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Abstract. We study concurrent processes modelled as workflow Petri nets extended with resource
constrains. Resources are durable units that can be neithercreated nor destroyed: they are claimed
during the handling procedure and then released again. Typical kinds of resources are manpower,
machinery, computer memory. We define structural criteria based on traps and siphons for the cor-
rectness of workflow nets with resource constraints. We alsoextend the soundness notion for work-
flow nets to the workflow nets with resource constraints; extra conditions concern the durability of
resources. We prove some properties of sound resource-constrained workflow nets.
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1. Introduction

In systems engineering, coordination plays an important role on various levels. Workflow management
systems coordinate the activities of human workers. The principles underlying workflows can also be
applied to other software systems, like middleware and web services. Petri nets are well suited for
modelling and verification of concurrent systems; for that reason they have proven to be a successful
formalism for workflow systems (see e.g. [2]).

Workflow systems are modelled by so-calledWorkflow Nets (WF-nets), i.e. Petri nets with one initial
and one final place and every place or transition being on a directed path from the initial to the final place.
The execution of acaseis represented as a firing sequence that starts from the initial marking consisting
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of a single token on the initial place. The token on the final place with no tokens(garbage) left on the
other places indicates theproper terminationof the case execution. A model is calledsoundiff every
reachable marking can terminate properly.

Originally, WF-nets were intended to model the execution of a single case. In[8, 9] we considered
WF-nets modelling the execution of batches of cases in WF-nets, where along with standard for WF-nets
transitions/subnets that process one case per time there are transitions/subnets allowing a (faster, cheaper,
etc.) processing of several cases at the same time. We defined the notion ofgeneralised soundness:
“States reachable after starting withk tokens on the initial place will be able to reach the state with
only k tokens on the final place, for any natural numberk” and showed that the generalised soundness is
decidable.

WF-nets are meant to emphasise the partial ordering of activities in the process while abstracting
from resources(e.g. machines or personnel) which may further restrict the occurrenceof activities. In
this paper (which is an extended version of [10]) we consider the influence ofresourceson the processing
of cases in Workflow Nets. Resources are durable, i.e. they are claimed and released during the execution,
but they cannot be created or destroyed. We concentrate here on fundamental correctness requirements
for Resource-Constrained Workflow nets (RCWF-nets): no redundancy in system design, resource con-
servation laws (every claimed resource is freed before the case terminates and no resource is created
during processing), and the absence of deadlocks or livelocks that occur due to the lack of resources.
We introduce somestructural correctness criteria for RCWF-nets, extend the notions of soundness to
RCWF-nets and give necessary conditions for soundness expressed in terms of net invariants.

The rest of the paper is organised as follows. In Section 2, we sketch basic definitions related to Petri
nets and Workflow nets. In Section 3 we introduce the notion of Resource-Constrained Workflow Nets
and consider some structural correctness criteria for them. In Section 4 we define and investigate the
notion of soundness for RCWF-nets. We conclude in Section 5 by discussing obtained results, related
work and directions for future work.

2. Preliminaries

N denotes the set of natural numbers,Z the set of integers andQ the set of rational numbers.
Let P be a set. Abag (multiset) moverP is a mappingm : P → N. The set of all bags overP is

NP. We use+ and− for the sum and the difference of two bags and=, <, >,≤,≥ for comparisons of
bags, which are defined in a standard way. We overload the set notation,writing ∅ for the empty bag,
andp ∈ m whenm(p) > 0. We write e.g.m = k[p] + `[q] for a bagm with m(p) = k, m(q) = `, and
m(x) = 0 for all x 6∈ {p, q}. For a sum over the elements of a bagm we write

∑

p∈m f (p) (assuming that
everyp appears in the summ(p) times) rather than

∑

p∈P m(p) · f (p). We writem�Q for the projection of
bagmonQ ⊆ P; formally, m�Q is a bag overQ such thatm�Q(p) = m(p) for everyp ∈ Q.

For (finite)sequencesof elements over a setT we use the following notation: The empty sequence
is denoted withε; a non-empty sequence can be given by listing its elements. TheParikh vector−→σ of a
sequenceσ maps every elementt ∈ T to the number of occurrences oft in σ, denoted by−→σ (t).

Transition Systems A transition systemis a tupleE = 〈S, Act, T〉 whereS is a set ofstates, Act is
a finite set ofaction namesandT ⊆ S× Act × S is a transition relation. A processis a pair〈E, s0〉
whereE is a transition system ands0 ∈ San initial state. We denote(s1, a, s2) from T ass1

a
−→ s2, and



we say thata leads froms1 to s2. For a sequence of transitionsσ = t1 . . . tn we writes1
σ

−→ s2 when
s1 = s0

t1−→ s1
t2−→ . . .

tn−→ sn = s2, ands1
σ

−→ whens1
σ

−→ s2 for somes2. In this case we say that
σ is a trace ofE. Finally, s1

∗
−→ s2 means that there exists a sequenceσ ∈ T∗ such thats1

σ
−→ s2. To

indicate that the stepa is taken in the transition systemE we writes
a

−→E s′.
Given two transition systemsN1 = 〈S1, Act, T1〉 andN2 = 〈S2, Act, T2〉. A relationR⊆ S1 × S2 is

a simulationiff for all s1, s′1 ∈ S1, s2 ∈ S2, s1Rs2 ands1
a

−→ s′1 implies that there existss′2 ∈ Ssuch that
s′1Rs′2 ands2

a
−→ s′2.

Petri nets A Petri netis a tupleN = 〈P, T, F+, F−〉, where:

• P andT are two disjoint non-empty finite sets ofplacesandtransitionsrespectively; elements of
the setP∪ T are called thenodesof N;

• F+ andF− are mappings(P× T) → N that areflow functionsfrom transitions to places and from
places to transitions respectively.

F = F+ − F− is theincidence matrixof netN. We depict nets by the usual graphical notation.
To project away some places of the net together with their in- and outgoing arcs we define the

projection operation:

Definition 2.1. (projection)
Let N = 〈P, T, F+, F−〉 be a Petri net and letP′ ⊆ P. The projection N�P′ of N w.r.t. P′ is the net
〈P′, T, F+�(P′×T), F−�(P′×T)〉.

Given a transitiont ∈ T, the preset•t and thepostset t• of t are thebagsof places where every
p ∈ P occursF−(p, t) times in•t andF+(p, t) times in t•. Analogously we write•p, p• for pre- and
postsets of places. To emphasize the fact that the preset/postset is considered within some netN, we
write •

Na, a•N. We overload this notation further and apply preset and postset operations to a setB of
places:•B = {t | ∃p ∈ B : t ∈ •p} andB• = {t | ∃p ∈ B : t ∈ p•}. Note that•B andB• are not bags
but sets. We will say that noden is asourcenode iff •n = ∅ andn is asinknode iff n• = ∅. A pathof a
net is a sequencex0 . . . xn of nodes such that∀ i : 1 ≤ i ≤ n : xi−1 ∈ •xi .

A marking m of N is a bag overP; a pair(N, m) is called amarkedPetri net. A transitiont ∈ T
is enabledin markingm iff •t ≤ m. An enabled transitiont may fire. This results in a new marking
m′ defined bym′ def

= m − •t + t•. We interpret a Petri netN as a transition system/process where
markings play the role of states and firings of the enabled transitions define the transition relation, namely
m + •t

t
−→ m + t•. The notion of reachability for Petri nets is inherited from transition systems.For

a firing sequenceσ in a netN, we define•σ andσ• respectively as
∑

t∈σ

•t and
∑

t∈σ
t•, which are the

sums of all tokens consumed/produced during the firings ofσ. So if m
σ

−→ m′, thenm′ = m− •σ + σ•.
We will use the well-knownMarking Equation Lemma:

Lemma 2.1. (Marking Equation)
Given a finite firing sequenceσ of a netN: m

σ
−→ m′, the following equation holds:m′ = m+ F+ · −→σ −

F− · −→σ , or in other words,m′ = m+ F · −→σ .

Note that the reverse is not true: not every markingm′ that is representable as a summ+ F · v for
somev ∈ NT is reachable from the markingm. We will write F.X for the set of vectors{F · x | x ∈ X}.



We denote the set of all markings reachable in netN from markingm asR(N, m). We omitN and write
R(m) when no ambiguities can arise.

Traps and Siphons (see [5]) A setR of places is atrap if R• ⊆ •R. A setR of places is asiphonif
•R⊆ R•. The trap/siphon is aproper trap/siphoniff it is not empty. As follows from the definition, traps
and siphons are dual by their nature. Important properties of traps andsiphons are thatmarked traps
remain markedandunmarked siphons remain unmarkedwhatever transition firings would happen.

Invariants (see [11]) Aplace invariantis a row vectorI : P → Q such thatI · F = 0. When talking
about invariants, we consider markings asvectors, where we assume arbitrary but fixed orderings of
places and transitions. We denote the set of all place invariants asIN, which is a linear subspace ofQP.
The following properties follow directly from the definition of place invariants:

Lemma 2.2. IN is orthogonal toF.QT.

Lemma 2.3. Let N be a Petri net with placesP, let P′ ⊆ P andI ′ be a place invariant ofN�P′ . ThenI
defined asI(p) = I ′(p) if p ∈ P′ andI(p) = 0 otherwise, is a place invariant ofN.

The main property of place invariants is that for any two markingsm1, m2 such thatm1
∗

−→ m2 and any
place invariantI holds: I · m1 = I · m2.

A transition invariantis a column vectorJ : P → Q such thatF · J = 0. For any markingsm, m′ and
firing sequencesσ, γ, if m

σ
−→ m′ andm

γ

−→ m′, then−→σ −−→γ is a transition invariant. This also means
that for any firing sequenceσ such thatm

σ
−→ m, −→σ is a transition invariant.

Workflow Petri nets In this paper we primarily focus uponWorkflow Petri nets (WF-nets)[1]. As the
name suggests, WF-nets are used to model the processing of tasks in workflow processes. The initial and
final nodes indicate respectively the initial and final states of processedcases.

Definition 2.2. A Petri netN is aWorkflow net (WF-net)iff:

1. N has two special places:i and f . The initial placei is a source place, i.e.•i = ∅, and the final
placef is a sink place, i.e.f • = ∅.

2. For any noden ∈ (P∪ T) there exists a path fromi to n and a path fromn to f .

We consider the processing of batches of tasks in Workflow nets, meaningthat the initial place of
a Workflow net may contain an arbitrary number of tokens. Our goal is to provide correctness criteria
for the design of these nets. One natural correctness requirement isproper termination, which is called
soundnessin the WF-net theory. We will use the generalised notion of soundness introduced in [8]:

Definition 2.3. We say that a markingm∈ R(k[i]) in a WF-netN terminates properlyiff m
∗

−→ k[f ].
N is k-soundfor somek ∈ N iff for all m∈ R(k[i]), m terminates properly.
N is soundiff it is k-sound for allk ∈ N.

We will use termsinitial andfinal markings for markingsk[i] andk[f ] respectively (k ∈ N).



3. Resource-Constrained Workflow Nets

Workflow nets specify the handling of tasks within the organisation, factory, etc. without taking into
account resources available for the execution. We extend here the notion of WF-nets in order to include
resource information into the model.

A resource belongs to a type; we have one place per type in the net, wherethe resources are located
when they are free. The resources become part of case tokens whenthey are occupied. We assume that
resources are durable, i.e. they can be neither created nor destroyed: they are claimed during the handling
procedure and then released again. By abstracting from the resourceplaces we obtain the WF-net that
we callproduction net.

Definition 3.1. We say that a WF-netN = 〈Pp ∪ Pr , T, F+
p ∪ F+

r , F−
p ∪ F−

r 〉 with initial and final places
i, f ∈ Pp is aResource-Constrained Workflow net (RCWF-net)with the setPp of production places and
the setPr of resource places iff

• Pp ∩ Pr = ∅,

• F+
p andF−

p are mappings(Pp × T) → N,

• F+
r andF−

r are mappings(Pr × T) → N, and

• Np = 〈Pp, T, F+
p , F−

p 〉 is a WF-net, which we call aproductionnet ofN.

Recall that according to our notation for bags we writem�Pp for the projection ofm∈ NP on production
places andm�Pr for the projection ofmon resource places, andNp is actuallyN�Pp.

By projecting away resource places of an RCWF-net, we obtain an RCWF-net again:

Lemma 3.1. Let N = 〈(Pp∪Pr), T, F+, F−〉 be an RCWF-net. Then for anyP′
r ⊆ Pr , the netN′ = N�P′

r

is an RCWF net.

Proof:
All the conditions are met, withP′

r being the set of resource places. The production net ofN′ is the same
as the one ofN. ut

Note that additional resource places only limit the behaviour of the net:

Lemma 3.2. Let N = 〈(Pp ∪ Pr), T, F+, F−〉 be an RCWF-net andP′
r ⊆ Pr . ThenR = {(m, m�(Pp∪P′

r)

) | m∈ NPp∪Pr} is a simulation relation betweenN andN�(Pp∪P′

r)
.

Proof:
Let P = Pp ∪ Pr , P′ = Pp ∪ P′

r andN′ = N�(Pp∪P′

r)
). Supposem1

t
−→N m2 for somem1, m2 ∈ NP, thus

m1 ≥ •
Nt andm2 = m1 −

•
Nt + t•N. Then alsom1�P′≥ •

N′ t andm2�P′= m1�P′ −•
N′ t + t•N′ . ut

By takingP′
r = ∅ we trivially obtain thatR = {(m, m�Pp) | m∈ N(Pp∪Pr)} is a simulation relation for

N andNp.
Next we will discussstructural correctness criteriafor WF-nets based on traps and siphons and then

show how these criteria can be adapted to the RCWF-nets.
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Figure 1. Redundant and persistent places

3.1. Redundant and Persistent Places

In [9] we introduced notions of redundant and persistent places in WF-nets and showed how to find them
with the use of siphons and traps. Here we extend the results from [9] anduse the notions of redundancy
and persistency to analyse structural correctness of RCWF-nets.

A natural requirement for the correct design of an RCWF-net isnon-redundancyof theproduction
net, namely: every transition of the net can potentially fire and every place of the production net can
potentially obtain tokens, provided that there are enough tokens on the initialplacei and enough resource
tokens. Production netN1 in Fig. 1 does not satisfy this requirement because transitiond can never fire
and places can never get tokens. Sod ands are redundant. The resource placesare, contrary to the
production places,redundantby their nature, since resource tokens cannot be created by the production
net and should be present in the initial marking of the RCWF-net.

On the other hand, it should be possible for all places of theproduction net(except forf ) to become
unmarked again—otherwise the net is guaranteed to leave garbage after processing, as e.g. production
netN2 in Fig. 1—places can obtain tokens but it can never become unmarked after that, i.e. this place
is persistent. Similarly, there should be no persistent transitions in the production net, i.e. transitions
producing a token to a non-final place of the production net which cannot be “moved” to a final place
later on. Theresourceplaces, on the other hand, arepersistent, since every claimed resource should be
released before the production process is completed. In formal terms:

Definition 3.2. Let N = 〈P, T, F〉 be a WF-net.
A placep ∈ P is non-redundantiff there existk ∈ N andm∈ NP such thatk[i]

∗
−→ m∧ p ∈ m.

A placep ∈ P is non-persistentiff there existk ∈ N andm∈ NP such thatp ∈ m∧ m
∗

−→ k[f ].

A transitiont is non-redundantiff there existk ∈ N andm∈ NP such thatk[i]
∗

−→ m
t

−→.

A transitiont is non-persistentiff there existk ∈ N andm, m′ ∈ NP such thatm
t

−→ m′ ∗
−→ k[f ].

The following lemma presents these desirable behavioural properties in moregeneral terms:

Lemma 3.3. (1) A WF-net N has no redundant places iff every marking is majorated by a marking
reachable from some initial markingk[i], i.e.
∀m∈ NP : ∃ k ∈ N, m′ ∈ R(k[i]) : m′ ≥ m.
(2) A WF-netN has no persistent places iff every marking is majorated by a marking from which some
final markingk[f ] is reachable, i.e.
∀m∈ NP : ∃ k ∈ N, m′ ∈ NP : m′ ∗

−→ k[f ] ∧ m′ ≥ m.



Proof:
(1) If every marking can be majorated by a marking reachable from somek[i], then every marking[p],
p ∈ P, can be majorated andp is non-redundant. In the opposite direction: suppose that for everyp there
exist kp, mp, such thatkp[i]

∗
−→ mp wheremp ≥ [p]. Then we can majorate a given markingm by a

markingm′ =
∑

p∈m mp reachable from
(
∑

p∈m kp
)

[i].
(2) can be proved similarly. ut

As an immediate consequence we obtain the following property:

Lemma 3.4. (1) A WF-netN has no redundant places iff it has no redundant transitions. (2) A WF-net
N has no persistent places iff it has no persistent transitions.

Proof:
(1) Let N have no redundant places. Consider an arbitrary transitiont ∈ T. By applying property (1) of
Lemma 3.3 to•t we obtain thatt can become enabled, and hence it is non-redundant.

Now assume thatN has no redundant transitions. Consider an arbitrary placep ∈ P\ {i}. SinceN is
a WF-net,•p 6= ∅, and since all transitions are non-redundant, transitions from•p can fire and sop can
get marked. Thusp is non-redundant.
(2) can be proved similarly. ut

3.2. Structural Correctness Requirements for RCWF-Nets

Non-redundancy and non-persistency are behavioural properties. They imply though the following re-
strictions on the structure of the net: all proper siphons of the net should contain i and all proper traps
should containf . If N contained a proper siphon withouti, the transitions consuming tokens from places
of that siphon would be dead, no matter how many tokens are put intoi. Similarly, if N contained a
trap withoutf , the net could not terminate properly. It is not surprising that the absence of traps and
siphons is a necessary condition for the correctness of the design. What is more interesting is that the
absence of such siphons and traps is asufficientcondition for the absence of redundant and persistent
places respectively: if a net has a redundant place, there exists a proper siphon withouti, and if a net has
a persistent place, there exists a proper trap withoutf , i.e. these behavioural and structural characteristics
are equivalent for WF-nets [9]:

Theorem 3.1. Let N = 〈P, T, F〉 be a WF-net. Then the following holds:
(1) p is a redundant place iff it belongs to a siphonX ⊆ (P \ {i}).
(2) p is a persistent place iff it belongs to a trapX ⊆ (P \ {f}).

Proof:
(1) Let X ⊆ P \ {i} be a proper siphon. Since an unmarked siphon stays unmarked, places from X are
redundant.

In the opposite direction: LetX ⊆ P \ {i} be the set of all redundant places ofN. We will prove
that X is a siphon. Consider somet 6∈ X•; •t contains no places fromX and hence all places from•t
are non-redundant. Then for every placep in •t there exists a markingmp ≥ [p] reachable from some
kp[i], kp ∈ N. Taking a sum of corresponding initial markings we obtain an initial marking from which
a markingm ≥ •t can be reached. Thust can fire and all places fromt• can obtain tokens, i.e. they are
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Figure 2. An RCWF-net with dependent resource places

non-redundant. Therefore,t• ∩ X = ∅ and sot 6∈ •X. Hence(T \ X•) ⊆ (T \ •X), and soX is a siphon.
Thus all redundant places belong to a proper siphon inP \ {i}.
(2) can be proved analogously. ut

One can compute the largest siphonX in P \ {i} in a standard manner [13]: initializeX with P \ {i}
and remove the places that belong tot• for somet such thatt 6∈ X• until the fixed point is reached. The
largest trap not containingf can be computed with a similar algorithm.

Thus, let an RCWF-netN with an underlying production netNp be given. To check the structural
correctness requirements onN, we first check that the production netNp has no redundant and persistent
places, i.e. there is no siphon in(Pp \ {i}) and there is no trap in(Pp \ {f}). If redundant or persistent
places are found, the error is reported to a designer. The production net without redundant and persistent
places does not have redundant or persistent transitions either. Note that by projecting out redundant
places and transition of the production net, we do not change the behaviour of the RCWF-net. Presence
of persistent places and transitions in the production net indicates problemsin the net design, since there
are possible executions that will leave garbage on persistent places (if these places are not redundant at
the same time as well). We will call the production net that has neither redundant nor persistent places
structurally correct.

Next, we check that all resource places are redundantandpersistent in netN. If this is not the case,
there is an error in the design: resources can be created or destroyedduring the processing. If the design
is correct w.r.t. this criterion, we can proceed further with using different interpretations of “design
correctness”, depending on whether the resources are supposed tobe independentor not. From the
modelling point of view, resource dependence means that resource items may render to resource items of
another type during the processing; in many cases resource dependencies do not correspond to the real
system behaviour and indicate design errors (manpower cannot be transformed into machinery and vice
versa). We illustrate the notion of resource dependence with netN in Figure 2. A firing of transitionb
moves a resource from the resource placer1 to the resource placer2 while firing of transitionc moves a
resource from the resource placer2 to the resource placer1. Thus, during the processing of a task in the
net (N, [i] + [r1] + [r2]) resourcesr1 andr2 trade places. We call such resourcesdependent. Note that
r1 (as well asr2) is redundant and persistent in netN, but it is neither redundant nor persistent in the net
obtained fromN by removing placer2 (r1 respectively) together with its in- and outgoing arcs.

Definition 3.3. We will say that a resourcer is independentof other resources in an RCWF-netN =



〈Pp ∪ Pr , T, F+
p ∪ F+

r , F−
p ∪ F−

r 〉 with a structurally correct production netNp iff N�Pp∪{r} is an RCWF-
net where placer is a resource place again, i.e. it is both redundant and persistent.

We expect the designer to indicate which resource places in the net are supposed to model indepen-
dent resources; the check whether resources are independent indeed can be easily done by calculating
traps and siphons. In the rest of the paper we suppose that all resources places in RCWF-nets are inde-
pendent.

To summarize:

Definition 3.4. An RCWF-netN is structurally correctiff

• the production netN�Pp has no redundant or persistent places, and

• all resourcesr ∈ Pr are independent of other resources inN.

4. Soundness of Resource-Constrained Workflow Nets

Soundness in WF-nets is the property that every marking reachable froman initial marking withk tokens
on the initial place terminates properly, i.e. it can reach a marking withk tokens on the final place, for an
arbitrary natural numberk. In RCWF-nets, the initial marking of the net is a marking with some tokens
on the initial place and resource places. Proper termination assumes that theresource tokens are back
to their resource places and all tasks have been processed correctly,i.e. all the places ofNp except forf
are empty and the number of tokens onf is the same as we had oni initially. Moreover, the net should
behave properly not only with some fixed amount of resources but also with any greater amount: we
want a sound system to work correctly also when more money, manpower, or machinery is available. On
the other hand, it is clear that some minimal amount of resources is needed for the system to work at all.

Another correctness requirement that should be reflected by the definition of soundness is that re-
source tokens cannot be created during processing, i.e. the number ofavailable resources does not ex-
ceed the number of initially given resources at any moment of time. This requirement is related to the

requirement of resource independence: Consider a firing sequence[i]+ [r1]+ [r2]
ab
−→ [s]+ [q]+2[r2] in

netN in Figure 2, the number of resources of typer2 has increased in comparison to the initial number,
which contradicts the assumption that resources cannot be created, alsonot from other resources.

The extended definition of soundness thus reads as follows:

Definition 4.1. (soundness)
Let N be an RCWF-net.

N is (k, R)-soundfor somek ∈ N, R∈ NPr iff for all m∈ R(k[i] + R), m
∗

−→ (k[f ] + R) andm�Pr ≤ R.
N is k-soundiff there existsR0 ∈ NPr such thatN is (k, R)-sound for allR≥ R0.
N is soundiff there existsR0 ∈ NPr such thatN is (k, R)-sound for allk ∈ N, R≥ R0.

Soundness of WF-nets becomes thus a special case of soundness of RCWF-nets (by taking the empty
set of resource places). Note that any (finite) firing sequence of the production net is possible in the
RCWF-net if we take a sufficiently large resource marking. Since we require a sound RCWF-net to work
properly forall “large” resource markings, all nets obtained by projecting out resource places have to be
sound as well:



Theorem 4.1. Let N be an RCWF net and letP′
r ⊆ Pr . Then: (1) IfN is k-sound, thenN�(Pp∪P′

r)
is

k-sound too; (2) IfN is sound, thenN�(Pp∪P′

r)
is sound too.

Proof:
We only prove (1), as (2) is fully analogous. SetN′ = N �(Pp∪P′

r)
. SinceN is k-sound, there exists

R0 ∈ NPr such thatN is (k, R)-sound for eachR ≥ R0. ChooseR ≥ R0, and letR′ = R�P′

r
and

k[i] + R′ σ
−→N′ m′. Then we can findR1 ∈ NPr\P′

r , R1 ≥ R− R′, such thatk[i] + R′ + R1
σ

−→N m′ + R2

for some markingR2. Note thatR2 ∈ NPr\P′r , sinceσ•
N′ − •

N′σ = (σ•
N − •

Nσ)�(Pp∪P′

r)
. SinceN is k-sound

andR′ + R1 ≥ R ≥ R0, we havem′ + R2
∗

−→N k[f ] + R′ + R1. By Lemma 3.2,m′ ∗
−→N′ k[f ] + R′.

Moreover, by soundness ofN, m′�P′

r
+R2 ≤ R′ + R1. SinceR1, R2 ∈ NPr\P′

r andm′�P′r∈ Pr , m′�P′

r
≤ R′.

SoN′ is k-sound. ut

By consideringN�Pp we obtain a necessary condition of soundness for RCWF-nets:

Corollary 4.1. (necessary condition 1)
If N is a sound RCWF-net, its production netNp = N�Pp is sound, too.

Thus soundness of the underlying production net is a necessary condition for soundness of an RCWF-net.
We do not discuss the decision procedure for soundness of WF-nets here but refer the interested reader
to [9], where soundness of WF-nets is proved to be decidable and a decision procedure is given.

4.1. No-Resource-Creation Condition

Another requirement a sound RCWF-net should meet is that there is no resource token creation, i.e.
there is a resource markingR0 such that for any larger resource markingR≥ R0, any reachable marking
m∈ R(k[i] + R) (k ∈ N) has at mostR resource tokens. It is however impossible to check this property
directly since we have infinitely many markings in

⋃

k∈N
R(k[i] + R), and sets of all reachable markings

R(k[i]+R) do not have simple algebraic characteristics. Therefore we will try and prove that the required
property holds on markings from

⋃

k∈N
R(k[i] + R) iff it holds for all markings from a set with a simple

algebraic structure. For this purpose we introduce a notion of extended reachability:

Definition 4.2. (extended reachability)
Theextended reachability relation ⊆ NP × NP between markings of an RCWF-netN is defined by

m m′ ⇔ ∃ ` ∈ N, R∈ NPr : m+ `[i] + R
∗

−→ m′ + `[f ] + R.

Note that
∗

−→⊆ (take` = 0 andmr = ∅). We illustrate the meaning of extended reachability on

net N in Figure 3.1 Consider markings[i] and [q] + [r]; [i] 6
∗

−→ [q] + [r], however[i] + [i] + 4[r]
t2u
−→

[q] + [r] + [f ] + 4[r], and thus, according to Definition 4.2,[i]  [q] + [r]. Note that after the firing of
t2u, the number of resource tokens exceeds the initial number of resource tokens, which shows that the
RCWF-net is not sound. In we observe an increase of the number of resource tokens as well.

For sound RCWF-nets, has a regular algebraic structure: it turns out to be equality modulo the
F-lattice:
1Instead of drawing a resource placer and its in- and outgoing arcs, we put the weights of the arcs to and from the resource
place under the corresponding transitions. So(2, 1) for transitiont means thatt consumes 2 resource tokens from the resource
placer and then releases 1 resource token intor.
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Figure 3. Extended reachability:[i] [q]

Theorem 4.2. LetN be a sound RCWF-net without redundant places in its production net andletm, m′ ∈

NP. Thenm m′ iff m′ − m∈ F.ZT, whereF.ZT def
= {F · x | x ∈ ZT}.

Proof:
(⇒): Supposem, m′ ∈ NP and m  m′. By Definition 4.2, there exist̀ ∈ N, R ∈ NPr such that
m+`[i]+R

σ
−→ m′+`[f ]+Rfor some firing sequenceσ. By Lemma 2.1,m′+`[f ]+R = m+`[i]+R+F·−→σ .

SinceN is sound,`[f ] + R′ = `[i] + R′ + F · x for somex ∈ NT, R′ ∈ NPr (Lemma 2.1). Hence,
m′ = m+ F · (−→σ − x) and thusm′ − m∈ F.ZT.
(⇐): Suppose(m′ −m) ∈ F.ZT, so there existx, y ∈ NT such thatm′ −m = (F+ −F−) · (x− y). Thus,
m+ F+ · x + F− · y = m′ + F− · x + F+ · y.

SinceNp has no redundant places, by Lemma 3.3 we can find` > 0, m1 ∈ NPp such that̀ [i]
∗

−→Np

F−
p ·(x+y)+m1. By taking enough resourcesR∈ NPr , we obtaiǹ [i]+R

∗
−→N F− ·(x+y)+m1+m2 for

somem2 ∈ NPr . Note that every firing sequenceσ with Parikh vectory is enabled inF−·(x+y)+m1+m2,
andF− · (x + y) + m1 + m2

σ
−→N F− · x + F+ · y + m1 + m2. SinceN is sound and̀ [i] + R

∗
−→N

F− · x + F+ · y + m1 + m2, we deduceF− · x + F+ · y + m1 + m2
∗

−→N `[f ] + R.
On the other hand, for a firing sequenceγ with −→γ = x, we havem+ `[i] + R

∗
−→N m+ F− · (x +

y) + m1 + m2
γ

−→N m + F+ · x + F− · y + m1 + m2 = m′ + F− · x + F+ · y + m1 + m2. Since
F− · x+ F+ · y+ m1 + m2

∗
−→N `[f ] + R, we obtainm+ `[i] + R

∗
−→N m′ + `[f ] + R, i.e.m m′. ut

Going back to netN in Figure 3, we choose the ordering(i, p, q, f , r) of places and(t, u, v, w) of
transitions for the vector/matrix representation. It is easy to check that for[i] [q]+ [r] we have indeed:
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Having shown that the set of markings related by to a given marking enjoys a regular algebraic
structure, we will show that for sound RCWF-nets the number of resource tokens does not exceed the
initial number of tokens not only for all the markingsm such thatk[i] + R

∗
−→ m (k ∈ N, R ≥ R0),

but also for the markingsm′ such thatk[i] + R m′, which will give us a necessary condition for the
“non-creation” of resources in RCWF-nets.



Theorem 4.3. Let N be a sound RCWF-net without redundant places in its production net andR0 ∈ NPr

be a minimal resource marking such thatN is (k, R)-sound for anyk ∈ N, R≥ R0. Then for any marking
msuch thatk[i] + R m, wherek ∈ N, R≥ R0, we havem�Pr ≤ R.

Proof:
Let m be a marking such thatk[i] + R  m for somek ∈ N, R ≥ R0. By Definition 4.2, there exist
` ∈ N, R′ ∈ NPr such thatk[i]+R+`[i]+R′ ∗

−→ m+`[f ]+R′. SinceN is sound,(m+`[f ]+R′)�Pr ≤ R+R′,
which implies thatm�Pr ≤ R. ut

Now we can formulate another necessary condition of soundness:

Theorem 4.4. (necessary condition 2)
Let N be a sound RCWF-net without redundant places in its production net. Then for all x ∈ ZT,
(F · x)�(Pp\{i}) ≥ 0 implies that(F · x)�Pr ≤ 0.

Proof:
Consider a vectorx ∈ ZT such that(F · x)�(Pp\{i}) ≥ 0. Then there existk ∈ N, R ∈ NPr such that
k[i] + R+ F · x ≥ 0, i.e.k[i] + R+ F · x is a marking. Then by Theorem 4.2,k[i] + R k[i] + R+ F · x.
By Theorem 4.3,(k[i] + R+ (F·)�Pr ≤ R, which immediately implies that(F · x)�Pr ≤ 0. ut

Necessary condition 2 is in fact a requirement that all solutions of one inequality (forming a convex
polyhedral cone) are also solutions of another inequality, or in other words, one cone is a subset of
another cone, which can be checked by standard algebraic techniques.

If necessary condition 2 holds for some RCWF-netN, it guarantees that the soundness condition of
“no resource token creation” holds forN:

Theorem 4.5. (necessary condition 2⇒ no resource token creation)
Let N be an RCWF-net such that for allx ∈ ZT, (F · x)�(Pp\{i}) ≥ 0 implies that(F · x)�Pr ≤ 0. Then for
anyk ∈ N, R∈ NPr and anym∈ R(k[i] + R) we havem�Pr ≤ R.

Proof:
Consider a markingm∈ R(k[i]+R) wherek ∈ N, R∈ NPr . By Lemma 2.1,m = k[i]+R+F ·x for some
x ∈ NT. Sincem≥ 0, (F ·x)�(Pp\{i}) ≥ 0, which implies that(F ·x)�Pr ≤ 0. Thusm�Pr = R+F ·x�Pr ≤ R.

ut

4.2. Proper Termination Condition

A consequence of the requirement to work correctly for all “large” markings is that any transition invari-
ant of the closure of the production net is a transition invariant of the the closure of the RCWF-netN,
where theclosureof a WF-net is the net obtained by adding a closing transitiontc such that•tc = [f ] and
t•c = [i] RCWF-net.

Theorem 4.6. (necessary condition 3)
Let N be asoundRCWF-net such that its production netNp has no redundant transitions, andN andNp

be their respective closures. Then for any vectorx ∈ ZT holds:

Fp · x = 0 ⇔ F · x = 0. (1)



Proof:
Note thatF ·x = 0 impliesFp ·x = 0. So we only have to show the⇒ implication. SupposeFp ·x = 0 for
somex ∈ NT. ThenF ·x ∈ ZPr and we can findm1, m2 ∈ NPr such thatF ·x = m1−m2. By Theorem 4.2,
we havem1  m2, thus there exist̀ ∈ N, R ∈ NPr such thatm1 + `[i] + R

∗
−→ m2 + `[f ] + R. Note

that we can chooseR ≥ R0 whereR0 is the minimal resource marking according to the definition of
soundness. By soundness ofN, alsom1 + `[i] + R

∗
−→ m1 + `[f ] + R. Sincem1 andm2 are resource

markings,m1 = m2. Thus,F · x = 0. ut

Note thatF · x = 0 ⇔ (Fp · x = 0 ∧ Fr · x = 0). Thus, for anysoundRCWF-net, the solution space
of the equationFp · x = 0 is a subset of the solution space of the equationFr · x = 0. On the other hand,
for any RCWF-net, ifFp · x = 0 ⇔ F · x = 0 holds we can conclude that if no deadlock or livelock
caused by the lack of resources occurs, then the net terminates properly, i.e. all resources are returned to
their places:

Theorem 4.7. (necessary condition 3⇒ resources are returned to their places upon termination)
Let N be an RCWF-net such that its production netNp has no redundant transitions, and for the closure
netsN andNp holds that for any vectorx ∈ ZT, Fp · x = 0 ⇔ F · x = 0. Then for anyk ∈ N, R ∈

NPr , m∈ NP, k[i] + R
∗

−→ k[f ] + m impliesm = R.

Proof:
Follows directly from Theorem 4.6 and Theorem 4.1. ut

4.3. Place invariant conditions

Now we are going to show that sound RCWF-nets possess “production” and “resource” place invariants,
which is another necessary condition of soundness. Recall thatIN denotes the set of all place invariants.

Lemma 4.1. If N is a sound RCWF-net, then eachI ∈ IN satisfiesI(i) = I(f ).

Proof:
By choosingR∈ NPr large enough, we have[i]+R

∗
−→ [f ]+R, so for anyI ∈ IN we haveI · ([i]+R) =

I · ([f ] + R) and henceI(i) = I(f ). ut

Lemma 4.2. Let N be a sound RCWF-net andr ∈ Pr . Then for every placep ∈ Pp ∪ Pr there is a place
invariantI satisfyingI(p) = 1.

Proof:
Let N be sound. Suppose all place invariantsI ∈ IN satisfyI(p) = 0. Then[p] is orthogonal toIN, and
by Lemma 2.2,[p] ∈ F.QT. Thus there existsk ∈ Z, k 6= 0, such thatk[p] ∈ F.ZT. By Theorem 4.2,
∅ k[p], therefore there exist̀, Rsuch that̀ [i] + R

∗
−→ k[p] + `[f ] + R, which is only possible ifk = 0.

This is a contradiction, and so there exists a place invariantI such thatI(p) 6= 0. By scalar multiplication,
we obtainI with I(p) = 1. ut



Theorem 4.8. (necessary condition 4)
If N is a sound RCWF-net, there exists a place invariantIp such thatIp(i) = Ip(f ) = 1 andIp(r) = 0 for
eachr ∈ Pr , which we call aproduction place invariant, and place invariantsIr for eachr ∈ Pr satisfying
Ir(i) = Ir(f ) = 0, Ir(r) = 1 and∀ r ′ ∈ Pr \ {r} : Ir(r ′) = 0, which we callresource place invariants.

Proof:
Let N be a sound RCWF-net. By Corollary 4.1, the production netNp is sound too, soNp has an invariant
I ′p satisfyingI ′p(i) = I ′p(f ) = 1 (Lemmas 4.2 and 4.1). By Lemma 2.3, there is an invariantIp of N such
thatI(p) = I ′(p) if p ∈ Pp andI(p) = 0 if p ∈ Pr .
The projectionN′ = N�Pp∪{r}, being sound (Theorem 4.1), has an invariantJ satisfyingJ(r) = 1. Since
the production net ofN′ equalsNp, N′ has an invariantI ′′p corresponding toI ′p, so it satisfiesI ′′p(i) = 1
and I ′′p(r) = 0. Let J′ = J − J(i) · I ′′p , thenJ′(i) = J′(f ) = 0 andJ′(r) = 1. By Lemma 2.3,J′ this
corresponds to an invariantIr with the stated properties. ut

Note that the existence of resource place invariants is a requirement forS4PRnets [4], which links
sound RCWF-nets toS4PRnets.

5. Conclusion

We have introduced an extension of Workflow nets:Resource-Constrained Workflow nets (RCWF-nets)
and we have given a number of necessary conditions for design correctness of these nets. One correct-
ness criterion is structural correctness that guarantees the absence of redundant and persistent places and
transitions; structural correctness can be checked by using traps andsiphons. We also defined resource
dependencies and discussed how to discover them in a model. Another correctness criterion is sound-
ness, which is an extension of the soundness notion for WF-nets to the case of RCWF-nets. Additional
requirements concern the durability of resources.

We prove a number of properties of sound RCWF-nets, which form a setof necessary conditions of
soundness. One natural condition is that the production net of a sound RCWF-net is sound. Soundness
of the production net can be checked using the procedure described in[9]. The second condition is
formulated in terms of linear inequalities on incidence matrices of an RCWF-net and its production net
that can be checked by standard algebraic techniques and it guarantees that no resource token creation in
the RCWF-net is possible during processing. The third condition postulatesthat the transition invariants
of the closure of a sound RCWF-net and of its underlying production netare the same, which guarantees
resource conservation upon termination. And finally, in the fourth conditionwe showed that soundness
implies the existence of a resource place invariant for all resource places, which relates sound RCWF-
nets toS4PRnets.

Related work Modelling the use of resources by Petri nets and analyzing these models is an active
research field. We mention research on flexible manufacturing systems (FMS) (see [7, 4, 6, 12]), where
the construction of appropriateschedulesfor such models is the key issue. Our approach emphasises the
construction of robust nets with self-scheduling that are free of deadlocks irrespective of the number of
resources available beyond a certain minimum.

In [3] the authors consider structural analysis of Workflow nets with shared resources. Their def-
inition of structural soundness corresponds approximately to the existence of k, mr such that the net is



(k, mr)-sound. Since we consider systems where the number of cases going through the net and the num-
ber of resources can vary, and the system should work correctly forany number of cases and resources,
the results of [3] are not applicable to our case.

Future work The RCWF-nets satisfying the correctness criteria given in this paper canbe unsound
only if they contain a deadlock or a livelock due to a lack of resources during the production process.
Soundness of RCWF-nets with a fixed number of resources is decidable by using techniques from [9]
but it is still an open question whether soundness is decidable for general RCWF-nets. Another research
question is finding structural patterns for building sound-by-construction RCWF-nets.
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