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Resource-efficient Byzantine Fault Tolerance
Tobias Distler, Christian Cachin, and Rüdiger Kapitza

Abstract—One of the main reasons why Byzantine fault-tolerant (BFT) systems are currently not widely used lies in their high resource
consumption: 3f + 1 replicas are required to tolerate only f faults. Recent works have been able to reduce the minimum number of
replicas to 2f + 1 by relying on trusted subsystems that prevent a faulty replica from making conflicting statements to other replicas
without being detected. Nevertheless, having been designed with the focus on fault handling, during normal-case operation these
systems still use more resources than actually necessary to make progress in the absence of faults.
This paper presents Resource-efficient Byzantine Fault Tolerance (REBFT), an approach that minimizes the resource usage of a
BFT system during normal-case operation by keeping f replicas in a passive mode. In contrast to active replicas, passive replicas
neither participate in the agreement protocol nor execute client requests; instead, they are brought up to speed by verified state
updates provided by active replicas. In case of suspected or detected faults, passive replicas are activated in a consistent manner.
To underline the flexibility of our approach, we apply REBFT to two existing BFT systems: PBFT and MinBFT.

Index Terms—Byzantine fault tolerance, state machine replication, distributed systems.
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1 INTRODUCTION

OUTSOURCING infrastructure and applications to
third-party data centers is convenient for both users

and providers as availability increases while provision-
ing costs decrease. On the other hand, this trend makes
data-center customers more and more dependent on the
well-functioning of such network-based services, which
becomes evident when they fail or deliver wrong results.

Today, the fault tolerance techniques applied in prac-
tice are almost solely dedicated to handling crash-stop
failures, for example, by employing replication. Apart
from that, only specific techniques are used to selectively
address the most common or most severe non-crash
faults, for example, by using checksums to detect bit
flips. As a consequence, a wide spectrum of threats
remains largely unaddressed, including software bugs,
spurious hardware errors, viruses, and intrusions. Han-
dling such arbitrary faults in a generic fashion requires
Byzantine fault tolerance (BFT).

In the past, BFT systems have mainly been considered
of theoretical interest. However, numerous research ef-
forts in recent years have contributed to bringing their
performance [1]–[8], scalability [9]–[12], implementation
costs [13], [14], and resilience [15]–[18] to practical levels.
Unfortunately, providing these properties is not enough
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to make Byzantine fault tolerance truly economical:
Compared to crash-tolerant solutions, BFT systems incur
a higher computational cost due to their cryptographic
operations. They also rely on more independence be-
tween the nodes that comprise the system because there
should not exist common vulnerabilities affecting all of
them simultaneously.

With regard to minimizing the resource overhead of
Byzantine fault tolerance, the focus of research up to
now has mostly been on reducing the number of replicas
in a system. Traditional BFT systems such as PBFT [1]
require 3f + 1 replicas to tolerate up to f faults. By
separating request ordering (i.e., the agreement stage)
from request processing (i.e., the execution stage), the
number of execution replicas can be reduced to 2f+1 [9].
Nevertheless, 3f + 1 replicas still need to take part dur-
ing the agreement on requests. To further decrease the
number of replicas, systems with a hybrid fault model,
such as MinBFT [19], have been proposed, consisting
of untrusted parts that may fail arbitrarily and trusted
parts that are assumed to only fail by crashing [19]–[25].
Applying this approach, BFT systems can be built that
comprise a total of 2f +1 replicas, thereby matching the
size of crash-tolerant systems [26], [27].

Although reducing the provisioning costs for BFT,
the state-of-the-art systems mentioned above still oc-
cupy, during most of the time, more resources than
strictly necessary. Due to their adoption of the active-
replication paradigm, all non-faulty replicas always par-
ticipate equally in all system operations. As a conse-
quence, in the absence of faults, more replicas order
and execute requests than are actually required to make
progress under benign conditions.

In this paper, we present Resource-efficient Byzantine
Fault Tolerance (REBFT), an approach that allows BFT
systems to reduce their resource footprint in the absence
of faults without losing the ability to ensure liveness
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in the presence of faults. For this purpose, we rely on
two different modes of operation: one for the normal
case and one for fault handling. In the normal-case
operation mode, a REBFT system saves resources by
keeping only a subset of the replicas active; at this point,
the system is able to make progress as long as all replicas
behave according to specification. If the system suspects
or detects that this is not the case, it switches to a
fault-handling mode, activates the remaining replicas,
and tolerates the fault. Aiming at use cases in which
Byzantine faults at the replica level are transient and
relatively rare [7], [8], [14], [28], [29], we expect a system
relying on REBFT to spend most of the time in normal-
case operation mode.

Applying REBFT does not require a BFT system to be
completely redesigned from scratch. Instead, by means
of PBFT [1] and MinBFT [19], we show that a resource-
saving operation mode for the normal case can be intro-
duced by adding a sub protocol. The same applies to the
switching mechanism that allows the system to fall back
to its original BFT protocol in order to tolerate faults.

The particular contributions of this paper are:
• To present REBFT, a general approach to dynam-

ically minimize the resource footprint of an agree-
ment-based BFT system by making use of passive
replication. In contrast to traditional BFT protocols,
only a subset of replicas in REBFT participate in
the agreement and execution of client requests dur-
ing normal-case operation (Section 3). REBFT is a
revised, generalized, and newly evaluated version
of CheapBFT [30].

• To apply the REBFT approach to two state-of-the-
art BFT systems, PBFT (Section 4) and MinBFT (Sec-
tion 5), thereby showing that REBFT can be com-
bined with different fault models.

• To evaluate the REBFT variants of PBFT and
MinBFT using microbenchmarks (Section 7) and
using a coordination service (Section 8).

In addition, Section 2 provides background on resource
usage in existing BFT protocols, Section 6 discusses im-
portant design implications of REBFT, Section 9 presents
related work, and Section 10 concludes.

2 BACKGROUND

In this section, by example of a PBFT protocol instance,
we provide background on how resources are used in
state-of-the-art BFT systems. Similar observations can be
made for MinBFT and other protocols closely related to
PBFT [6], [11], [16], [21], [24].

As shown in Fig. 1, PBFT replicas handle requests by
executing a sequence of protocol phases that are named
after the messages sent in them. Having received a
request from the client, the primary replica proposes the
request to the backup replicas in a PREPREPARE message.
Next, backup replicas distribute PREPARE messages to be
able to confirm that they have seen the same proposal
from the primary. If this is the case, replicas commit to

Request PrePrepare Prepare Commit Reply

Client

Replica P

Replica B1

Replica B2

Replica B3

Fig. 1. Overview of the message flow in a PBFT protocol
instance that is able to tolerate one fault: A primary
replica P proposes a client request, which is then ac-
cepted by a group of backup replicas B1–B3. Of all the
messages sent, only a subset ( ) contributes to the
stability of the result at the client; in contrast, the majority
of messages ( ) has no effect on the result.

executing the request in this protocol instance by sending
COMMIT messages. Finally, replicas process the request
and return the corresponding reply to the client.

In order to limit the damage that a faulty replica (i.e.,
a replica that does not behave according to specification)
may cause, a non-faulty replica in PBFT only advances to
the COMMIT phase after having obtained 2f PREPAREs
that match the primary’s proposal, and only processes a
request after having collected 2f+1 matching COMMITs.
For the same purpose, a client waits for f + 1 matching
replies before accepting a result as stable: In the presence
of at most f faulty replicas, f + 1 matching messages
provided by different replicas prove the message correct;
in addition, a quorum of 2f + 1 messages also proves
that at least f + 1 non-faulty replicas have reached the
state represented by the message. The latter is crucial to
ensure safety across view changes by means of which
a faulty primary can be replaced by reassigning the
primary role to another replica [1].

Given these rules, PBFT is still able to make progress
if up to f of its 3f + 1 replicas are faulty and either
send incorrect messages or none at all. However, as all
replicas actively participate in system operations, PBFT
consumes significantly more resources during normal-
case operation than necessary. As illustrated in Fig. 1,
in the absence of faults, a majority of the messages
sent does not directly influence the result at the client.
Nevertheless, these messages contribute to the resource
consumption of PBFT: Apart from increasing the amount
of data transmitted over the network, the redundant
messages also cause additional CPU overhead, as all
messages in PBFT are protected by cryptography.

In conclusion, because systems like PBFT are designed
for fault tolerance, at all times, they also continuously
consume the resources for tolerating f faulty replicas,
even if all replicas behave according to specification.
As a result, there is potential to reduce the resource
footprint of a BFT system in the absence of faults. In
the next section, we present an approach to achieve this
by implementing a clear separation between normal-case
operation and fault handling.
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3 THE REBFT APPROACH

This section introduces the REBFT approach and its
resource-saving operation mode. In Sections 4 and 5, we
show how to apply REBFT to two existing BFT systems.

3.1 Normal-case Operation
We call a REBFT system instance a cell in the following.
As illustrated by the examples in subsequent sections,
not all systems applying REBFT use the same number of
replicas in a cell. However, they all have in common that
during normal-case operation replicas assume different
roles in order to minimize the resource footprint of the
system: Of all the replicas in the cell, f remain passive,
which means that they do not participate in the ordering
of requests in the agreement stage and that they also do
not process any requests in the execution stage. All other
replicas are active and fully participate in both stages.
Initial replica roles are assigned at system start, but we
do not make any assumptions on how they are selected,
as long as all replicas know the primary and are aware of
which replicas are active and which replicas are passive.
REBFT ensures that non-faulty replicas always maintain
a consistent view of active and passive replicas.

As passive replicas do not process requests, their
states would become quickly outdated if no additional
measures were taken. Therefore, in order to bring passive
replicas up to speed, active replicas provide them with
state updates; an update contains all state modifications
that an active replica has performed as a result of the
corresponding request. To ensure safety, a passive replica
only applies an update after having obtained f+1 match-
ing updates from different active replicas.

3.2 Protocol Switch
A BFT system with f passive replicas can still make
progress as long as all active replicas behave according
to specification and messages are delivered on time.
However, in case of a fault or timeout, the agreement on
requests stalls, for example, when not enough backup
replicas confirm the proposal of the primary (see Sec-
tion 2). REBFT addresses such situations by initiating a
protocol switch that allows a system to activate passive
replicas and to switch to a more resilient default BFT
protocol (e.g., PBFT or MinBFT). The transition protocol
that implements the switch ensures that all replicas may
resume afterwards in a consistent state.

Protocol switches in REBFT are triggered by clients
indicating that the results to their requests have not
become stable within a certain period of time. In order
to reach a consistent view, the active replicas then pro-
vide their local views on the progress of the agreement
process in the form of local commit histories, which are
subsequently combined to a global commit history. The
information distributed via a global commit history not
only allows the active replicas to consolidate their views
among each other, but also enables the passive replicas
to safely join the agreement stage.

REBFT transition protocols may vary between differ-
ent systems (see Sections 4.2 and 5.3). However, all proto-
cols guarantee the following two properties, concerning
the agreement stage (PA) and the execution stage (PE):
PA At the end of a protocol switch, any non-faulty replica

knows all requests that have been committed by at least
one non-faulty active replica.

PE At the end of a protocol switch, any non-faulty passive
replica knows all agreed requests that have not been
processed on all non-faulty active replicas and/or whose
corresponding state updates have not been applied on all
non-faulty passive replicas.

PA ensures that all non-faulty (active and passive) repli-
cas know the requests that have been committed and
therefore might have been executed by a replica. As
a result, non-faulty replicas will not accept different
requests for the same protocol instances after the restart
of the corresponding agreement stage. PE serves the
same purpose for requests that have successfully com-
pleted the agreement stage but not the execution stage,
for example, because their state updates have not been
applied to all passive replicas. The property allows non-
faulty passive replicas to learn the particular requests to
accept and execute for the protocol instances affected.

3.3 Fault Handling and Return to Normal Operation
Having completed the transition, REBFT replicas only
run the default BFT protocol for a number of instances x
before returning to normal-case operation. The value of x
is attached by the primary to the first request proposed
in fault-handling mode. Backup replicas only accept the
proposal if the x announced is within a predefined range,
otherwise they request a view change to replace the
primary. After the x-th instance in fault-handling mode
has been committed, replicas automatically switch back
to normal-case operation. This step does not require
additional interaction, as replicas have agreed on x.

If the problem that had caused the switch to fault-
handling mode still exists after the system has returned
to normal-case operation, the transition protocol will
be triggered again. In order to prevent a system from
continuously switching back and forth in the presence of
prolonged periods of faults or network problems, REBFT
increases x exponentially with every switch [14]. The
value of x can be set back, either automatically after
the system managed to remain in normal-case mode
for a certain number of instances, or manually by an
administrator, for example, after the repair of a replica.

4 RESOURCE-EFFICIENT PBFT
This section presents REPBFT, an instance of REBFT that
relies on PBFT [1] to ensure progress in the presence of
faults and consequently requires 3f + 1 replicas. How-
ever, to save resources, under benign conditions only
2f+1 of the replicas actively participate in providing the
service while f replicas remain passive. We now detail
REPBFT’s normal-case protocol and then present the
switch to PBFT in case of suspected or detected faults.
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Request PrePrepare Prepare Commit Reply

Update

Client

Replica P

Replica B1

Replica B2

Replica Z (passive)

Fig. 2. Message flow of requests, agreement messages,
and replies ( ) as well as state updates ( ) in REPBFT
for a cell that is able to tolerate one Byzantine fault.

4.1 Normal-case Operation

In the absence of faults, REPBFT executes the proto-
col shown in Fig. 2. Active replicas assume different
roles (i.e., primary or backup) and go through three pro-
tocol phases (i.e., PREPREPARE, PREPARE, and COMMIT)
to agree on a request. The other f replicas remain passive
and do not actively participate in the agreement protocol.

All messages exchanged between nodes in REPBFT
are authenticated. For this purpose, the sender X of a
message m either computes a digital signature (denoted
as 〈m〉σX

) or an authenticator (denoted as 〈m〉αX
); an

authenticator [1] is a vector containing a MAC for each
replica computed using a session key shared between
the sender and the replica. The particular form of au-
thentication used depends on the type of a message.

4.1.1 Agreement Stage

Having received a request o from a client, the primary P
is responsible for initiating the agreement process by
assigning a sequence number s to the request and then
sending a 〈PREPREPARE, P, o, s, p〉αP

message to all back-
ups; p is the id of the current protocol generation and
used by replicas to identify (and consequently drop) old
messages. A backup B accepts a PREPREPARE from the
primary if it has not yet accepted another PREPREPARE
binding a different request o′ to the same sequence
number s. Having accepted a PREPREPARE, the backup
multicasts a 〈PREPARE, B, o, s, p〉αB

message to all active
replicas informing them about the event. To complete
the PREPARE phase, replicas participating in the protocol
must obtain PREPAREs from all backups and those mes-
sages must match the primary’s PREPREPARE. In case
of success, an active replica A prepares the request by
creating a 〈COMMIT, A, o, s, p〉αA

message and sending it
to all other active replicas. Once a replica has received
matching COMMITs from all active replicas, the replica
commits request o and forwards it to the execution stage.

In contrast to PBFT, to successfully complete a protocol
instance in REPBFT during normal-case operation, all
active replicas must have provided a COMMIT message
for the corresponding request. This has two important
consequences: First, if a request is committed on some
active replica, it must (at least) have been prepared on
all active replicas; as further discussed in Section 4.2,
this property is crucial for ensuring safety during a

protocol switch. Second, a protocol instance only makes
progress as long as all active replicas behave according
to specification and all protocol messages reach their
intended recipients. If this is not given, REPBFT switches
to PBFT to ensure liveness (see Section 4.2).

The agreement stage may increase throughput by
running protocol instances for different client requests in
parallel. The number of concurrent instances W in which
a replica participates in is limited to prevent a faulty pri-
mary from exhausting the space of sequence numbers. In
particular, an active replica only sends its own agreement
messages for sequence numbers between a low water
mark slow and a high water mark shigh = slow + W . In
Section 4.1.3, we discuss how to advance the window
defined by the water marks based on checkpoints.

4.1.2 Execution Stage
Active replicas execute the committed client requests in
the order of their sequence numbers. Having processed
a request, an active replica A sends a reply r to the client
and multicasts an 〈UPDATE, A, s, u, r〉αA

message to all
passive replicas in the cell (see Fig. 2); s is the agreement
sequence number of the corresponding request and u is a
state update reflecting the request’s modifications to the
service state. Having obtained at least f + 1 matching
UPDATEs from different active replicas, a passive replica
has verified the update to be correct. In this case, the
replica stores the reply r included in the update; this
enables the passive replica to provide the client with
the correct r during fault handling (see Section 4.2.1).
In addition, the replica brings its state up to date by
applying the update to its local application instance.

4.1.3 Checkpoints and Garbage Collection
In the protocol presented so far, active replicas can never
be sure that their state updates have actually brought
the passive replicas up to date. For example, if the active
replicas in a cell were separated from the passive replicas
due to a network partition, updates would not reach
their intended recipients, leading the passive replicas to
fall behind without the active replicas noticing. REPBFT
addresses this problem by using periodic checkpoints.

A checkpoint in REPBFT is reached each time a
replica has processed a client request (active replicas) or
applied a state update (passive replicas) whose agree-
ment sequence number s is a multiple of a global
constant K (e.g., 100). Having reached a checkpoint, a
replica R multicasts a 〈CHECKPOINT, R, s〉σR

message to
all other replicas. In contrast to other BFT systems [1],
[4], [13], [19], [21], [24], a checkpoint in REPBFT does not
require the creation of an application snapshot, since it
serves primarily as a notification indicating the progress
a replica has made at the execution stage.

Checkpoints in REPBFT become stable as soon as a
replica manages to obtain CHECKPOINT notifications for
the same sequence number s from all replicas in the cell.
At this point, an active replica advances the window
for protocol instances in which the replica participates
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Fig. 3. Overview of the message flow during a protocol
switch in a REPBFT cell that is able to tolerate one fault.

by setting the start of the window to s. Furthermore,
an active replica discards client requests and stored
messages that relate to sequence numbers equal to s
or lower. This is safe because a stable checkpoint is a
proof that all replicas in the cell have at least advanced
to sequence number s + 1 and consequently will never
require information about prior protocol instances.

4.2 Protocol Switch
We next present the mechanism that allows REPBFT to
perform a protocol switch to PBFT (see Fig. 3). During
such a switch, replicas provide a commit history (see
Section 3.2) containing information about the progress of
pending protocol instances. Based on the local histories
of the replicas, a designated transition coordinator creates
and distributes a global commit history to ensure that
replicas start PBFT in a consistent manner.

4.2.1 Initiating a Protocol Switch
REPBFT replicas rely on clients to inform them about
suspected or detected faults. If a client C is not able to
obtain a verified result to a request o within a certain
period of time, the client multicasts a 〈PANIC, C, o〉αC

message to all replicas. In general, there could be dif-
ferent reasons for a result not becoming stable. Among
other things, this includes scenarios in which active
replicas are faulty, do not properly participate in the
agreement protocol, and/or fail to return a correct reply,
leaving the client with too few matching replies.

Having received a PANIC, non-faulty replicas try to
prevent REPBFT from unnecessarily abandoning nor-
mal-case operation. For example, a replica ignores a
PANIC for an old request if the same client has already is-
sued a new request. In addition, when a replica receives
a PANIC for a request it has not seen before, it first relays
the request to the primary and only triggers a protocol
switch if it receives another PANIC for the same re-
quest. As an additional protection against faulty clients,
replicas wait some time between processing PANICs of
the same client. If the request indicated by a PANIC is
already covered by the latest stable checkpoint, a replica
only retransmits the corresponding reply. No protocol
switch is necessary in such case, as the stability of the
checkpoint proves that all replicas in the cell have ob-
tained the correct reply to the request (see Section 4.1.3),
either by processing the request themselves (active repli-
cas) or by learning it in an update (passive replicas,

see Section 4.1.2). In consequence, all non-faulty replicas
will send the correct reply as a reaction to the PANIC,
eventually allowing the client to make progress.

If none of the above scenarios apply, a replica consid-
ers a protocol switch to be necessary and thus forwards
the PANIC to all other replicas (omitted in Fig. 3) to
ensure that they also receive the message. Furthermore,
the replica runs the transition protocol presented below,
which is responsible for safely switching to PBFT.

4.2.2 Creating a Local Commit History
While running the transition protocol, a non-faulty active
replica stops participating in the agreement on requests.
As a result, the agreement stage of the system no longer
makes progress (see Section 4.1.1), and this allows the
replicas to reach a consistent state. For this purpose,
at the beginning of the transition protocol, each non-
faulty active replica creates its local commit history.
Section 4.2.3 explains how the transition coordinator
assembles local histories to a global commit history.

The local commit history of a non-faulty REPBFT
replica contains a set of matching CHECKPOINTs (see
Section 4.1.3) proving the validity of the latest stable
checkpoint. In addition, in order to enable other replicas
to learn about the requests committed (see Section 3.2), a
non-faulty replica inserts information about all requests
that have been prepared after the checkpoint into its local
history. If a request has been prepared locally, the replica
has sent a COMMIT, which might have led to the request
being committed and executed by a non-faulty active
replica (see Section 4.1.1). By adding the corresponding
PREPREPARE as well as 2f matching PREPAREs for such
a request to its local history, a non-faulty replica proves
that no other request could have been accepted for the
particular sequence number.

Once its local commit history h for protocol p is com-
plete, an active replica A sends a 〈HISTORY, A, h, p〉σA

message to the transition coordinator. The role of the
transition coordinator is statically assigned to one of the
active replicas, for example, based on replica ids.

4.2.3 Creating a Global Commit History
When the transition coordinator receives a HISTORY
message from an active replica, it only considers the local
commit history contained therein when the signature on
the message is valid. Based on its own local commit
history and the local histories submitted by f other
active replicas, the transition coordinator creates a global
commit history as follows (see also Section 4.3.1). The
construction ensures that the global history contains all
requests that have been committed on at least one non-
faulty active replica, independent of whether or not the
local histories of these replicas have actually been used
for the global history.

As shown in Fig. 4, a global commit history contains
different slots, one for each agreement sequence number
between the latest stable checkpoint (i.e., #200) and the
newest agreement-protocol instance (i.e., #205) included

http://dx.doi.org/10.1109/TC.2015.2495213


This is the authors’ version of an article that has been published in IEEE Transactions on Computers. Changes were made to this
version by the publisher prior to publication. The final version of record is available at http://dx.doi.org/10.1109/TC.2015.2495213.

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

#100 Checkpoint

#101 oa (X)

#200 ob (X)

#201 oc ( E )

#203 oe (X)

#204 of ( E )

#200 Checkpoint

#201 od (X)

#203 oe (X)

#205 og (X)

#200 Checkpoint

#201 od (X)

#202 ⊥
#203 oe (X)

#204 ⊥
#205 og (X)

H1

H2

H1

H2

H1

.

.

.

Local commit history Local commit history Global commit history

Valid proof that
the request

has been prepared

Invalid proof

Fig. 4. Creation of a global commit history.

in the local commit histories. Since all active replicas in
REPBFT have to participate in the agreement on requests
in order for the system to make progress in the absence
of faults, in the worst case, the number of slots in the
global commit history matches the size of the agreement-
protocol window (see Section 4.1.1).

After the transition coordinator has determined which
slots to add to the global commit history, it chooses a
value for each slot according to the following rules:
H1 A request o is chosen as the slot value if any of the

f + 1 valid local commit histories contain a valid
proof (in the form of PREPREPAREs and PREPAREs)
that o has been prepared (e.g., slot #201).

H2 Otherwise, if H1 does not apply, the slot value is set
to a special null request ⊥ that corresponds to a no-
op at execution time. This rule either takes effect if
none of the valid local histories contains a proof for
the slot (as for slot #202) or if all proofs available
for the slot are invalid (as for slot #204). In both
cases, no request could have been committed in the
associated protocol instance: As at least one of the
f +1 valid local histories must have been provided
by a non-faulty active replica, this replica would
have included a valid proof if such a request existed.

When the global commit history hglobal for a protocol p
is complete, the transition coordinator TC multicasts a
〈SWITCH, TC, hglobal,Hlocal, p〉σTC

message to all replicas
in the cell; Hlocal is the set of f + 1 valid local commit
histories that served as basis for the global history.

4.2.4 Processing a Global Commit History
Having obtained a global commit history, both active
and passive replicas verify its correctness by reproducing
the steps performed by the transition coordinator to
create the history. In order to be able to do this properly,
the local commit histories included must have been
authenticated using digital signatures (see Section 4.2.2).
Otherwise, that is, if authenticators would be used, a
non-faulty replica might not necessarily concur with the
verdict of the transition coordinator about the validity
of local commit histories.

Once a replica has verified the global commit history
successfully, it uses the history to complete the switch
to PBFT and initializes this protocol with a view in
which the transition coordinator serves as primary. In
particular, a replica creates a new PBFT instance for each
slot contained in the global commit history: If the slot
value is a regular request, the replica must ensure that
this request will be the result of the PBFT instance; that
is, if the replica is the PBFT primary, it must send a
PREPREPARE message for this request, and if the replica
is a PBFT backup, it is only allowed to send a matching
PREPARE message in case the primary has proposed
this request. In contrast, a slot in the global commit
history containing a null request does not impose such
restrictions on the corresponding PBFT instance, as a null
request indicates that no regular request with this partic-
ular agreement sequence number could have previously
been committed.

Note that repeating the agreement on client requests
that have not been covered by the latest stable check-
point does not lead to client requests being executed
more than once. Based on the agreement sequence
numbers assigned to requests, which remain the same
for requests that have been committed on at least one
replica (see Section 4.2.3), the execution stage is able to
identify and consequently ignore such requests.

Having processed the global commit history, the pro-
tocol switch on a replica is complete. At this point, a
former passive replica is considered activate as from then
on it is no longer brought up to speed by state updates,
but instead executes requests itself. This allows clients
to retry requests that so far have not been successful.

4.2.5 Handling Faults during the Protocol Switch
In case the default transition coordinator is faulty, it
might fail to deliver a valid global commit history. To
address such and related problems, replicas protect the
protocol switch with a timeout that expires if a replica is
not able to obtain a valid global commit history within
a certain period of time. The timeout should be long
enough to make it unlikely that a non-faulty transition
coordinator is wrongfully accused of being faulty.

When the timeout expires, an active replica A changes
its protocol id from p to p′ and sends its local commit his-
tory h in a 〈HISTORY, A, h, p′〉σA

message to the transition
coordinator of p′, which is different from the coordinator
of p, but selected based on the same algorithm (see
Section 4.2.2). In addition, the replica sets up a new
timeout with twice the length of the previous timeout
duration. If this timeout also expires, the procedure is re-
tried (possibly multiple times) until the switch completes
successfully thanks to one of the at least f+1 non-faulty
active replicas serving as transition coordinator.

4.3 Safety and Liveness
Below, we discuss how a global commit history enables a
safe protocol switch in REPBFT, and why such a switch
will eventually be performed by all non-faulty replicas.
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4.3.1 Ensuring a Safe Protocol Switch
In order for passive replicas to safely join the agreement
stage during a protocol switch, it is crucial for them to
learn about all requests that have been committed since
the latest stable checkpoint. REPBFT’s transition proto-
col satisfies this requirement as follows: First, the global
commit history is guaranteed to be based on at least one
local commit history that has been provided by a non-
faulty active replica. Second, the local history of each
non-faulty active replica contains all committed requests
that are not covered by the latest stable checkpoint.

As discussed in Section 4.2.3, a transition coordinator
in REPBFT requires f + 1 valid local commit histories
from different active replicas to create a global com-
mit history. With the normal-case protocol only making
progress if all active replicas participate accordingly, it
is guaranteed that each subset of f + 1 local histories
contains at least one history provided by a non-faulty
active replica A that has seen the latest agreement state.
Applying rule H1 to such a local history allows the tran-
sition protocol to provide property PA (see Section 3.2):
If a request o has been committed on one or more non-
faulty active replicas, the request must at least have been
prepared on some replica A; in consequence, replica A
inserts a valid proof for o into its local commit history,
which will eventually be also included in the global
commit history due to rule H1. The only situation when
a replica A may fail to supply a proof for o occurs when
the request is covered by the latest stable checkpoint.
However, in this case, all non-faulty replicas in the
cell have either confirmed that they have executed the
request (if they are active) or have applied the corre-
sponding state update (if they are passive); otherwise
the checkpoint would not have become stable.

For the same reason, a global commit history also
allows REPBFT to ensure property PE (see Section 3.2):
If there are one or more non-faulty replicas that have
not yet confirmed the execution of agreed requests (or
their state updates) by sending a checkpoint, the global
commit history contains valid proofs for these requests.

4.3.2 Ensuring System Progress
If an active replica fails to participate in the agreement on
requests due to a fault while REPBFT is in normal-case
mode, the agreement process stops (see Section 4.1.1). In
contrast, faulty passive replicas only indirectly prevent
the system from making progress: If at least one passive
replica does not confirm to have reached a checkpoint,
the checkpoint will not become stable. As a result, the
agreement on requests will eventually stop because ac-
tive replicas are no longer able to advance the window
limiting the number of concurrent protocol instances (see
Section 4.1.3). Either way, a stopped agreement process
prevents the system from executing additional requests,
which consequently forces clients to demand a protocol
switch due to lack of replies (see Section 4.2.1). As non-
faulty replicas forward the clients’ PANICs, eventually all
non-faulty replicas will initiate the transition protocol.

Having triggered the protocol switch locally, a tran-
sition coordinator requires f + 1 valid local commit
histories from different active replicas to create a global
commit history. As at most f of the 2f+1 active replicas
in the cell are assumed to fail, it is guaranteed that
eventually a transition coordinator has f + 1 or more
valid local commit histories available. Furthermore, by
adjusting timeouts, REPBFT ensures that the role of tran-
sition coordinator can be assigned to different replicas in
case acting transition coordinators fail to provide a valid
global commit history (see Section 4.2.5).

4.4 Optimizations
Many optimizations proposed for other BFT systems can
also be applied to REPBFT. In particular, this includes
batching of requests and replacing requests in PREPAREs
and COMMITs by their hash values. Moreover, the latter
optimization can also be applied to client replies and
state updates, that is, one replica sends the complete
information whereas the others only provide a hash.

5 RESOURCE-EFFICIENT MINBFT
In this section, we present REMINBFT, an application
of the REBFT approach to the MinBFT [19] protocol.
MinBFT and REMINBFT rely on a trusted certification
service to authenticate messages exchanged between
replicas. This lets them operate with one protocol phase
fewer than PBFT and REPBFT, respectively, and a to-
tal of 2f + 1 replicas. However, only f + 1 replicas in
REMINBFT remain active during normal-case operation.
We next introduce the trusted message certification ser-
vice and then describe the normal-case operation and
protocol switch of REMINBFT. Since REMINBFT and
REPBFT are very similar, we focus on aspects that are
specific to REMINBFT in this section, which have not
already been presented in the context of REPBFT before.

5.1 Message Certification Service
In order to be able to reduce the number of required
replicas in a cell from 3f + 1 to 2f + 1, a faulty replica
must be prevented from successfully performing equivo-
cation [21]; that is, a replica must not be able to send the
same logical protocol message with different contents to
multiple recipients. As MinBFT, REMINBFT addresses
this problem by relying on a trusted message certification
service (MCS). We assume that each replica has a local
MCS instance at its disposal that only fails by crashing;
our REMINBFT prototype (see Section 7.1), for example,
uses a special-purpose hardware component.

The local MCS instance of a replica is respon-
sible for creating and verifying message certificates
〈CERTIFICATE,MCS, c, proof〉; MCS is the id of the
instance that created the certificate, c is a counter value,
and proof is a cryptographically protected proof linking
the certificate to the corresponding message. Message
certificates provide the following property: If c1 is the
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Replica B

Replica Z (passive)

Fig. 5. Message flow of requests, agreement mes-
sages, and replies ( ) as well as state updates ( ) in
REMINBFT for a cell that is able to tolerate one fault.

counter value included in a certificate created by a
MCS instance and c2 is the counter value included in
the next certificate created by the same instance, then
c2 = c1 + 1 [23]. Having received a certified message, a
replica only accepts it if the embedded counter matches
the expected value and the proof is valid.

Requiring replicas to provide message certificates
forces a faulty replica trying to perform equivocation to
create multiple certificates if it wants to send messages
with the same identity but different contents. Non-
faulty replicas are able to protect themselves against
such an attempt by following a simple rule: A non-
faulty replica must process the messages received from
another replica in the order determined by the counter
values in their respective certificates; if the sequence of
messages contains a gap, the replica must wait until
the corresponding message becomes available. This way,
non-faulty replicas either process all messages sent by
a faulty replica in the same order (and consequently
make consistent decisions) or, in case the faulty replica
refuses to send any message at all, they stop processing
the faulty replica’s messages due to detecting gaps.
Either way, a faulty replica is not able to lead non-faulty
replicas into performing inconsistent actions.

As further discussed in Section 5.2, some messages
in REMINBFT are not authenticated using the message
certification service and therefore do not carry a certified
counter value. For such messages, there are no restric-
tions on the order in which they are processed.

5.2 Normal-case Operation

During normal-case operation, REMINBFT executes the
protocol shown in Fig. 5. Of the 2f + 1 replicas in the
cell, only f +1 actively participate in system operations.

5.2.1 Agreement Stage
Having received a request o, the primary P proposes
it by sending a 〈PREPARE, P, o, s, p〉certP message to all
active backups; s is the agreement sequence number that
P has assigned to the request, p is the current protocol
id, and certP is a certificate created by the MCS (see
Section 5.1) covering the entire PREPARE message. When
a backup B accepts the proposal of the primary, it
notifies all active replicas in the cell by multicasting
a 〈COMMIT, B, o, s, p, certP 〉certB message, which is also
authenticated by the MCS. Having obtained a PREPARE

message and f matching COMMIT messages, the agree-
ment process of a request is complete; in such case, an
active replica forwards the request to the execution stage.

As REPBFT (see Section 4.1.1), REMINBFT uses a
window-based mechanism to limit the number of con-
current protocol instances. However, REMINBFT poses
an additional requirement: A replica may only send
a PREPARE/COMMIT message for an instance if it has
already sent a PREPARE/COMMIT message for all pre-
ceding instances. This rule still allows different protocol
instances to overlap, however, it forces a replica to pro-
cess them in the order of their sequence numbers, which
enables the replica to account for a continuous sequence
of certified messages during a protocol switch (see Sec-
tion 5.3). If a faulty replica fails to meet this requirement,
all non-faulty replicas stop to process messages from
the faulty replica as soon as they detect the gap. As in
REPBFT, a protocol switch will be performed in such
case, allowing the system to make progress.

5.2.2 Execution Stage

Similar to REPBFT (see Section 4.1.2), active REMINBFT
replicas bring passive replicas up to speed via state
updates. A passive replica only applies an update af-
ter having received matching versions from all active
replicas. Updates in REMINBFT are authenticated as in
REPBFT; they do not contain MCS certificates, as send-
ing an incorrect update has the same effect as sending
no update at all: the update never becomes stable.

5.2.3 Checkpoints and Garbage Collection

REMINBFT relies on checkpoints to perform garbage
collection, as REPBFT (see Section 4.1.3). For the same
reason as state updates (see Section 5.2.2), CHECKPOINTs
are not certified by the MCS. In contrast to REPBFT,
CHECKPOINTs of active replicas in REMINBFT also con-
tain a set of counter values: For each active replica, this
set contains the counter value assigned to the agreement
message (i.e., the PREPARE in case of the primary or the
COMMIT in case of a backup) the replica has sent in
the protocol instance of the request that triggered the
checkpoint. In Section 5.3, we discuss how these counter
values allow passive replicas to be activated in the course
of a protocol switch. In REMINBFT, a checkpoint only
becomes stable if the counter values included in the
CHECKPOINT notifications of active replicas also match.

5.3 Protocol Switch

Similar to REPBFT, REMINBFT’s normal-case protocol
only makes progress under benign conditions, requiring
a mechanism to safely switch to a more resilient protocol,
in this case MinBFT. Note the following key difference
between REPBFT and REMINBFT: Whereas the transi-
tion coordinator is guaranteed to receive messages from
at least f + 1 non-faulty active replicas in REPBFT, it
must rely on information from only a single non-faulty
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active replica in REMINBFT. As a consequence, the pro-
tocol switch cannot be based on information provided by
multiple replicas. Below, we discuss how this problem is
addressed by REMINBFT’s transition protocol.

5.3.1 Initiating a Protocol Switch
REMINBFT uses the same mechanism as REPBFT to
initiate a protocol switch after a client panic (see Sec-
tion 4.2.1): If an active replica decides to switch, the
replica stops participating in the agreement on requests
and informs the other replicas. In addition, an active
replica also forwards the latest stable checkpoint noti-
fication to all passive replicas, followed by all certified
messages it has sent since the creation of the checkpoint;
as discussed in Section 5.3.3, this step later allows pas-
sive replicas to complete the switch to MinBFT.

5.3.2 Creating a Commit History
Having initiated a protocol switch, only a single active
replica in REMINBFT creates and distributes a com-
mit history: the transition coordinator. In contrast to
REPBFT (see Section 4.2.4), the (global) commit history
of the transition coordinator in REMINBFT is only based
on local knowledge (i.e., there is no need for a HISTORY
phase). This is necessary, as in the worst case, f active
replicas may fail and the transition coordinator is the
only remaining non-faulty replica that has participated
in the agreement on client requests.

In order to create a commit history, the transition co-
ordinator performs the following steps: First, it adds the
latest stable checkpoint to the history. Next, it includes all
certified messages that it has sent since the point in time
reflected by latest stable checkpoint. When the commit
history h for a protocol p is complete, the transition
coordinator TC multicasts a 〈SWITCH, TC, h, p〉certTC

message to all replicas in the cell; certTC is the MCS
certificate for the SWITCH.

A valid commit history provides a continuous se-
quence with regard to the counter values of certified
messages: The sequence starts with the transition co-
ordinator’s counter value in the stable checkpoint cer-
tificate (see Section 5.2.3) and ends with the counter
value of the MCS certificate in the SWITCH message. As
a non-faulty transition coordinator includes all certified
messages in between, the sequence of counter values
is complete; a history that contains gaps is invalid and
will not be processed by non-faulty replicas. As a result,
a valid commit history necessarily contains information
about all protocol instances in which the transition co-
ordinator has participated. This allows other replicas to
reach a consistent state by processing the history.

5.3.3 Processing a Commit History
When a non-faulty (active or passive) replica receives
a valid commit history from the transition coordinator,
the replica initializes MinBFT with a view in which
the transition coordinator serves as primary. For each

request in the commit history, the replica creates a new
MinBFT instance and only accepts the request included
in the message as the outcome of this particular instance.

In order for passive replicas in REMINBFT to com-
plete a protocol switch, additional measures need to be
taken: While the system runs the normal-case protocol,
passive replicas do not receive any certified messages
from active replicas. As a result, without intervention,
passive replicas would not process the first certified
message they receive, which is the commit history, as
from their point of view the history does not contain
the next counter value expected from the transition
coordinator. To address this problem, passive replicas
rely on the verified counter-value information included
in stable checkpoints (see Section 5.2) to update their
expectations on counter values. This way, when active
replicas provide the latest stable checkpoint notifications
as well as subsequent certified messages at the start of
the protocol switch (see Section 5.3.1), passive replicas
are able to join the agreement-stage communication.

5.4 Safety and Liveness
In the following. we address safety and liveness aspects
in REMINBFT. As in previous sections, we focus our
discussion on the main differences to REPBFT.

5.4.1 Ensuring a Safe Protocol Switch
Although being created based on local information of
a single active replica (i.e., the transition coordinator),
a commit history in REMINBFT provides similar prop-
erties as the global commit history in REPBFT (see
Section 4.3.1). If a client request has been committed
on at least one non-faulty active replica in the cell,
the request is guaranteed to be included in a valid
commit history of the transition coordinator. This follows
because the transition coordinator has either provided a
valid PREPARE (if it has been the primary) or a valid
COMMIT (if it has been a backup) for the request. In
consequence, the only way for the transition coordinator
to create a valid commit history is to add this message
to its history (see Section 5.3).

Furthermore, a valid commit history in REMINBFT is
also guaranteed to contain all requests that have been
executed by at least one non-faulty active replica but
whose corresponding state updates may not become
stable at some non-faulty passive replicas. With con-
firmation from all replicas in the cell being required
for a checkpoint to become stable, as in REPBFT, such
requests cannot be covered by the latest stable check-
point. Therefore, as the request in question must have
been committed on at least one non-faulty replica, it is
guaranteed to be included in a valid commit history.

5.4.2 Ensuring System Progress
Relying on the same mechanism as REPBFT to initiate
a protocol switch, all non-faulty replicas in REMINBFT
will eventually start the transition to MinBFT if the
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normal-case protocol no longer makes progress (see Sec-
tion 4.3.2). During the switch, a faulty transition coordi-
nator may require the coordinator role to be assigned to a
different replica. However, as at most f of the f+1 active
replicas may be faulty, there is at least one non-faulty
active replica that provides a valid commit history while
serving as transition coordinator.

6 DISCUSSION

In this section, we analyze the impact of faulty nodes in
REBFT and discuss different implementation aspects.

6.1 Impact of Faulty Clients and Replicas
REBFT’s normal-case protocol only makes progress un-
der benign conditions. As a result, a single faulty node
may cause a switch to fault-handling mode. For example,
an active replica stalls progress if it fails to participate
in the agreement on requests. The same is eventually
true for a faulty passive replica that omits to distribute
a checkpoint notification, consequently preventing the
checkpoint from becoming stable. Finally, a faulty client
can trigger an unnecessary protocol switch, for example,
by sending a PANIC for a request for which it has
already obtained a stable result. In comparison, apart
from network problems, in PBFT and MinBFT in general
only a faulty primary can cause the agreement process
to temporarily stall by failing to propose requests.

Although a single faulty client or replica can trigger
fault handling in REBFT, it cannot cause the system
to switch back and forth at high frequency due to
REBFT exponentially increasing the number of protocol
instances x for which a system stays in fault-handling
mode (see Section 3.3). In particular, a faulty primary
cannot unilaterally reset x to a low value as the non-
faulty replicas in the system do not accept invalid pro-
posals for x. Also, a faulty backup is not able to prevent
a proposal by a non-faulty primary from being accepted.

6.2 Assignment of Replica Roles
REBFT does not specify how the roles of active and
passive replicas are assigned, only that the algorithm
used for this purpose must be globally known. In the
simplest case, the roles are assigned statically and never
change over the lifetime of a system. However, replica
roles may also be assigned dynamically, possibly select-
ing a different set of replicas to remain active whenever
the system switches back to normal-case operation.

Apart from distinguishing active and passive repli-
cas, also the selection of the transition coordinator is
important for REBFT. In principle there are two differ-
ent options: To appoint one of the active backups as
transition coordinator or to select the current primary.
While protocols like PBFT and MinBFT apply the former
during a view change, the latter offers a key benefit in
REBFT: If the primary is stable across a mode switch,
an adversary cannot exploit the mechanism to force the

system into taking away the primary role from a non-
faulty replica. Apart from that, as any faulty node can
cause a transition to fault-handling mode in REBFT,
there is no inherent reason to change the primary.

6.3 Support for Proactive Recovery
Some BFT systems provide long-term resilience against
faults by proactively rejuvenating replicas [1], [15], [22].
This method may readily be combined with REBFT. In
particular, passive replicas can be rejuvenated during
normal-case operation. On the other hand, the recovery
of active replicas cannot occur during normal-case op-
eration. A recovering active replica would need to ob-
tain state information from sufficiently many non-faulty
replicas, but there are not enough of them in REBFT’s
normal mode. Instead, a proactive REBFT system would
periodically switch to the default protocol, which allows
proactive recovery of all replicas.

7 EVALUATION
Below, we evaluate REPBFT and REMINBFT during
both normal-case operation as well as protocol switches.

7.1 Environment
We conduct our experiments using a replica cluster of 8-
core servers (2.3 GHz, 8 GB RAM) and a client cluster of
12-core machines (2.4 GHz, 24 GB RAM); all servers are
connected with switched Gigabit Ethernet. In order to
focus on the differences between the four BFT protocols,
all prototypes share as much code as possible. Requiring
a trusted message certification service, our MinBFT and
REMINBFT prototypes rely on the FPGA-based CASH
subsystem [30], which calculates a SHA-256 hash. PBFT
and REPBFT use authenticators based on SHA-256. In
all cases, the systems evaluated are dimensioned to be
resilient against one Byzantine fault. As a result, the cells
of PBFT and REPBFT comprise four replicas whereas the
cells of MinBFT and REMINBFT comprise three replicas.

7.2 Normal-case Operation
In the following, we run two benchmarks that are
commonly used [1], [4], [6], [9], [14], [19], [21], [24] to
evaluate BFT protocols: a 0/4 benchmark, in which clients
repeatedly send requests with empty payloads to the
service and receive replies with four-kilobyte payloads,
and a 4/0 benchmark, in which request payloads are of
size four kilobytes and the payloads of replies are empty.

In the experiments below, the execution of a request in
REPBFT and REMINBFT leads to an empty state update
being sent to the passive replica. We evaluate the impact
of different state-update sizes in Section 7.2.3.

7.2.1 0/4 Benchmark
Fig. 6a shows the results for the 0/4 benchmark. The
numbers for CPU and network usage are an aggregation
of the resource consumption of all replicas at maximum
throughput. For better comparison, the numbers are nor-
malized to a throughput of 10,000 requests per second.
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Fig. 6. Performance and resource-usage results for
PBFT, REPBFT, MinBFT, and REMINBFT.

Performance: With clients issuing requests with
empty payloads, a major factor influencing performance
in this benchmark is the replicas’ task to send replies.
Thus, the fact that MinBFT and REMINBFT comprise
one protocol phase less than PBFT and REPBFT only re-
sults in minor differences in maximum throughput (i.e.,
9% for MinBFT over PBFT and 12% for REMINBFT
over REPBFT). However, comparing the systems that are
directly related to each other, our experiments show that
by requiring fewer messages than their counterparts,
REPBFT and REMINBFT allow throughput increases of
19% and 23% over PBFT and MinBFT, respectively.

The benefits of needing to authenticate fewer messages
is illustrated by a comparison between MinBFT and
REMINBFT. For this experiment, the limiting factor in
MinBFT is the access to the FPGA providing the message
certification service. As a result, MinBFT’s maximum
throughput is even lower than the maximum throughput
of REPBFT. In contrast, REMINBFT performs better than
MinBFT due to only creating/verifying certificates for
two messages per protocol instance instead of three.

Resource Usage: The use of reply hashes (see Sec-
tion 4.4) reduces the amount of data to be sent over
the network for all four systems, as only one (active)
replica has to send a full reply. Nevertheless, the need
to send full replies after all, combined with the fact that
for this benchmark replies are much larger than agree-
ment messages, results in REPBFT/REMINBFT replicas
transmitting moderate 5% less data over the network
than PBFT/MinBFT replicas. With regard to CPU usage,
the savings achieved by REPBFT and REMINBFT are
higher: 11% and 15%, respectively. For both REPBFT and
REMINBFT, the contribution of the passive replica to the
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Fig. 7. Throughput and resource-usage results for differ-
ent state-update sizes in REPBFT and REMINBFT.

overall system resource footprint is small: about 3% of
total CPU usage and about 0.5% of network traffic.

7.2.2 4/0 Benchmark

While replies are the decisive factor in the 0/4 bench-
mark, the 4/0 benchmark is dominated by requests.
Fig. 6b shows the results for this use case.

Performance: For the 4/0 benchmark, the maximum
throughput of a system depends on the number of
backup replicas participating in the protocol. Having
received the request from the client, the primary in
PBFT proposes it to three backups, thereby saturating
its network connection at less than 8,000 requests per
second. In contrast, the primary in REPBFT and MinBFT
distributes each request to only two backups, allowing
these systems to achieve higher throughputs of about
10,700 and 11,500 requests per second; the difference in
maximum throughput between both systems illustrates
the overhead of REPBFT’s more complex agreement pro-
tocol. Finally, with the REMINBFT primary forwarding
requests to a single active backup, REMINBFT is able to
realize a maximum throughput of about 19,700 requests
per second, an increase of 71% compared with MinBFT.

Resource Usage: The CPU and network usage results
for the 4/0 benchmark show that the introduction of a
passive replica also has a significant impact on resource
consumption. Compared with PBFT, REPBFT uses 31%
less CPU and sends 33% less data over the network. For
REMINBFT, the savings over MinBFT are 38% (CPU)
and 48% (network), respectively. In both systems, pas-
sive replicas are responsible for less than 1% of the
overall CPU usage and about 0.1% of the network traffic.
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7.2.3 Impact of State Updates

We investigate the impact of state-update sizes in
REPBFT and REMINBFT by extending the 4/0 bench-
mark to a 4/0/z benchmark, with z indicating the payload
size of updates. In all the experiments, only one active
replica sends the full state update to the passive replica,
while the other active replicas in the cell provide hashes.
Drawing from the insight gained in Section 7.2.2 that the
network connection of the primary replica is a bottleneck
for the 4/0 benchmark, we configure the primary in
REPBFT and REMINBFT to always send update hashes.

Fig. 7 presents the maximum throughput achieved for
different update sizes as well as the impact on resource
usage. The results show that increasing the size of up-
dates from zero to one kilobyte has no observable effect
on the overall throughput of REPBFT and REMINBFT;
nevertheless, small non-empty updates come with addi-
tional overhead in terms of CPU and network usage.

When update sizes increase, REPBFT and REMINBFT
consume more resources and eventually reach simi-
lar (network) or slightly lower (CPU) levels than PBFT
and MinBFT. However, even for updates of four kilo-
bytes, REPBFT and REMINBFT achieve a 19% and 25%
higher throughput than PBFT and MinBFT, respectively.
This is due to the optimization that allows the primary
to save network resources by providing update hashes.

7.3 Fault Handling

Having been designed to save resources under benign
conditions, the normal-case protocols of REPBFT and
REMINBFT do not ensure progress in the presence of
faults, requiring the systems to switch to the resilient
PBFT and MinBFT protocol, respectively. In the follow-
ing, we evaluate the performance impact of such a pro-
tocol switch and compare it to the performance impact
of a view change in PBFT and MinBFT. For this purpose,
we conduct a 4/0 benchmark experiment in which we
manipulate the primary to stop proposing requests one
protocol instance short of a new checkpoint. Thus, for
a checkpoint interval of 100, the commit histories of
REPBFT and REMINBFT comprise 99 slots.

Fig. 8b shows the overall system throughput prior,
during, and after a protocol switch in REPBFT. As
a result of the transition protocol being executed, the
throughput briefly drops to about 4,000 requests per
second before stabilizing at the normal-case level for
PBFT. Comparing a protocol switch in REPBFT to a
view change in PBFT (see Fig. 8a), we can conclude
that both cause a similar performance overhead: In both
cases, the maximum latency experienced by a client in
the experiments was less than 850 milliseconds.

In contrast, a protocol switch in REMINBFT is more
efficient than a view change in MinBFT, as illustrated
by Figs. 8c and 8d. While changing the primary in
MinBFT (similar to the protocol switch in REPBFT) re-
quires two rounds of replica communication after having
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Fig. 8. Impact of a replica fault in PBFT, REPBFT,
MinBFT, and REMINBFT for the 4/0 benchmark.

been initiated, in REMINBFT only the transition coor-
dinator’s commit history has to be distributed for the
switch (see Section 5.3). Therefore, REMINBFT clients
whose requests were affected by the reconfiguration
procedure had to wait less than 700 milliseconds for their
replies to become stable in our experiments.

8 CASE STUDY: COORDINATION SERVICE
The evaluation in Section 7 has confirmed passive repli-
cation to be an effective means to save resources in a BFT
system for use cases in which performance and resource
consumption are dominated by the agreement protocol.
To investigate the other end of the spectrum, scenarios
dominated by the application, we have developed RECS,
a resource-efficient coordination service that relies on a
relational database for persistence. RECS exposes a hier-
archical namespace (i.e., a tree) to clients and implements
the ZooKeeper API [27]: After a client has created a
tree node, all clients can check whether the node exists,
read the node’s data, or assign new data to the node.
In addition, RECS offers server-side implementations of
two abstractions typically built on top of ZooKeeper: a
shared counter and a distributed queue.

Internally, RECS manages the tree in a relational
database (currently MySQL 5.1.73). Different operations
require different numbers of database accesses, ranging
from one access for a check to three accesses for remov-
ing the head element from the queue. For the REPBFT
and REMINBFT versions of RECS, updates consist of the
SQL statements of accesses modifying the database (e.g.,
UPDATEs). In contrast, queries (i.e., SELECTs) do not
have to be included in state updates as they do not
contribute to bringing passive replicas up to speed.
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Fig. 9. Throughput and resource-usage results for differ-
ent coordination-service operations in different systems.

We evaluate RECS in the environment presented in
Section 7.1. Figure 9 shows results for the different
operations. CPU-usage numbers are normalized to a
throughput of 1,000 requests per second. We omit the
results for network usage as they present a similar pic-
ture as the experiments of Section 7. Due to the fact that
this use case is dominated by the processing overhead
of the application, all four systems evaluated achieve
similar throughputs. Differences in throughput between
operations can be mainly attributed to differences in the
number of database accesses required per operation.

The results in Figure 9b show that with regard to
the CPU overhead at passive replicas, the coordination-
service operations can be divided into two categories:
On the one hand, there are operations that involve mod-
ifying accesses to the service-application state, which
must also be performed at passive replicas. As a result,
passive replicas contribute up to 20% to the overall CPU
usage. On the other hand, for operations that only read
the database, resource consumption of passive replicas
is negligible. In practice, coordination-service workloads
comprise mostly read-only operations [27].

9 RELATED WORK

Reducing the associated overhead is a key step to make
BFT systems applicable to real-world use cases. Most
optimized BFT systems introduced so far have focused
on improving time and communication delays, however,
and still need 3f+1 replicas that run both the agreement
and execution stage [4], [14]. Note that this is the same
as in the pioneering work of Castro and Liskov [1]. The
high resource demand of BFT was first addressed by Yin
et al. [9] with their separation of agreement and execu-
tion that enables a system to comprise only 2f+1 execu-

tion replicas. In a next step, systems were subdivided in
trusted and untrusted components for preventing equiv-
ocation; based on a trusted subsystem, these protocols
only need a total of 2f +1 replicas [20]–[22]. The trusted
subsystems may become as large as a complete virtual
machine and its virtualization layer [20], [22], or may be
as small as a trusted counter [19], [24].

The concept of building an agreement-based BFT sys-
tem as a collection of different sub protocols has been
proposed by Guerraoui et al. [14]. In their approach,
they optimistically employ a very efficient but less ro-
bust agreement protocol to increase performance under
benign conditions, and resort to a more resilient algo-
rithm if needed. REBFT builds on this work and applies
the concept to change the number of replicas actively
involved in system operations, rather than only changing
the protocol, with the goal of saving resources.

SPARE [25] and ZZ [29] are two BFT systems that ex-
ploit virtualization to minimize the number of execution
replicas processing client requests during normal-case
operation. However, in both systems, at all times all non-
faulty replicas actively participate in the agreement on
requests. In contrast, REBFT does not require a virtu-
alized environment; furthermore, our approach reduces
the number of active replicas at both the agreement stage
as well as the execution stage by relying on passive
replicas that only witness progress.

REBFT adopts the well-known paradigm of passive
replication formulated for systems with crash failures,
where a primary executes requests and backups only
apply state updates. Protocols that involve witnesses for
voting go back to work in the fail-stop model [31]. In
this regard, REBFT is conceptually related to the Cheap
Paxos protocol [26], in which f + 1 main processors
perform agreement and can invoke the services of up to
f auxiliary processors. In case of processor crashes, the
auxiliary processors take part in the agreement protocol
and support the reconfiguration of the main processor
set. In the Byzantine fault-tolerant Shuttle [32] protocol,
witnesses do not execute requests but, unlike passive
replicas in REBFT, participate in the agreement stage.
Shuttle requires a centralized service for reconfiguration
in case of faults. In contrast, replicas in REBFT directly
initiate a switch to a more resilient protocol after having
been informed by clients. As a result, REBFT is able to
omit the resource overhead associated with running an
additional configuration service.

10 CONCLUSION
This paper presented REBFT, an approach to minimize
the resource consumption of BFT systems by relying on
a normal-case operation mode in which only a subset
of replicas actively participate in the ordering and ex-
ecution of requests. Introducing such a mode does not
require a system to be redesigned from scratch. Instead,
a resource-saving protocol for the normal case can be
derived from existing Byzantine fault-tolerant protocols,
as illustrated by the examples of PBFT and MinBFT.
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