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Abstract. We study concurrent processes modelled as workflow Pesiex¢énded with resource
constrains. Resources are durable units that can be neiteed nor destroyed: they are claimed
during the handling procedure and then released again.cdlykinds of resources are manpower,
machinery, computer memory. We define structural critesiseld on traps and siphons for the cor-
rectness of workflow nets with resource constraints. We esend the soundness notion for work-
flow nets to the workflow nets with resource constraints;aegtiditions concern the durability of
resources. We prove some properties of sound resourcéraioes! workflow nets.
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1. Introduction

In systems engineering, coordination plays an important role on varioels léorkflow management
systems coordinate the activities of human workers. The principles umagkyorkflows can also be
applied to other software systems, like middleware and web services. PBttrare well suited for
modelling and verification of concurrent systems; for that reason they p@oven to be a successful
formalism for workflow systems (see e.qg. [2]).

Workflow systems are modelled by so-call@drkflow Nets (WF-nets)e. Petri nets with one initial
and one final place and every place or transition being on a directedrpathte initial to the final place.
The execution of @aseis represented as a firing sequence that starts from the initial markingtbogs
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of a single token on the initial place. The token on the final place with no tofgarbage) left on the
other places indicates th@oper terminationof the case execution. A model is calledundiff every
reachable marking can terminate properly.

Originally, WF-nets were intended to model the execution of a single cag8, % we considered
WF-nets modelling the execution of batches of cases in WF-nets, whepwiitrstandard for WF-nets
transitions/subnets that process one case per time there are transitioetg'stiowing a (faster, cheaper,
etc.) processing of several cases at the same time. We defined the notjenerélised soundness:
“States reachable after starting wikhtokens on the initial place will be able to reach the state with
only k tokens on the final place, for any natural numkieand showed that the generalised soundness is
decidable.

WF-nets are meant to emphasise the partial ordering of activities in thesgradgle abstracting
from resourceqe.g. machines or personnel) which may further restrict the occurraetivities. In
this paper (which is an extended version of [10]) we consider the irfeiefresource®n the processing
of cases in Workflow Nets. Resources are durable, i.e. they are clamdedlaased during the execution,
but they cannot be created or destroyed. We concentrate here damiental correctness requirements
for Resource-Constrained Workflow nets (RCWF-nets): no recrydiaa system design, resource con-
servation laws (every claimed resource is freed before the case tersnarateno resource is created
during processing), and the absence of deadlocks or livelocks ¢hat due to the lack of resources.
We introduce somstructural correctness criteria for RCWF-nets, extend the notions of soundness to
RCWEF-nets and give necessary conditions for soundness exghiagdsems of net invariants.

The rest of the paper is organised as follows. In Section 2, we skesthdfinitions related to Petri
nets and Workflow nets. In Section 3 we introduce the notion of Resdlmostrained Workflow Nets
and consider some structural correctness criteria for them. In Sectiandefine and investigate the
notion of soundness for RCWF-nets. We conclude in Section 5 by diagusbtained results, related
work and directions for future work.

2. Preliminaries

N denotes the set of natural numbéetghe set of integers an@ the set of rational numbers.

Let P be a set. Abag (multiset) noverP is a mappingn : P — N. The set of all bags ovd®? is
NP. We use+ and— for the sum and the difference of two bags aad<, >, <, > for comparisons of
bags, which are defined in a standard way. We overload the set notatiting () for the empty bag,
andp € mwhenm(p) > 0. We write e.gm = K[p] + ¢[g] for a bagm with m(p) = k, m(q) = ¢, and
m(x) = 0 for all x ¢ {p, q}. For a sum over the elements of a bagve write 3, f(p) (assuming that
everyp appears in the sum(p) times) rather thaEpeP m(p) - f(p). We writem[q for the projection of
bagmon Q C P; formally, m[q is a bag oveQ such thamjg(p) = m(p) for everyp € Q.

For (finite) sequencesf elements over a sdt we use the following notation: The empty sequence
is denoted withe; a non-empty sequence can be given by listing its elementsPatikh vectors of a
sequence maps every elemetc T to the number of occurrencestah o, denoted byo (t).

Transition Systems A transition systenis a tupleE = (S Act, T) whereSis a set ofstates Act is
a finite set ofaction namesndT C S x Act x Sis atransition relation A processs a pair(E, )
whereE is a transition system argl € San initial state. We denotg,, a, s,) from T ass; — s,, and



we say that leads froms, to s,. For a sequence of transitioas= t; . ..t, we writes; —— s, when
151 1 b th o o .
s =9 s 2 . =5, ands; —— whens; = s, for somes,. In this case we say that
o is a trace oE. Finally,s; — s, means that there exists a sequence T* such thas; - s;. To
indicate that the stepis taken in the transition systeEnwe writes —¢ <.
Given two transition systems; = (S;, Act, T1) andNy = (S, Act, T2). ArelationRC S x Sy is
asimulationiff for all s;,s| € S;,s, € S, siRg ands; — | implies that there exisi, € Ssuch that

s R4 ands, - s,.

Petri nets A Petri netis a tupleN = (P, T,F* F~), where:

e P andT are two disjoint non-empty finite sets placesandtransitionsrespectively; elements of
the setP U T are called thewodesof N;

e F* andF~ are mapping$P x T) — N that areflow functiongrom transitions to places and from
places to transitions respectively.

F = F™ — F~ is theincidence matri>of netN. We depict nets by the usual graphical notation.
To project away some places of the net together with their in- and outgoosgvee define the
projection operation:

Definition 2.1. (projection)
LetN = (P, T,F",F~) be a Petri net and |¢¥ C P. The projection Njp of N w.r.t. P’ is the net

<P/7 T, F* r(P’XT)v F r(P’><T)>'

Given a transitiort € T, the preset®t and thepostset t of t are thebagsof places where every
p € P occursF~(p,t) times in®t andF*(p,t) times int*. Analogously we write’p, p® for pre- and
postsets of places. To emphasize the fact that the preset/postset ispathsiithin some nelN, we
write ya, ay. We overload this notation further and apply preset and postset operatica seB of
places:®B = {t | dpe B:tec *p}andB® = {t| Ip € B:t € p*}. Note that*'B andB*® are not bags
but sets. We will say that nodeis asourcenode iff*n = () andn is asinknode iffn®* = (). A pathof a
netis a sequence . ..x, of nodes such thati : 1 <i<n:x_; € *X%.

A markingm of N is a bag oveP; a pair (N, m) is called amarkedPetri net. A transitiort € T
is enabledin markingm iff *t < m. An enabled transition may fire. This results in a new marking
m defined bymi £ m — *t + t*. We interpret a Petri nelil as a transition system/process where
markings play the role of states and firings of the enabled transitions ddfitratisition relation, namely
m+ *t - m+ t*. The notion of reachability for Petri nets is inherited from transition systefos.
a firing sequence in a netN, we define’c ands® respectively a$ ., *t and) ,_t*, which are the

sums of all tokens consumed/produced during the firings &o ifm —— n7, thenm/ = m— *o + o°.
We will use the well-knowrMarking Equation Lemma

Lemma 2.1. (Marking Equation)
Given a finite firing sequenceof a netN: m —— n, the following equation holds = m+F* -5 —
F~— .77, orinotherwordsmf = m+F - 7.

Note that the reverse is not true: not every markinghat is representable as a sam+ F - v for
somev € NT is reachable from the marking. We will write F.X for the set of vector§F - x | x € X}.



We denote the set of all markings reachable inM&om markingmas® (N, m). We omitN and write
R(m) when no ambiguities can arise.

Traps and Siphons (see [5]) A setR of places is arap if R®* C °*R. A setR of places is aiphonif
*R C R®. The trap/siphon is proper trap/siphoriff it is not empty. As follows from the definition, traps
and siphons are dual by their nature. Important properties of trapsiphdns are thamnarked traps
remain markedandunmarked siphons remain unmarketatever transition firings would happen.

Invariants (see [11]) Aplace invariantis a row vectod : P — Q such thatl - F = 0. When talking
about invariants, we consider markings\estors where we assume arbitrary but fixed orderings of
places and transitions. We denote the set of all place invariatfig,aghich is a linear subspace @f.
The following properties follow directly from the definition of place invariants

Lemma 2.2. 7y is orthogonal td-.QT.

Lemma 2.3. Let N be a Petri net with placeB, let P’ C P andl’ be a place invariant dfl .. Thenl
defined as(p) = I’(p) if p € P’ andl (p) = 0 otherwise, is a place invariant bf.

The main property of place invariants is that for any two markimgsm, such tham, —— m, and any
place invariant holds:l - m =1 - mo.

A transition invariantis a column vectod : P — Q such thaf - J = 0. For any markingsn, m’ and
firing sequences, v, if m —— m andm ., m, thend — 7 is a transition invariant. This also means
that for any firing sequence such tham —— m, 7 is a transition invariant.

Workflow Petri nets In this paper we primarily focus updorkflow Petri nets (WF-net§)]. As the
name suggests, WF-nets are used to model the processing of tasksfiowg@rocesses. The initial and
final nodes indicate respectively the initial and final states of processass.

Definition 2.2. A Petri netN is aWorkflow net (WF-nefjf:

1. N has two special places:andf. The initial placei is a source place, i.8i = (), and the final
placef is a sink place, i.€.* = 0.

2. For any node € (P U T) there exists a path froimto n and a path froomto f.

We consider the processing of batches of tasks in Workflow nets, metr@hthe initial place of
a Workflow net may contain an arbitrary number of tokens. Our goal isdwige correctness criteria
for the design of these nets. One natural correctness requirenm@opir terminationwhich is called
soundness the WF-net theory. We will use the generalised notion of soundnesslirded in [8]:

Definition 2.3. We say that a marking € R(k[i]) in a WF-netN terminates properljff m —— K[f].
N is k-soundfor somek € N iff for all m € R(k]i]), mterminates properly.
N is soundiff it is k-sound for allk € N.

We will use termsnitial andfinal markings for marking&(i] andk[f| respectively k € N).



3. Resource-Constrained Workflow Nets

Workflow nets specify the handling of tasks within the organisation, facttg without taking into
account resources available for the execution. We extend here tha nbiigF-nets in order to include
resource information into the model.

A resource belongs to a type; we have one place per type in the net, theeesources are located
when they are free. The resources become part of case tokenglvelyesre occupied. We assume that
resources are durable, i.e. they can be neither created nor destifugiedre claimed during the handling
procedure and then released again. By abstracting from the reguaces we obtain the WF-net that
we callproduction net

Definition 3.1. We say that a WF-né = (P, U P, T,FS UF, Fy UF;) with initial and final places
i, € Ppis aResource-Constrained Workflow net (RCWF-meth the setP, of production places and
the setP; of resource places iff

e P,NP =0,

e F; andF, are mapping$Pp x T) — N,

e F" andF; are mapping$P; x T) — N, and

e Np = (Pp, T,Fy, Fy) is a WF-net, which we call productionnet of N.

Recall that according to our notation for bags we wnitg, for the projection ofn € NP on production
places andnlp, for the projection ofm on resource places, aiy is actuallyN|p,.
By projecting away resource places of an RCWF-net, we obtain an RG&VEgain:

Lemma 3.1. LetN = ((P,UP;), T,F*,F~) be an RCWF-net. Then for am} C P, the netN’ = Njp,
is an RCWF net.

Proof:
All the conditions are met, witR, being the set of resource places. The production nit &f the same
as the one oN. O

Note that additional resource places only limit the behaviour of the net:

Lemma 3.2. LetN = ((Py U Py), T,F™,F~) be an RCWF-net ang; C Pr. ThenR = {(m, m|ip up;)
) | me NPe“Fr} is a simulation relation betweethandN|p, p;).-

Proof:
LetP =P, UP;, P =P, UP; andN’ = N[(ppup;)). Supposem LN my, for somem;, my € NP, thus
m; > jtandmy = my — Nt 4+ t). Thenalsan o>t andmp[pr= my fpr —R,t + ). O

By takingPy = () we trivially obtain thalR = {(m, mjp,) | m € N(PeUP)1 is a simulation relation for
N andNp.

Next we will discussstructural correctness criterifor WF-nets based on traps and siphons and then
show how these criteria can be adapted to the RCWF-nets.



Figure 1. Redundant and persistent places

3.1. Redundant and Persistent Places

In [9] we introduced notions of redundant and persistent places imé¢&and showed how to find them
with the use of siphons and traps. Here we extend the results from [Qjsanithe notions of redundancy
and persistency to analyse structural correctness of RCWF-nets.

A natural requirement for the correct design of an RCWF-nebis-redundancyf the production
net namely: every transition of the net can potentially fire and every placeeopthduction net can
potentially obtain tokens, provided that there are enough tokens on theptaiiali and enough resource
tokens. Production né; in Fig. 1 does not satisfy this requirement because trangiticem never fire
and places can never get tokens. Sbands areredundant The resource placesre, contrary to the
production placesedundantby their nature, since resource tokens cannot be created by thectioodu
net and should be present in the initial marking of the RCWF-net.

On the other hand, it should be possible for all places optbduction neiexcept forf) to become
unmarked again—otherwise the net is guaranteed to leave garbagerafiesging, as e.g. production
netN; in Fig. 1—places can obtain tokens but it can never become unmarked after that, i.e. this place
is persistent Similarly, there should be no persistent transitions in the production net,arssitions
producing a token to a non-final place of the production net which dammtmoved” to a final place
later on. Theesourceplaces, on the other hand, grersistentsince every claimed resource should be
released before the production process is completed. In formal terms:

Definition 3.2. LetN = (P, T, F) be a WF-net.

A placep € P is non-redundaniff there existk € N andm € NP such thak[i] — mAp € m.
A placep € P is non-persisteniff there existk € N andm € NP such thap € mA m — K[f].
A transitiont is non-redundaniff there existk € N andm € NP such thak[i] —— m L.

A transitiont is non-persistenif there existk € N andm, m' € NP such tham —— n - Kf].

The following lemma presents these desirable behavioural properties ingerweeal terms:

Lemma 3.3. (1) A WF-netN has no redundant places iff every marking is majorated by a marking
reachable from some initial markirgj], i.e.

vme NP:Jke N,m € R(k[i]) : m >m.

(2) A WF-netN has no persistent places iff every marking is majorated by a marking fraohwbme
final markingk[f] is reachable, i.e.

VmeNP:Ike N e NP ¥ S K[f]AM >m.



Proof:

(1) If every marking can be majorated by a marking reachable from sdifpéhen every markindp],
p € P, can be majorated argis non-redundant. In the opposite direction: suppose that for evésre
exist ky, My, such thatky[i] —— m, wherem, > [p]. Then we can majorate a given markimgby a

markingnt = 3=, m reachable fron{ >-,, ko) i].
(2) can be proved similarly. O

As an immediate consequence we obtain the following property:

Lemma 3.4. (1) A WF-netN has no redundant places iff it has no redundant transitions. (2) Ag{F-
N has no persistent places iff it has no persistent transitions.

Proof:
(1) LetN have no redundant places. Consider an arbitrary trangitioi. By applying property (1) of
Lemma 3.3 t@t we obtain that can become enabled, and hence it is non-redundant.

Now assume thall has no redundant transitions. Consider an arbitrary gae® \ {i}. SinceN is
a WF-net,*p # (), and since all transitions are non-redundant, transitions foan fire and s@ can
get marked. Thup is non-redundant.
(2) can be proved similarly. O

3.2. Structural Correctness Requirements for RCWF-Nets

Non-redundancy and non-persistency are behavioural propeftesy imply though the following re-
strictions on the structure of the net: all proper siphons of the net shoaldiai and all proper traps
should contairi. If N contained a proper siphon withduthe transitions consuming tokens from places
of that siphon would be dead, no matter how many tokens are put.irsamilarly, if N contained a
trap withoutf, the net could not terminate properly. It is not surprising that the alesehtraps and
siphons is a necessary condition for the correctness of the desigrt iS\thare interesting is that the
absence of such siphons and traps gufiicientcondition for the absence of redundant and persistent
places respectively: if a net has a redundant place, there existper giphon without, and if a net has

a persistent place, there exists a proper trap withaiug. these behavioural and structural characteristics
are equivalent for WF-nets [9]:

Theorem 3.1. LetN = (P, T, F) be a WF-net. Then the following holds:
(1) pis a redundant place iff it belongs to a siphérC (P \ {i}).
(2) pis a persistent place iff it belongs to a trdp_ (P \ {f}).

Proof:
(1) LetX C P\ {i} be a proper siphon. Since an unmarked siphon stays unmarked, plawes are
redundant.

In the opposite direction: LeX C P\ {i} be the set of all redundant placesNf We will prove
that X is a siphon. Consider somieZ X°®; *t contains no places frord and hence all places frof
are non-redundant. Then for every plgrin °t there exists a markingy, > [p| reachable from some
koli], ko € N. Taking a sum of corresponding initial markings we obtain an initial markiomfwhich
a markingm > °t can be reached. Thasan fire and all places fromt can obtain tokens, i.e. they are



Figure 2. An RCWF-net with dependent resource places

non-redundant. Therefore?,N X = () and sat ¢ *X. Hence(T \ X*) C (T \ *X), and soX is a siphon.
Thus all redundant places belong to a proper siphd®\[{i}.
(2) can be proved analogously. O

One can compute the largest sipiin P\ {i} in a standard manner [13]: initiali2é with P\ {i}
and remove the places that belong%dor somet such that ¢ X* until the fixed point is reached. The
largest trap not containingcan be computed with a similar algorithm.

Thus, let an RCWF-nell with an underlying production néd, be given. To check the structural
correctness requirements binwe first check that the production g has no redundant and persistent
places, i.e. there is no siphon (iR, \ {i}) and there is no trap iPy \ {f}). If redundant or persistent
places are found, the error is reported to a designer. The produetiovithout redundant and persistent
places does not have redundant or persistent transitions either. oteytprojecting out redundant
places and transition of the production net, we do not change the behafithe RCWF-net. Presence
of persistent places and transitions in the production net indicates proii¢ngsnet design, since there
are possible executions that will leave garbage on persistent placess@ fiitaces are not redundant at
the same time as well). We will call the production net that has neither redundapersistent places
structurally correct

Next, we check that all resource places are redunaiagipersistent in nel. If this is not the case,
there is an error in the design: resources can be created or destiunymeglithe processing. If the design
is correct w.r.t. this criterion, we can proceed further with using diffeneterpretations of “design
correctness”, depending on whether the resources are suppobednaependenbr not. From the
modelling point of view, resource dependence means that resource itgmmemdar to resource items of
another type during the processing; in many cases resource depiEsdgn not correspond to the real
system behaviour and indicate design errors (manpower cannot Béotraad into machinery and vice
versa). We illustrate the notion of resource dependence withmetFigure 2. A firing of transitiorb
moves a resource from the resource plac® the resource plaag while firing of transitionc moves a
resource from the resource plaeeto the resource plaag. Thus, during the processing of a task in the
net(N, [i] + [r1] + [r2]) resources; andr, trade places. We call such resourdependentNote that
r; (as well ags) is redundant and persistent in Mgtbut it is neither redundant nor persistent in the net
obtained fromN by removing place; (r, respectively) together with its in- and outgoing arcs.

Definition 3.3. We will say that a resourceis independenbf other resources in an RCWF-ngt=



(PpUP,, T,Fy UF', Fy UF) with a structurally correct production nip iff Nip (y is an RCWF-
net where place is a resource place again, i.e. it is both redundant and persistent.

We expect the designer to indicate which resource places in the netpgraessal to model indepen-
dent resources; the check whether resources are independeed ican be easily done by calculating
traps and siphons. In the rest of the paper we suppose that allcesqaces in RCWF-nets are inde-
pendent.

To summarize:

Definition 3.4. An RCWF-netN is structurally correctiff
e the production nel|p, has no redundant or persistent places, and

¢ allresources € P; are independent of other resource§in

4. Soundness of Resource-Constrained Workflow Nets

Soundness in WF-nets is the property that every marking reachablaframitial marking withk tokens
on the initial place terminates properly, i.e. it can reach a markingktibkens on the final place, for an
arbitrary natural numbét. In RCWF-nets, the initial marking of the net is a marking with some tokens
on the initial place and resource places. Proper termination assumes thasabece tokens are back
to their resource places and all tasks have been processed coirecd,the places o, except forf
are empty and the number of tokensfois the same as we had omitially. Moreover, the net should
behave properly not only with some fixed amount of resources but atboawy greater amount: we
want a sound system to work correctly also when more money, manpaweaaohinery is available. On
the other hand, it is clear that some minimal amount of resources is needbkd &ystem to work at all.
Another correctness requirement that should be reflected by the defiofteoundness is that re-
source tokens cannot be created during processing, i.e. the numdnailable resources does not ex-

ceed the number of initially given resources at any moment of time. This esqgeit is related to the

requirement of resource independence: Consider a firing seqlipnde; | + [ro] ab, (5] + [0] +2[r2] in

netN in Figure 2, the number of resources of typehas increased in comparison to the initial number,
which contradicts the assumption that resources cannot be createdptfszm other resources.
The extended definition of soundness thus reads as follows:

Definition 4.1. (soundness)
Let N be an RCWF-net.

N is (k, R)-soundfor somek € N, R € N™ iff for all m € R(k[i] + R), m — (K[f] + R) andmjp, < R.
N is k-soundff there existsRy € N such thaN is (k, R)-sound for allR > Ry.
N is soundiff there existsRy, € N such thaN is (k, R)-sound for allk € N,R > Ry.

Soundness of WF-nets becomes thus a special case of soundn€3&/btiiets (by taking the empty
set of resource places). Note that any (finite) firing sequence ofrtidugtion net is possible in the
RCWEF-net if we take a sufficiently large resource marking. Since wanegisound RCWF-net to work
properly forall “large” resource markings, all nets obtained by projecting out resquiexes have to be
sound as well:



Theorem 4.1. Let N be an RCWF net and 18 C P,. Then: (1) IfN is k-sound, therN l(PouPy) 1S
k-sound too; (2) IN is sound, theMN[p,pr) is sound too.

Proof:

We only prove (1), as (2) is fully analogous. 9¢t = N [p . SinceN is k-sound, there exists
Ry € NP such thatN is (k,R)-sound for eaclR > R;. ChooseR > Ry, and letR = RIp and
k[i] + R -\ m. Then we can findR; € NP'\P" R; > R— R/, such thak[i| + R + R, ——>n n + Ry
for some markingR,. Note thatR, € N™\P" sinceoy, — 8,0 = (o} — {o)lp,upy)- SinceN is k-sound
andR + R; > R > Ry, we haven? + Ry, ——y K[f] + R + R;. By Lemma 3.2 sy k[f] + R.
Moreover, by soundness bf, n[p, +R, < R + Ry. SinceRy, Ry € NP\Pr andnt [p € Pr, M [p < R.
SoN’ is k-sound. O

By consideringN|p, we obtain a necessary condition of soundness for RCWF-nets:

Corollary 4.1. (necessary condition 1)
If N is a sound RCWF-net, its production iéf = Nip, is sound, too.

Thus soundness of the underlying production net is a necessarionifidr soundness of an RCWF-net.
We do not discuss the decision procedure for soundness of WF-eretbtit refer the interested reader
to [9], where soundness of WF-nets is proved to be decidable andsacaegrocedure is given.

4.1. No-Resource-Creation Condition

Another requirement a sound RCWF-net should meet is that there is oorcestoken creation, i.e.
there is a resource markimy such that for any larger resource markR@> Ry, any reachable marking

m € R(K[i] + R) (k € N) has at mosR resource tokens. It is however impossible to check this property
directly since we have infinitely many markingslifi. R (K[i] + R), and sets of all reachable markings
R(K[i]+R) do not have simple algebraic characteristics. Therefore we will try angythat the required
property holds on markings frotn, . R(K[i] + R) iff it holds for all markings from a set with a simple
algebraic structure. For this purpose we introduce a notion of exteedetiability:

Definition 4.2. (extended reachability)
Theextended reachability relations C NP x NP between markings of an RCWF-niétis defined by

m~m & 30N, Re NP :m+(fi] + R m + /[f] + R

Note that —— C ~~ (take/ = 0 andm, = (). We illustrate the meaning of extended reachability on

netN in Figure 3t Consider markingé] and[q] + [r]; [i] A= [a] + [r], however[i] + [i] + 4[r] tu,
[g] + [r] + [f] + 4[r], and thus, according to Definition 4.2, ~ [q] + [r]. Note that after the firing of
t2u, the number of resource tokens exceeds the initial number of resolmestavhich shows that the
RCWF-net is not sound. Ia» we observe an increase of the number of resource tokens as well.

For sound RCWF-nets;> has a regular algebraic structure: it turns out to be equality modulo the
F-lattice:

Instead of drawing a resource placand its in- and outgoing arcs, we put the weights of the arcs to and fronesbence
place under the corresponding transitions.(3d ) for transitiont means that consumes 2 resource tokens from the resource
placer and then releases 1 resource token mto
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Figure 3. Extended reachabilitfij ~ [q]

Theorem 4.2. LetN be a sound RCWF-net without redundant places in its production néttemdn’ €
NP. Thenm ~ m iff mf —me F.ZT, whereF.ZT £ {F . x| x € ZT}.

Proof:
(=): Supposen,m’ € NP andm ~» m'. By Definition 4.2, there exist ¢ N,R € N such that
m+£[i]+R - m/+¢[f]+Rfor some firing sequencee By Lemma 2.1 +/[f]+R = m+([i]+R+F- 7.
SinceN is sound,/[f] + R = ([i] + R + F - x for somex € NT R ¢ NP (Lemma 2.1). Hence,
m =m+F - (o —x)and thusw — me F.ZT.
(«<): Supposém —m) € F.ZT, so there exist,y € NT such tham’ —m= (F* —F~) - (x—y). Thus,
m+FT - Xx+F .y=m+F -x+F".y.

SinceN, has no redundant places, by Lemma 3.3 we can#find0, m; € NPe such that|i] LN,,
Fp - (X+Y)+m;. By taking enough resourcesec NP, we obtair¢[i] + R ——n F~ - (X-+Y) +my +m, for
somem, € NP, Note that every firing sequeneawith Parikh vectoy is enabled ifF ~ - (x+y)4-m; +mp,
andF~ - (x+y) +m +my Ty F~ - x4+ FF -y +m +m,. SinceN is sound and[i] + R =y
F~-Xx+Ft.y+m +m, wededucd~ - x+FT.-y+m +m =y (f]+R

On the other hand, for a firing sequeng®ith 5" = x, we havem+ ¢[i] + R >y m+F~ - (x +
y)4+m +mp sy mE+Ft o x+F oy+m+mp=n +F -x+Ft.y+m +m. Since
F~-x+Ft.y+m +m —5y /[f] + R we obtainm+ ([i] + R~y M +([f|+ R i.eem~m. O

Going back to neN in Figure 3, we choose the orderiigp, g, f,r) of places andt, u, v, w) of
transitions for the vector/matrix representation. It is easy to check th@t fer [q] + [r] we have indeed:

0 1 -1 0 0 0 .
0 0 1 -2 0 -1
1l=o[+] o 1 -1 0
0 0 o 1 1 1 _1
1 0 -1 1

Having shown that the set of markings related-~byto a given marking enjoys a regular algebraic
structure, we will show that for sound RCWF-nets the number of resdokens does not exceed the
initial number of tokens not only for all the markingssuch thak[i] + R —— m(k € N,R > Ry),
but also for the markingst such thak]i] + R ~» m, which will give us a necessary condition for the
“non-creation” of resources in RCWF-nets.



Theorem 4.3. Let N be a sound RCWF-net without redundant places in its production néRaad\™
be a minimal resource marking such thais (k, R)-sound for ank € N, R > R,. Then for any marking
msuch thak[i] + R~» m, wherek € N,R > Ry, we havemp, < R.

Proof:

Let m be a marking such thd{i] + R ~~ mfor somek € N,R > R,. By Definition 4.2, there exist
¢ € N,R € N such thak[i]+R+¢[i] +R —— m+¢[f]+R. SinceN is sound(m+/[f]+R)[p, < R+R,
which implies tham/p, <R O

Now we can formulate another necessary condition of soundness:

Theorem 4.4. (necessary condition 2)
Let N be a sound RCWF-net without redundant places in its production netn foneall x ¢ ZT,
(F-x) [(p\i}) = 0 implies that(F - x)[p, < 0.

Proof:

Consider a vectox € Z" such that(F - x) [Po\(i}) = 0. Then there exisk € N,R € NPr such that
Kli] + R+ F-x> 0,i.e.K[i] + R+ F - xis a marking. Then by Theorem 4ij] + R~ k[i] + R+ F - x.
By Theorem 4.3(k[i] + R+ (F-)p, < R, which immediately implies thaf - x)[p, < 0. 0

Necessary condition 2 is in fact a requirement that all solutions of one@igg(forming a convex
polyhedral cone) are also solutions of another inequality, or in othedsyane cone is a subset of
another cone, which can be checked by standard algebraic techniques

If necessary condition 2 holds for some RCWF-Neit guarantees that the soundness condition of
“no resource token creation” holds fisr.

Theorem 4.5. (necessary condition 2> no resource token creation)
Let N be an RCWF-net such that for alic ZT, (F - X) [(Po\{iy) = 0 implies that(F - X)[p, < 0. Then for
anyk € N,R € N™ and anym € R(K[i] + R) we havem/p, < R.

Proof:

Consider a markingh € R (Kk[i] +R) wherek € N, R € N™. By Lemma 2.1m = k[i] + R+F -x for some

x € NT. Sincem > 0, (F-x) [P\ = 0, which implies thatF-x)[p, < 0. Thusm[p, = R+F-X[p, <R
O

4.2. Proper Termination Condition

A consequence of the requirement to work correctly for all “large” nmkis that any transition invari-
ant of the closure of the production net is a transition invariant of the trsai@oof the RCWF-nédl,
where theclosureof a WF-net is the net obtained by adding a closing transitiesuch thaft; = [f] and
t? = [i] RCWF-net.

Theorem 4.6. (necessary condition 3)
Let N be asoundRCWF-net such that its production g has no redundant transitions, aNcaindN,
be their respective closures. Then for any vegterZ' holds:

Fp-x=0&F-x=0. (1)



Proof:

Note thafF - x = 0 impliesFy-x = 0. So we only have to show the implication. Suppos€,-x = 0 for
somex € NT. ThenF-x € ZPr and we can findn;, my € N such thaf-x = m; —m,. By Theorem 4.2,
we havem; ~» mp, thus there exist € N,R € NP such thaim; + ¢[i] + R — my + ¢[f] + R. Note
that we can choosB > Ry whereR, is the minimal resource marking according to the definition of
soundness. By soundnesshfalsom; + £[i] + R —— my + £[f] + R Sincem; andm, are resource
markings,m; = mp. Thus,F - x = 0. O

Note thatF - x = 0 < (Fp - x =0 A F, - x = 0). Thus, for anysoundRCWF-net, the solution space
of the equatiorF, - X = 0 is a subset of the solution space of the equafipnx = 0. On the other hand,
for any RCWF-net, iﬂ:_IO -X =0 < F-x = 0 holds we can conclude that if no deadlock or livelock
caused by the lack of resources occurs, then the net terminatesipropeall resources are returned to
their places:

Theorem 4.7. (necessary condition 3> resources are returned to their places upon termination)
Let N be an RCWF-net such that its production Ngthas no redundant transitions, and for the closure
netsN andNj holds that for any vectox € ZT, Fy - x = 0 & F - x = 0. Then for anyk € N,R €

NP me NP, K[i] + R — K[f] + mimpliesm=R.

Proof:
Follows directly from Theorem 4.6 and Theorem 4.1. O

4.3. Place invariant conditions

Now we are going to show that sound RCWF-nets possess “productiorit@esource” place invariants,
which is another necessary condition of soundness. Recallthd¢notes the set of all place invariants.

Lemma 4.1. If N is a sound RCWF-net, then ealck Zy satisfied (i) = I(f).

Proof:
By choosingR € N™ large enough, we havig + R — [f] +R, so for anyl € Zy we have - ([i] +R) =
I - ([f] + R) and henceé(i) = I (f). 0

Lemma 4.2. LetN be a sound RCWF-net amd= P,. Then for every placg € P, U P there is a place
invariant! satisfyingl (p) = 1.

Proof:

Let N be sound. Suppose all place invariahts Zy satisfyl (p) = 0. Then|p| is orthogonal tdZy, and
by Lemma 2.2]p] € F.Q'. Thus there existk € Z, k # 0, such thak[p] € F.Z". By Theorem 4.2,
0 ~~ Kk[p], therefore there exigt Rsuch that[i] + R — k[p] + £[f] + R, which is only possible ik = 0.

This is a contradiction, and so there exists a place invarismth that (p) # 0. By scalar multiplication,
we obtainl with I (p) = 1. 0



Theorem 4.8. (necessary condition 4)

If N is a sound RCWF-net, there exists a place invaiigstich thal (i) = I,(f) = 1 andly(r) = 0 for
eachr € P, which we call goroduction place invariantand place invariants for eachr € P; satisfying
(i) =1,(f) =0,1,(r) =1andvr' € P\ {r} : I,(r") = 0, which we callresource place invariants

Proof:

LetN be a sound RCWF-net. By Corollary 4.1, the productionNysis sound too, st has an invariant
I satisfyinglg(i) = 15(f) = 1 (Lemmas 4.2 and 4.1). By Lemma 2.3, there is an invatigof N such
thatl (p) = I’(p) if p € Ppandl(p) =01if p € P;.

The projectiorN’ = Nlp,uir}» being sound (Theorem 4.1), has an invariasatisfyingJ(r) = 1. Since
the production net o’ equalsNp, N has an invarianty corresponding tdy, so it satisfied; (i) = 1
andlg(r) = 0. Let)" = J —J(i) - I, thenJ'(i) = J'(f) = 0 andJ'(r) = 1. By Lemma 2.3, this
corresponds to an invariahtwith the stated properties. O

Note that the existence of resource place invariants is a requiremesitf&mnets [4], which links
sound RCWF-nets t8'PRnets.

5. Conclusion

We have introduced an extension of Workflow né&source-Constrained Workflow nets (RCWF-nets)
and we have given a number of necessary conditions for desigrctmss of these nets. One correct-
ness criterion is structural correctness that guarantees the ab$eaderalant and persistent places and
transitions; structural correctness can be checked by using trapspdmmhs. We also defined resource
dependencies and discussed how to discover them in a model. Anothestness criterion is sound-
ness, which is an extension of the soundness notion for WF-nets to tneftBEWF-nets. Additional
requirements concern the durability of resources.

We prove a number of properties of sound RCWF-nets, which form af seticessary conditions of
soundness. One natural condition is that the production net of a scOWiFRhet is sound. Soundness
of the production net can be checked using the procedure descriljéfl imhe second condition is
formulated in terms of linear inequalities on incidence matrices of an RCWHFadetsaproduction net
that can be checked by standard algebraic techniques and it guardatteo resource token creation in
the RCWF-net is possible during processing. The third condition postulatethe transition invariants
of the closure of a sound RCWF-net and of its underlying productioamsthe same, which guarantees
resource conservation upon termination. And finally, in the fourth conditi@showed that soundness
implies the existence of a resource place invariant for all resourcesplatich relates sound RCWF-
nets toS'PRnets.

Related work Modelling the use of resources by Petri nets and analyzing these modelative
research field. We mention research on flexible manufacturing systen®) (ke [7, 4, 6, 12]), where
the construction of appropriagehedulegor such models is the key issue. Our approach emphasises the
construction of robust nets with self-scheduling that are free of deksliorespective of the number of
resources available beyond a certain minimum.

In [3] the authors consider structural analysis of Workflow nets withrexhaesources. Their def-
inition of structural soundness corresponds approximately to the exéstéikcm, such that the net is



(k, my)-sound. Since we consider systems where the number of cases goingftitihe net and the num-
ber of resources can vary, and the system should work correcthnfonumber of cases and resources,
the results of [3] are not applicable to our case.

Future work The RCWHF-nets satisfying the correctness criteria given in this papebeamsound
only if they contain a deadlock or a livelock due to a lack of resourcemgltine production process.
Soundness of RCWF-nets with a fixed number of resources is decidabigiry techniques from [9]
but it is still an open question whether soundness is decidable for §&EVdF-nets. Another research
question is finding structural patterns for building sound-by-constm&®OWF-nets.
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