
 Open access Journal Article DOI:10.1145/1555746.1555753

Resource control graphs — Source link

Jean-Yves Moyen

Institutions: University of Paris

Published on: 14 Aug 2009 - ACM Transactions on Computational Logic (ACM)

Topics: Program analysis, Termination analysis and Representation (mathematics)

Related papers:

 Certifying Polynomial Time and Linear/Polynomial Space for Imperative Programs

 A new recursion-theoretic characterization of the polytime functions

 Termination and Non-termination in Logic Programming

 Quasi-terminating logic programs for ensuring the termination of partial evaluation

 Proving termination with Multiset Orderings

Share this paper:

View more about this paper here: https://typeset.io/papers/resource-control-graphs-
2iw1tqe19d

https://typeset.io/
https://www.doi.org/10.1145/1555746.1555753
https://typeset.io/papers/resource-control-graphs-2iw1tqe19d
https://typeset.io/authors/jean-yves-moyen-1xp0nc869l
https://typeset.io/institutions/university-of-paris-3fpqqchm
https://typeset.io/journals/acm-transactions-on-computational-logic-hyvt9r6z
https://typeset.io/topics/program-analysis-8pn429ry
https://typeset.io/topics/termination-analysis-3vdkw9us
https://typeset.io/topics/representation-mathematics-17ztg7v0
https://typeset.io/papers/certifying-polynomial-time-and-linear-polynomial-space-for-24pjepd5m9
https://typeset.io/papers/a-new-recursion-theoretic-characterization-of-the-polytime-3qr62h2f5g
https://typeset.io/papers/termination-and-non-termination-in-logic-programming-15lfgzxwyv
https://typeset.io/papers/quasi-terminating-logic-programs-for-ensuring-the-5ec9mju4op
https://typeset.io/papers/proving-termination-with-multiset-orderings-2inqumjubd
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/resource-control-graphs-2iw1tqe19d
https://twitter.com/intent/tweet?text=Resource%20control%20graphs&url=https://typeset.io/papers/resource-control-graphs-2iw1tqe19d
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/resource-control-graphs-2iw1tqe19d
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/resource-control-graphs-2iw1tqe19d
https://typeset.io/papers/resource-control-graphs-2iw1tqe19d

HAL Id: hal-00107145
https://hal.archives-ouvertes.fr/hal-00107145v3

Submitted on 3 Sep 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Resource Control Graphs
Jean-Yves Moyen

To cite this version:
Jean-Yves Moyen. Resource Control Graphs. ACM Transactions on Computational Logic, Association
for Computing Machinery, 2009, 10 (4), ฀10.1145/1555746.1555753฀. ฀hal-00107145v3฀

https://hal.archives-ouvertes.fr/hal-00107145v3
https://hal.archives-ouvertes.fr

Resource Control Graphs

JEAN-YVES MOYEN

University of Paris 13

Resource Control Graphs can be seen as an abstract representation of programs. Each state of
the program is abstracted as its size, and each instruction is abstracted as the effects it has on
the size whenever it is executed. The Control Flow Graph of the programs gives indications on
how the instructions might be combined during an execution.

Termination proofs usually work by finding a decrease in some well-founded order. Here, the
sizes of states are ordered and such kind of decrease is also found. This allows to build termination
proofs similar to the ones in Size Change Termination.

But the size of states can also be used to represent the space used by the program at each

point. This leads to an alternate characterisation of the Non Size Increasing programs, that is the
ones that can compute without allocating new memory.

This new tool is able to encompass several existing analyses and similarities with other studies
hint that even more might be expressable in this framework thus giving hopes for a generic tool
for studying programs.

Categories and Subject Descriptors: D.2.4 [Software engineering]: Software/Program Verification; F.2.2 [Anal-

ysis of algorithms and problem complexity]: Nonnumerical Algorithms and Problems—Computations on dis-

crete structures; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and reasoning about

Programs; G.2.2 [Discrete Mathematics]: Graph Theory

General Terms: Algorithms, Theory, Verification

Additional Key Words and Phrases: Abstraction, implicit complexity, non-size increasing, pro-

gram analysis, size change termination, termination

1. INTRODUCTION

1.1 Motivations

The goal of this study is an attempt to predict and control computational resources like

space or time, which are used during the execution of a program. For this, we introduce a

new tool called Resource Control Graphs and focus here on explaining how it can be used

for termination proofs and space complexity management.

We present a data flow analysis of a low-level language sketched by means of Resource

Control Graph, and we think that this is a generic concept from which several program

properties could be checked.

Usual data flow analyses (see Nielson et al. [1999] for a detailed overview) use transfer

functions to express how a given property is modified when following the program’s ex-

ecution. Then, a fixed point algorithm finds for each label a set of all possible values for

the property. For example, one might be interested in which sign a given variable can take

Author’s address: J.-Y. Moyen, LIPN, Institut Galilée, 99 avenue J.B. Clément, 93430 Villetaneuse, France.

Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use

provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server

notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the

ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific

permission and/or a fee.

c© 20YY ACM 1529-3785/YY/00-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY, Pages 1–38.

2 · Jean-Yves Moyen

at each point. The instructions of the program gives constraints on this (from one label to

the next one). Iterating these constraints with a fixed point algorithm can find the set of all

possible signs for the variable at each label.

Here, we want to consider each execution separately. So, when iterating the transfer

function and coming back to an already treated label, instead of unifying of the new con-

straint with the old one and use fixed point, we will consider this as a new configuration.

In the end, instead of having one set associated to each label, we will get a set of so called

“walks”, each associating one value to each occurrence of each label. For example, a first

walk can tell that if starting with a positive value at a given label, the variable will stay pos-

itive, but another walk tells that if starting with a negative value, the variable may become

positive (while in such a case, the fixed point algorithm will build the set {+,−} for each

label).

Of course, we then need a way to study this set of walks and find common properties on

them that tells something about the program.

The first problem we consider is the one of detecting programs able to compute within a

constant amount of space, that is without performing dynamic memory allocation. These

were dubbed Non Size Increasing by Hofmann [1999].

There are several approaches which try to solve this problem. The first protection mech-

anism is by monitoring computations. However, if the monitor is compiled with the pro-

gram, it could itself cause memory leak or other problems. The second is the testing-based

approach, which is complementary to static analysis. Indeed, testing provides a lower

bound on the memory usage while static analysis gives an upper bound. The gap between

both bounds is of some value in practice. Lastly, the third approach is type checking done

by a bytecode verifier. In an untrusted environment (like embedded systems), the type

protection policy (Java or .Net) does not allow dynamic allocation. Actually, the former

approach relies on a high-level language, which captures and deals with memory allocation

features [Aspinall and Compagnoni 2003]. Our approach guarantees, and even provides,

a proof certificate of upper bound on space computation on a low-level language without

disallowing dynamic memory allocations.

The second problem that we study is termination of programs. This is done by closely

adapting ideas of Lee et al. [2001], Ben-Amram [2006] and Abel and Altenkirch [2002].

The intuition being that a program terminates whenever there is no more resources to con-

sume.

There are long term theoretical motivations. Indeed a lot of work have been done in the

last twenty years to provide syntactic characterisations of complexity classes, e.g. by Bel-

lantoni and Cook [1992] or Leivant and Marion [1993]. Those characterisations are the

bare bone of recent research on delineating broad classes of programs that run in some

amount of time or space, like Hofmann, but also Niggl and Wunderlich [2006], Amadio

et al. [2004], and Bonfante et al. [2007].

We believe that our Resource Control Graphs will be able to encompass several, or even

all, of these analyses and express them in a common framework. In this sense, Resource

Control Graphs are an attempt to build a generic tool for program analysis.

1.2 Coping with undecidability

All these theoretical frameworks share the common particularity of dealing with behaviours

of programs (like time and space complexity) and not only with the inputs/outputs relation

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Resource Control Graphs · 3

which only depends on the computed function.

Indeed, a given function can be computed by several programs with different behaviours

(in terms of complexity or other). Classical complexity theory deals with functions and

considers extensional complexity. Here, we want to consider intensional complexity, that

is try to understand why a given algorithm is more efficient than another to compute the

same function.

The study of extensional complexity quickly reaches the boundary of Rice’s theorem.

Any extensional property of programs is either trivial or undecidable. Intuition and empir-

ical results point out that intensional properties are even harder to decide.

However, several very successful works do exist for studying both extensional properties

(like termination) or intensional ones (like time or space complexity). As these works pro-

vide decidable criteria, they must be either incomplete (reject a valid program) or unsound

(accept an invalid program). Of course, the choice is usually to ensure soundness: if the

program is accepted by the criterion, then the property (termination, polynomial bound,. . .)

is guaranteed. This allows the criterion to be seen as a certificate in a proof carrying code

paradigm.

When studying intensional properties, two different kinds of approaches exist. The first

one consists of restricting the syntax of programs so that any program necessarily has

the wanted property. This is in the line of the works on primitive recursive functions

where the recurrence schemata is restricted to only primitive recursion. This approach

gives many satisfactory results, such as the characterisations of PTIME by Cobham [1962]

or Bellantoni and Cook [1992], the works of Leivant and Marion on tiering and predicative

analysis [1993] or the works of Jones on CONS-free programs [2000]. On the logical side,

this leads to explicit management of resources in Linear Logic [Girard 1987].

All these characterisations usually have the very nice property of extensional complete-

ness in the sense that, e.g., a function is in PTIME if and only if it can be defined by bounded

primitive recursion (Cobham). Unfortunately, intensionality is not their main concern:

these methods usually do not capture natural algorithms [Colson 1998], and programmers

have to rewrite their programs in a non-natural way.

So, the motto of this first family of methods can be described as leaving the proof bur-

den to the programmer rather than to the analyser. If one can write a program with the

given syntax (which, in some cases, can be a real challenge), then certain properties are

guaranteed. The other family of methods will go in the other way. Let the programmer

write whatever he wants but the analysis is not guaranteed to work.

Since any program can a priori be given to the analysis, decidability is generally achieved

by loosening the semantics during analysis. That is, one will consider more than all the

executions a program can have.This approach is more recent but has already some very

successful results such as the Size Change Termination [Lee et al. 2001] or the mwp-

polynomials of Kristiansen and Jones [2005].

This second kind of methods can thus be described as not meddling with the programmer

and let the whole proof burden lay on the analysis. Of course, the analysis being incom-

plete, one usually finds out that certain kinds of programs will not be analysed correctly

and have to be rewritten. But this restriction is done a prosteriori and not a priori and it

can be tricky to find what exactly causes the analysis to fail.

Resource Control Graphs are intended to live within this second kind of analyses. Hence,

the toy language used as an example is Turing-complete and will not be restricted.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

4 · Jean-Yves Moyen

1.3 Outline

Section 2 introduces the stack machines used all along as a simple yet powerful program-

ming language. Section 3 describes the core idea of Resource Control Graphs that can be

summed up as finding a decidable (recursive) superset of all the executions that still ensure

a given property (such as termination or a complexity bound). Then, Section 4 immediately

shows how this can be used in order to detect Non Size Increasing programs. Section 5

presents Vectors Addition Systems with States which are generalised into Resource Sys-

tems with States in Section 6. They form the backbone of the Resource Control Graphs.

Section 7 present the tool itself and explain how to build a Resource Control Graph for a

program and how it can be used to study the program. Section 8 shows application of RCG

in building termination proofs similar to the Size Change Termination principle. Finally,

Section 9 discuss how matrices multiplication is or could be used in program analyses thus

leading to several possible further developments.

1.4 Notations

In a directed graph1 G = (S, A), will write s
a
→s′ to say that a is an edge between s and

s′. Similarly, we will write s0
a1→s1

a2→ . . .
an→sn to say that a1 . . . an is a path going through

vertices s0, · · · , sn. Or simply s0
w
→sn if w = a1 . . . an. s→ s′ means that there exists an

edge a such that s
a
→s′ and

+
→,

∗
→ are the transitive and reflexive-transitive closures of→.

A partial order≺ is a well partial order if there are no infinite anti-chain, that is for every

infinite sequence x1, · · · , xn, . . . there are indexes i < j such that xi � xj . This mean that

the order is well-founded (no infinite decreasing sequence) but also that there is no infinite

sequence of pairwise incomparable elements. The order induced by the divisibility relation

on N, for example, is well-founded but is not a well partial order since the sequence of all

prime numbers is an infinite sequence of pairwise incomparable elements.

The set of integers (positive and negative) is Z, and N is the set of integers ≥ 0, when

working with infinity, Z = Z
⋃
{+∞}, that is we do not need −∞ here. When working

with vectors of Z
k , ≤ denotes the component-wise partial order. That is a ≤ b if and only

if ai ≤ bi for all 1 ≤ i ≤ k. This is a well partial order on N
k.

2. STACK MACHINES

2.1 Syntax

A stack machine consist of a finite number of registers, each able to store a letter of an

alphabet, and a finite number of stacks, that can be seen as lists of letters. Stacks can only

be modified by usual push and pop operations, while registers can be modified by a given

set of operators each of them assumed to be computed in a single unit of time.

1We will use s ∈ S to designate vertices and a ∈ A to designates edges. The choice of using French ini-

tials (“Sommet” and “Arête”) rather than the usual (V, E) is done to avoid confusion between vertices and the

valuations introduced later.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Resource Control Graphs · 5

Definition 2.1 (Stack machine). Stack machines are defined by the following grammar:

(Alphabet) Σ finite set of symbols

(Programs) p ::= lbl1 : i1; . . . ;lbln : in;
(Instructions) I ∋ i ::= if (test) then goto lbl0 else goto lbl1 |

r := pop(stk) |push(r,stk) |r := op(r1, · · · , rk) |end
(Labels) L ∋ lbl finite set of labels

(Registers) R ∋ r finite set of registers

(Stacks) S ∋ stk finite set of stacks

(Operators) O ∋ op finite set of operators

Each operator has a fixed arity k and n is an integer constant. The syntax of a program

induces a function next : L → L such that next(lbli) = lbli+1 and a mapping

ι : L → I such that ι(lblk) = ik. The pop operation removes the top symbol of a stack

and put it in a register. The push operation copies the symbol in the register onto the

top of the stack. The if-instruction gives control to either lbl0 or lbl1 depending on the

outcome of the test. Each operator is interpreted with respect to a given semantics function

JopK.

The precise sets of labels, registers and stacks can be inferred from the program. Hence

if the alphabet is fixed, the machine can be identified with the program itself.

The syntax lbl : if (test) then goto lbl0 can be used as a shorthand for

lbl : if (test) then goto lbl0 else goto next(lbl). Similarly, we can ab-

breviate if true then goto lbl as gotolbl, that is an unconditional jump to a

given label. What kind of tests can be used is not specified here. Of course, tests must be

computables (for obvious reasons) in constant time and space (so that they do not play an

important part when dealing with complexity properties). Comparisons between letters of

the alphabet (e.g. ≤ if they are integers) are typical tests that can be used.

If the alphabet contains a single letter, then the registers are useless and the stacks can

be seen as unary numbers. The machine then becomes an usual counter machine [Shep-

herdson and Sturgis 1963].

Example 2.2. The following program reverses a list in stack l and put the result in stack

l′. It uses register a to store intermediate letters. The empty stack is denoted [].

0 : if l = [] then goto end; 3 : goto 0;
1 : a := pop(l); end : end;
2 : push(a, l′);

2.2 Semantics

Definition 2.3 (Stores). A store is a function σ assigning a symbol (letter of the al-

phabet) to each register and a finite string in Σ∗ to each stack. Store update is denoted

σ{x← v}.

Definition 2.4 (States). Let p be a stack program. A state of p is a couple θ = 〈IP, σ〉
where the Instruction Pointer IP is a label and σ is a store. Let Θ be set of all states, Θ∗

(Θω) be the set of finite (infinite) sequences of states and Θ∗ω be the union of both.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

6 · Jean-Yves Moyen

i = ι(IP) = r := op(r1, · · · , rk) σ′ = σ{r← JopK(σ(r1), . . . , σ(rk))}

p ⊢ 〈IP, σ〉
i
→〈next(IP), σ′〉

ι(IP) = if (test) then goto lbl1 else goto lbl2 (test) is true

p ⊢ 〈IP, σ〉
(test)true→ 〈lbl1, σ〉

ι(IP) = if (test) then goto lbl1 else goto lbl2 (test) is false

p ⊢ 〈IP, σ〉
(test)false→ 〈lbl2, σ〉

i = ι(IP) = r := pop(stk) σ(stk) = λ.w σ′ = σ{r← λ,stk← w}

p ⊢ 〈IP, σ〉
i
→〈next(IP), σ′〉

i = ι(IP) = r := pop(stk) σ(stk) = ǫ

p ⊢ 〈IP, σ〉
i
→⊥

i = ι(IP) = push(r, stk) σ′ = σ{stk← σ(r).σ(stk)}

p ⊢ 〈IP, σ〉
i
→〈next(IP), σ′〉

Fig. 1. Small steps semantics

Definition 2.5 (Executions). The operational semantics of Figure 1 defines a relation2

p ⊢ θ
i
→θ′.

An execution of a program p is a sequence (finite or not) p ⊢ θ0
i1→θ1

i2→ . . .
in→θn . . .

An infinite execution is said to be non-terminating. A finite execution is terminating. If

the program admits no infinite execution, then it is uniformly terminating.

We use⊥ to denote runtime error. We may also allow operators to return⊥ if we want to

allow operators generating errors. It is important to notice that ⊥ is not a state, and hence,

will not be considered when quantifying over all states.

If the instruction is not specified, we will write simply p ⊢ θ → θ′ and use
+
→,

∗
→ for the

transitive and reflexive-transitive closures.

Definition 2.6 (Traces). The trace of an execution p ⊢ θ0
i1→θ1

i2→ . . .
in→θn . . . is the

instructions sequence i1 . . . in . . .

Definition 2.7 (Length). Let θ = 〈IP, σ〉 be a state. Its length |θ| is the sum of the

number of elements in each stack3. That is:

|θ| =
∑

stk∈S

|stk|

2Notice that the label i on the edge is technically not an instruction since for tests we also keep the information

of which branch is taken.
3Hence, it should more formally be |〈IP, σ〉| =

P

stki∈S
|σ(stki)| . Since explicitly mentioning the store

everywhere would be quite unreadable, we use stki instead of σ(stki) and, similarly, r instead of σ(r), when

the context is clear.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Resource Control Graphs · 7

Length is the usual notion of space. Since there is a fixed number of registers and each

can only store a finite number of different values, the space need to store all registers is

always bounded. So, we do not take registers into account while computing space usage.

The notion of length allows to define usual time and space complexity classes.

Definition 2.8 (Running time, running space). The time usage of a finite execution is

the number of states in it. Let f be an increasing function from the non-negative integers

to the non-negative integers. We say that the running- time of a program is bounded by f
if the time usage of each execution is bounded by f(|θ|) where θ is the first state of the

execution.

The space usage of a finite execution is the maximum length of a state in it. Let f be

an increasing function from the non-negative integers to the non-negative integers. We say

that the running- space of a program is bounded by f if the space usage of each execution

is bounded by f(|θ|) where θ is the first state of the execution.

Definition 2.9 (Complexity). Let f : N→ N be an increasing function. The class T (f)
is the set of functions which can be computed by a program whose running time is bounded

by f . The class S(f) is the set of function which can be computed by a program whose

running space is bounded by f .

As usual, PTIME denotes the set of all functions computable in polynomial time, that is

the union of T (P) for all polynomials P and so on.

If we want to define classes such as LOGSPACE, then we must, as usual, use some read-

only stacks which can only be poped but not pushed and some write-only output stacks.

These play no role when computing the length of a state.

2.3 Turing Machines

Stack machines are Turing complete. We quickly describe here the straightforward way to

simulate a Turing machine by a stack machine.

Simulating a TM with a single tape and alphabet Σ can be done with a stack machine

with the alphabet Σ
⋃

Q (where Q is the set of states of the TM), two stacks and two reg-

isters. The two stacks and the first register will encode the tape in an usual way (one stack,

reversed, for the left-hand side, the register for the scanned symbol and the other stack for

the right-hand side). Another register will contain the current state of the automaton.

At each step, the program will go through a sequence of tests on the state and scanned

symbol in order to find the right set of instructions to perform and after that jump back to

the beginning of the program. There will be at most q×m such tests where q is the number

of states of the TM and m the number of symbols in the alphabet. Then, simulation of a

step is quite easily done by modifying the “scanned symbol” register and then simulating

movement.

Simulating movement first has to check that the correct stack is not empty, push a

“blank symbol” on it if necessary and then push the scanned symbol on one stack and

pop the other stack onto it.

Each step of the TM is simulated in a constant number of steps of the stack machine

(depending only on the TM). So that the time complexity of the stack machine will be

the same as the time complexity of the TM (up to a multiplicative constant). Similarly, at

any step of the simulation, the length of the configuration of the stack machine will be the

number of non-blank or scanned symbols on the tape (minus one because one symbol is

stored into a register). So the space complexity will be the same.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

8 · Jean-Yves Moyen

......

......

......
......
.......
.......
........
.........

..........
...........

.............
.................

.........................
...

....................
...............

............
...........
.........
........
........
.......
......
......
......
......
..........

......

......
......
.......
.......
........
..........

...............
...
...........
........
.......
.......
......
......
......
......
...

..
...........................

......

......

......

......

..
......
......
......
........
.......
......
.......
.........
.........

.................................
......
......
......
.......................

......
...

Θ∗ω

Θω

Ψ
A

Θ∗

......

......

......
......
.......
.......
........
.........

..............
...
..........
.........
.......
.......
......
......
......
......
..

..
...........................

......

......

......

......

..
......
......
......
.......
.......
.......
......
.........
.........

..................................
......
......
......
........................

......
..

Ψ
A

......

......

......
......
.......
.......
........
.........

..........
...........

.............
.................

.........................
...

....................
...............

............
...........
.........
........
........
.......
......
......
......
......
....

Θ∗ω

Θω

Θ∗

......

......

......
......
.......
.......
........
.........

..............
...
..........
.........
.......
.......
......
......
......
......
..

..
...........................

......

......

......

......

..
......
......
......
.......
.......
.......
......
.........
.........

..................................
......
......
......
........................

......
..

Ψ
A

......

......

......
......
.......
.......
........
.........

..........
...........

.............
.................

.........................
...

....................
...............

............
...........
.........
........
........
.......
......
......
......
......
....

Θ∗ω
Θ∗

Θω

Fig. 2. Sequences of states, executions and admissible sequences

3. A TASTE OF RCG

This section describes the idea behind Resource Control Graphs in order to get a better

grip on the formal definitions later on.

3.1 Admissible sequences

Consider an execution of a program. It can be described as a sequence of states. Clearly,

not all sequences of states describe an execution. So we have a set of executions, Υ, which

is a subset of the set of all sequences of states (finite or infinite), Θ∗ω.

The undecidability results mean that given a program it is impossible to say if the set of

executions, Υ, and Θω, the set of infinite sequences of states, are disjoint. So, the idea here

is to find a set A of admissible sequences, which is a superset of the set of all executions,

and whose intersection with Θω can be computed. If this intersection is empty, then a

fortiori, there are no infinite executions of the program, but if the intersection is not empty,

then we cannot decide if this is due to some non-terminating execution of the program or

to some of the sequences added for the sake of the analysis. This means that depending

on the machine considered and the way A is build, we can be in three different situations

as depicted in Figure 2. We build A ⊃ Υ such that A
⋂

Θω is decidable. If it is empty,

then the program uniformly terminates; otherwise, we cannot say anything. Of course, the

undecidability theorem means that if we require A to be recursive (or at least recursively

separable from Θω), then there will necessarily be some programs for which the situation

will be the one in the middle (in Figure 2), that is we falsely suppose that the program does

not uniformly terminate.

One convenient way to represent all the possible executions (and only these), is to build a

state-transition graph. This is a directed graph where each vertex is a state of the program

and there is an edge between two vertices if and only if it is possible to go from one state

to the other with a single step of the operational semantics. Of course, since there are

infinitely many different stores, there are infinitely many possible states and the graph is

infinite.

3.2 The folding trick

Using the state-transition graph to represent executions is not convenient since handling an

infinite graph can be tedious. To circumvent this, we must look into states and decompose

them.

A state is actually a couple of one label and one store. The label corresponds to the

control of the program while the store represents memory. A first try to get ride of the

infinite state-transition graph is then to only consider the control part of each state.

Thus, there will only be finitely many different nodes in the graph (since there are only

finitely many different labels). By identifying all states bearing the same label, it becomes

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Resource Control Graphs · 9

end 1

0

2

3

l= [] l 6= []

pop

push

goto 0

Fig. 3. CFG of the reverse program.

possible to “fold” the infinite state-transition graph into a finite graph, called the Control

Flow Graph (CFG) of the program. The CFG is an usual tool for program analyses and

transformations and can directly be built from the program.

Definition 3.1 (Control Flow Graph). Let p be a program. Its Control Flow Graph

(CFG) is a directed graph G = (S, A) where:

—S = L. There is one vertex for each label.

—If ι(lbl) = if (test) then goto lbl1 else goto lbl2 then there is one

edge from lbl to lbl1 labelled (test)true and one from lbl to lbl2 labelled (test)false.

—If ι(lbl) = end then there is no edge going out of lbl.

—Otherwise, there is one edge from lbl to next(lbl) labelled ι(lbl).

Vertices and edges are named after, respectively, the label or instruction4 they represent.

No distinction is made between the vertex and the label or the edge and the instruction as

long as the context is clear.

Example 3.2. The CFG of the reverse program is displayed on Figure 3.

With state-transition graphs, there was a one-to-one correspondence between executions

of the program and (maximal) paths in the graph. This is no longer true with Control Flow

Graphs. Now, to each execution corresponds a path (finite or infinite) in the CFG. The

converse, however, is not true. There are paths in the CFG that correspond to no execution.

Let P be the set of paths in the CFG. P is a regular language over the alphabet of

the edges (see Lemma 5.9), hence P is recursive. Since we can associate a path to each

execution, we can say that P is a superset of Υ.

This leads to a first try at building a set of admissible sequences by choosingA = P .

However, as soon as the graph contains loops, P will contain infinite sequences. So this

is quite a poor try at building an admissible set of sequences, corresponding exactly to the

trivial analysis “A program without loop uniformly terminates”.

In order to do better, we need to plug back the memory into the CFG.

4Again, since the two branches of tests are separated, some edges do not correspond exactly to an instruction of

the program. We will nonetheless continue to call these “instructions”.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

10 · Jean-Yves Moyen

3.3 Walks

So, in order to take memory into account but still keep the CFG, we will not consider

vertices any more but states again. Clearly, each state is associated to a vertex of the CFG.

Moreover to each instruction i, we can associate a function JiK such that for all states θ, θ′

such that p ⊢ θ = 〈IP, σ〉
i
→〈IP′, σ′〉 = θ′, we have σ′ = JiK(σ).

So, instead of considering paths in the graph, we can now consider walks. Walks are

sequences of states following a path where each new store is computed according to the

semantics function JiK of the edge just followed.

The only case where the CFG has out-degree greater than 1 is for tests. In order to

prevent the wrong branch to be taken, the semantics function J(test)trueK can be a partial

function only defined for stores where the test is true (and conversely for the false branch

of tests).

But if we do this exactly that way, then there will be a bijection between the executions

and the walks and everything will stay undecidable.

So the idea at this point is to keep both branches of the test possible, that is more or less

replacing a deterministic test by a non-deterministic choice between the two outcomes.

This leads to a set of walks bigger than the set of executions but, hopefully, recursively

separable from the set of infinite sequences of states.

4. MONITORING SPACE USAGE

In order to illustrate the ideas of previous Section, we introduce here the notion of Resource

Control Graph for the specific case of monitoring space usage. In Section 7, this notion

will be fully generalised to define Resource Control Graphs.

4.1 Space Resource Control Graphs

Definition 4.1 (Weight). For each instruction i, we define a weight ki as follows:

—The weight of any instruction that is neither push nor pop is 0.

—The weight of a push instruction is +1.

—The weight of a pop instruction is −1.

PROPOSITION 4.2. For all states θ such that p ⊢ θ
i
→θ′, we have |θ′| = |θ|+ ki.

It is important here that both θ and θ′ are states. Indeed, this means that when an error

occurs (⊥), we remove all constraints.

Definition 4.3 (Space Resource Control Graph). Let p be a program. Its Space Re-

source Control Graph (Space-RCG) is a weighted directed graph G such that:

—G is the Control Flow Graph of p.

—For each edge i, the weight ω(i) is ki.

Definition 4.4 (Configurations, walks). A configuration is a couple η = (s, v) where

s ∈ S is a vertex and v ∈ Z is the valuation. A configuration is admissible if and only if

v ∈ N.

A walk is a sequence (finite or not) of configurations (s0, v0)
a1→ . . .

an→(sn, vn)
an+1

→ . . .

such that s0
a1→s1

a2→ . . .
an→sn

an+1

→ . . . and for all i > 0, vi = vi−1 + ω(ai). A walk is

admissible if all configurations in it are admissible.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Resource Control Graphs · 11

Definition 4.5 (Traces). The trace of a walk is the sequence of all edges followed by

the walk, in order.

PROPOSITION 4.6. Let p be a program, G be its Space-RCG and p ⊢ θ1 = 〈IP1, σ1〉 →
. . .→ θn = 〈IPn, σn〉 be an execution with trace t, then there is an admissible walk in G,

(IP1, |θ1|)→ . . .→ (IPn, |θn|), with the same trace t.

PROOF. By construction of the Space-RCG and induction on the length of the execu-

tion.

4.2 Characterisation of Space usage

THEOREM 4.7. Let f be a total function N → N. Let p be a program and G be its

Space-RCG.

p ∈ S(f) if and only if for each state θ0 = 〈IP0, σ0〉 and each execution p ⊢ θ0
∗
→θn, the

trace of the execution is also the trace of an admissible walk (IP0, |θ0|) → (IP1, i1) →
. . .→ (IPn, in) and for each k, ik ≤ f(|θ0|).

PROOF. Proposition 4.6 tells us that ik = |θk|. Then, both implications hold by defini-

tion of space usage.

Definition 4.8 (Resource awareness). A Space-RCG is f -resource aware if for any

walk (s0, v0)
∗
→(sn, vn), vn ≤ f(v0).

COROLLARY 4.9. Let f : N → N be a total function, p be a program and G be its

Space-RCG.

If G is f -resource aware, then p ∈ S(f).

Here, the converse is not true because the Space-RCG can have admissible walks with

uncontrolled valuations which do not correspond to any real execution.

4.3 Non Size Increasingness

The study of Non Size Increasing (NSI) functions was introduce by Hofmann [1999]. For-

mer syntactical restrictions for PTIME, such as the safe recurrence of Bellantoni and Cook

[1992], forbid to iterate a function because this can yield to super-polynomial growth.

However, this prevents from using perfectly regular algorithms such as the insertion sort

where the insertion function is iterated. The idea is then that iterating functions who do not

increase the size of data is harmless.

In order to detect these functions, Hofmann uses a typed functional programming lan-

guage. A special type, ✸, is added. There are no constructors for this type, meaning

that the only normal forms of type ✸ are variables. It can be seen as the type of pointers

to free memory. Constructors of other types now require one or more ✸. Typically, the

usual cons for lists requires a ✸ in addition to the data and the list and will then be typed

cons : ✸×α×L(α)→ L(α). When building a list, the ✸ must be a variable (no closed

term of type ✸), similar to a pointer to a free cell in memory where the list can be built.

Whenever a list is destroyed, the ✸ in the cons is freed (in a variable) and can thus be

later reused to build another list. By ensuring a linear type discipline, one can be sure that

no ✸ is ever duplicated. Then, any program that can be typed with this type system can be

computed in a NSI way, e.g. be compiled into C without any malloc instruction.

Example 4.10. Here is the insertion sort “the NSI-way”. Notice how the ✸s freed by

the pattern matching are then reused when the resulting list is built. With usual chained

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

12 · Jean-Yves Moyen

lists in C (struct with a value and a pointer to next cell), this corresponds to the idea

of reusing the same pointers over and over rather than actually freeing memory at pattern

matching before reallocating it afterwards.

insert : ✸× α× List(α)→ List(α)

insert(d, a, nil)→cons(d, a, nil)

insert(d, a,cons(d′, b, l))→if a < b

then cons(d, a,cons(d′, b, l))

else cons(d′, b,insert(d, a, nil))

sort : List(α)→ List(α)

sort(nil)→nil

sort(cons(d, a, l))→insert(d, a,sort(l))

With Space RCG, valuations in a walk play the same role as Hofmann’s diamonds (✸).

The higher the value, the more diamonds are needed in the current configuration. push

has positive weight, meaning that it uses diamonds but pop has negative weight, meaning

that it releases diamonds for later use.

Definition 4.11 (Non Size Increasing). A program is Non Size Increasing (NSI) if its

space usage is bounded by λx.x + α for some constant α.

NSI is the class of functions which can be computed by Non Size Increasing programs.

That is
⋃

α S(λx.x + α).

PROPOSITION 4.12. Let p be a program and G be its Space-RCG. If G is λx.x + α-

resource aware for some constant α, then p is NSI.

PROOF. This is a direct consequence of Theorem 4.7.

THEOREM 4.13. Let p be a program and G be its Space-RCG. G is λx.x+α-resource

aware (for some α) if and only if it contains no cycle of strictly positive weight.

PROOF. If there is no cycle of strictly positive weight, then let α be the maximum weight

of any path in G. Since there is no cycle of strictly positive weight, it is well-defined.

Consider a walk (s0, v0)
∗
→(sn, vn) in G. Since α is the maximum weight of a path, we

have vn ≤ v0 + α. Hence, G is λx.x + α-resource aware.

Conversely, if there is a cycle of strictly positive weight, the it can be followed infinitely

many time and provides an admissible walk with unbounded valuations.

Building the Space-RCG can be done in linear time in the size of the program. Finding

the maximum weight of a path can be done in polynomial time in the size of the graph

(so in the size of the program) with Bellman-Ford’s algorithm ([Cormen et al. 1990] chap-

ter 25.5). So we can detect NSI programs and find the constant α in polynomial time in

the size of the program.

Example 4.14. The Space-RCG of the reverse program (from Example 2.2) is dis-

played on Figure 4. Since it contains no cycle of strictly positive weight, the program

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Resource Control Graphs · 13

end 1

0

2

3

0 0

−1

+1

0

Fig. 4. Space-RCG of the reverse program.

is Non Size Increasing. Moreover, since the maximum weight of any path is 0, it can be

computed in space λx.x, that is the constant α is 0 for this program.

This result, however, lacks an intensionality statement (how much of all NSI programs

are caught?) or even an extensional completeness one (does there exist functions in NSI

that are not captured by such a program?) Of course, the class of all programs which are

Non Size Increasing is undecidable. This means that intensionality statements are hard to

achieve. However, we can reach an extensional completeness one.

Without loss of generality, we consider here that in the initial configuration of a TM, the

tape consists in only blank symbols except for a consecutive sequence of symbols which

are all non-blank. That is, we do not allow input tape to have the shape x ⊔ y where x and

y are non-blank symbols and ⊔ is the blank symbol. This allows to detect the end of input

as the first blank symbol. The head is assumed to scan the leftmost non-blank symbol at

the beginning of computation.

PROPOSITION 4.15 (NORMALISING TMS). Let M be a NSI Turing Machine running

in space λx.x + α. There exists a TM M̃ , computing the same function, running in space

λx.x + α + 2, proceeding in 2 phases:

(1) Firstly, M̃ writes 2 # and α B on blank squares of its tape, where both # and B are

new symbols.

(2) Secondly, M̃ never scans a blank symbol again.

PROOF. M̃ starts by going one square left and writing # there. Then it goes to the end

of the input, write α B after it (since α is fixed for M and does not depend on the input,

this can be done) and finally another #. Then, it goes back to the beginning of the input

(the symbol immediately after the #) and goes into the second phase.

In the second phase, M̃ simulates M . However, # are never overwritten. Whenever M
request to write over a #, the whole content of the tape is shifted one square left (or right)

and simulation of M resumes where it stopped. Since M is NSI, the simulation can be

done entirely between the two #.

Of course, this simulation is rather costly from a time point of view, but since we are

only concerned with space here, that does not matter. Notice also that such a normalisation

could be made for a TM running in space f(x) for any computable function f . However, in

that case the simulation would require an additional tape to compute f(x) from the input

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

14 · Jean-Yves Moyen

......

......

......
......
.......
........
.........

............
..
..........
........
.......
......
......
......
......
.....

...................

................................
......
......
......
..

......

......

......
......
.......
.......
.........

............
...
..........
........
.......
.......
......
......
......
....

...................

................................
......
......
......
..

......

......

......
......
.......
.......
.........

............
..
..........
........
.......
.......
......
......
......
.....

...................

................................
......
......
......
..

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

Simulate steps

Phase II

0

..................
......

..................
......

..................
......

..................
......♣ ♣ ♣ ♣

push # push B

1

0
1 1 1

Phase I

push #

0

Find end of input Go back to
beginning

Fig. 5. Space-RCG of the simulation of a normalised NSI Turing machine.

and then allocate sufficiently many new squares. This would be quite tricky to do and

require control over the space used to compute f(x). . .

THEOREM 4.16 (EXTENSIONAL COMPLETENESS). Let M be a NSI TM, M̃ be the

corresponding normalised machine and p̃ be the program simulating M̃ according to the

simulation of Section 2.3. Let G̃ be the Space-RCG of p̃.

G̃ contains no cycle of strictly positive weight.

PROOF. During the second phase of the simulation of M , M̃ never scan a blank symbol.

Hence, there is no need to push new (blank) symbols on any of the stacks. While moving

the head, each push on one stack is immediately followed by a pop on the other stack,

thus yielding only paths of weight 0.

During the first phase of the simulation, p starts by adding a symbol on a stack (a blank

symbol immediately erased by #, or alternatively directly a # with a slightly smarter

simulation). Then it loops to find the end of the input. During this loop, each push is also

followed by a pop, thus creating only cycles of weight 0. Then it adds α +1 new symbols

(B and #), but since α does not depend on the input, this can be done by α + 1 separate

push, thus creating no cycles. And lastly it goes back to the start of the input, again each

push is followed immediately by a pop. Figure 5 shows how the Space-RCG of p̃ looks

like.

This result means that our characterisation of NSI is extensionally complete. Each

function in NSI can be computed by a program which fits into the characterisation (that

is, whose Space-RCG is λx.x + α-resource aware). Of course, intentional completeness

(capturing all NSI programs) is far from reached (but is unreachable with a decidable al-

gorithm).

4.4 Linear Space

LINSPACE seems to be closely related to NSI. Indeed, LINSPACE functions can be com-

puted in space λx.βx + α and so NSI is a special case of LINSPACE with β = 1. So we

want to adapt our result to detect linear space usage.

The idea is quite easy: since we are allowed to used β time more space than what is

initially allocated, it is sufficient to consider that every time some of the initial data is

freed, β “tokens” (✸) are released and can later be used to control β different allocations.

In order to do so, the most convenient way is to design certain stacks of the machine (or

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Resource Control Graphs · 15

certain tapes of a TM) as input stacks and the others must be initially empty. Then, a pop

operation over an input stack would have weight −β instead of simply −1 to account for

this linear factor. However, doing so we must be careful that newly allocated memory (that

is, further push) will only be counted as 1 when freed again (to avoid a cycle of freeing

one slot, allocating β, freeing these β slots and reallocating β2 and so on). In order to do

so, we simply require that the input stacks are read-only in the sense that it is not possible

to perform a push operation on them.

Notice that any program can be turned into such kind of program by having twice as

many stacks (one input and one work for each) and starting by copying all the input stacks

into the corresponding working stacks and then only dealing with the working stacks.

With these programs, the invariant will not be the length of states, but something slightly

more complicated, namely β times the length of input stacks plus the length of work stacks.

We will call this measure size. Globally, we will use size to denote some kind of measure

on states that is used by the RCG for analysis. The terminology is close from the one of the

Size Change Termination [Lee et al. 2001] where values are assumed to have some (well-

founded) “size ordering” which is not specified and not necessarily related to the actual

space usage of the data. Typically, termination of a program working over positive integers

can be proved using the usual ordering on N as size ordering, even if the integers are all 32
bits integers, thus taking exactly the same space in memory.

Definition 4.17 (Extended stack machines). An extended stack machine is a stack ma-

chine with the following modification:

There are two disjoint sets of stacks, Si is the set of input stacks and Sw is the set

of working stacks. There are two instructions popi and popw depending on whether an

input or working stack is considered but only one push = pushw instruction, that is it is

impossible to push anything on an input stack.

The β-size of a state is β times the length of input stacks plus the length of working

stacks, that is:

||θ||β = β
∑

stki∈Si

|stki|+
∑

stkw∈Sw

|stkw|

The weight of popi is −β, the weight of popw is −1, the weight of push is +1. the

weight of other instructions is 0.

The β-Space RCG is build as the Space-RCG: the underlying graph is the control flow

graph and the weight of each edge is the weight of the corresponding instruction.

Proposition 4.6 becomes:

PROPOSITION 4.18. Let p be a program, Gβ be its β-Space RCG and p ⊢ θ1 =
〈IP1, σ1〉 → . . . → θn = 〈IPn, σn〉 be an execution with trace t, then there is an ad-

missible walk (IP1, ||θ1||β)→ . . .→ (IPn, ||θn||β) with the same trace t.

Then, adapting Theorem 4.7 and Theorem 4.13, we have:

PROPOSITION 4.19. Let p be a program and Gβ be its β-Space RCG. If Gβ is λx.x +
α-resource aware for some constant α, then S(p) ≤ λx.βx + α .

THEOREM 4.20. Let p be a program and Gβ be its β-Space RCG. Gβ is λx.x + α-

resource aware (for some α) if and only if it contains no cycle of strictly positive weight.

COROLLARY 4.21. Let p be a program. If there exists β such that its β-Space RCG

contains no cycle of strictly positive weight, then p is in LINSPACE.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

16 · Jean-Yves Moyen

end 1

0

2

3

4

0 0

−β

+1

+1

0

Fig. 6. β-Space RCG of the double-reverse program.

This can be checked in NPTIME since β is polynomially bounded in the size of the

program.

For LINSPACE also, the normalisation process of Turing Machine can quite easily be

performed, typically by using an input (read-only) tape and a working tape where space

usage is counted. The first phase of the normalised TM consist in repeatedly copy one

symbol from the input tape to the right of the working tape and add β − 1 B at the left of

the working tape, then putting the two # on the working tape. This means that here also

the characterisation is extensionally complete: for each LINSPACE function, there exists

one program computing it that fits into the characterisation.

Example 4.22. The following program “double-reverses” a list. It is similar to the

reverse program but each element is present twice in the result. The list l is an input stack

(and hence cannot be pushed) while l′ is a working stack.

0 : if l = [] then goto end; 3 : pushw(a, l′);
1 : a := popi(l); 4 : goto 0;
2 : pushw(a, l′); end : end;

Its β-Space RCG is displayed on Figure 6. Since it contains no cycle of strictly positive

weight if β ≥ 2, the program is in LINSPACE, more precisely, it can be computed in space

λx.2x

5. VECTOR ADDITION SYSTEM WITH STATES

This section describes Vectors Addition Systems with States (VASS). Resources Con-

trol Graphs are a generalisation of VASS. VASS are known to be equivalent to Petri

Nets [Reutenauer 1989].

5.1 Definitions

Definition 5.1 (VASS, configurations, walks). A Vector Addition System with States is

a directed graph G = (S, A) together with a weighting function ω : A→ Z
k where k is a

fixed integer.

A configuration is a couple η = (s, v) where s ∈ S is a vertex and v ∈ Z
k is the

valuation. A configuration is admissible if and only if v ∈ N
k.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Resource Control Graphs · 17

A walk is a sequence (finite or not) of configurations (s0, v0)
a1→ . . .

an→(sn, vn) such that

s0
a1→s1

a2→ . . .
an→sn and for all i > 0, vi = vi−1 + ω(ai). A walk is admissible if all

configurations in it are admissible.

We say that path a1 . . . an is the underlying path of the walk and the walk follows this

path. Similarly, G is the underlying graph for the VASS.

As for graphs and paths, we will write η → η′ if there exists an edge a such that η
a
→η′

and
+
→,

∗
→ for the closures.

Definition 5.2 (Weight of a path). Let V be a VASS and a1 . . . an be a path in it. The

weight of edges is extended to paths canonically: ω(a1 . . . an) =
∑

ω(ai). This means

that ω is a morphism between (A, ·) (the free monoid generated by the edges) and (Zk, +).

LEMMA 5.3. Let V be a VASS and a1 . . . an be a finite path in it. There exists a valu-

ation v0 such that for 0 ≤ i ≤ n, v0 + ω(a1 . . . ai) ∈ N
k.

This means that every finite path is the underlying path of an admissible walk.

PROOF. Because the path is finite, the jth component of ω(a1 . . . ai) is bounded from

below by some αj (of course, this bound is not necessarily reached with the same i for

all components, but nonetheless such a bound exists for each component separately). By

putting βj = max(0,−αj) (that is 0 if αj is positive), then v0 = (β1, · · · , βk) verifies the

property.

LEMMA 5.4. Let (s0, v0) → . . . → (sn, vn) be an admissible walk in a VASS. Then,

for all v′0 ≥ v0 (component-wise comparison), (s0, v
′
0)→ . . .→ (sn, v′n) is an admissible

walk (following the same path).

PROOF. By monotonicity of the addition.

Definition 5.5 (Uniform termination). A VASS is said to be uniformly terminating if it

admits no infinite admissible walk. That is, every walk is either finite or reaches a non-

admissible configuration.

THEOREM 5.6. A VASS is not uniformly terminating if and only if there exists a cycle

whose weight is in N
k (that is, is non-negative with respect to each component).

PROOF. If such a cycle exists, starting and ending at vertex s, then by Lemma 5.3 there

exists v0 such that the walk starting at (s, v0) and following it is admissible. After follow-

ing the cycle once, the configuration (s, v1) is reached. Since the weight of the cycle is

non-negative, v1 ≥ v0. Then, by Lemma 5.4 the walk can follow the cycle one more time,

reaching (s, v2), and still be admissible. By iterating this process, it is possible to build an

infinite admissible walk.

Conversely, let (s0, v0) → . . . → (sn, vn) → . . . be an infinite admissible walk. Since

there are only finitely many vertices, there exists at least one vertex s′ appearing infinitely

many times in it. Let (s′l, v
′
l) be the occurrences of the corresponding configurations in the

walk. Since the component-wise order over vectors of N
k is a well partial order, there exists

i, j such that v′i ≤ v′j . The cycle followed between s′i and s′j has a positive weight.

5.2 Decidability of the uniform termination

Definition 5.7 (Linear parts, semi-linear parts). Let (M, +) be a commutative monoid.

A linear part of M is a subset of the form v + V ∗ where v ∈M and V is a finite subset of

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

18 · Jean-Yves Moyen

M . That is, if V = {v1, · · · , vp}, a linear part can be expressed as:
{

v +

i=p∑

i=1

nivi|ni ∈ N

}

A semi-linear part of M is a finite union of linear parts.

LEMMA 5.8. In a commutative monoid, rational parts are exactly the semi-linear parts.

Recall that rational parts are build from +, union and Kleene’s star ∗. When dealing with

words (that is the free monoid generated by a finite alphabet), + is word concatenation (not

commutative) and so rational parts are exactly the regular languages.

PROOF. Semi-linear parts are expressed as rational parts.

Conversely, it is sufficient to show that the set of semi-linear parts contains all finite parts

and is closed by union, sum and ∗. The hard point being the closure under ∗ which is a

consequence of commutativity. It holds because (v+V ∗)∗ = (v+({v}
⋃

V)∗)
⋃
{0} (the

key idea being that (a(b∗))∗ = a∗b∗ in a commutative monoid). See [Reutenauer 1989]

(Proposition 3.5) for details.

LEMMA 5.9. The set of cycles in a graph is a rational part (of the free monoid gener-

ated by the edges).

PROOF. Consider the graph as an automaton with each edge labelled by a separate label.

The set of paths between two given vertices is a regular language (accepted by the automa-

ton with the proper input and accepting nodes). So is the set of cycles as finite union of

regular languages.

COROLLARY 5.10. The set of weights of cycles in a VASS is a semi-linear part of Z
k .

PROOF. Since the weighting function ω is a morphism between (A, ·) and (Zk, +), it

preserves rational parts. Hence, the set of weights of cycles is a rational part of Z
k. Since

+ is commutative, it is also a semi-linear part.

Notice that the proofs are constructive. Hence the semi-linear part can effectively be

built.

THEOREM 5.11. Uniform termination of VASS is in NPTIME.

PROOF. By Theorem 5.6, a VASS is not uniformly terminating if and only if there is a

cycle whose weight is in N
k. Since the set of weights of cycles is a semi-linear part of Z

k,

it is sufficient to be able to decide whether a linear part of Z
k intersects N

k (and try this for

each linear part of the union).

Let U = {u1, · · · , up} and u + U∗ be a linear part of Z
k. It intersects N

k if and only if

there exists n1, · · · , np ∈ N such that u +
∑

niui ≥ 0.

This can be solved in NPTIME using usual integer linear programming techniques.

Since VASS and Petri nets are equivalent, this also shows that uniform termination of

Petri nets is decidable. Without going through the equivalence, a direct and simpler proof

can be made for Petri nets. Such a proof can be found in [Moyen 2003], (theorem 60, page

83).

Example 5.12. Figure 7 displays two VASS. More formally, the first one should be

described as a graph G = (S, A) with:

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Resource Control Graphs · 19

a

b

c

d

(0,−1,+1)

(−1, 0, 0)

(0,+1,−2) (0, 0,+1)

(0, 0,−1)

a

b

c

d

(0,+2,+1)

(+3, 0,−1)

(−1, 0,+1) (0,−1, 0)

(0, 0,−1)

Fig. 7. Two VASS

—S = {a, b, c, d}

—A = {a
a1→b, a

a2→c, b
a3→c, c

a4→d, d
a5→a}

—ω(a1) = (0,−1, +1), ω(a2) = (−1, 0, 0), ω(a3) = (0, +1,−2), ω(a4) = (0, 0, +1),
ω(a5) = (0, 0,−1).

Let A = (((a1a3)|a2)a4a5)
∗ be a regular expression describing cycles from a to a. Then

the set of all cycles in these VASS is the language recognised by the regular expression:

A|(a3a4a5Aa1)|(a4a5A(a1a3|a2))|(a5A(a1a3|a2)a4)

This corresponds to the semi-linear set {(a1a3a4a5), (a2a4a5)}
∗

The set of weights of cycles in the first VASS is obtained from the set of cycles by

applying the weighting function (which is a morphism). Thus, we obtain:

{(ω(a1)+ω(a3)+ω(a4)+ω(a5)), (ω(a2)+ω(a4)+ω(a5))}
∗ = {(−l, 0,−k)|k, l ∈ N}

Obviously, this set does not intersects N
3 (apart from the trivial 0 solution), hence the

VASS is uniformly terminating.

For the second VASS, we obtain the set {(3l−k, k−l, k−2l)|k, l,∈ N}. It intersects N
3,

for example with k = 2, l = 1, corresponding to the cycle (a1a3a4a5)
2(a2a4a5) whose

weight is (1, 1, 0). Hence, the VASS is not uniformly terminating.

However, any infinite walk starting from the configuration (a, (0, 14, 0)) is not admissi-

ble. Deciding whether a given configuration leads to an infinite admissible walk or not is a

different problem than uniform termination.

It is worth noticing that in the second case, the cycle detected is not a simple cycle. So

the problem is different from the one of detecting simple cycles in graphs and requires a

specific solution.

5.3 VASS as Resource Control Graphs

Before the formal definition of Resource Control Graphs, we show here how VASS can be

used to build proofs of uniform termination of programs.

In the rest of this section, we consider the following size function:

||〈IP, σ〉|| = (|stk1|, . . . , |stks|)stki∈S

that is, the vector whose components are the length of the different stacks of a given pro-

gram. Moreover, we use (ei) to denote the canonical basis of Z
k, that is ei is the vector

whose jth component is δi,j .

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

20 · Jean-Yves Moyen

end 1

0

2

3

(0, 0) (0, 0)

(−1, 0)

(0,+1)

(0, 0)

Fig. 8. The Resource Control VASS for the reverse program

Definition 5.13 (Weights). To each instruction, we assign the following weight:

—ω(r := pop(stki)) = −ei

—ω(push(r,stki)) = ei

—ω(i) = 0 for all other instructions.

Definition 5.14 (Resource Control VASS). Let p be a program. Its Resource Control

VASS is a VASS whose underlying graph is the Control Flow Graph of p and edge i has

weight ω(i) as defined above.

PROPOSITION 5.15. Let p be a program and G be its Resource Control VASS. If θ0 =
〈IP0, σ0〉

∗
→〈IPn, σn〉 = θn is an execution of p, then (IP0, ||θ0||)

∗
→(IPn, ||θn||) is an

admissible walk of G with the same trace.

PROOF. By induction on the length of the execution. Notice that executions leading to

errors (⊥) are not taken into account here.

THEOREM 5.16. Let p be a program and G be its Resource Control VASS. If G is

uniformly terminating, then p is uniformly terminating.

PROOF. Otherwise, there would exist an infinitely long execution that can be mapped

onto an infinite admissible walk by the previous Proposition.

Since uniform termination of VASS is decidable, this allows to decide uniform termi-

nation of a broad class of programs. Of course, the converse is not true since uniform

termination of programs is not decidable.

Example 5.17. The Resource Control VASS of the reverse program is displayed on

Figure 8. Since it is uniformly terminating, so is the reverse program.

Weighted graphs, as used in Section 4 to prove Non-Size Increasingness of programs are

also a special case of VASS with only one dimension.

6. RESOURCE SYSTEMS WITH STATES

Resource Systems with States (RSS) are a generalisation of VASS seen in the previous

Section. In VASS, the only information kept is a vector of integers, and only addition of

vectors can be performed. When modelling programs, this is not sufficient. Indeed, if

one wants to closely represent the memory of a stack machine, a vector is not sufficient.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Resource Control Graphs · 21

Moreover, vector addition is not powerful enough to represent usual operations such as

copy of a variable (x := y).

Hence, we will now relax the constraints on valuations and weights and basically allow

valuations to be drawn from any set and weights to be any kind of functions (between

valuations). Notice that for VASS, the addition of a vector v could be represented as the

function λx.x + v.

In order to be a bit more general, we will even allow the sets of valuations to be different

for each vertex. This may seem strange, but a typical use of that is to have vectors with

different numbers of components as valuations (that is the set of valuations for vertex si

would be Z
ki) and matrix multiplications as weights (where the matrices have the correct

number of rows and columns). Of course, it is always possible to take the (disjoint) union

of these sets, but it usually clutters needlessly the notations. See Example 9.3 for more

details.

6.1 Graphs and States

Definition 6.1 (RSS, configurations, walks). A Resource System with States (RSS) is a

tuple (G, V, V +, W, ω) where

—G = (S, A) is a directed graph, S = {s1, · · · , sn} is the set of vertices and A =
{a1, · · · , am} is the set of edges.

—V1, · · · , Vn are the sets of valuations. V is the union of all of them.

—V +
i ⊂ Vi are the sets of admissible valuations. V + is the union of them.

—Wi,j : Vi → Vj are the sets of weights. W is the union of them.

—ω : A→W is the weighting function such that ω(a) ∈Wi,j if si
a
→sj .

When both the valuations and weights sets are clear, we will name the RSS after the un-

derlying graph G.

A configuration is a couple η = (s, v) where s = si ∈ S is a vertex of the graph and

v ∈ Vi is a valuation. A configuration is admissible is v ∈ V +
i is admissible.

A walk is a sequence (finite or not) of configurations (s0, v0)
a1→ . . .

an→(sn, vn)
an+1

→ . . .

such that s0
a1→s1

a2→ . . .
an→sn

an+1

→ . . . and for all i > 0, vi = ω(ai)(vi−1). A walk is admis-

sible if all configurations in it are admissible.

The walk follows path p which is called either underlying path or trace of the walk.

As earlier, we write η → η′ if the relation holds for an unspecified edge and
+
→,

∗
→ for

the transitive and reflexive-transitive closures.

The idea behind having both valuations and admissible valuations is that this allows V
to have some nice algebraic properties not shared by V +. Moreover, this also allows the set

of valuations to be the closure of the admissible valuations under the weighting functions,

thus removing the deadlock problem of reaching something that would not be a valuation

(and replacing it by the more semantical problem of detecting non admissible valuations).

Typically with VASS, V is Z
k, thus being a ring, and V + is N

k. Since weights can add

any vector, with positive or negative components, to a valuation, V is the closure of V + by

this operation. Moreover, VASS do not suffer from the deadlock problems that appear in

Petri nets (but this is done by introducing the problem of deciding if a walk is admissible).

Notice that either unions (for V , V + or W) can be considered to be a disjoint union

without loss of generality.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

22 · Jean-Yves Moyen

Definition 6.2 (Weight of a path). Let G be a RSS. The weighting function can be canon-

ically extended over all paths in G by choosing ω(ab) = ω(b) ◦ ω(a).
(W, ◦) is a magma. It is not a monoid because the identity is not unique. There is a finite

set of neutral elements, the identities over each Vi.

Notice that we do not actually need the whole W . Only the part generated by the indi-

vidual weights of edges is necessary to handle a RSS. We will overload the notation and

call it W as well.

In practise, it is often more convenient to describe W as a set together with some right-

action on V . That is, there is an operation ⊛ : V ×W → V such that v⊛ω(a) = ω(a)(v).
In this case, the function composition becomes an internal law of W , # : W ×W → W
such that ω(a) #ω(b) = ω(b)◦ω(a). This turns ω in a morphism between (A, ·) and (W, #).

This notation is much more convenient when composing weights along a path. Indeed,

since ω is a morphism, ω(ab) = ω(a) # ω(b), that is the weights are composed in the same

order as the edges along the path while using functional composition we had ω(ab) =
ω(b) ◦ω(a), needing to reverse the order of edges along the path. Moreover, since weights

usually have some common shape, (W, #) is usually a well known algebraic structure.

Example 6.3. For the VASS of previous Section, we have Vi = Z
k and V +

i = N
k for

all i, and ω(ai) = λx.x + ui for some vector ui ∈ Z
k. Or, we could describe VASS by

saying that V = W = Z
k, V + = N

k and ⊛ = # = +.

The notation with ⊛ and # is much more convenient, especially to handle easily weights

of paths such as done in the lemmas and theorems of the previous Section.

Moreover, the fact that weights (as functions) all have the same shape (namely, λx.x+α)

allows to identify each weight with the vector α, thus giving a more convenient definition.

Of course, If we consider Vi as objects and ω ∈ W as arrows, we have a category.

Indeed, identity exists for each Vi and composition of two arrows is properly defined.

6.2 Properties of RSS

6.2.1 Order

Definition 6.4 (Ordered RSS). An ordered RSS is an RSS G = (G, V, V +, W, ω) to-

gether with a partial ordering≺ over valuations such that the restriction of≺ over V + is a

well partial order.

For VASS, the component-wise order on vectors of the same length is the well partial

order (over V + = N
k) that was used in the previous Section.

Definition 6.5 (Monotonicity, positivity). Let (G, V, V +, W, ω) be an ordered RSS. We

say that it is monotonic if all weighting functions ω(ai) are increasing with respect to ≺.

Since the composition of increasing functions is still increasing, the weighting function of

any path will be increasing.

We say that (G, V, V +, W, ω) is positive if for each v ∈ V + and v′ ∈ V , v ≺ v′ implies

v′ ∈ V +.

VASS are both monotonic and positive. Monotonicity is the key of Lemma 5.4 while

positivity is implicitly used in the proof of Theorem 5.6 to say that the valuation reached

after one cycle is still admissible.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Resource Control Graphs · 23

Definition 6.6 (Resource awareness). Let G be an ordered RSS and f : V → V be a

function. G is f -resource aware if for any walk (s0, v0)
∗
→(sn, vn) we have vn � f(v0)

6.2.2 Uniform termination

Definition 6.7 (Uniform termination). Let G be a RSS. G is uniformly terminating if

there is no infinite admissible walk in G.

Notice that if a RSS is not uniformly terminating, then there exists an infinite admissble

walk that stay entirely within one strongly connected component of the underlying graph.

In the following, when dealing with infinite walks we suppose without loss of generality

that the RSS is strongly connected.

Theorem 5.6 can be generalised to RSS:

THEOREM 6.8. If G does not uniformly terminates, then there is an admissible cycle

(s, v)
+
→(s, u) with v � u. If G is monotonic and positive, then this is an equivalence.

PROOF. If an infinite admissible walk exists, then we can extract from it an infinite se-

quence of admissible configurations (s′, vk) since there is only a finite number of vertices.

Since the order is a well partial order on V +, there exists a i < j with vi � vj , thus leading

to the cycle.

If the cycle exists, then it is sufficient to follow it infinitely many time to have an infinite

admissible walk. Monotonicity is needed to ensure that every time one follows the cycle,

the valuation does indeed increase. Positivity is needed to ensure that when going through

always increasing valuations one will never leave V +.

PROPOSITION 6.9. Let G = (G, V, V +, W, ω) be a RSS.

(1) If V is finite, then W is finite.

(2) If V is finite, then uniform termination of G is decidable.

(3) If both V and W are enumerable, then it is semi-decidable to know if an ordered RSS

G is not uniformly terminating.

PROOF.

(1) Because the set of functions F(V, V) is finite and contains W .

(2) If there are only finitely many valuations, the cycle of Theorem 6.8 becomes (s, v)
+
→(s, v),

that is one comes back to exactly the same configuration. Then it is possible to com-

pute all the possible weights of cycles (there are only finitely many of them) and check

with all the valuation if the condition is met. Notice that this does not require the RSS

to be ordered.

(3) By enumerating the cycles and the valuations simultaneously, computing the new val-

uation after going through the cycle and checking with the ordering if this satisfies

Theorem 6.8.

Corollary 5.10 can be generalised:

PROPOSITION 6.10. If (W, #) is commutative, then the set of weights of cycles of a RSS

is semi-linear.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

24 · Jean-Yves Moyen

This will allow to easily find candidates for a generalisation of Theorem 5.11 if the set

of “positive” weights is easily expressible (as it was the case for VASS). Among other, if it

is itself semi-linear, then uniform termination is decidable (intersection of two semi-linear

parts being decidable).

6.3 Equational versus constraint based approach

Up to now, the only weights we have considered are functions, meaning that if s
a
→s′, for

each valuation v there is only one valuation v′ such that (s, v)
a
→(s′, v′). Sometimes, it

is more convenient to have several possible results because approximations done on the

values leads to a lost of knowledge. In this case, the weights considered will be relations

rather than functions and we require v′ ∈ ω̂(a)(v) rather than v′ = ω(a)(v).

6.3.1 Constraints RSS

Definition 6.11 (RSS, configurations, walks).

A Constraints RSS is a tuple (G, V, V +, W, ω) where

—G = (S, A) is a directed graph.

—V +
i ⊂ Vi are the sets of admissible valuations and valuations.

—Wi,j : Vi → P(Vj) are the sets of weights.

—ω̂ : A→W is the weighting function such that ω̂(a) ∈Wi,j if si
a
→sj .

Configurations and admissible configurations are defined as earlier.

A walk is a sequence (finite or not) of configurations (s0, v0)
a1→ . . .

an→(sn, vn)
an+1

→ . . .

such that s0
a1→s1

a2→ . . .
an→sn

an+1

→ . . . and for all i > 0, vi ∈ ω̂(ai)(vi−1). A walk is admis-

sible if all configurations in it are admissible.

It is important to notice that even if weighting functions return sets (that is, they are

relations rather than functions), each walk has to choose one element from this set as a

new valuation. That is, we do not consider configurations with sets as valuations, but

rather introduce some kind of non-determinism in the RSS. The main use for this will be

when some valuations are in no way related to the previous ones and can be anything (e.g.

if a value is provided via some external mechanism such as a scanf instruction).

Definition 6.12 (Weight of a path). Let G be a RSS. The weighting function can be

canonically extended over all paths in G by choosing ω̂(ab)(x) = ω̂(b)(ω̂(a)(x)) =
{ω̂(b)(y)|y ∈ ω̂(a)(x)}.

As earlier, uniform termination means that there exists no infinite admissible walk. How-

ever, monotonicity becomes x � y ⇒ ∀x′ ∈ ω̂(x), ∃y′ ∈ ω̂(y)/x′ � y′.

Then, Theorem 6.8 becomes:

THEOREM 6.13. Let G be a positive monotonic Constraints RSS. G is not uniformly

terminating if and only if there is an admissible cycle (s, v0)
+
→(s, v1) such that v0 � v1.

PROOF. If an admissible infinite walk exists, then we can extract from it an admissible

cycle in exactly the same way as in Theorem 6.8.

Conversely, if an admissible cycle c exists, let (s, v0)
a
→(s′, v′0)

∗
→(s, v1) be the firsts and

last configurations when following the cycle. By hypothesis, v0 � v1.

Then, there exists v′1 ∈ ω̂(a)(v1) such that (s, v1)
a
→(s′, v′1) and v′0 � v′1. By positivity

of the VASS, v′1 is still admissible.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Resource Control Graphs · 25

Ack

(−1,+1)

(−1,+∞) (0,−1)

Fig. 9. Constraints VASS for Ackermann’s function

By iterating this process, we build the admissible cycle (s, v1)
c
→(s, v2) with v1 � v2.

Then, this can be done ad infinitum thus leading to an admissible infinite walk.

6.3.2 Constraints VASS.

Let us show how this concept apply to VASS and why it can be useful when studying

programs.

Definition 6.14 (Constraints VASS). A Constraints VASS is a directed graph G = (S, A)

together with a weighting function ω : A→ Z
k

where k is a fixed integer.

A configuration is a couple η = (s, v) where s ∈ S and v ∈ Z
k. It is admissible if

v ∈ N
k.

A walk is a sequence (finite or not) of configurations (s0, v0)
a1→ . . .

an→(sn, vn) such that

s0
a1→s1

a2→ . . .
an→sn and for all i > 0, vi ≤ vi−1 + ω(ai). A walk is admissible if all

configurations in it are admissible.

To express a Constraints VASS as a Constraints RSS, we should consider the weighting

function ω̂(a) : Z
k → P(Zk) such that ω̂(a)(v) = {v′|v′ ≤ v + ω(a)}. Then, the relation

between valuations in a walk will be the general vi ∈ ω̂(ai)(vi−1). Since, all constraints

have the same shape, we can express this in a more readable way. Constraints VASS are

positive and monotonic. When there is no +∞ in the weights, it is always “best” to choose

the greatest possible valuation, that is use the (regular) VASS with the same underlying

graph and weighting function.

Example 6.15. Consider the following functional program computing Ackermann’s

function:

Ack(0, n)→n + 1

Ack(m + 1, 0)→Ack(m, 1)

Ack(m + 1, n + 1)→Ack(m,Ack(m + 1, n))

For functional programs, an equivalent of the CFG can be the calls graph. there is one

vertex for each function symbol (here only one) and one edge for each call (here, 3). Since

there are two positive integers in the program, it is natural to choose (m, n) as valuation.

However, when considering the outer call in the last line the second argument is Ack(m+
1, n) which cannot be related to the parameter n in any easy way. So, using a regular VASS,

this call would not be representable, while, e.g., the call in the second line corresponds to

adding the vector (−1, +1) to the valuation.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

26 · Jean-Yves Moyen

With a Constraints VASS, we can represent this last call. Indeed, not knowing anything

on the result simply means that we can relax all constraints on it which will be represented

by the vector (−1, +∞). The constraints VASS for Ackermann’s function is displayed on

Figure 9.

Since this Constraints VASS is uniformly terminating, so is Ackermann’s function.

This both illustrates why Constraints VASS can be useful as well as hints how to apply

the ideas behind RCG to functional programs.

7. RESOURCES CONTROL GRAPHS

Instead of the weighted graphs or VASS used before, we will now use any RSS to model

programs. A set of admissible valuations will be given to each state and weighting func-

tions simulate the corresponding instruction.

Since we can now have any approximation of the memory (the stores) for valuations,

we cannot simply use the length of a state. Instead, we consider given a size function that

associates to each state (or to each store) some size. The size function is unspecified in

general. Of course, when using RCG to model programs, the first thing to do is usually to

determine a suitable size function (according to the studied property). Notice that depend-

ing on the size function, weights of instructions can or cannot be defined properly (that is,

some sizes are either too restrictive or too loose and no function can accurately reproduce

on the size the effect of a given instruction on actual data). In this case, the RCG cannot be

defined and another size function has to be considered.

7.1 Resources Control Graphs

Definition 7.1 (RCG). Let p be a program and G be its control flow graph. Let V + be

a set of admissible valuations (and ≺ be a well partial order on it). Let || • || : Θ → V +

be a size function from states to valuations and V +
lbl be the image by || • || of all states

〈lbl, σ〉 for all stores σ.

For each i edge of G, let ω(i) be a function such that for all states θ verifying p ⊢ θ
i
→θ′,

ω(i)(||θ||) = ||θ′||. Let V be the closure of V + by all the weighting functions ω(i).
The Resource Control Graph (RCG) of p is the RSS build on G with weights ω(i) for

each edge i, valuations V and admissible valuations V + (ordered by ≺). V +
lbl being the

admissible valuations for vertex lbl.

As stated before, we will write v ⊛ ω(i) instead of ω(i)(v) and ω(i) # ω(j) instead of

ω(j) ◦ ω(i).

LEMMA 7.2. Let p be a program, G be its RCG and p ⊢ θ0 → . . . → θn be an

execution with trace t. There exists an admissible walk (s0, ||θ0||) → . . . → (sn, ||θn||)
with the same trace t.

THEOREM 7.3. Let p be a program and G be its RCG. If G is uniformly terminating,

then p is also uniformly terminating.

Example 7.4. A Space-RCG as defined in Section 4 is a special case of general RCG.

In this case, ||θ|| = |θ|, this leads to V +
lbl = V + = N for each label lbl. Similarly,

ω(i) = λx.x + ki with ki as in definition 4.1. Since k ∈ Z, the closure of V + by the

weighting functions is V = Z.

In this case, resource awareness of the Space-RCG (or β-Space-RCG) guarantees a re-

source bound on the program execution.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Resource Control Graphs · 27

Example 7.5. For a better representation of programs, the size can be the vector where

each component is the length of a stack: ||〈IP, σ〉|| = (|stk1|, . . . , |stks|)stki∈S . This

corresponds exactly to what is done with the Resource Control VASS of Section 5.3. As

shown, this allows to decide uniform termination of several programs.

This termination analysis is close to the Size Change Termination [Lee et al. 2001] in

the sense that the size of data is monitored and a well ordering on it ensure that it can-

not decrease forever. It is sufficient to prove uniform termination of most common lists

programs such as reversing a list or insertion sort. It is also, in some way, slightly more

efficient than the original SCT because it can take into account not only the decreasing in

size, but also the increasing. In this way, a program that would loop on something like

pop pop push (2 pops and 1 push) is not caught by SCT but is proved uniformly ter-

minating with this analysis. In this sense, it is closer to the SCT with difference constraints

(δSCT) [Ben-Amram 2006].

This method is in NPTIME, as we have shown, uniform termination of VASS is in

NPTIME. The original SCT, as well as fan-in free δSCT, is PSPACE-complete. However,

this simple method does not allow for data duplication or copy. Lee, Jones and Ben-Amram

already claimed in the original SCT that there exists a poly-time algorithm for SCT dealing

with “programs whose size-change graphs have in- and out-degrees bounded by 1”. It is

easy to check that VASS can only model such kind of programs accurately5, hence the NP

bound is not a big surprise.

Moreover, this method has a fixed definition of size and hence will not detect termination

of programs whose termination argument does not depend on the decrease of the length of

a list. Among other, any program working solely on integers (represented as letters of the

alphabet) will not be analysed correctly.

Example 7.6. However, even this representation can be improved. Typically, using

Resource Control VASS it is impossible to detect anything happening to registers. If we

have a suitable size function || • || : Σ → N for registers6, we can choose ||〈IP, σ〉|| =
(||r1||, . . . , ||rr||)ri∈R. In this case, depending on the operators, weight could be either

vectors addition or matrices multiplication (to allow the copy of a register).

Remark 7.7. Taking exactly the image of || • || as the set of admissible valuations V +

might be a bit too harsh. Indeed, this set might have any shape and is probably not really

easy to handle. So, it is sometimes more convenient to consider a superset of it in order

to easily decide if a valuation is admissible or not. The convex hull (in V) of the image

of || • || is typically such a superset. Notice that it is very similar to the idea of trying to

find an admissible set of sequences of states which will be more manageable than the set of

executions. Here, we try to find an admissible set of valuations which is more manageable

than the actual set of sizes. For more details on how to build and manage such a superset,

see the work of Avery [2006].

Remark 7.8. The size function is not specified and may depend on the property one

wants to study. We do not address here the problem of finding a suitable size function for a

given program. As hinted, it might be a simple vector of functions over stacks and registers

but it can also be a more complicated function such as a linear combination or so. Hence,

5And cannot even model all those programs due to the restriction on copying variables.
6Note that the size function used here is in no way related to the length of a state. It plays no role when computing

the space usage of a state and may also be seen as an ordering over the alphabet.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

28 · Jean-Yves Moyen

with a proper size function, one is able not only to check that a given register (seen as an

integer) is always positive but also that a given register is always bigger that another one.

This is similar to Avery’s functional inequalities [2006].

Example 7.9. Let us consider the following program, working on integers (that is the

alphabet is the set unsigned of 32 bits positive integers):

0 : i := 0; 4 : if i < n then goto 2;
1 : if i ≥ n then goto 5; 5 : i := i + 1;
2 : i := i + 1; end : end;
3 : some instructions modifying neither i nor n

This is simply a loop for(i=0;i<n;i++) (in a C-like syntax). If we consider a size

function that simply takes the vector of the registers, that is ||〈IP, σ〉|| = (i, n), then the

loop will have weight (+1, 0) and thus lead to a cycle of positive weight. However, a

clever analysis of the program could detect that inside the loop we must necessarily have

n− i > 0 and thus suggest the size ||〈IP, σ〉|| = n− i. Using this, the loop has weight−1
and we can prove uniform termination of the program.

As stated, we do not address here the problem of finding a correct size function for

a given program. This problem is undecidable in general. But invariants can often be

automatically generated, usually by looking at the pre- and post-conditions of the loops.

Notice also that this inequality must hold only in the loop. Indeed, at label 5 or after,

we may have i > n. Hence using this size function everywhere would cause troubles since

then ||(5, σ)|| will not be admissible.

Having different sets of valuations for each labels, that is a size function operating

differently on each label, can solve this problem. By choosing ||〈IP, σ〉|| = (i, n) for

IP = 0, 1, 5,end and ||〈IP, σ〉|| = (i, n, n − i) otherwise, we can ensure that the “natu-

ral” sets of admissible valuations (N2 and N
3) indeed correspond to the image of the size

function (or at least a manageable superset of it).

In this case, of course, we need the weight between labels 1 and 2 to take into account

the apparition of a new component in the valuation. Here, this can be done using a matrix

multiplication since the new component in the valuation is a linear combination of the

existing ones. See Example 9.3 for the complete construction of the RCG.

7.2 Constraints RCG

Constraints RSS can also be used instead of RSS to model programs and build RCG as was

done with the Ackermann’s function of Example 6.15. In that case, the relation required

between weights and sizes is:

for all states θ verifying p ⊢ θ
i
→θ′, ||θ′|| ∈ ω̂(i)(||θ||).

Then, the simulation Lemma and uniform termination Theorem are still true:

LEMMA 7.10. Let p be a program, G be its Constraints RCG and p ⊢ θ0 → . . . →
θn be an execution with trace t. There exists an admissible walk (s0, ||θ0||) → . . . →
(sn, ||θn||) with the same trace t.

PROOF. Because ||θi|| belongs to ω̂(a)(θi−1) and can thus always be chosen as the new

valuation.

THEOREM 7.11. Let p be a program and G be its RCG. If G is uniformly terminating,

then p is also uniformly terminating.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Resource Control Graphs · 29

8. δ-SIZE CHANGE TERMINATION

We consider here the (Z, min, +) semi-ring and denotes min as ⊕ and + as ⊗. These

operations are canonically extended to define multiplication of matrices fromM(Z).

8.1 Matrices and graphs

Definition 8.1 (Sign matrix). Let M be a matrix of M(Z). Its sign matrix, M is the

matrix such that M i,j is +∞ (resp. 0, −1, +1) if Mi,j is +∞ (resp. 0, < 0, > 0).

Definition 8.2 (Sign-idempotence). Let M be a square matrix of M(Z). It is sign-

idempotent if M = M ⊗M , that is M has the same sign as M2.

Matrix M is strongly sign idempotent if for all k > 0, M = Mk, that is M has the same

sign as all its powers.

Matrix M is strongly diagonally sign idempotent (SDSI) if for all k > 0, M i,i = Mk
i,i,

that is the diagonal of M has the same sign as the diagonal of all the powers of M .

Remark 8.3. Sign idempotence and strong sign idempotence are not equivalent as shown

by the following matrix (remember that we are working in the (Z, min, +) semi-ring and

not in the usual (Z, +,×) ring):

M =




1 −5 −1
6 1 2
2 −1 1


 M2 =




1 −4 −3
4 1 3
3 −3 1


 M3 =



−1 −4 −2
5 −1 3
3 −2 −1




Definition 8.4 (Constraint graph). Let M be a square matrix of dimension n. Its con-

straint graph is a weighted directed graph G such that:

—There are n vertices Xi, 1 ≤ i ≤ n plus an extra vertex Y .

—If Mi,j 6= +∞, there is an edge of weight Mi,j between Xi and Xj .

—There is an edge of weight 0 between Y and Xi, for all i.

Definition 8.5 (l-weight). Let G be a directed weighted graph. The l-weight between a
and b is the minimum weight of all paths of length l between a and b and +∞ if there is

no such path.

Let ωa,b(l) be the l-weight between a and b and ωa,b(l) be its sign (in {−1, 0, +1, +∞}
as earlier).

The coefficient Mk
i,j is the k-weight between Xi and Xj in the constraint graph of M .

Before proving the Lemma,

LEMMA 8.6. Let M be a square matrix. There exists k > 0 such that Mk is strongly

diagonally sign idempotent.

Let M be a square matrix. There exists k > 0 such that Mk is strongly sign idempotent.

The proof will be done on the constraint graph of M by looking on the l-weights. On

graphs, the Lemma is expressed as follows:

LEMMA 8.7. Let G be a directed weighted graph. There exists k such that for all

vertices s, r, the set {ωs,r(kn)|n > 0} is a singleton.

That is, for each pair of vertices, the kn-weights between them keep the same sign.

For the sake of clarity, we denote si the vertices of G and use fi,j(l) = ωsi,sj
(l) for the

sign of the l-weights.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

30 · Jean-Yves Moyen

So, we need to show that there exists k such that for all i, j, {fi,j(kn)|n > 0} is a

singleton.

PROOF. (Ben-Amram7)

Permuting the quantifiers. Firstly, if for all i, j, there exists ki,j such that {fi,j(ki,jn)|n >
0} is a singleton, then it is sufficient to choose k = Πki,j to have the property.

Dealing with the diagonal. Then, consider ki,i. If there is a cycle of negative weight

from si to itself, let l be its length, by choosing ki,i = l we can ensure that fi,i(ln) = −1
for all n > 0. If there is no cycle of negative weight but one of weight 0 (resp. only cycles

of weight > 0), then we can again choose ki,i = l (the length of such a cycle) and be sure

that fi,i(ln) is 0 (resp. +1). If there are no cycles from si to itself, then fi,i(n) is +∞ for

all n (that is, ki,i = 1).

Then, if there is no path between si and sj , then fi,j(n) is +∞ for all n and ki,j = 1.

In terms of matrices, this proves the first part of Lemma 8.6, that is every matrix has a

power which is SDSI.

So, without loss of generality, we can consider that if there exists a cycle with a weight of

a given sign, then there exists a cycle of length 1 whose weight has the same sign. Indeed,

that means only considering cycles (and paths) whose length is multiple of Πki,i.

In terms of matrices, that means that we now only consider SDSI matrices.

For all pairs of vertices Xi, Xj , we consider all the triples (s, C, p) such that p is a path

from Xi to Xj going through s and C is a cycle from s to itself. Since we’re now only

considering the SDSI case, if there exists a triple (s, C, p) then there exists another one

(s, C′, p) such that C′ is of length 1 and the weights of C and C′ have the same sign.

Since we will only reason on the signs of the weights, we can without loss of generality

consider only triples with cycles of length 1.

Now, depending on the signs of the weights of both C and p, there can be several cases:

(1) There exists (s, C, p) with ω(C) < 0.

In this case, if k ≥ k0 is large enough, there exist a path of length k and negative weight

that loops sufficiently many times through C to “cancel” the weight of p (because the order

on Z is archimedean). We can choose ki,j = k0.

(2) The above does not hold, but there exists (s, C, p) with ω(C) = 0 and ω(p) < 0.

If k ≥ k1 the length of p, there exist a path of negative weight and length k. Again,

ki,j = k1.

(3) None of the above hold, but there exists (s, C, p) with ω(C) = ω(p) = 0.

The same reasoning yields paths of weight 0.

(4) None of the above hold, but there exists (s, C, p) anyway.

In that case, either ω(C) = 0 and ω(p) > 0, in which case all paths will have strictly

positive weight, or ω(C) > 0 in which case all sufficiently long paths will have strictly

positive weight (because they’ll have to go through C sufficiently many time to “cancel”

the weight of p).

(5) None of the above holds, that is there is no (s, C, p).
In this case, either there is no path from Xi to Xj , and the corresponding sign is +∞ for all

powers, or there are paths but none of them is adjacent to a cycle, and there is a maximum

length of a path from Xi to XJ and all further power will have sign +∞.

7This proof improves and shortens the earlier proof of the Lemma done by the author.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Resource Control Graphs · 31

LEMMA 8.8. The system X ≤ X ⊗M has a solution if and only if there is no strictly

negative coefficient in the diagonal of Mk, for all k. In that case, it admits a non-negative

solution.

PROOF. The matrix inequation corresponds to the set of inequations Xj ≤ Xi + Mi,j .

If there is no strictly negative coefficient in the diagonal of Mk, that means that the

constraints graph G has no cycle of strictly negative weight. In this case, we can choose

for Xi the value of the shortest path to reach it from Y . This is well defined because

there is no cycle of strictly negative weight and provides a solution for the system because

Xj ≤ Xi + Mi,j by definition of shortest paths.

Conversely, if there is a path of strictly negative weight, then it is easy to see that by

adding the inequations corresponding to the edges in this path one will eventually reach an

inequation Xi < Xi and the system has no solution.

If there is a solution, then X+(1, . . . , 1) is also a solution. Hence, there exists a solution

where all values are positive.

8.2 Size Change Termination

We explain here how to build RCG in order to perform the same kind of analysis as the

Size-Change Termination with difference constraints (δSCT) of Ben-Amram [2006]. Here,

we use matrices rather than Size Change Graphs thus following the work of Abel and Al-

tenkirch [2002] where similar SCT matrices are used (but over a 3-valued set, thus mim-

icking the initial SCT and not the work with difference constraints).

In this whole section, we consider a fixed program p, and for each label lbla in it a fixed

integer ka. Let Va = Z
ka and V +

a = N
ka be sets of (admissible) valuations associated with

each label and we consider given a size function || • || such that for each label lbla and

for each store σ, ||〈lbla, σ〉|| ∈ V +
a .

Definition 8.9 (Size Change Matrix). Let i be an instruction in p corresponding to an

edge between lbla and lblb in G. The Size Change Matrix (SCT matrix) of i is a matrix

M (i) ofMka,kb
(Z) such that for all states θa with p ⊢ θa

i
→θb, ||θb|| ≤ ||θa|| ⊗M (i).

This means that if ||θa|| = (x1, · · · , xka
) and ||θb|| = (y1, · · · , ykb

), we have for each

j: yj ≤ mink{xk + M
(i)
k,j} where the coefficients of M (i) can be any integer or +∞.

Definition 8.10 (Size Change RCG). The Size Change RCG (SCT-RCG) of p is the

Constraints RCG for p build with admissible valuations N
ka , and valuations Z

ka for vertex

lbla. The weight for edge i is such that ω̂(i)(v) = {v′|v′ ≤ v⊗M (i)} where M (i) is the

SCT matrix for i.

As for Constraints VASS, the common shape of constraints allows to use a weighting

function ω(i) = M (i) instead of the weighting relation ω̂ and ask along a walk that vi ≤
ω(ai)(vi−1) rather than vi ∈ ω̂(ai)(vi−1).

The uniform termination Theorem for Constraints RCG (Theorem 7.11) tells us that if

the SCT-RCG is uniformly terminating then so is p.

SCT-RCG are both monotonic and positive, so it will be possible to apply Theorem 6.13.

THEOREM 8.11. Let G be the SCT-RCG of p. It is uniformly terminating if and only if

for all cycles c, if the corresponding matrix M (c) is strongly sign idempotent, then it has a

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

32 · Jean-Yves Moyen

0

e 1

26

8 5

[
+∞ −1
0 +∞

] [
+∞ +∞
0 −1

]

Fig. 10. A Size Change Termination RCG.

strictly negative coefficient on the diagonal. That is:

G uniformly terminating⇔ ∀ cycle c, (M (c) strongly sign idempotent ⇒ ∃i/M
(c)
i,i < 0)

PROOF. First, consider that there exists a cycle c such that its weight M is strongly

sign idempotent and all coefficients on the diagonal are ≥ 0. Since M is strongly sign

idempotent, non of its power has a strictly negative coefficient on the diagonal. Then,

by Lemma 8.8, the system X ≥ X ⊗ M admits an admissible solution. Hence, there

exists an admissible cycle (s, X)
c
→(s, X⊗M) and by Theorem 6.13, the SCT-RCG is not

uniformly terminating.

Conversely, suppose that the SCT-RCG is not uniformly terminating. In this case, by

Theorem 6.13, there exists a cycle of weight M is such that X ≤ X ⊗M has a solution.

Hence, by Lemma 8.8, no power of M has a strictly negative coefficient on the diagonal.

However, by Lemma 8.6, there exists k such that Mk is strongly sign idempotent. So Mk

is strongly sign idempotent but has no strictly negative coefficient on the diagonal.

This condition is undecidable in general. However, if the matrices are fan-in free, that

is in each column of each SCT matrix, there is at most one non-+∞ coefficient, then the

problem is PSPACE-complete. See [Ben-Amram 2006] for details. Notice that in this paper,

Ben-Amram uses mostly SCT graphs and not SCT matrices. The translation from one to

the other is, however, quite obvious. Similarly we present here directly a condition on the

cycles of the SCT-RCG without introducing the multipaths. This is close to the “graph

algorithm” introduced in [Lee et al. 2001].

The simple Size Change Principle of Lee et al. [2001] can be seen as an approximation of

the δSCT principle where only labels in {−1, 0, +∞} are used. Since this only gives way

to finitely many different SCT matrices, this is decidable in general (PSPACE-complete).

Example 8.12. Consider the following program (adapted from [Lee et al. 2001] fifth

example):

0 : if y = 0 then goto end; 5 : goto0;
1 : if x = 0 then goto 6; 6 : x := y;
2 : a := x; 7 : y := y− 1;
3 : x := y; 8 : goto0;
4 : y := a− 1; end : end;

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Resource Control Graphs · 33

It can be proved terminating by choosing the size function ||θ|| = (x, y, a). With this size,

its SCT-RCG is displayed on Figure 10. For convenience reasons, instructions 2 − 4, as

well as 6 − 7 have been represented as a single edge (with a single matrix). This allows

to completely forget register a and so use (x, y) as size. Similarly, the other SCT matri-

ces are not depicted since they are the identity matrix. Since the SCT-RCG is uniformly

terminating, so is the program.

9. MORE ON MATRICES

9.1 Matrices Multiplication System with States

If we use vectors as valuations and (usual) matrices multiplication as weights, we can

define Matrices Multiplication Systems with States (MMSS) in a way similar to VASS.

Admissible valuations will still be the ones in N
k but k is not fixed for the RSS and may

depend on the current vertex.

Definition 9.1 (Matrices Multiplication System with States). A Matrices Multiplication

System with States (MMSS) is a RSS G = (G, V, V +, W, ω) where:

—Vi = Z
ki , V +

i = N
ki for some constant ki (depending on the vertex si).

—Weights are matrices with integer coefficients.

—# = ⊛ = ×.

Using this, it is quite easy to model copy instructions of counters machines (x := y)

simply by using the correct permutation matrix as a weight. To represent increment or

decrement of a counter, an operation which was quite natural with VASS, we now need a

small trick known as homogeneous coordinates8. Simply represent the n counters as a n+1
components vector whose first component is always 1. Then, increment or decrement of a

variable just becomes a linear combination of components of the vector which can perfectly

be done with matrices multiplication. For example, here is how one can model the copy

(x := y) and the increment (x := x + 1).

(1, x, y)×




1 0 0
0 0 0
0 1 1


 = (1, y, y) (1, x, y)×




1 1 0
0 1 0
0 0 1


 = (1, x + 1, y)

Example 9.2. Using homogeneous coordinates, the program of Example 8.12 has the

MMSS depicted on Figure 11. Here, matrices multiplication is done on the usual (Z, +,×)
ring and not on the (Z, min, +) semi-ring as for SCT-RCG.

Example 9.3. Similarly, use of homogeneous coordinates allows to build a MMSS to

prove uniform termination of the program of Example 7.9. It is depicted on the left part of

Figure 12 (where label 3 has been omitted). The interesting thing here is the use of vectors

of different lengths at different labels, thus allowing to add the constraint n − i ≥ 0 only

inside the loop. This example shows both the use of disjoint sets of valuations and how to

work with the functional inequalities of Avery [2006].

8Homogeneous coordinates were originally introduced by A. F. Möbius. There are used, among other, in com-

puter graphics for exactly the same purposes as we do here, that is representing a translation by means of matrix

multiplication.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

34 · Jean-Yves Moyen

0

e 1

26

8 5




1 0 −1
0 0 1
0 1 0







1 0 −1
0 0 0
0 1 1




Fig. 11. MMSS as a RCG.

But there is even more. VASS are able to forbid a x 6= 0 branch of a test being taken in an

admissible walk if x is 0 simply by decrementing x and then incrementing it immediately

after. The net effect is null but if x is 0, the intermediate valuation is not admissible.

This can still be done with MMSS. VASS, like Petri nets, are however not able to test if a

component is empty, that is forbid the x = 0 branch of a test to be taken if x is not 0.

With MMSS, we can perform this test to 0. It is indeed sufficient to multiply the correct

component of the valuation by −1. If it was different from 0, then the resulting valuation

will not be admissible.

So, using these tricks it is possible to perfectly model a counters machine by a MMSS:

each execution of the machine will correspond to exactly one admissible walk in the MMSS

and each admissible walk in the MMSS will correspond to exactly one execution of the

machine.

This leads to the following theorem:

THEOREM 9.4. Uniform termination of MMSS is not decidable.

Example 9.5. Consider the following program, performing addition in unary (that is,

repeatedly decrementing x and incrementing y until x is 0).

0 : if x = 0 then goto end; 3 : goto 0;
1 : x := x− 1; end : end;
2 : y := y + 1;

Right side of Figure 12 depicts a MMSS for this program such that there is a one-to-one

correspondence between executions of the program and admissible walks of the MMSS.

The size used is (1, x, y), the 1 being here because of homogeneous coordinates. Notice

that we need to add an intermediate label for the x 6= 0 branch of the test in order to

generate the temporary valuation containing x − 1, only used to force admissible walks

with x = 0 to take the other branch.

Since such a construction can be done for any counter machine (the unary addition

program uses all possible instructions for counter machines) and since counter machines

are Turing-complete, this shows why uniform termination of MMSS is not decidable in

general.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Resource Control Graphs · 35

0

1

2

4

5

e

(1, i,n)

(1, 0,n)

(1, i,n,n− i)

(1, i,n,n− i)

(1, i,n)

(1, i,n)




1 0 0
0 0 0
0 0 1







1 0 0 0
0 1 0 −1
0 0 1 1







1 1 0 −1
0 1 0 0
0 0 1 0
0 0 0 1







1 0 0
0 1 0
0 0 1
0 0 0







1 1 0
0 1 0
0 0 1




0

1

2

3

end 


1 −1 0
0 1 0
0 0 1







1 0 1
0 1 0
0 0 1







1 0 0
0 −1 0
0 0 1







1 −1 0
0 1 0
0 0 1







1 1 0
0 1 0
0 0 1




Fig. 12. MMSS for loop and unary addition.

This simulation of programs by matrices multiplications rises a surprising question. In-

deed, matrices multiplications are only able to perform linear operations on data. While

obviously some programs can perform non-linear operations.

This apparent contradiction is solved when we think more closely on how RSS work.

Each walk in a MMSS corresponds to a matrix multiplication (because ω is a morphism),

hence to a linear transformation on data. However, two different walks give rise to two

different matrices, hence two different linear transformations.

When simulating a program, each different data will go through a different (admissible)

walk in the MMSS. Hence, each different value will pass through a different linear trans-

formation. Of course, the other walks (that is, the other linear transformations) also exist

and are considered on this data when looking at the set of walks, but non-admissibility

allows to dismiss them and only keep one.

So, from a transformation point of view, we can look at MMSS as a set of linear trans-

formations and the admissibility mechanism selects the proper transformation to apply on

each piece of data.

For example, if we consider a program performing multiplication of two integers x and

y, it will likely be a loop on x, adding y to the result each time. The corresponding MMSS

will have several paths (infinitely many) that can each be candidate for a walk once actual

data is provided. Different paths correspond to following the loop 1, 2, 3, . . . , k, . . . times.

Then, the walk corresponding to each of these paths will perform the linear transformation

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

36 · Jean-Yves Moyen

(1, x, y) 7→ (1, x− k, ky) representable by the matrix:



1 −k 0
0 1 0
0 0 k




However, when performing all these transformations on actual data, only those with k ≤ x
have an admissible result and only the one with k = x has all its intermediate valuations

admissible. So, the admissibility mechanism selects the right linear transformation to ap-

ply.

That means that when simulating a program computing a (non-linear) function by a

MMSS, the simulation actually consider the function as being piecewise linear, computes

the result of all the possible linear transformations implied and selects the one correspond-

ing to current data. In general, it is possible that each linear transformation is only valid

for a single value.

9.2 Tensors

Moreover, the study can go further. Indeed, using matrices of matrices (that is, tensors)

we can represent the adjacency graph of a MMSS (a matrix where component (i, j) is the

coefficient of the edge between vertices i and j). That is, a first order program can be rep-

resented as such kind of tensors. However, it would then be possible to uses these tensors

(and tensors multiplication) in order to study second-order programs. In turn, the second

order programs would probably be representable by a tensor (with more dimensions) and

so one.

This would lead to a tensor algebra representing high order programs.

Example 9.6. Here is a tensor representing the MMSS of the unary addition. This is

simply the connectivity matrix of the graph where each edge is itself weighted by a matrix.



0




1 −1 0
0 1 0
0 0 1


 0 0 0




1 0 0
0 −1 0
0 0 1




0 0




1 1 0
0 1 0
0 0 1


 0 0 0

0 0 0




1 −1 0
0 1 0
0 0 1


 0 0

0 0 0 0




1 0 1
0 1 0
0 0 1


 0




1 0 0
0 1 0
0 0 1


 0 0 0 0 0

0 0 0 0 0 0




9.3 Polynomial time

Another interesting approach of program analysis using matrices is the one done by Niggl

and Wunderlich [2006] and Kristiansen and Jones [2005]. The programs they study are

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Resource Control Graphs · 37

similar to our stack machines except that the (conditional) jump is replaced by a fixed

iteration structure (loop) where the number of iterations is bounded by the length of a

given stack. It is quite easy to see that both models are very similar and can simulate one

another without major trouble.

Then, they assign to each basic instruction a matrix, called a certificate which contains

information on how to polynomially bound the size of the registers (or stacks) after the

instruction by their size before executing the instruction. It appears that when sequencing

instructions, the certificate for the sequence turns out to be the product of the certificates

for each instruction. Certificates for loops are some kind of multiplicative closure of the

certificate for the body and certificate for if statements are the least upper bound of the

two branches.

Building the certificate of a program thus leads to a polynomial bound on the result

depending on the inputs which can then be turned into a polynomial bound on the running

time (depending on the shape of the loops).

So, these certificates can very well be expressed in a MMSS where the valuation would

give information on the size of registers (depending on the size of the inputs of the pro-

gram) and the weights of instructions will be these certificates. This will exactly be a

Resources Control Graph for the program. If the program is certified, then this RCG will

be polynomially resource aware.

10. CONCLUSION

We have introduced a new generic framework for studying programs. This framework is

highly adaptable via the size function and can thus study several properties of programs

with the same global tool. Analyses apparently quite different such as the study of Non

Size Increasing programs or the Size Change Termination can quite naturally be expressed

in terms of Resource Control Graphs, thus showing the adaptability of the tool.

Moreover, other analyses look like they can also be expressed in this way, thus giving

hopes for a truly generic tool to express and study programs properties such as termination

or complexity. It is even likely that high order could be studied that way, thus giving

insights for a better comprehension of high order complexity.

Theory of algorithms is not well established. This work is really on the study of pro-

grams and not of functions. Further works in this direction will shed some light on the very

nature of algorithms and hopefully give one day rise to a theoretical framework as solid

as our knowledge of functions. Here, the study of MMSS and the tensors multiplication

hints that a tensors algebra might be used as a mathematical background for a theory of

algorithms and must then be pursued.

Acknowledgements

Many thanks to A. Ben-Amram for pointing out critical flaws in an earlier version of the

proof of Theorem 5.11. Thanks also to M. Hofmann for pointing out the name “homoge-

neous coordinates” and its use in computer graphics.

REFERENCES

ABEL, A. AND ALTENKIRCH, T. 2002. A Predicative Analysis of Structural Recursion. Journal of Functional

Programming 12, 1 (Jan.), 1–41.

AMADIO, R., COUPET-GRIMAL, S., ZILIO, S. D., AND JAKUBIEC, L. 2004. A functional scenario for bytecode

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

38 · Jean-Yves Moyen

verification of resource bounds. In Computer Science Logic, 12th International Workshop, CSL’04. Springer,

265–279.

ASPINALL, D. AND COMPAGNONI, A. 2003. Heap Bounded Assembly Language. Journal of Automated

Reasoning (Special Issue on Proof-Carrying Code) 31, 261–302.

AVERY, J. 2006. Size-change termination and bound analysis. In Functional and Logic Programming: 8th

International Symposium, FLOPS 2006, M. Hagiya and P. Wadler, Eds. Lecture Notes in Computer Science,

vol. 3945. Springer.

BELLANTONI, S. AND COOK, S. 1992. A new recursion-theoretic characterization of the poly-time functions.

Computational Complexity 2, 97–110.

BEN-AMRAM, A. 2006. Size-Change Termination with Difference Constraints. ACM Transactions on Program-

ming Languages and Systems. To appear.

BONFANTE, G., MARION, J.-Y., AND MOYEN, J.-Y. 2007. Quasi-interpretation: a way to control re-

sources. Theoretical Computer Science. To appear, accessible http://www.loria.fr/˜marionjy/

Research/Publications/Articles/TCS.pdf.

COBHAM, A. 1962. The intrinsic computational difficulty of functions. In Proceedings of the International

Conference on Logic, Methodology, and Philosophy of Science, Y. Bar-Hillel, Ed. North-Holland, Amsterdam,

24–30.

COLSON, L. 1998. Functions versus Algorithms. EATCS Bulletin 65, 98–117. The logic in computer science

column.

CORMEN, T., LEISERSON, C., AND RIVEST, R. 1990. Introduction to Algorithms. MIT Press.

GIRARD, J.-Y. 1987. Linear logic. Theoretical Computer Science 50, 1–102.

HOFMANN, M. 1999. Linear types and Non-Size Increasing polynomial time computation. In Proceedings of

the Fourteenth IEEE Symposium on Logic in Computer Science (LICS’99). 464–473.

JONES, N. 2000. The expressive power of higher order types or, life without cons. Journal of Functional

Programming 11, 1, 55–94.

KRISTIANSEN, L. AND JONES, N. D. 2005. The flow of data and the complexity of algorithms. In CiE’05:New

Computational Paradigms, Cooper, Lwe, and Torenvliet, Eds. Lecture Notes in Computer Science, vol. 3526.

Springer, 263–274.

LEE, C. S., JONES, N. D., AND BEN-AMRAM, A. M. 2001. The Size-Change Principle for Program Termina-

tion. In Symposium on Principles of Programming Languages. Vol. 28. ACM press, 81–92.

LEIVANT, D. AND MARION, J.-Y. 1993. Lambda Calculus Characterizations of Poly-Time. Fundamenta

Informaticae 19, 1,2 (Sept.), 167–184.

MOYEN, J.-Y. 2003. Analyse de la complexité et transformation de programmes. Ph.D. thesis, University of

Nancy 2.

NIELSON, F., NIELSON, H. R., AND HANKIN, C. 1999. Principles of Program Analysis. Springer.

NIGGL, K.-H. AND WUNDERLICH, H. 2006. Certifying polynomial time and linear/polynomial space for

imperative programs. SIAM Journal on Computing 35, 5 (Mar.), 1122–1147. published electronically.

REUTENAUER, C. 1989. Aspects mathématiques des réseaux de Petri. Masson.

SHEPHERDSON, J. AND STURGIS, H. 1963. Computability of recursive functions. Journal of the ACM 10, 2,

217–255.

Received September 2006; revised May 2006; accepted hopefully someday

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

