian posteriorgrams produced an aver-
age EER of 16.4%. The unsupervised DBM-based posterior-
grams improved upon this result by over 10% to achieve an
average EER of 14.7%. We believe the improvement is due to
the DBM’s explicit hierarchical model structure that provides
a finer-grained posterior representation of potential phonetic
units than those that can be obtained by the Gaussian posteri-
orgram. Note that in an attempt to make a comparison using
the same larger feature set, we also trained an unsupervised
GMM using the 429 dimensional MFCC vectors that were
used to train the DBM. In this case, however, the average EER
degraded to over 60%, which we attribute to a weaker ability
of the GMM to cope with higher dimensional spaces.

The third row in Table 2, highlights one final advantage
of the DBM framework in that it is able to incorporate par-
tially labeled data. When we included only 1% of labeled
data, we see that the average EER is further reduced to 13.3%
(as also shown in the first data point in Figure 1). This reduc-
tion corresponds to another 9.5% performance gain over the
unsupervised case.

6. CONCLUSION AND FUTURE WORK

In this paper we presented a spoken query detection method
based on posteriorgrams generated from Deep Boltzmann

Machines (DBMs). The proposed representation can be eas-
ily adapted to work in both semi-supervised and unsupervised
training conditions. Spoken query detection experiments on
the TIMIT corpus showed a 10.3% relative improvement
compared to our previous Gaussian posteriorgram framework
in the unsupervised condition. In the semi-supervised setting,
the detection performance using the DBM posteriorgram
can achieve a comparable performance to fully supervised
training when using only 30% of the labeled data.

In future work we plan to perform keyword detection ex-
periments on larger spoken query tasks, and with languages
other than English, since the unsupervised DBM posterior-
gram DTW framework is language independent.
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