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Abstract— Neural recordings from high-density microelectrode 

arrays implanted in the cortex require time-frequency domain 

processing to alleviate the data telemetry bottlenecks of 

bandwidth and power. Our previous work has shown that the 

energy compaction capability of the Discrete Wavelet 

Transform (DWT) offers a practical data compression solution 

that faithfully preserves the information in the neural signals. 

This paper presents a complete compression system including 

both lossy and lossless compression schemes, namely the DWT 

and Run Length Encoding. Performance tradeoffs and key 

design decisions for implantable applications are analyzed. A 

32-channel, 4-level version of the circuit is presented. Custom 

designed in 0.5μm CMOS, occupying only 5.75mm2 and 

consuming 3mW of power (95μW per channel at 25Ks/sec), the 

implantable compression circuit is well suited for intra-cortical 

neural interface applications. 

I. INTRODUCTION  

Brain machine interfaces have come to be recognized as 
some of the most powerful tools in helping patients with 
neural disorders. Especially, individuals with severe motor 
limitations can benefit greatly with the advancement in 
neuroprosthetic devices. Control of artificial limbs is 
dependent on the accurate decoding of the neural signals, 
which contain preset movement parameters. In order to 
enable extraction of these parameters the activity of cortical 
neurons needs to be recorded [1], using microelectrode 
arrays of hundreds of elements. Since the algorithms 
required to extract any useful information from these neural 
signals are computationally complex and resource hungry, 
the signals need to be transmitted out of the body to powerful 
external processing units (EPU). 

Transmission of neural recordings to the EPU can be 
done with wired connections, but this limits patient mobility 
to a few feet and introduces various surgical complications. 
One of the challenges facing neural engineers is achieving 
the wireless transmission of neural recordings, or the 
information they contain, to overcome wiring limitations. 
Wireless transmission of potentially hundreds of signals 
must address three major limitations: bandwidth, implant 
area, and power consumption. For example, without 
compression, a 32 channel system with a sampling rate of 
25KHz per channel and 10 bits of data precision generates 
data at 8Mbps. Even state-of-the-art wireless transceivers for 
biomedical applications are not capable of providing the 
required data bandwidth, necessitating signal compression 

before transmission. The hardware required for signal 
compression within the implant must be, firstly, area 
efficient, to enable minimally invasive surgical procedures, 
and secondly, power efficient, to avoid any temperature-
induced damage to surrounding tissues. High energy 
efficiency is also required to enable longer periods of 
operation with little available power.  

To date, most efforts to address neural signal 
compression have been directed to data in time-domain [2-
4]. In contrast, our approach is based on the Discrete 
Wavelet Transform (DWT) which has not only been shown 
to be a very effective signal compression and denoising tool, 
but is also inherently well suited for real-time spike sorting 
[5-6]. In earlier work [7], we have presented a compression 
scheme that is tailored to suit neural signals and based on the 
DWT. In this paper we expand on the theory and design 
details of the DWT-based system and introduce performance 
evaluation criteria for circuit blocks that complete the neural 
signal compression system. We show that this system can be 
implemented in highly area-power efficient hardware and 
results in large compression ratios while extending flexibility 
to the neuroscientists to choose the desired degree of 
perfection in spike trains’ reconstruction from a multitude of 
neural signals. 

II. COMPRESSION 

Fig. 1 provides a system level view of an integrated 
neural data compression circuit fabricated on the back of a 
microelectrode array that is implanted in the cortex and 
communicates wirelessly to an EPU. Neural signals from 
multiple channels are amplified, digitized and fed to the 
DWT block, which generates a sparse representation of these 

 

 
Figure 1. Block diagram of the implantable neural data compression 
system and its position within an implantable neural recording system.
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signals. The threshold block serves a dual purpose of de-
noising and spike detection. The Run Length Encoder (RLE) 
removes the redundancy from the streaming data which is 
then formatted into packets for wireless transmission and 
sent to the transceiver. The system employs both lossy and 
lossless compressions to reduce the data, where the DWT, 
threshold and RLE blocks form the compression engine. 

A. Discrete Wavelet Transform 

Based on the chip real estate available to this research 
project, the DWT block shown in Fig. 2 was designed to 
support up to 32 channels of data simultaneously with 4 
levels of decomposition. Multiple decomposition levels 
generally result in fewer significant coefficients. The 
relatively long intervals between samples of neural signals 
allow for computation hardware that prioritizes power and 
area efficiency over speed [7]. Derived from our prior 
system-level analysis [5], the power-area product can be 
minimized by an architecture that sequentially evaluates the 
DWT of multi-channel data in real time. The lifting scheme 
is used to compute results; it has been shown to require 
fewer computations than convolution based filtering [8].  

The computation core performs sequential calculation of 
DWT coefficients. The memory blocks store temporary data 
and intermediate results and have been partitioned based on 
different access patterns. The controller manages timing and 
data flow among the blocks. The controller was synthesized 
from a library while the other blocks were custom designed 
to minimize power and chip area.  

B. Threshold 

Coefficients at the output of the DWT block can be 
viewed as sparse packets of energy which do not, by 
themselves, result in any compression. However, following 
the DWT by a thresholding stage, which reduces the in-
significant low-energy coefficients to zero and lets high-
energy coefficients pass, does permit compression. The low-
energy coefficients have little or no significant information 
and mainly contribute to noise. The high energy coefficients 
invariably correspond to different spikes and events in the 
neural signal, allowing spike sorting even without 
reconstruction [5]. The values to which the thresholds are set 
are of critical importance since they determine both the 
quality of reconstruction and the final rate of compression. 

Methods to determine the optimal threshold is an 
ongoing investigation. However, it has been established that 

the best compression is achieved by using separate threshold 
values for each decomposition level of each channel [5]. 
Thus, results from each level of each channel must be treated 
separately and will form a stream of data containing 
information that is virtually independent of the information 
from other channels and levels within the data stream.  

Fig. 3 shows the main functions of the threshold and RLE 
stages. The threshold block includes a set of memory 
registers that contain threshold values for each level of each 
channel. Since the last level of DWT produces two separate 
coefficients streams, an N level system would have N+1 
threshold values for each channel. These values would be 
determined externally and then stored into the memory 
sequentially before the DWT operation begins. A serial 
peripheral interface (SPI) is used to store threshold values in 
each of the corresponding memory registers. Any of these 
values can be updated during system operation. The DWT 
block generates values in signed-magnitude form. The 
magnitude is compared against the threshold value using a 
magnitude comparator; if found smaller than the threshold, a 
10 bit zero is generated at the output. If equal or greater, the 
original value is regenerated at the output. 

The overall compression system is designed to operate in 
two modes: Monitor mode and Acquisition mode. In 
Monitor mode the system bypasses the DWT, threshold and 
RLE blocks and sends the neural signal directly to the packet 
formatter. Due to lack of compression, only a few channels 
can be monitored at a given time. Monitor mode is used by 
the EPU to analyze the statistical properties of individual 
channels and calculate the optimal threshold values for each 
channel and level. These threshold values are then 
transmitted back to the implanted system to set compression 
parameters for use in Acquisition mode, where all system 
blocks are activated to compress data. 

C. Lossless Compression 

Several lossless data compressors exist in literature, with 
varied computational complexity and storage requirements. 
A few popular techniques are Huffman coders, Lempel Ziv 
coder, arithmetic encoders and their variants. Most of these 
algorithms require prior statistical knowledge of the 
incoming data set, and thus the rate of compression achieved 
is directly related to the accuracy of this information. Since 
the algorithms are variable length encoders, under certain 
conditions, they approach the theoretical limits of 
compression, limited by the entropy of the incoming signal. 
However, these dictionary-based algorithms require 

 

Figure 2. System diagram for sequential calculation of DWT. 
 

Figure 3. System diagram for the Threshold and the RLE blocks. 
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prohibitively large storage to maintain the dictionary of 
codes. Use of Huffman coding is not possible since the size 
and statistical properties of the source alphabet (number of 
possible data values) depend on the threshold value, which 
are ideally controllable by the neuroscientist.  

The only statistical information available for our 
thresholding compression system is that much of the data 
stream consists of zeroes. Run Length Encoding is best 
suited for data with long repetitive strings of values; in 
addition, it is very conservative in required resource. 
Because we expect long strings of zeros at the output of the 
threshold block, RLE a good lossless compression choice. 
Though RLE is not an optimal encoding scheme in general, 
when given very long repetitive sequences it approaches the 
performance of near-optimal algorithms. 

Given that, for this implementation, a byte refers to 10-bit 
values ranging from -511 to +511 and that a 10-bit counter 
can count up to 1023, our implementation of RLE can be 
summarized by the following rules.  

1. Transmit all non-zero bytes as is. 

2. Convert all negative zeros (represented by X) to 

positive zeros. 

3. Replace a sequence of zeros (two or more) with an 

X (negative zero) byte and a zero-count byte. 

4. If the zero count reaches 1023, send 1023 and 

restart a new sequence of zeros. 
 

Following these rules, the example RLE operation of Fig. 
4 shows the original 40 byte sequence has been reduced into 
a 20 byte sequence. Sequences from real neural recordings 
have been observed to yield much better compression ratios. 
Since we do not expect long sequences of repeating non-zero 
values, this implementation compresses only the sequences 
of zeros. This scheme results in fixed length codes, which 
have a computational resource advantage. 

III. ANALYSIS AND RESULTS 

A 0.5µm CMOS process was used to design all the 
blocks of the neural compression system. The DWT block 
has been fabricated and the 3mm x 3mm chip is shown in 
Fig. 5. The controller was synthesized using OSU’s Standard 
Cells Library [9], and all other blocks were custom designed 
for low power and low area. The active components of the 
prototype 32-channel, 4-level DWT implementation occupy 
roughly 3.84mm

2
. The layout for the threshold and RLE 

blocks requires about 0.95mm
2
 of area. Thus the combined 

compression system is expected to require approximately 

5.75mm
2
 including global routing for a 0.5µm process. Table 

I lists the area consumed by each module. Empirical 
measurements show that this area would be reduced by 

roughly a factor of 15 if implemented in a 0.18µm process. 
However, this system is sufficiently small for implantation 

even in 0.5µm CMOS. The tested system consumes only 
3mW of power while processing 32 channels at 25Ksamples 
per second, or equivalently 95μW per channel. The power 
consumption per channel is directly proportional to the 
neural data sampling frequency. 

To test our designs and algorithms, a stream of 
experimentally obtained 10-bit neural data was processed 
through the compression system and the resulting transform 
coefficients were used to reconstruct the neural signal. The 
results were compared to the original signal to measure the 
quality of spike reconstruction versus the compression 
obtained. This analysis was performed for several different 
zeroing threshold values. For a fair comparison, the same 
threshold value was used for all channels and levels. Root 
Mean Squared (RMS) error and Entropy are used as the 
primary measures to evaluate the performance of our system. 
RMS error is a measure of the average difference between 
the original and the reconstructed signal. This difference has 
two major components: the error resulting from quantization 
into a finite word length, and the error introduced by the 
thresholding operation. Shannon’s entropy is a measure of 
uncertainty associated with a random signal and can be 
interpreted as the minimum average length per data value, 
represented in bits, which must be transmitted for lossless 
communication. Entropy gives the theoretical limit to the 
achievable lossless data compression for a given data.  

For a given spike train, Fig. 6 plots the number of 
detected spikes, RMS error, the entropy of the transmitted 
sequence and the RLE compression achieved with respect to 

 
Figure 5. DWT system on chip, fabricated in 0.5μm technology. 

 Example: Let {0, A, B, C, D} be the source alphabet. Let X 
represent a negative zero byte. Consider the following 
input sequence 

BD000A0000000A000000CB0A000000000D00000D 

Once RLE is applied, the sequence reduces to 

BDX3AX7AX6CB0AX9DX5D 

Input sequence length = 40 bytes;  
Output sequence length = 20 bytes 

 
Figure 4. Example of the system specific run length encoding.

TABLE I.  AREA REQUIREMENT FOR HARDWARE MODULES 

Module Area (mm2) 

*Complete DWT system: 32 Channel, 4 Level 3.83 

*Threshold + RLE: 32 Channel, 4 Level 0.95 

Expected DWT + Threshold + RLE + Routing 5.74 

*Area numbers do not include global routing 
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the threshold. The plots confirm the anticipated tradeoff 
between compression and RMS error. As expected, when 
thresholding is not employed, the RLE does not result in any 
compression, while entropy is at its maximum and RMS 
error at its minimum. The RMS error never goes to zero 
because of quantization noise. As the threshold value (and 
thus the number of zeros) increases, the RLE compression 
approaches the theoretical limit of entropy, which proves the 
effectiveness of our design. A threshold increase also results 
in an increase in the RMS error. This region of operation 
removes noise from the signal while preserving all the neural 
spikes and their shapes. At very high threshold values, the 
system starts distorting neural spikes, which results in a drop 
in the number of spikes detected at the output. The point of 
operation, thus, must be selected just before this region. The 
optimal point of operation may vary from one application to 
another depending upon the quality of reconstruction desired. 
Because of this direct tradeoff between RMS error and 
compression ratio, the zeroing threshold must be chosen to 
match application requirements; i.e. available bandwidth, 
quality of signal reconstruction required, and the power 
available for data transmission. 

Fig. 6 shows the results for a sample spike train which 
contains 27 spikes. Almost perfect reconstruction is achieved 
for a zero threshold, but at the cost of high data rate. Beyond 
the threshold value of 110 the system starts losing spikes for 
this particular data set. Thus the region of operation should 
be set between the values of 50 and 100 depending on the 
application and the desired spike reconstruction quality. The 
measure of quality of reconstruction depends highly on 
application specific spike detection and classification 
algorithms employed by the neuroscientist. The DWT chip 
has been tested and works as designed with an excellent 
match between simulated and experimental results. Because 
the RLE block has not yet been fabricated, data presented in 
Fig. 6 is based on a combination of measured and simulated 
results. Fig. 7 shows the same spike at four different de-
noising thresholds and compression ratios. For our prototype 
32 channel design, a conservative threshold value of 80 
resulted in an output data rate of less than 370Kbps, 
providing a compression of more than 20 times over 8Mbps 
for unprocessed data. The authors are not aware of any other 
publications where the spike shapes have been maintained, 
thus we are unable to compare our results against other 

methods of neural signal compression.  

IV. CONCLUSION 

A system enabling very high data compression of neural 
recording while maintaining high signal fidelity has been 
described. The system employs DWT, threshold, and RLE 
hardware blocks to pseudo-simultaneously processes data 
from multiple channels. In 0.5μm CMOS, the DWT block 
require only 3.84mm

2
 of area to process 32 channels of data 

at 4 levels of in real time, while consuming only 3mW of 
power. The overall compression system is designed to fit 
within 5.75mm

2
, and the small size and low power 

consumption of the system makes it highly suitable for 
implantable high-density microelectrode array devices.  
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neural data set used in our experiments. 

 
Figure 7. (a) Original signal. (b) 2 times compression. (c) 16 times 

compression. (d) 62 times compression. 
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