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ABSTRACT Edge cloud is a cloud computing system built on edge infrastructure. Task scheduling

optimization is the key technology to ensure the quality of service in edge cloud. However, the openness

of the edge cloud environment challenges the load balancing and profit optimization of task scheduling.

In this paper, we analyze the business process and optimization factors of task scheduling in edge cloud.

First, we propose a resource constrained task scheduling profit optimization algorithm (RCTSPO), which

consists of clustering preprocessing, classification, profit matrix construction and optimal scheduling strat-

egy calculation. Clustering preprocessing gathers similar tasks into one class and perform a classification on

the clustered tasks. Then construct the profit matrix for resource constrained task scheduling, and the optimal

task scheduling strategy is obtained based on the constructed profit matrix. Second, Petri nets are used to

construct the different components of edge cloud, such as resource, task, user request and virtual machine,

thus forming the task scheduling model of edge cloud. Third, the properties of task scheduling model are

verified by using the related theory and tools of Petri nets. Finally, several experiments are done to evaluate

the proposed method, the simulation results show that the algorithm not only achieves the maximum profit,

but also performs well in terms of time, reliability and load balancing of task scheduling.

INDEX TERMS Edge cloud, Petri nets, profit, resource constraints, task scheduling.

I. INTRODUCTION

Edge computing brings the advantages of low latency, small

network load and low data management cost to the Internet of

Things (IOT) [1]. Edge cloud is essentially a cloud computing

system built on the edge infrastructure, which brings stability

to the connected devices in the IOT network. By delivering

the cloud services to the edges of network in the proximity

to the users, the latency of transmission time can be reduced

and the heavy burden on the backhaul link is avoided [2].

With the application of edge cloud in key fields such as smart

city, the number of tasks has increased rapidly. A reasonable

and efficient task scheduling strategy can improve the per-

formance of the edge cloud [3]. In view of the social benefits

and economic value of cloud computing and edge computing,
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the research on task scheduling of edge cloud has become a

hot research field [4].

Edge cloud scheduling is divided into computation offload-

ing and task scheduling according to the operation level.

Computation offloading is used to transfer some tasks from

the edge to the cloud for processing based on the attributes

of task, such as energy consumption and calculation volume,

thus extending the life cycle of edge devices and improving

the task response time [5]. Task scheduling is used to allocate

tasks to the corresponding virtual machines for execution,

so as to optimize the performance of cloud, such as load

balancing, reliability, response time, and utility. With the

increase of tasks in the edge cloud, how to design an effective

task scheduling strategy under the limited virtual machines

has become a challenging problem.

However, the characteristics of edge cloud applications are

diversified, user requests are random, and virtual machine

resources are limited. The operating environment is more
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open, dynamic and complex, which makes the optimization

of task scheduling in edge cloud be more difficult. (1) In the

task scheduling process, load balancing of virtual machine is

a problem that cannot be ignored. Due to the heterogeneity

of physical devices in the edge cloud and the difference of

resource requests from a large number of users. Some virtual

machines may load imbalance, which may cause the waste of

resources and excessive energy consumption. (2) The profit

of task scheduling is an important factor that determines

the application of edge cloud. The workload and required

resources of each task are different, and the same type

resourcemay have different unit price. Therefore, the profit of

edge cloud is different under different task scheduling strate-

gies [6]. (3) The edge cloud is based on the edge virtualization

resources, which often includes many servers or devices that

work together. In addition to the diversity and uncertainty of

user requests, it is necessary to construct the task scheduling

model for describing the complex software structure of edge

cloud. In order to solve these problems, this paper proposes

a resource constrained task scheduling profit optimization

algorithm (RCTSPO) to maximize the profit of edge cloud,

and constructs the task scheduling model based on Petri nets.

The contributions of this paper are as follows:

(1) We design a clustering preprocessing and classification

to avoid the local optimization in task scheduling. It is used to

classify the tasks to achieve batch processing, thus improving

the efficiency of task scheduling.

(2) We propose a method to realize the load balancing and

profit optimization of task scheduling. The equal subgraphs

and their relationships are established between task and vir-

tual machine under resource constraints. A profitmatrix is got

based on the profit of task scheduling. Finally, Kuhn-Munkres

(KM) is used to get the optimal matching with the best profit,

so as to maximize the profit and achieve the best load balance

of task scheduling in edge cloud.

(3) We construct a task scheduling model in edge cloud

based on Petri nets, which is used to model different com-

ponents of edge cloud, the internal logic and time attribute

are also considered. The theories of Petri nets are provided to

validate the correctness of proposed method.

(4) Several simulation experiments are carried out to verify

the effectiveness of the proposed method. The results demon-

strate its correctness and promise.

The rest of this paper is organized as follows. Section II

is the related work. Section III describes the task schedul-

ing framework and requirements. The RCTSPO algorithm

is proposed in Section IV. Section V constructs the task

scheduling model. Section VI is the experimental simulation.

While Section VII is the conclusion and future work.

II. RELATED WORK

Edge cloud is a cloud computing platform built on edge

infrastructure. The ‘‘looking beyond the Internet’’ organized

by NSF in 2016 discussed the development trend and demand

of edge cloud [7]. AT & T released the ‘‘AT & T Edge Cloud

(AEC)-White Paper’’, OpenStack [8] and other companies

released the white papers related to edge cloud in 2018 to

elaborate on the definition, architecture, application scenar-

ios, main challenges and other issues of edge cloud com-

puting. Gartner’s top 10 strategic technology trends for

2020 points out that edge computing moves key applica-

tions and services closer to the people and devices that use

them [9]. Reference [10] explored the dynamic configuration

of service workflow for mobile e-commerce based on cloud

edge framework. Although the research of edge cloud has got

some achievements in architecture, model and other aspects,

it is still facing many challenges, such as software structure

design, edge cloud collaboration and migration [11].

Formal method has been applied in the field of computer

hardware and software. It helps to increase the software

developers’ understanding of the system and to correct the

errors in the design time. Many formal methods have been

used to model edge software system, such as Petri net,

Markov decision process. A formal model of fog computing

is established based on price time Petri net, the algorithm and

evaluation method of predicting task completion time are also

proposed in Ref. [12]. In Ref [13], a digital alarm system

based on fog calculation is designed to detect the displace-

ment of Nasogastric tube, the elements and their attributes are

described by using fuzzy Petri net. Reference [14] formally

verified the protocol against basic security properties by using

High Level Petri net (HLPN). Reference [15] formulated

the service migration problem for mobile edge computing

as a Markov Decision Process (MDP). The above literature

mainly designs the business processes of fog computing and

edge computing, without considering the profit optimization

of task scheduling in edge cloud.

The cooperation and interaction between cloud and edge

device can help reduce the energy consumption. Kaur K. et al.

proposed a multi-objective evolutionary algorithm to balance

the trade-off between energy efficiency andwaiting time [16].

A load balancing technique which decreased the response

time and processing time of fogs to consumers has been pro-

posed in Ref [17]. A multi-objective evolutionary algorithm

using Tchebycheff decomposition is proposed in Ref. [18],

which is used to analyze the flow scheduling and routing in

SDN. Reference [19] proposed a heuristic algorithm approx-

imating the optimal solution to reduce brown energy con-

sumption. In Ref. [20], ant colony algorithm is proposed to

achieve load balancing and profit in cloud task scheduling.

Aziza and Krichen [21] used Genetic Algorithm (GA) to

estimate the time needed to run a group of tasks in task

scheduling of cloud, so as to reduce the processing cost.

Reference [22] proposed a data-intensive service edge

deployment scheme to optimize response time for service

deployment based on Genetic Algorithm. However, ant

colony algorithm and genetic algorithm need to train the data

first, and the results are uncertain.

The task scheduling in edge cloud often has a large num-

ber of tasks. Clustering algorithm can classify tasks and

maximize the similarity between data samples within the

same cluster [23]. Reference [24] proposed a new matrix
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factorization model to analyze the deep features of edge

computing services and users based on deep features learn-

ing. Items with similar features are classified into one class

by using K-means algorithm. Reference [25] proposed a

dynamic grouping through K-implies which suits well for

dynamic topology qualities of Vehicular ad-hoc Network.

An algorithm for IoT devices’ computation offloading deci-

sions is proposed in Ref [26]. The initial clustering center

of K-means clustering algorithm chooses the point under

the high density as the initial clustering center to achieve

better clustering effect [27]. When the number of tasks is

far greater than the number of virtual machines, the polling

mechanism is used to establish the equal subgraph of task and

virtual machine. KM algorithm finds the matching strategy

of maximum weights in complete matching. In Ref. [28],

the task scheduling in the cloud is transformed into a bipartite

graph matching problem, and the optimal bipartite graph

search algorithm KM is used to calculate the task scheduling

strategywithmaximumprofit. However, KMalgorithm needs

to establish equal subgraph, and the number of tasks in cloud

is greater than the number of virtual machines. If polling

mechanism is used to establish equal subgraph, it is easy to

fall into the local optimization.

To sum up, ACO, GA and KM algorithms do not con-

sider the characteristics of the large number of tasks in the

edge cloud, and do not preprocess the tasks to improve the

efficiency of task scheduling. The selection of initial clus-

tering centers of traditional K-means clustering is random,

and the clustering results are uncertain. This paper proposes

a RCTSPO algorithm to solve the uncertainty of clustering

results, which selects the initial clustering center in the high-

density region to achieve K-means clustering. The classifica-

tion avoids the local optimization of tasks in equal subgraph

in task scheduling. In order to avoid being occupied for a

long time due to the lack of resources provided by the virtual

machine, resource constraints are added in constructing the

equal subgraph. KM algorithm can maximize the profit of

task scheduling. Furthermore, we construct a formal model

to characterize the task scheduling process in edge cloud.

III. THE FRAMEWORK AND REQUIREMENTS OF TASK

SCHEDULING IN EDGE CLOUD

A. SYSTEM FRAMEWORK

The edge cloud architecture is a three-tier network structure,

as shown in Figure 1. The bottom layer is the terminal device

of the end user, mainly composed of sensors, collectors,

mobile phones, PC, smart watches, etc. The middle layer

is the edge computing, mainly composed of edge devices

(such as routers, gateways, small servers, etc.) with a certain

computing capabilities. The top layer is the cloud comput-

ing center, mainly composed of virtual machines. The end

user will initiate the application requirement of edge cloud,

which consists of a series of tasks and their relationships.

The edge layer has a certain amount of computing resources

to handle simple tasks. The cloud computing center layer

has virtual machine resources that can handle complex tasks.

The implementation process of edge cloud application is to

decide that tasks are executed by different layers (terminal,

edge or cloud) according to task offloading strategy. The

cloud dispatching center receives the edge cloud application

requirements and the set of task to be processed, and assigns

the tasks to the corresponding virtual machine for execution

according to the task scheduling strategy.

The number of user requests submitted to the edge cloud

is increasing gradually, it needs an effective task schedul-

ing strategy to maximize the profit of edge cloud. Task

scheduling is mainly allocating the tasks to be executed to

virtual machines based on the optimization objectives. For

optimizing and modeling resource constrained task schedul-

ing in edge cloud, this paper intends to take the following

two measures: (1) We propose a profit optimization algo-

rithm for resource constrained task scheduling in edge cloud.

(2)We construct a formal model of task, user request, vir-

tual machine and scheduling center by using Petri nets, thus

improving the model reusability.

The specific framework is shown in Figure 1, which is

divided into three steps.

(1) Optimization algorithm: The tasks are clustered accord-

ing to the related parameters (Memory, bandwidth, comput-

ing power) and classified to avoid local optimization. The

resource constraints are considered to achieve load balancing

of task scheduling, thus avoiding the idle resources. The

equal subgraph is also established with scheduling profit as

the weight, KM algorithm is used to calculate the optimal

scheduling strategy.

(2) Model construction: Based on the execution results of

the scheduling algorithm, the basic elements of edge cloud

such as tasks, user requests, scheduling processes, and virtual

machines are modeled by using Petri nets. Then, according

to the actual requirements, the interface of the model is used

to match the model of the basic elements to form the task

scheduling model. Finally, the effectiveness and correctness

of the constructed model are analyzed with the help of related

tools of Petri nets.

(3) Simulation analysis: Aiming at the application scope

and effectiveness of the proposed method, we design several

simulation experiments to analyze and compare the RCTSPO

algorithmwith other schedulingmethods, thus illustrating the

effectiveness of the proposed method.

B. TASK SCHEDULING REQUIREMENT

The resource constrained task scheduling in edge cloud is

given in the following, which includes the set of task, the set

of virtual machine, the set of user request and its attributes.

The user request consists of the set of task and relationships

between tasks. Task has attributes such as length, comput-

ing power and memory capacity. The virtual machine has

attributes such as computing power and memory capacity.

Definition 1: The user request is a 2-tuple Rqi =

(TK i, RLi), TKi,j represents the jth task of Rqi. RLi: TKi×

TKi →{>, +, ||, n} is the relationship functions between
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FIGURE 1. System framework.

tasks, >, +, ||, n represent the sequence, selection, parallel

and repeated relationships. Repeated execution means that

the task is called multiple times, and n should be limited. Let

Rq be the set of user requests.

Definition 2: The task is a 6-tuple TKi,j = {T id i,j, T
length

i,j,

T compi,j,T
ram

i,j,T
bw

i,j,T
deadline

i,j }. T
id
i,j, T

length
i,j, T

com,
i,j,

T rami,j, T bwi,j, T deadlinei,j represent the number, length

(millions of instructions), computing power (millions of

instructions per second), memory capacity (MB), network

bandwidth (MB/s) and the deadline of task (ms). TK is the

set of all tasks.

Definition 3:The virtual machine is a 4-tupleVMi = {V id
i,

V comp
i,V

ram
i,V

bw
i }. V

id
i, V

comp
i, V

ram
i, V

bw
i represent the

number of virtual machine, computing power (Millions of

instructions per second, MIPS), memory capacity (MB) and

network bandwidth capacity (MB/s) of virtual machine VMi.

Let VM be the set of all virtual machines in the edge cloud.

C. PROBLEM DESCRIPTION

The profit of task scheduling is equal to the difference

between the expense paid by the user and the cost. The cost

of task scheduling is calculated by the resource size and

time provided by the virtual machine. The value of a task is

determined by the resources and the time it takes. It can be

got by using Formula (1).

valuei,j = (T deadlinei,j
∗(a∗T rami,j + b∗T bwi,j + c∗T

comp
i,j )

(1)

a, b and c represent the price weight of memory, bandwidth

and computing power. At the same time, the resources pro-

vided by the virtual machine are different, so the estimation

value of the edge cloud for the virtual machine is shown in

Formula (2).

costi,j,k = (
T
length
i,j

VM
comp
k

)∗(a∗VM ram
k

+b∗VMbw
k + c∗VM

comp
k ) (2)

In order to maximize the profit, the objective function of

the resource constrained task scheduling in edge cloud is

shown in Formula (3).

MAX profit =

|Rq|,|Rqi|,|VM |
∑

i=0,j=0,k=0

w(valuei,j − cos ti,j,k )

s.t.T rami,j < VM ram
k &&T bwi,j < VMbw

k &&T
comp
i,j < VM

comp
k

i∈ [0, |Rq|), j∈ [0, |Rqi|), k ∈ [0, |VM |),w ∈ {0, 1}

(3)

When w is equal to 1, TK executes on the VM. When w

is equal to 0, TK is not executed on the VM. The objective

function is to maximize the profit of task scheduling under

resource constraints, which can be modified by adjusting the

profit weight.
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FIGURE 2. RCTSPO algorithm.

IV. TASK SCHEDULING ALGORITHM

A. TASK SCHEDULING PROCESS

This section will give the implementation process of the

RCTSPO algorithm, which is shown in Figure 2. The input

of RCTSPO algorithm is the task scheduling requirements of

resource constrained edge cloud, and the output is the task

scheduling strategy with optimal profit.

Step 1: Cluster preprocessing: K-means clustering is

improved for tasks according to the parameters T rami,j, T
bw

i,j

and T compi,j. The whole virtual machine is divided into one

class, and the task is divided into K class. The K initial value

of clustering is determined by the number of tasks (|TK |) and

the number of virtual machines (|VM |) (K = |TK |/|VM |).

The value of k can be adjusted based on the simulation

results.

Step 2: Classification: The clustering results are evenly

distributed to K task sets according to the different task

resource requirements. (K is the ratio of the number of tasks

to the number of virtual machines.)

Step 3: Constructing the profit matrix: Establishing the

matrix between task and virtual machine with T id i,j as row

coordinate and VMid
k as vertical coordinate. TKi,j is executed

on the VMk , the profit of this task scheduling is viewed

as the value of the corresponding element in the profit

matrix.

Step 4: Calculating the optimal task scheduling strat-

egy: The profit matrix of Step 3 is taken as the input of

KM algorithm, and find the matching with the best

profit.

B. CLUSTER PREPROCESSING OF TASK SCHEDULING

In the first step of RCTSPO algorithm, K-means algorithm is

used to dynamically find the initial clustering center. It calcu-

lates the distance between two data points in the task set by

using Formula (4), and stores it in the matrix with the related

row of task and the related column of virtual machine. The

matrix is sorted in ascending order. The two data points with

the smallest distance in the formerK are selected as the initial

clustering center mi(i = 0, . . ., K ). After selecting K initial

clustering centers, the former n/K data points closest to the

cluster center are classified into one cluster.

distance(i,j),(e,f)

=

√

(T rami,j − T rame,f )2+(T bwi,j − T bwe,f )
2 + (T

comp
i,j − T

comp
e,f )2

(4)

Each cluster has its center, which is the cluster center. The

cluster center is determined by Formula (5).

clusterCenterj =
1

|TK |

|TK |
∑

i=0

×

√

(pointrami )2+(pointbwi )2+(point
comp
i )2

j ∈ [0,K) (5)

Pointrami, Point
bw

i and Point
comp
i represent the memory

attribute, bandwidth attribute and computing power attribute

of the ith point to be clustered.

The pseudo-code of clustering preprocessing is illustrated

in Algorithm 1.

Step 1 is used to determine the initial clustering center

according to the above algorithm. Step 4 calculates the dis-

tance from the task set to the clustering center according

to Formula (4), and selects the n/K nodes closest to the

clustering center. Step 5 calculates the new clustering center

by using Formula (5).

According to the criteria of |CenterOld-CenterNew| <0.1,

(CenterOld represents the old cluster center, CenterNew rep-

resents the new cluster center). If the criterion is satisfied,

the clustering process is completed. Otherwise, clustering

continues to execute.

C. CLASSIFICATION

Tasks in the task clusters have the similar requirements for

resources, but the resources provided by virtual machines

are inconsistent. If a virtual machine with high performance

is used to realize the tasks with light workload, virtual

machine resources are wasted. The task with heavy workload

is assigned to the virtual machine with low performance,

which makes the task not be completed within the deadline.

Therefore, it is necessary to improve this problem.
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Algorithm 1 Cluster Preprocessing

Input: Task and virtual machine information

Output: Clustering information for tasks and virtual

machines

1: Determining the initial cluster center according to the

above algorithmic idea.

2: Set the Boolean flag to true.

3: while flag is true do

4: Calculating the distance from the remaining nodes to

the cluster center according to Formula (4), and select the

nearest n/k nodes to the cluster;

5: Recalculating the average value of the data objects in

each cluster according to Formula (5), and determine a new

cluster center;

6: if |CenterOld-CenterNew| <0.01 then

7: Set the Boolean flag with false.

8: else

9: Set the Boolean flag with true.

10: end if

11:end while

To solve this problem, this paper classifies tasks according

to the required resources of tasks. For example, if there

are three task classes after clustering, task class A needs

more resources, task class B needs medium resources, and

task class C needs less resources. According to the num-

ber of provided resources, virtual machines can also be

divided into three types: more, medium and less. After the

task is classified. In task class A, the required resources

of tasks are also divided into more, medium and less.

Task class B and task class C is the same as task

class A.

Algorithm 2 Classification

Input: Task clustering result

Output: Mixed task clustering

1: Create K empty clusters clusterSet.

2:for(Cluster cluster: clustertaskSet) do

3: Initializing K cluster centers.

4: end for

5:for(Cluster cluster:clusterSet) do

6: for(Cluster clustertask:clustertaskSet) do

7: Add the task to the new set.

8: end for

9:end for

10: Calculate the new cluster center according to For-

mula (5)

The pseudo-code of classification is shown in Algorithm 2.

Firstly, K empty clustering sets are created and K clus-

tering centers are initialized. The tasks in the cluster

set are successively distributed to new K cluster sets.

Finally, the new clustering center is calculated based on

Formula (5).

D. PROFIT MATRIX CONSTRUCTION

According to Formula (4), the distance between cluster cen-

ters is calculated, and the profit matrix is constructed by

selecting the group with the smallest distance between task

class and virtual machine class. Profit matrix (p[T id ,VMid ])

is a matrix with task as row and virtual machine as column.

The profit of task scheduling is got by using Formula (6).

profiti,j,k = valuei,j − cos ti,j,k

= (T deadlinei,j ∗ (a ∗ T rami,j + b ∗ T bwi,j + c ∗ T
comp
i,j )

− (
T
length
i,j

VM
comp
k

) ∗ (a ∗ VM ram
k + b ∗ VMbw

k

+c ∗ VM
comp
k ) (6)

Calculating the value of profit matrix in p[(i, j), k] =

profit i,j,k . If the required resources of task TKi,j are greater

than the provided resources of virtual machine VMk , then

p[(i, j), k] = 0.

The pseudo-code of the profit matrix is illustrated in

Algorithm 3. When the related parameters of the task are

less than the related parameters of virtual machine, the profit

of the current task scheduling is calculated according

to Formula (6).

Algorithm 3 Profit Matrix Construction

Input: the related parameters of task set and virtual

machine set

Output: weight matrix

1:for i = 0:m do

2: for j = 0: |Rqi| do

3: for k = 0:n do

4: if(T rami,j <VMram
k&&T compi,j <VMcomp

k

&&T bwi,j <VMbw
k )

5: Calculate the task scheduling profit assignment

to matrix according to Formula (6).

6: else

7: Matrix value assigned to 0

8: end if

9: end for

10: end for

11:end for

E. THE OPTIMIZATION OF SCHEDULING STRATEGY

The profit matrix is represented by bipartite graph G =< V ,

E >. The rows and columns of the matrix are formed

into V , and the matrix value is E . In this paper, the KM

(Kuhn-Munkres) optimal search algorithm is used to solve

the optimal matching of tasks and virtual machines in task

scheduling. In a bipartite graph, the left vertex is task, and

the right vertex is virtual machine. Its improved algorithm

(KM algorithm) assigns the left vertex as the maximum value

in the profit matrix, and the right vertex is 0. If there is a

best matching, it will continue. Otherwise, the index value
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is modified and the KM algorithm is used again. Finally, the

best matching results are obtained.

F. ALGORITHM IMPLEMENTATION

The pseudo-code of the RSPOTS algorithm is illustrated in

Algorithm 4. First, Algorithm 1 is used to cluster tasks and

virtual machines to reduce the search scope and achieve

the global optimization. Second, the tasks with different

requirements are classified reasonably (Algorithm 2). Third,

the profit matrix is determined, and the profit matrix is

obtained (Algorithm 3). Finally, the profit matrix is used as

the input of KM algorithm to achieve the optimal matching

of task and virtual machine with profit maximization.

Algorithm 4 Implementation Steps of RCTSPO Algorithm

Input: Task and virtual machine

Output: Task scheduling strategy

1: Clustering preprocessing is executed by using Algo-

rithm 1, and clustering information is obtained.

2: The clustering results are classified by Algorithm (2).

3: Determining the weighted matrix of clustering informa-

tion and getting the weight matrix by Algorithm (3).

4: The profit matrix is calculated from the optimal schedul-

ing strategy, and the task scheduling strategy with the

maximum profit is obtained.

G. ALGORITHM COMPLEXITY ANALYSIS

The complexity analysis of RCTSPO algorithm is analyzed

from the clustering preprocessing algorithm, classification

algorithm and the optimal scheduling strategy. We will ana-

lyze from the time complexity and space complexity.

The improvement of clustering preprocessing algorithm is

the selection of initial clustering center. The time complexity

is O(n), the space complexity is O(a). n is the number of

task, and a is a constant. k is the number of cluster, and

k = (n/|VM |). So the time complexity of K -means algorithm

is O(I∗n∗n∗m/|VM |), and the space complexity is O(n∗m).

Where m is the number of attributes of each element, and

I is the number of iterations. I and m can be regarded

as constants, so the time and space complexity is reduced

to O(n2/|VM |).

Classification algorithm. It needs the extra space to

store classification results, and the space complexity

is O(n). The system needs to traverse the task set

twice. The time complexity of classification algorithm

is O(k∗(n/k)).

The optimal task scheduling strategy needs to find the aug-

menting path for O(n) times, and each augmentation needs

to modify the top mark at most O(n) times. The complexity

of modifying the top scale is O(n2). The time complexity

is O(n4). The space complexity of the code is O(n∗2), which

is O(n).

Therefore, the time and space complexity of the proposed

RCTSPO algorithm are O(n4) and O(n2/|VM|) respectively.

FIGURE 3. Modeling task.

V. TASK SCHEDULING MODEL

This section focuses on the requirements and characteris-

tics of the edge cloud, and constructs the task scheduling

model. The task scheduling model is constructed based on

the scheduling strategy. The scheduling strategy is abstracted

as an input to the task scheduling model. The model can be

used to describe the execution process of edge cloud.

As a formal model with rich mathematical basis, Petri net

can be widely used to describe the system with concurrent,

asynchronous and distributed characteristics [29]. Therefore,

Petri net is very suitable for describing a loosely coupled

distributed system such as edge computing [30].

Wemodel the basic components of edge cloud based on the

requirements, then construct the task schedulingmodel. In the

modeling process, only some basic concepts are introduced,

the other concepts can refer to Ref [31]. In order to distinguish

the input interface and output interface, the input interface is

marked with superscript I , and the output interface is marked

with superscript O.

A. MODELING RESOURSE

The task scheduling model abstracts all resources and infor-

mation into as an individual di = (it, st,RW i), it∈{T , V,C,d}

indicates the object type described by the individual, T , V,

C, d represent task, virtual machine, scheduling strategy and

data package. st represents the location of the individual, such

as the individual dT i,j = (T ,(i,j), RWi,j) corresponds to task

TKi,j, RWi,j = (T length,i,j, T
com,

i,j, T
ram

i,j, T
bw

i,j,T
deadline

i,j)

describes the required task length, computing power, mem-

ory capacity, network bandwidth and task deadline. When

it is equal to V , RWi = (V comp
i,V

ram
i,V

bw
i) indicates the

computing power, memory capacity and network bandwidth

capacity of virtual machine. When it is equal to C , RWi,j is

the scheduling virtual machine of task TKi,j. When it is equal

to d , RWi is the information carried by packets. The common

packets in the system are abstracted into individual ϕ. If there

is no special explanation, all individuals in task scheduling

model are ϕ.

B. MODELING TASK

The task scheduling model of task TKi.j is shown in Figure 3.

The specific operation process is as follows:

(1)Place ps is used to store the execution mode of the

task. Place psd stores the individuals of virtual machine
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FIGURE 4. Modeling user request.

(M0(TKi.j•psd ) = dci,j = (dJi,j, d
v
k )) assigned by the task

according to the above RCTSPO algorithm, assuming that the

scheduling strategy assigns task TKi.j to the virtual machine

VMk ).

(2) After obtaining the input parameter pI in, the task indi-

vidual is put into the waiting queue pOab of virtual machine

according to the task scheduling result. If the results of the

task are fed back (M (pI eo) 6= ∅), then fire the transition tap
to make the task be in the termination position (pe), and the

execution result is sent to the output interface pOoe.

(3) pd is used to control the deadline of task, ct(pd ) =

T deadlinei,j. If the task cannot realize the function within the

deadline (M (ps) 6= ∅), transition tad is fired to make the task

be in the timeout position.

C. MODELING USER REQUEST

The model of user request Rqi is shown in Figure 4. The

model mainly describes the tasks and their relationships

in the user request, then dynamically outputs the tasks

to be scheduled and the received execution results of the

tasks.

(1) The transition ts and place pi are introduced to describe

the beginning operation and location of user request, and the

whole user request is initialized according to the characteris-

tics of the task. The transition te and place pe are introduced

to describe the termination operation and location of user

request respectively, and the corresponding output is synthe-

sized according to the relationship between tasks. •ps = ∅,

p•
s = ts,

• ts = ps, t
•
s = {paj|∀ TKi.k ∈ TKi, RL(TKi.k ,

TKi.j) 6=> }, t•e = pe, p
•
e = te,

•te = {ptj|∀ TKi.k ∈ TKi,

RL(TKi.j, TKi.k ) 6=>}, p•
e = ∅, •tdt = {pa, pc}, t

•
dt = pdt .

(2) Each task is modeled as a dotted box, pini and poei
represent the beginning and termination of the task. peoi
and pabi represent the input of operating results and the

output of task scheduling. Transitions tsi, tsj, tsk , tsf repre-

sent the pages executed by tasks TKi,i, TKi,j, TKi,k , TKi,f ,

respectively.

(3) pooj and p
I
ej are used to dynamically store the task set

and results of user requests.

FIGURE 5. Modeling dispatching center.

D. MODELING SCHEDULING CENTER

The scheduling center is used to connect user requests with

virtual machines. The model is shown in Figure 5.

(1) Firstly, the scheduling strategy is used to assign the

tasks. If a task (M (poj,i) 6= ∅) of user requestRqi is submitted,

then invoke transition toi to store the task in the place pwj
and wait for further classification. Transition ttj is fired to

configure all tasks to the cache according to their types. Place

pDi is introduced to represent the set of tasks realized by the

virtual machine vmi.

(2)The transition tDi is introduced to represent the execu-

tion page of the virtual machine. If there is a virtual machine

vmi which feedbacks a set of tasks p
I
ei realized their function,

the transition tei is fired to summarize the results to place pej.

Then the transition tej is started and tfj feedbacks the results

to the corresponding interface of user request.

E. MODELING VIRTUAL MACHINE

The virtual machine realizes the function of the tasks

and transmits the results to the scheduling center. The

task scheduling model of virtual machine vmk is shown

in Figure 6. (1) pD is used to store the queuing task of virtual

machine. (2) If the virtual machine is idle (M (ps) 6= ∅), then

fire the transition tst to select a task TKi,j from the place

pIwt according to the queuing order, and make it be in the

running position pint (ct(pint ) = dwi,j/tsk ). Transition tat rep-

resents the execution process of tasks in virtual machine layer.

(3) Releasing the virtual machine if the task execution is

finished.

F. INSTANTIATION OF SPECIFIC REQUIREMENTS

The task scheduling model is modeled as follows:

(1) According to the properties and relations of tasks,

the scheduling model of all tasks and user requests in the

system is constructed, because the model mainly considers

the execution process of tasks. Set M0(ps) = ϕ.

(2) According to the properties of virtual machine,

the scheduling model of all virtual machines is constructed,

and the initial resource distribution is set.

VOLUME 8, 2020 118645



L. Chen et al.: Resource Constrained Profit Optimization Method for Task Scheduling in Edge Cloud

FIGURE 6. Modeling virtual machine.

(3) Based on the relationship between user request and

virtual machine, we can construct the model of scheduling

center, the same place and transition is merged.

Task scheduling model is mainly used to model virtual

machine, task, and the relationship between tasks. Place, tran-

sition and interface describe the location, possible operation

and input / output parameters of components.

Any x ∈ (P ∪ T ),• x = {y|y ∈ (P ∪ T )∧(y,x)∈ F} and

x• = {y|y ∈ (P ∪ T ) ∧ (x, y) ∈ F} correspond to the input

and output of x.

Because the place has time factor, the concept of waiting

time is introduced to place. Waiting time TS is an attribute

of the place, which is used to explain how long the system

can use the individuals stored in the place. TS(pi) = m

indicates that the model must wait m time units before using

the individual in place pi. A tuple S = (M ,TS) is called a

state of task scheduling model, where M is a marking. And

TS is the set of waiting time of all places under marking M .

Initial state S0 = (M0, TS0), where TS0 is a zero vector. The

state is used to describe the resource distribution, such as the

available resources, the position of each object.

Because AF (t) and AT (t) of model have the vari-

ables, the values of these variables are uncertain. AT (t) <

d1, d2, . . . , dn > and AF(p,t) < d1, d2, . . . , dn > are

the values got by replacing formulas AT (t) and the predi-

cates AF(p,t) of input arc with individuals d1, d2, . . . , dn.

If AT (t) < d1, d2, . . . , dn >= true, then t <

d1, d2, . . . , dn > is called a feasible replacement of t . All

the feasible replacements of t under S are denoted by set

ET(S). H (S) = {t < d1, d2, . . . , dn > |•ti ∩• tj = ∅ ∧ t <

d1, d2, . . . , dn > is a feasible replacements of t} is called the

greatest firing set of S. Because each transition t may have

several feasible replacements, H (S) is not unique.

The process that S reaches S ′ by firing a feasible replace-

ment ti < d1, d2, . . . , dn > of ti is denoted by S

[ti < d1, d2, . . . , dn > S ′. S’ is called the reachable

state of S. If there is a firing sequence H1,H2, . . . ,Hk and

state sequence S1, S2, . . . , Sk , which makes S [(H1, ω1) >

S1[(H2, ω2) > M2 . . . Sk − 1[(Hk , ωk) > Sk , then Sk is a

reachable state from S. All the possibly reachable states of S

are denoted by R(S).

G. PROPERTY ANALYSIS

The task scheduling model mainly describes the functional

requirements of the edge cloud, so it is necessary to ana-

lyze the structural correctness of task scheduling model.

In addition, the components are marked in front of the node,

task, transition and place. For example, the beginning transi-

tion ts of task TKi,j is expressed as TKi,j•ts.

Theorem 1: Let the task scheduling model be �, R(�) is

the corresponding set of reachable states, then:

(1) ∀TK i,j ∈ Rqi, ∃S
′ ∈ R(�), then TK i,j•ts ∈ FT (S ′)

(2) If the system has K available virtual machines, ∀1 <

k ≤ K , there is ∃S’∈ R(�), which makes |M ′(VM i•pD)| = 1

Proof: (1) Recursive method, ∀TKi,j ∈TK, according

to the relationships between TKi,j and other tasks in the

execution process, it can be divided into two cases.

Case A: The forward set of task TKi,j is Fork(TKi,j) = ∅.

According to the modeling process of virtual machine, TK i,j•

pIin ∈ t•s . Because ts ∈ FT (S0), there is S1 ∈ R(�), which

makes |M1(TK i,j• p
I
in)| = 1. Because •TK i,j•ts = TK i,j•p

I
in,

there is S2 ∈ R(S1), TKi,j•ts ∈ FT (S2). Let S
′ = S2, we can

get ∃S ′ ∈ R(�), which makes TK i,j•ts ∈ FT (S ′) when

Fork(TK i,j) = ∅.

Case B: The forward set of TK i,j is Fork(TK i,j) 6= ∅. Let

∀TK i,k ∈ Fork(TK i,j), ∃S
′ ∈ R(�), which makes TK i,k•ts ∈

FT (S ′), we can get that TK i,j meets the sub proposition (1).

Let Fork(TKi,j) = {TK i,k , TKi,f , . . . ,TK i,g}. According to

the assumption of the proposition, all forward tasks of TKi,j
are possible to be executed. So there is S1 ∈ R(�), which

makes |M1(TK i,k•p
O
oe)| = |M1(TK i,f •p

O
oe)| = . . . =

|M1(TK i,g•p
O
oe)| = 1.

Because RL(TK i,k ,TK i,j) = . . . = RL(TK i,g,TK i,j) =>.

According to the modeling process of the relationships

between tasks, we can get that there is a corresponding

transition in the model, which is used to summarize the

execution results of TKi,k ,. . . , TKi,g to TKi,j. That is, there

is S2 ∈ R(S1) that makes |M2(TKi,j•p
I
in)| 6=0. Because •

TKi,j•ts = TK i,j•p
I
in, there is S3 ∈ R(S2), which makes

TKi,j • ts ∈ FT (S3). Set S
′ = S3, ∃S ′ ∈ R(�), which

makes TKi,j • ts ∈ FT (S ′) if Fork(TKi,j) 6= ∅.

To sum up, the sub proposition (1) is proved.

Similarly, the sub proposition (2) is also established.

Theorem 1 shows that any virtual machine can be invoked

and a task may be executed in task scheduling model. That is,

all virtual machines and tasks can be invoked in the model.

Theorem 2: Let the task scheduling model be �, R(�) is

the set of reachable states. ∀ TKi,j ∈TK, ∀ VMk ∈VM, if the

scheduling algorithm assigns TKi,j to VMk , then:

(1)∃S’∈ R(�), which makes dJ i,j ∈ M (VMk•p
I
D)

(2)∃S ′ ∈ R(�), which makes dJ i,j ∈ M (pOej,i)

Proof: Because TKi,j is assigned to VMk by using

the scheduling algorithm, according to the task scheduling

model, we can get M0(TK i.j•psd ) = dC i,j = (dJ i,j, d
v
k ).

According to Theorem 1, there is S1 ∈ R(�), which makes

TK i,j•ts ∈ FT (S ′). Because TK i,j•t
•
s = poab. So there is S2 ∈

R(S1), which makes dCi,j ∈ M2(TK i,j•p
o
ab) = M2(Rqi• pabi).

Because Rqi•p
•
abi= Rqi•tbi,and Rqi•t

•
bi= Rqi•p

o
oi. So there is

S3 ∈ R(S2), which makes dCi,j ∈ M3(Rqi•p
o
oi) = M3(poi,i).

Because p•
oi,i = toi and t

•
oi = pwj. There is S4 ∈ R(S3), which

makes dCi,j ∈ M4(pwj). Because p
•
wj = ttj and t

•
tj = {pw1,
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TABLE 1. Parameters of task and virtual machine.

pw2, . . .}. There is S5 ∈ R(S4), which makes dJ i,j ∈ M5(pwk ).

Because p•
wk = twk and t•wk = pDk . There is S6 ∈ R(S5),

which makes dJ i,j ∈ M6(pDk ) = M6(VM k•p
I
D). Set S

′ = S6,

sub proposition (1) is proved.

Similarly, the sub proposition (2) is also established.

Theorem 2 shows that task scheduling model can correctly

describe the process that tasks invoke the virtual machine and

feedback the execution results of virtual machine. Therefore,

task scheduling model can effectively describe the execution

logic between tasks and virtual machines.

VI. EXPERIMENTAL SIMULATION AND ANALYSIS

In this section, the performance and applicability of the pro-

posed RCTSPO algorithm will be evaluated.

A. EXPERIMENT SETUP

Due to the lack of a unified standard library, Cloudsim

is used to automatically generate task scheduling require-

ments for the edge cloud, including task set, user request

set, virtual machine set, etc [32]. One of the advantages

of using Cloudsim is that we can set different parameters

based on the actual requirement. In the dataCenterBroker

class, we rewrites the bindcloudlettovm (cloudletlist, vmlist)

method to realize the core function of RCTSPO algorithm.

According to the task scheduling requirements, we ran-

domly generate the parameters of the task and virtual

machine, which are shown in Table 1.

The proposed RCTSPO algorithm aims to maximize the

profit of resource constrained task scheduling in edge cloud.

This paper intends to evaluate the algorithm from the total

time, reliability, profit and load balancing of task scheduling.

Total time of task scheduling: Makespan represents the

total time of task scheduling.Makespan is equal to the maxi-

mum working time of all virtual machines.

Reliability of task scheduling: The proportion of tasks

completed in T deadline divided by the total tasks.

The profit of task scheduling: Calculating the total profit

of task scheduling according to Formula (7), that is, the sum

of all profits for realizing the tasks [28].

Total profit =

|Rq|,|Rqi|,|VM |
∑

i=0,j=0,k=0

profiti,j,k

s.t.Timei,j < T deadlinei,j (7)

Load balancing: The standard deviation of the working

time of the virtual machines represents the load balancing of

virtual machines [33]. According to Formula (8), it can get:

δ =

√

1

|VM|

∑|VM|

j=1
(PTj − avg(PT ))2 (8)

PTj represents the working time of virtual machine J in

task scheduling, avg(PT) is the average time of all virtual

machines. The smaller the standard deviation, the closer the

working time of different virtual machines, and the better the

load balance of task scheduling.

The comparison algorithms used in this paper are FCFS

(First Come First Serve), MIN-MIN [34], ACO (Ant Colony

Algorithm), GA (Genetic Algorithm) and KM algorithm. It is

assumed that task scheduling can be completed only if the

resource constraints are satisfied.

B. IMPACT OF CLUSTERING

Experiments 1 and 2 are done to get the optimal clustering

value K . In order to weaken the influence of the unit price of

different resource types on profits, we set a = b = c in these

two experiments.

1) IMPACT OF CLUSTERING K VALUE

Experiment 1:The RCTSPO algorithm proposed in this paper

converts the ratio of the number of tasks to the number of

virtual machines into the K value of clustering. In order to

evaluate the performance of RCTSPO algorithm when the

number of virtual machines is fixed while the number of

tasks is dynamically changing (The values of clustering K

are different). The completion time, reliability, load balancing

and total profit of task scheduling in the evaluation criteria are

compared to get the best clustering value K .

The experimental steps of Experiment 1 are as follows.

Step 1: Assuming that the number of virtual machines is

10, and the number of tasks is 30, 40, 50, 60, 70, 80, 90, 100

(that is, cluster value K is 3, 4, 5, 6, 7, 8, 9, 10).

Step 2: Setting the initial profit weight to a = b = c = 3.

The purpose of this experiment is to find the best clustering

value K , so the profit weight is the same by default.

Step 3: Comparing the performance of RCTSPO algorithm

and FCFS, MIN-MIN, ACO, GA and KM algorithm in task

scheduling of edge cloud.

Step 4: Calculating the completion time, reliability,

total profit and load balancing under task scheduling

strategies.

The results of Experiment 1 are shown in Figure 7(a)-(d),

we can observe: (1) The number of virtual machines remains

unchanged when the number of tasks increases gradu-

ally, and the deadline of task is fixed. The running time

of virtual machine increases gradually, Figure 7(a) and

Figure 7(c) show an upward trend, and Figure 7(b) shows

a downward trend. That is because the waiting time is too

long, it is easy to increase the number of tasks exceed

the deadline, which makes the reliability of task scheduling
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FIGURE 7. Optimal clustering k value for task scheduling.

decrease, while the task scheduling time and profit increase.

(2) The load balancing of task scheduling is fluctuating.

When the number of tasks is 50, the load balance of

task scheduling is optimal. (3) The clustering value K

is 5, RCTSPO is better than the compared algorithm in

completion time, reliability, total profit and load balanc-

ing of task scheduling, and the best clustering value K

is 5.

2) IMPACT OF THE NUMBER OF TASKS

Experiment 2: Because RCTSPO algorithm includes the

K-means clustering algorithm, Experiment 2 is done to get the

optimal clustering value K . In order to distinguish the results

of the clustering algorithm in task scheduling, we will design

the experiment to analyze the impact of the number of tasks

on the performance of task scheduling.

The steps of Experiment 2 are as follows:

Step 1: With the optimal value K (k = 5), the weight of

profit is initialized as: a = b = c = 3.

Step 2: The number of tasks is 10, 100, and 1000, the num-

ber of virtual machines is 1/5 of the number of tasks.

Step3: Compare RCTSPO algorithm with FCFS, MIN-

MIN, ACO,GA, andKMon completion time, reliability, total

profit, and load balancing performance of task scheduling.

The results of Experiment 2 are shown in Figure 8(a)-(d):

When the task is 10, RCTSPO algorithm does not show the

great advantages in completion time, reliability, total profit

and load balancing of task scheduling. When the number of

tasks increases to 100 and 1000, the performance of RCTSPO

algorithm is better than other algorithms. This is because the

clustering algorithm of RCTSPO is suitable for large data

volume. When the data volume is small, the clustering results

are not obvious. It can draw that RCTSPO algorithm is more

suitable for the large number of tasks.

C. PROFIT MAXIMIZATION OF TASK SCHEDULING

1) IMPACT OF WEIGHT ON TASK SCHEDULING PROFIT

Experiment 3: Because user must pay for cloud provider in

task scheduling, we add the profit weights in Formula (3). The

profit weights of ram, bw, and comp in Formula (3) are a, b,

c, and a+ b+ c = 9. We will design an experiment to find

the optimal profit weight of task scheduling under different

profit weights of RCTSPO.

The steps of Experiment 3 are as follows:

Step 1: The number of tasks is set to 100, 200, 300, 400, and

500, respectively. The number of virtual machines is 1/5 of

the number of tasks (that is, the optimal clustering value K ).

Step 2: The profit weights are set to a = b = c = 3;a = 7,

b = c = 1;a = c = 1,b = 7, and a = b = 1,c = 7.

Step 3: RCTSPO algorithm is used to calculate the task

scheduling strategy respectively. Calculating the total profit

under all task scheduling strategies.

The results of Experiment 3 are shown in Figure 9, we can

observe: The profit of RCTSPO algorithm also shows an

upward trend with the number of tasks increasing. The profit

of task scheduling under different profit weights increases

with the number of tasks increasing. When the profit weight

is a = c = 1 and b = 7, the profit of task scheduling is larger

than others. This is because the bandwidth resources are more

important than memory and computing power.

2) THE RESULTS OF DIFFERENT ALGORITHMS

Experiment 4: The optimal profit weight of task scheduling

based on Experiment 3 is a = c = 1, b = 7. In order to
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FIGURE 8. Impact of the number of tasks on task scheduling.

verify that RCTSPO algorithm has better performance in task

scheduling than the compared algorithm under the best profit

weight and the best clustering value K .

The steps of Experiment 4 are as follows:

Step 1: The number of tasks is 100, 200, 300, 400, 500.

The number of virtual machines is 1/5 of the number of tasks

FIGURE 9. Total profit of different tasks.

FIGURE 10. Profit of different algorithms.

(that is, the optimal clustering value K ). The profit weight is

a = b = 1, c = 7.

Step 2: RCTSPO algorithm and FCFS, MIN-MIN, ACO,

GA and KM are used to calculate the task scheduling strategy

respectively.

Step 3: Calculating the total profit under all task scheduling

strategies.

The results of Experiment 4 are shown in Figure 10, we can

observe: (1) The total profit of task scheduling of all algo-

rithms increases with the number of tasks increasing. As the

number of tasks increases, the RCTSPO algorithm gets more

profit than the compared algorithms. (2) The increase of the

number of completed tasks makes the total profit increase.

When the number of tasks is small, the difference of total

profit of each scheduling algorithm is not large. When the

number of tasks increases gradually, the number of completed

tasks is different by using the different algorithms, and the

difference between them is larger. (3) RCTSPO and KM

algorithms can get the higher total profit of task scheduling,

followed by FCFS and MIN-MIN algorithms, and ACO and

GA algorithms are the less. The total profit of task schedul-

ing using RCTSPO algorithm is always greater than that of

KM algorithm, which proves the advantage of the proposed

RCTSPO algorithm.

D. LOAD BALANCING OF TASK SCHEDULING

1) LOAD BALANCING UNDER DIFFERENT PROFIT WEIGHTS

Experiment 5: This paper designs the profit weight in

objective function, which is the unit price of resource.
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Different profit weights play an important role in resource

constrained task scheduling. We will analyze the optimal

profit weight of RCTSPO algorithm in load balancing of task

scheduling.

The steps of Experiment 5 are as follows:

Step 1: The number of tasks is 100, 200, 300, 400, 500.

The number of virtual machines is 1/5 of the number of tasks

(that is, the best clustering value K ).

Step 2: The profit weight is a = b = c = 3; a = 7,

b = c = 1; a = c = 1,b = 7 and a = b = 1,c = 7, respec-

tively.

Step 3: RCTSPO algorithm is used to calculate the task

scheduling strategy. Calculating the total profit under all task

scheduling strategies.

The results of Experiment 5 are shown in Figure 11, we can

observe: The profit weight is a = b = c = 3; a = 7,b =

c= 1; b = 7,a = c = 1; a = b = 1,c = 7. The average stan-

dard deviation of execution time on virtual machine is

6.27, 3.57, 8.29 and 6.12 respectively. It can get that

the performance of RCTSPO algorithm in load balancing

of task scheduling is the best when the profit weight is

a = 7,b = c = 1, which is better than that of other profit

weights. It can get that RCTSPO algorithm focuses more on

memory and load balancing in task scheduling.

2) LOAD BALANCING OF DIFFERENT ALGORITHMS

Experiment 6: According to Experiment 5, the optimal profit

weight of load balancing on task scheduling is a = 7, b =

c = 1. In order to verify that RCTSPO algorithm has better

performance in task scheduling and load balancing than the

compared algorithm with the best profit weight and the best

clustering value K .

The steps of Experiment 6 are as follows:

Step 1: The number of tasks is 100, 200, 300, 400, 500.

The number of virtual machines is 1/5 of the number of tasks

(that is, the best clustering value K ). The profit weight is set

to a = 7,b = c = 1.

Step 2: RCTSPO algorithm and FCFS, MIN-MIN, ACO,

GA and KM are used to calculate the task scheduling strategy

respectively.

Step 3: Calculating the load balancing under all task

scheduling strategies.

The results of Experiment 6 are shown in Figure 12,

we can observe: (1) The workload imbalance of the compared

algorithm increases with the number of tasks increasing, but

RCTSPO algorithm shows a downward trend. It can get that

RCTSPO algorithm is suitable for task scheduling with a

large number of tasks in terms of load balancing. RCTSPO

algorithm is better than compared algorithm in load balancing

of task scheduling. (2) As the KM algorithm aims to find the

maximum weight matching under perfect matching. There-

fore,KM algorithm is better than other algorithms in load bal-

ancing of task scheduling. In RCTSPO algorithm, resource

constraints are added, tasks are clustered and requirements

are matched to avoid the idle resources. (3) It can get that

RCTSPO algorithm has the best effect on load balancing

FIGURE 11. Load balancing under different profit weights.

FIGURE 12. Load balancing of different algorithms.

in task scheduling. Experiment results show that RCTSPO

algorithm is superior to the other algorithms in load balancing

of task scheduling.

E. STATE SPACE ANALYSIS

Experiment 7: This paper verifies the properties of task

scheduling model by using the related tools of Petri net,

including the correctness of user request, task scheduling

process and so on. Therefore, it is necessary to analyze the

changing rules of the state space of the task schedulingmodel.

The purpose of Experiment 7 is to analyze the changing

rules of the state space of task scheduling model. The specific

experimental steps are as follows.

(1) Randomly generating 200 user requests, each use

request has 10-30 tasks, the attributes and relationships

between tasks are randomly generated. 200 user requests are

divided into 4 groups (each group has 50 user requests).

Randomly generating 100 virtual machines.

(2) Taking 10 virtual machines as the initial resources and

adding 10 virtual machines (10VM, 20VM, 30VM, 40VM,

50VM) each time. The task scheduling model of each user

request is constructed according to the attributes of task, user

request and virtual machine respectively. Finally, we will

calculate the size of state space of the model, as shown

in Figure 13(a).

(3) Let each group have 25 virtual machines, the system

will select 10 user requests to construct the initial require-

ment, then add 10 user requests (10U, 20U, 30U, 40U, 50U)

each time. Constructing the task scheduling model for each
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FIGURE 13. The state space of task scheduling model.

user request and calculating the size of state space of the

constructed model, which is shown in Figure 13(b).

The results of Experiment 7 are shown in Figure 13, we can

draw: (1) As shown in Figure 13(a), the number of reachable

states of the model decreases with the increase of virtual

machines. The reason is that the increase of virtual machines

makes more tasks run concurrently, thus reducing the number

of states in the task scheduling model. The increase of the

attributes of the virtual machine also affects the reduction

speed of state space. Such as the state space of R1 only

reduces 10.65% at 20VM, while the state space of R1 is

reduced by 55% at 30VM. The reason is that the first 10 vir-

tual machines provides the fewer resources. (2) As shown

in Figure 13(b), when the number of user requests gradually

increases, the number of reachable states of task scheduling

model tends to increase. The reason is that new user request

makes the number of tasks executed on the virtual machine

increase. In addition, the attributes of the task are different,

so the increase of the number of user requests will make more

tasks asynchronously execute, which increases the reachable

states of the model. In addition, the number of states is related

to the execution process. Such as the number of states of R1

and R3 is less, while the number of R2 and R3 is more. It gets

that the number of parallel tasks in the first two user requests

are more, whichmake the number of reachable states increase

slowly.

According to the results of Experiments, when the value

K of task clustering is 5, RCTSPO algorithm has better in

time, reliability, profit and load balance of task scheduling.

With the number of tasks increases, the scheduling results

are better. It can draw that RCTSPO algorithm can greatly

improve the scheduling performance. At the same time,

the influence of different unit price of resource on task

scheduling profit and load balance is analyzed. It can draw

that RCTSPO algorithm is applicable to the case which has a

large number of tasks in task scheduling.

VII. SUMMARY AND FUTURE EXPECTATION

In this paper, a resource constrained cloud task scheduling

algorithm is proposed to solve the problems of resource con-

straints, and profit optimization in the task scheduling process

of edge cloud. Based on the task scheduling strategy calcu-

lated by using the proposed algorithm, the task scheduling

model of edge cloud is constructed to describe its business

process and characteristics. First, RCTSPO algorithm uses

the improved K -means algorithm to cluster tasks and virtual

machines. It can reduce the search scope and achieve global

optimization, the resource constraints is also considered in the

task scheduling process to achieve load balancing. Second,

RCTSPO algorithm gets the best matching using the KM

algorithm and profit matrix to improve the profit of task

scheduling. Third, according to the task scheduling strategy

and business process, a formal model of task, virtual machine,

user request and scheduling center is constructed based on

Petri net, which is used to analyze the related properties of

task scheduling process. The simulation results show that the

proposed RCTSPO algorithm has better effectiveness on load

balancing and profit.

The algorithm in this paper does not consider the resource

utilization and energy consumption of task scheduling. In the

future work, we will study the resource utilization and energy

consumption of task scheduling.
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