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Resource-efficient digital quantum simulation of d-level

systems for photonic, vibrational, and spin-s Hamiltonians
Nicolas P. D. Sawaya 1✉, Tim Menke 2,3,4, Thi Ha Kyaw 5,6, Sonika Johri7, Alán Aspuru-Guzik5,6,8,9 and

Gian Giacomo Guerreschi 1✉

Simulation of quantum systems is expected to be one of the most important applications of quantum computing, with much of the

theoretical work so far having focused on fermionic and spin-1
2
systems. Here, we instead consider encodings of d-level (i.e., qudit)

quantum operators into multi-qubit operators, studying resource requirements for approximating operator exponentials by

Trotterization. We primarily focus on spin-s and truncated bosonic operators in second quantization, observing desirable properties

for approaches based on the Gray code, which to our knowledge has not been used in this context previously. After outlining a

methodology for implementing an arbitrary encoding, we investigate the interplay between Hamming distances, sparsity patterns,

bosonic truncation, and other properties of local operators. Finally, we obtain resource counts for five common Hamiltonian classes

used in physics and chemistry, while modeling the possibility of converting between encodings within a Trotter step. The most

efficient encoding choice is heavily dependent on the application and highly sensitive to d, although clear trends are present. These

operation count reductions are relevant for running algorithms on near-term quantum hardware because the savings effectively

decrease the required circuit depth. Results and procedures outlined in this work may be useful for simulating a broad class of

Hamiltonians on qubit-based digital quantum computers.

npj Quantum Information            (2020) 6:49 ; https://doi.org/10.1038/s41534-020-0278-0

INTRODUCTION

Simulating quantum physics will likely be one of the first practical
applications of quantum computers. In simulating the many body
problem, most algorithmic progress so far has focused on systems
with binary degrees of freedom, e.g., spin-1

2
systems1,2 or fermionic

systems3,4. The latter case is relevant for simulations of chemical
electronic structure5,6, nuclear structure7, and condensed matter
physics8. This focus on binary degrees of freedom seems to be a
natural development, partly because qubit-based quantum
computation is the most widespread model used in theory,
experiment, and the nascent quantum industry.
However, for a large subset of quantum physics problems,

important roles are played by components that are d-level
particles (qudits) with d > 2, including bosonic fundamental
particles9, vibrational modes10, spin-s particles11, or electronic
energy levels in molecules12 and quantum dots13. Accordingly,
several qubit-based quantum algorithms were recently developed
for efficiently studying some such processes, including nuclear
degrees of freedom in molecules14–18, the Holstein model19,20, and
quantum optics21,22.
In principle, there are combinatorially many ways to map a

quantum system to a set of qubits23,24. Mapping a d-level system
to a set of qubits may be done by assigning an integer to each of
the d levels and then performing an integer-to-bit mapping. Some
consideration of d-level-to-qubit mappings has been published in
the very recent literature, primarily for truncated bosonic degrees
of freedom14,17–21,25, but this is still an unexplored area of theory
especially in regards to determining which encodings are optimal
for which problem instances. The purpose of this work is both to

provide a complete yet flexible framework for the mappings, and
to analyze several encodings (both newly proposed herein
and previously proposed) for a widely used set of operations
and Hamiltonians. This aids in determining which mappings are
more efficient for particular operators and specific hardware,
including near-term intermediate-scale quantum (NISQ) devices.
When choosing which encoding to use for a given problem, it is

conceptually useful to think in terms of a hardware budget, as
shown in Fig. 1. Similar considerations have been studied for
fermionic mappings26. For near- and intermediate-term hardware,
one will often have stringent resource constraints in terms of both
qubit count and gate count. Imagine that one plans to perform
Hamiltonian simulation for some N-particle system. Using some
set of criteria for acceptable error and other parameters, one can
in principle work backwards to determine how much of a
quantum resource is available for each operation. This quantity
would be different for each device. Perhaps one quantum
computer would allow for more qubits but another allows for
more operations, as in Fig. 1. Because different encodings yield
differing resource requirements, considering multiple encodings
may be essential for determining whether the available resources
are sufficient.
Here we briefly summarize our results for resource comparisons

of real Hamiltonian problems, in order to highlight the utility of
encoding analyses and to demonstrate the ultimate practical
objective of this work. Figure 2 shows the relative two-qubit
operation requirements for a set of five prominent physics and
chemistry problems (defined in Supplementary Section 6). All
comparisons are made within a given Hamiltonian. Our
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investigations revealed a somewhat rich interplay between qubit
counts, operation counts, encodings, and conversions. The
difficulty in a priori predicting the optimal encoding scheme
suggests that sophisticated compilation procedures, for auto-
matically choosing and converting between multiple encodings,
will play a large role in future quantum simulation efforts for
d-level systems.
We note that the optimal encoding schemes have differing

characteristics, all of which are present in Fig. 2. The results for
each Hamiltonian can be categorized as one of four scenarios.
Scenario A: the optimal choice is either standard binary (SB) only

or Gray-only, with no benefit from converting between encodings
(Bose–Hubbard d= 4; 1D QHO d= 4). Scenario B: the optimal
choice is to convert between SB and Gray, in order to perform
different local operators in different encodings (Heisenberg s ¼ 7

2
;

Franck–Condon d= 4). Scenarios A and B are notable because
they require both the fewest operations and the fewest qubits, as
there is no benefit to expanding into the qubit-hungry unary
encoding. Scenario C: unary-only is the optimal choice, and saving
memory by compacting the data back to Gray or SB is still cheaper
than remaining in the latter encodings (Bose–Hubbard d= 10;
boson sampling d= 10; Franck Condon d= 10). Scenario D: unary
is the optimal encoding, but only if the data remains in high-qubit-
count unary for the duration of the calculation (1D QHO d= 10;
Heisenberg s= 2). The optimal encoding choice is highly sensitive
to both the Hamiltonian class and the truncation value d. This
suggests the need to perform an encoding-based analysis for any
new digital quantum simulation of d-level particles.
Throughout this work, we study four encoding types: unary

(also called one-hot), standard binary, the Gray code, and a new
class of encodings we name block unary, all defined in Section
Binary encoding. After outlining how to map d-level operators to
qubit operators for any arbitrary encoding in Section Mapping
d-level matrix operators to qubits, we consider resource counts for
most standard local operators used in bosonic and spin-s
Hamiltonians in Section Local operators. In Section Conversions
between encodings we present circuits for converting between
encodings and enumerate their resource counts. Finally, in Section
Composite systems we obtain relative resource estimates for
various commonly studied Hamiltonians in theoretical physics and
chemistry. Conclusions are summarized in Section Discussion. This
work highlights how the careful choice of the encoding scheme
can greatly reduce the resource requirements when simulating a
system of d-level particles or modes.

RESULTS

Binary encodings

We begin by giving definitions for various integer to binary
encodings. In this work, we use the term binary encoding to refer
to any code that represents an arbitrary integer as a set of ordered
binary numbers, not just the familiar base-two numbering system.
These encodings can be used to represent states regardless of the

Fig. 1 Especially for near-term noisy quantum hardware, gate
counts, and qubit counts will be limited. In principle, these
constraints can be used to approximate a hardware budget for a set
of hardware and a particular Hamiltonian simulation problem. For
example, if one wants to simulate a collection of N bosons on a small
quantum computer, the decoherence time and gate errors will
constrain the allowed number of gates, while the total number of
qubits will constrain the qubit count per boson. In this schematic,
we show two arbitrary hardware budgets for Trotterizing the

exponential of q̂
2
for one boson with truncation d= 5. In device A,

both the Gray and standard binary encodings are satisfactory, but
the unary code requires too many qubits. However, because device
B allows for more qubits but fewer operations, the unary code is
sufficient while the former two encodings require too many
operations. This highlights the need for considering multiple
encodings, as an encoding that is best for one type of hardware is
not necessarily universally superior.

Fig. 2 Using an arbitrary selection of parameters for common physics and chemistry Hamiltonians, we have plotted the comparative
computational costs required for first-order Trotterization. Costs are reported in terms of number of two-qubit entangling gates, relative to
the cost of standard binary (SB). The three encodings shown here—standard binary, Gray code, and unary—are defined in the text. The five
Hamiltonians are the Bose–Hubbard model, one-dimensional quantum harmonic oscillator (QHO), Franck–Condon calculation, boson
sampling, and spin-s Heisenberg model. The optimal encodings are sensitive both to the Hamiltonian class and the number of levels d
(determined by bosonic truncation or by the spin value s). In some cases, it is best to stay in a particular encoding for the duration of the
simulation. Other times, it is worth bearing the resource cost of converting between encodings, because it saves on total operations. Still
other times, the decision to save operations by converting between encodings will depend on whether available hardware is gate count
limited or qubit count limited. Four Scenarios, A through D, are discussed in Section Composite system.
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type of system or basis we are considering. For a given encoding
enc, each integer l has some qubit (i.e., binary) representation,
denoted RencðlÞ, which is a bit string on Nq bits, xNq�1 � � � x1x0. To
specify the value (0 or 1) of a particular bit i in the encoding, we
use the notation Rencðl; iÞ.

Standard binary. We refer to the familiar base-two numbering
system as the standard binary (SB) encoding, such that an integer l
is represented by

l 7! x02
0 þ x12

1 þ x22
2 þ ::: (1)

This straight-forward mapping has been used for qubit-based
quantum simulation of bosons previously14,17,18. The SB mapping
uses Nq ¼ dlog 2de qubits when the range of integers under
consideration is {0, 1, 2, …, d − 1}, where ⌈ ⋅ ⌉ is the ceiling
function.

Gray code. In principle there are combinatorically many one-to-
one mappings between a set of integers and a set of Nq-bit strings.
One mapping from classical information theory with particularly
useful properties is called the Gray code or the reflected binary
code27. Its defining feature is that the Hamming distance dH
between nearest-integer bit strings is always 1, formally
dHðRGrayðlÞ;RGrayðl þ 1ÞÞ ¼ 1. The Hamming distance counts the
number of mismatched bits between two bit strings. In other
words, moving between adjacent integers requires only one bit
flip (see Table 1). As will be seen below, this encoding is especially
favorable for tridiagonal operators with zero diagonals, since all
non-zero elements lj i l0h j then have hamming distance one. As far
as we are aware, the Gray code has not been previously proposed
for use in the simulation of bosons and other d-level systems on a
qubit-based quantum computer. This encoding inspires the
possibility of having a specialized encoding for many possible
matrix sparsity patterns (for example a code for which dH ¼
dHðRGrayðlÞRGrayðl þ 1ÞÞ ¼ 2 to be used for pentadiagonal
matrices like q̂

2
), but we do not consider this possibility here.

Throughout this work we refer to the SB and Gray codes as
compact encodings because they make use of the full Hilbert
space of the qubits used.

Unary encoding. Mappings that do not use all 2Nq states of the
Hilbert space are possible. In the unary encoding (also called one-
hot28, single-excitation subspace29, or direct mapping17), the
number of qubits required is Nq= d. Therefore, only an
exponentially small subspace of the qubits’ Hilbert space is used.
The relationship between the unencoded and encoded ordered

sets is

f0; 1; 2; 3; :::g 7! f:::000001; :::000010; :::000100; :::001000; :::g:
(2)

Previous proposals for bosonic simulation on a universal quantum
computer have used this encoding17,18,28–30 under different
names. The Unary encoding makes less efficient use of quantum
memory, but it will become clear below that it usually allows for
fewer quantum operations.

Block unary encoding. One can interpolate between the two
extremes, using less than the full Hilbert space but more of the
space than the unary code uses. In some limited instances this
allows one to make tunable trade-offs between required qubit
counts and required operation counts, which may be especially
useful for mapping physical problems to the specific hardware
budget of a particular near-term intermediate-scale (NISQ) device.
In this work, we introduce a class of such encodings that we call
block unary.
The block unary code is parameterized by choosing an arbitrary

compact encoding (e.g., SB or Gray code) and a local parameter g
that determines the size of each block. It can be viewed as an
extension of the unary code, where each digit (block) ranges from
0 to g. Within each block, the local encoding is used to represent
the local digit. The number of qubits required is
Nq ¼ ddgedlog 2ðgþ 1Þe. Examples of the block unary encoding
are given in Table 2. We use the notation BUenc

g to define block
unary with a particular pair of parameters. For a transition within a
particular block, the number of operations is similar to a compact
code with d= g+ 1. For elements that move between different
blocks, the transition will be conditional on all qubits in both
blocks.

Bitmask subset. Because some encodings do not make use of
the full Hilbert space, it will be useful to define the subset of bits
that is necessary to determine each integer l. For a given encoding
we call this subset the bitmask subset, denoted C(l) where Cl ⊆ {0,
1, 2, . . . , Nq− 1}. The bitmask subset for the SB and Gray
encodings is always CSB(l)= CGray(l) = {0, 1, 2, . . . , Nq − 1}, since all
Nq bits must be known to determine the integer value. In the
unary encoding, the bitmask subset is simply CUnary(l)= {l},
because if one knows that bit l is set to 1, then one knows the
other bits are 0. In the block unary code, the bitmask subset
simply contains the bits that represent the current block. For
example, for the Block Unary Gray code with g= 3 (see Table 2),
CBU[g=3](2)= {0, 1} and CBU[g=3](3)= {2, 3}.

Table 1. The standard binary (SB), Gray code, and unary encodings.

Decimal SB Gray Unary

0 0000 0000 000000000001

1 0001 0001 000000000010

2 0010 0011 000000000100

3 0011 0010 000000001000

4 0100 0110 000000010000

5 0101 0111 000000100000

6 0110 0101 000001000000

7 0111 0100 000010000000

8 1000 1100 000100000000

9 1001 1101 001000000000

10 1010 1111 010000000000

11 1011 1110 100000000000

We refer to the SB and Gray codes as compact encodings.

Table 2. Examples of the block unary SB and block unary Gray

encodings.

Decimal BUSB
g¼3 BU

Gray
g¼3 BU

Gray
g¼5 BU

Gray
g¼7

0 00 00 00 01 00 00 00 01 000 000 001 000 001

1 00 00 00 10 00 00 00 11 000 000 011 000 011

2 00 00 00 11 00 00 00 10 000 000 010 000 010

3 00 00 01 00 00 00 01 00 000 000 110 000 110

4 00 00 10 00 00 00 11 00 000 000 111 000 111

5 00 00 11 00 00 00 10 00 000 001 000 000 101

6 00 01 00 00 00 01 00 00 000 011 000 000 100

7 00 10 00 00 00 11 00 00 000 010 000 001 000

8 00 11 00 00 00 10 00 00 000 110 000 011 000

9 01 00 00 00 01 00 00 00 000 111 000 010 000

10 10 00 00 00 11 00 00 00 001 000 000 110 000

11 11 00 00 00 10 00 00 00 011 000 000 111 000

N.P.D. Sawaya et al.
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Mapping d-level matrix operators to qubits

Any operator for a d-level system can be written as

Â ¼
X

d�1

l;l0¼0
al;l0 lj i l0h j; (3)

where l and l0 are integers labelling pairwise orthonormal
quantum states. In this work we conceptualize the mappings
primarily in terms of Fock-type encodings (or alternatively second
quantization encodings) where each lj i represents one level in the
d-level system. However, the mapping procedure is identical to
the one used for first quantization operators19,20 that we briefly
discuss. When dealing with bosonic degrees of freedom, one must
choose an arbitrary level d at which to truncate, since in principle a
bosonic mode may have an unbounded particle number.
Choosing this cutoff such that truncation error is below a given
threshold is an essential step that has been previously
studied18,31,32, although it is beyond the scope of the
current work.
In performing a mapping of any d-by-dmatrix operator to a sum

of Pauli strings, the following approach may be used. For each
term in the sum, one first assigns an integer to each level and then
uses an arbitrary binary encoding R to encode each integer:

lj i 7! RðlÞj i ¼ Rðl;Nq � 1Þ
�

� i � � � Rðl; 1Þj i Rðl; 0Þj i 7! xNq�1
�

� i � � � x0j i; xi 2 f0; 1g:

(4)

For codes using less than the full Hilbert space of the qubits (e.g.,
unary and block unary), some qubits can be safely ignored for a
given element lj i l0h j. This is because operations on these excluded
qubits will not affect the manifold on which the problem is
encoded. Therefore, for each element lj i l0h j a mapping needs to
consider only the bitmask subsets of the two integers, ignoring
other bits. The operator on the qubit space is then

lj i l0h j 7!
O

i2CðlÞ∪Cðl0Þ
xij i x0i
� �

�

i
;

(5)

where CðlÞ∪Cðl0Þ is the union of the bitmask subsets of the two
integers and the subscripts i denote qubit number. One then
converts each qubit-local term xj

�

� i x0h j to qubit operators using the
following four expressions:

0j i 1h j ¼ 1

2
ðσ̂x þ iσ̂yÞ � σ̂

�; (6)

1j i 0h j ¼ 1

2
ðσ̂x � iσ̂yÞ � σ̂

þ; (7)

0j i 0h j ¼ 1

2
ðI þ σ̂zÞ; (8)

1j i 1h j ¼ 1

2
ðI � σ̂zÞ: (9)

For a single term in Eq. (3), the result is a sum of Pauli strings,

Â 7!
X

P

k

ck
O

Nq

j

σ̂kj; (10)

where P is the number of Pauli strings in the sum, ck is a coefficient
for each Pauli term, and every operator is either a Pauli matrix or
the identity: σ̂kj 2 fσ̂x ; σ̂y; σ̂zg∪ fIg. Note that in this work the
set of Pauli matrices is defined to exclude the identity.

Significance of the Hamming distance

It is useful to analyze encoding efficiency based on the Hamming
distance between RðlÞ and Rðl0Þ. The Hamming distance, which
we denote dRH ðl; l0Þ � dHðRðlÞ;Rðl0ÞÞ, is defined as the number of
unequal bits between two bit strings of equal length. The
important observation is that, for a given element al;l0 lj i l0h j in

Eq. (3), the average length of the Pauli strings increase as the
Hamming distance increases, where length is defined as the
number of Pauli operators (excluding identity) in the term. In this
subsection, for simplicity we at first assume that the bitmask
subset is C(l) = {0, 1, . . . , Nq − 1}, implying that we are using a
compact code such as Gray or SB. But we note that these
Hamming distance considerations are relevant to all encodings. In
the case of a noncompact encoding, one would consider only the
union of the bitmask subsets. To clarify this result, consider the
following. For an arbitrary element lj i l0h j written in binary form
RðlÞj i Rðl0Þh j, one performs the following mapping:

x0j i x0h j � � � � � xNj i x0h j 7!
1

2N
ðâ0 þ b̂0Þðâ1 þ b̂1Þ � � � ðâN þ b̂NÞ

(11)

where subscripts denote qubit number, â 2 fσ̂x ; Ig, and
b̂ 2 f± iσ̂y; ± σ̂zg (according to Eqs. (6) through (9)). Expanding
the RHS of Eq. (11) leads to an equation of form (10). For any
mismatched qubit j, i.e., any qubit for which xj ≠ x

0, the clause
ðâj þ b̂jÞ contains two Pauli operators. For matched qubits
(xj ¼ x0), the clause ðâj þ b̂jÞ instead has one identity and one
Pauli operator. Hence more matched bits lead to more identity
operators in expression (11), leading to fewer Pauli operators in
the final sum of Pauli strings. It follows that the number of non-
identity operators can be reduced by having a smaller Hamming
distance. This is relevant because Hamiltonians with more Pauli
operators require more quantum operations to implement.
Consider the illustrative example of mapping the Hermitian

term 3j i 4h j þ 4j i 3h j to a set of qubits. In the SB encoding, Eqs. (6)–
(9) yield the following Pauli string representation:

3j i 4h j þ 4j i 3h j 7�!Std:Binary
011j i 100h j þ 100j i 011h j

¼ 1

4
ðσ̂ð2Þx σ̂ð1Þx σ̂ð0Þx þ σ̂ð2Þy σ̂ð1Þy σ̂ð0Þx þ σ̂ð2Þy σ̂ð1Þx σ̂ð0Þy � σ̂ð2Þx σ̂ð1Þy σ̂ð0Þy Þ:

(12)

Using the Gray code, the Pauli string instead takes the form

3j ih4j þ j4ih3j 7�!Gray j010i 110h j þ 110j i 010h j

¼ 1

4
ð�σ̂ð2Þx σ̂ð1Þz σ̂ð0Þz þ σ̂ð2Þx σ̂ð0Þz � σ̂ð2Þx σ̂ð1Þz þ σ̂ð2Þx Þ:

(13)

The Hamming distance between Rð3Þ and Rð4Þ is dSBH ¼ 3 in
the former case and d

Gray
H ¼ 1 in the latter. The result is that the

Gray code has fewer Pauli operators per Pauli string, meaning that
it can be implemented with fewer operations.

Avoiding superfluous terms in noncompact codes

When implementing local products of operators using noncompact
codes (unary or BU), one should multiply operators in the matrix
representation before performing the encoding to qubits. If one
instead first maps local operators to qubit operators, and then
multiplies the operators, superfluous terms may result. For example,
when implementing an arbitrary squared operator Â

2
, one should

begin with the matrix representation of Â
2
instead of squaring the

qubit representation of Â. To see this, consider the unary encoding
of the square of a 3-level matrix operator n̂d¼3 ¼ diag½0; 1; 2�
7! 3

2
I � 1

2
σ̂
ð1Þ
z � σ̂

ð2Þ
z . If one begins with n̂

2
d¼3 ¼ diag½0; 1; 4�, the

encoded operator is

n̂
2
d¼3 ¼ diag½0; 1; 4� 7�!Unary 5

2
I � 1

2
σ̂ð1Þz � 2σ̂ð2Þz : (14)

If one instead squares the already-encoded Pauli operator for
n̂d¼3, this yields

3

2
I � 1

2
σ̂ð1Þz � σ̂ð2Þz

� �2

¼ 7

2
I � 3

2
σ̂ð1Þz þ σ̂ð1Þz σ̂ð2Þz � 3σ̂ð2Þz : (15)

N.P.D. Sawaya et al.
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Superscripts denote qubit number. Pauli operators (14) and (15)
behave identically on the subspace of the unary encoding,
although operator (14) is less costly to implement. One might
attempt to eliminate superfluous terms after the mapping is
complete, but this is likely a hard problem. In principle it may
require combinatorial effort to determine which combinations of
operators leave the encoding space unaffected. Hence the most
prudent strategy is to always perform as much multiplication as
possible in the matrix representation. These considerations are
irrelevant when using one of the compact encodings.

Trotterization and gate count upper bounds

Hamiltonian simulation often consists of implementing the unitary
operator

^UðtÞ ¼ expð�iĤtÞ (16)

for some user-defined time-independent Hamiltonian Ĥ, where t is
the evolution time and we have set ℏ= 1. Any Hamiltonian can be
expressed as a sum of local Pauli strings such that

Ĥ ¼
X

k

ck�
j
σ̂kj ¼

X

k

ĥk ; (17)

which takes the same form as Eq. (10) with the Pauli strings and
their coefficients compacted into terms fĥkg. In practice,
Hamiltonian simulation can be performed using a Suzuki–Trotter
decomposition

ÛðtÞ ¼ exp �it
X

k

ĥk

 !

�
Y

k

expð�iĥkt=ηÞ
 !η

¼ ~UðtÞ; (18)

where the expression is exact in the limit of large η or small t1,33.
The numerical studies of this work consider the encoding-
dependent resource counts for Eq. (18), for a subset of prominent
physics problems. We focus on determining the resources
required for simulating a single Trotter step.
There are several variations and extensions to the Hamiltonian

simulation approach of Eq. (18), including higher-order
Suzuki–Trotter methods33, the Taylor series algorithm34, quantum
signal processing35, and schemes based on randomization36,37.
Notably for the current work, recent results suggest that simple
first-order Trotterization will have lower error for near- and
medium-term hardware38,39, even if the other methods are
asymptotically more efficient. Since ĥk takes a different form

depending on the chosen encoding, the resource counts as well
as the error jÛðtÞ � ~UðtÞj will be different. We leave the study of
numerical error for future work, as the goal of the current work is
to introduce these mappings and to understand some trends in
their resource requirements.
Each term expð�itĥkÞ ¼ expð�itck

N

jσ̂kjÞ may be implemented
using the well-known CNOT staircase quantum circuit shown in
Fig. 3. If a qubit j is acted on by σ̂x or σ̂y , additional single-qubit
gates are placed on qubit j as shown in the figure. H ≡ iRx+z(π)
denotes the Hadamard gate that changes between the Z- and X-
basis, and iRx+y(π) converts between the Z- and Y-basis. To
exponentiate a single Pauli string, the number of CNOT (CX) gates
required is

ncxðpÞ ¼ 2ðp� 1Þ; (19)

where p is the number of Pauli operators (fσ̂x ; σ̂y ; σ̂zg, excluding I)
in the term to be exponentiated.
It is instructive to calculate upper bounds for entangling gate

counts. Consider a simple Hermitian term α lj ihl0j þ α�jl0i lh j and a
single diagonal element lj i lh j. Here, dH denotes dHðRðlÞ;Rðl0ÞÞ,
which will depend on the chosen encoding, and dH= 0 in the case
of a diagonal element. We define K as jCencðlÞ∪Cencðl0Þj, the
number of qubits in the relevant bitmask subsets. As we are
considering products of two-term sums (Eqs. (6)–(9)), the
distribution of Pauli strings can be analyzed in terms of binomial
coefficients. In the Supplementary Section 1 we show that

ncx;UB½dHðl; l0Þ; K� ¼
1

2

X

K

p¼2
2dH

K � dH

p� dH

� �

ð2p� 2Þ; (20)

where UB denotes upper bound and the 1
2
factor is not present for

diagonal terms. Some resulting upper bounds for particular
Hamming distances are

ncx;UB½dH ¼ 0; K� ¼ ð2KK � 2ð2K Þ � 2Þ
ncx;UB½dH ¼ 1; K � ¼ 1

2
ð2KK � 2K Þ

ncx;UB½dH ¼ 2; K� ¼ 1
2
ð2KKÞ:

(21)

Again, the above expressions are for a single Hermitian element
pair or a single diagonal term. In practice, because substantial gate
cancellation is possible once the quantum circuit has been
compiled, these upper bounds are not always directly applicable
when choosing an encoding. However, the above expressions may
find direct utility in limiting cases, and they demonstrate the basic
relationship between Hamming distance, size of the bitmask
union, and gate counts. Below, we study a common sparsity
pattern, a tridiagonal real matrix operator B̂ with zeros on
the diagonal, i.e., with matrix structure hijB̂jji ¼PkBkðδi;kδj;kþ1þ
δi;kþ1δj;kÞ. This is the sparsity pattern of several commonly used d-
level operators, such as the bosonic position operator q̂.
In Table 3 we show analytical upper bounds for three different

levels of sparsity, derived in Supplementary Section 1. We consider

Fig. 3 Canonical quantum circuits used to exponentiate Pauli
strings on a universal quantum computer. One needs 2(p− 1) two-
qubit gates for such an operation, where p is the number of Pauli
operators in the term. When a product of many exponentials is used,
as in the Suzuk–Trotter procedure, there tends to be significant gate
cancellation.

Table 3. Asymptotic upper bound complexity of entangling gate

counts, for Trotterizing a matrix exponential of a d-level particle.

α lj i l0h j þ α� l0j i lh j B̂ Dense

Unary O(1) O(d) O(d2)

Block unary Oðglog gÞ Oðdglog gÞ Oðd2glog gÞ
Compact (SB or Gray) Oðdlog dÞ Oðd2log dÞ Oðd2log dÞ

The second column refers to one Hermitian matrix element pair; the third

column to a tridiagonal matrix operator B̂ with zeros on the diagonal; the

last column to a dense matrix operator. These asymptotic complexities are

useful primarily for considering general trends—for smaller values of d, it is

best to numerically test all encodings to determine which requires the

fewest operations.
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a single Hermitian pair, the B̂ operator with O(d) non-zero entries,
and a dense matrix operator with O(d2) non-zero entries. In
Supplementary Section 1 we show that the upper bound of
entangling gate counts for an arbitrary operator on K qubits is O
(K4K). Because K ¼ dlog 2de in the compact codes, this means that
the compact codes will never require more than Oðd2log dÞ
entangling gates.
An important consequence is that, as the matrix density

increases, the comparative advantage of the unary encoding
decreases. The compact codes’ upper bound both for a B̂ and for a
fully dense operator are both Oðd2log dÞ, since this is the
maximum upper bound. The unary encoding’s upper bound of
O(d2) for fully dense operator is only slightly lower. And because
actual gate counts for various matrix instances will be less than
these upper bounds, it appears possible that compact codes
might often be superior for dense matrices in both qubit count
and gate count. However, because the most commonly used
quantum operators tend to have O(d) density, it is likely that unary
will most often be superior in gate counts, at least for Hamiltonian
simulation. Many exceptions to these trends are shown in Section
Local operators.
As a more concrete demonstration of typical operator

scaling, we calculated numerical upper bounds for B̂ with
increasing d. Qubit counts and upper bounds for B̂ are shown
in Fig. 4, as a function of d for different encodings. We first
encoded the entire operator B̂ into a sum of Pauli strings before
collecting and cancelling terms, leading to some favorable
cancellations. Then we applied Eq. (19). There is roughly an
inverted relationship between the qubit counts and the
operation counts, because sparser encodings like the unary
and block unary have smaller bitmask subsets but require more
total qubits.
The differing gate count upper bounds between the SB and

gray encodings (Fig. 4) are explained by Hamming distances.
Because all non-zero terms in B̂ have unity Hamming distance,
upper bounds for the Gray code are substantially lower. The
other notable trend is that the unary code has lower upper
bounds, asymptotically, than the other codes. This can be
explained using Eq. (21) by noting that K= 2 for any matrix
element, while K ¼ dlog 2de for Gray and SB. In other words, K
stays constant in the unary encoding, whereas in the compact
codes K increases with d. Upper bounds for BU

Gray
g¼3 are between

the compact codes and the unary code, as this encoding has an
intermediate value of K. Below we will see that, although these
trends generally persist, they are less pronounced and less
predictable after cancelling of Pauli terms and circuit
optimization.

Diagonal binary-decomposable operators

An important class of operators to consider is those which we call
diagonal binary-decomposable (DBD). We define DBD operators as
being diagonal matrix operators for which the diagonal entries of
the operator (Ô) may be expressed as

Ôl;l ¼
X

dlog 2de

i¼1
kiR

SBðl; iÞ (22)

where RSB(l; i) ∈ {0, 1}. A common subclass of DBD is the set of
diagonal operators containing evenly-spaced entries. We call
these diagonal evenly-spaced (DES) operators. An example is the
bosonic number operator

n̂ ¼ diag½0; 1; 2; 3; � � � � (23)

and any linear combination an̂þ bI where a and b are constants. If
log 2d is an integer, then the Pauli operator is simply the base-two
numbering system with ki = 2i,

n̂ ¼ 20σ̂ð0Þz þ 21σ̂ð1Þz þ 22σ̂ð2Þz þ � � � (24)

The DBD class of operators is notable because, when log 2d is an
integer, exactly implementing expð�iθn̂Þ requires only log 2d
single-qubit rotations and no entangling gates.
An operator for which log 2d is a non-integer will not lead to

this favorable only single-qubit decomposition. For example,
the Ŝz operator for a spin-s system is DBD, but the advantage
appears for the SB mapping only when d= 2s+ 1 is a power of
2, namely s ∈ {3/2, 7/2, … }. However, for other operators one
may simply increase d without changing the simulation result.
For example, if one is required to exponentiate a truncated
bosonic operator n̂ with at least d= 11, it is most efficient
simply to implement the SB encodings of n̂ with d= 16 instead.
A simple example illustrates this point. The standard operator
for the bosonic number operator with truncation d= 3 is

n̂d¼3 ¼ diag½0; 1; 2� 7�!Std:Binary 3

4
I þ 1

4
σ̂ð0Þz �

3

4
σ̂ð0Þz σ̂ð1Þz �

1

4
σ̂ð1Þz

(25)

while that for d= 4 is

n̂d¼4 ¼ diag½0; 1; 2; 3� 7�!Std:Binary 3

2
I þ 1

2
σ̂ð0Þz � σ̂ð1Þz

(26)

Fig. 4 Numerical upper bounds for resource counts of implement-
ing one Suzuki–Trotter step of a d-by-d real Hermitian matrix

operator B̂, where B̂ is tridiagonal with zeros on the diagonal. Top:

Qubit counts for mappings considered in this work. BU
Gray
g stands for

block unary where g is the size of the block. Asymptotically, the
number of qubits scales logarithmically for the SB and Gray
encodings, and linearly for the unary and block unary encodings.
Bottom: Upper bounds of CNOT operation counts for implementing

one Suzuki–Trotter step of B̂. This is the sparsity pattern of canonical
bosonic position and momentum operators as well as the Sx spin
operators in spin-s systems. Upper bounds were calculated by
mapping the full operator to a sum of weighted Pauli strings,
combining terms, and then using Eq. (19). Notably, encodings with
higher qubit counts tend to have lower upper bounds for gate
counts, and vice-versa.
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The latter operator (d= 4) is composed only of single-qubit
operators but the former (d= 3) is not. Operations counts for
CNOT gates are shown in Fig. 5, where it is clear that the SB
mapping is superior when d is a power of 2. The right panel
gives gate counts for operators such as n̂

2
, where it is again

advangatgeous for d to be a power of 2, although entangling
gates are still required. As is also clear from the right panel, the
square of a DES or DBD operator is in general not DBD.

Local operators

Although local d-level operators can in principle contain
arbitrary terms and even be entirely dense (i.e., a molecule’s
electronic energy levels with non-zero transitions between
each), in practice there is a small set of sparse bosonic and
spin-s operators that are used most often. Here we summarize
the set of d-level operators used in this study, where it is
conceptually useful to explicitly write down some d-by-d matrix
representations.
Bosonic operators can be constructed from the well-known

ladder operators â and â
y
, where (importantly for encoding

considerations) all non-zero terms lj i l0h j obey l � l0j j ¼ 1. The
position operator q̂ ¼ 1

ffiffi

2
p ðâyj þ âjÞ is tridiagonal with zeros on the

diagonal:

q̂ ¼ 1
ffiffiffi

2
p

0 1 0 0 ¼

1 0
ffiffiffi

2
p

0 ¼

0
ffiffiffi

2
p

0
ffiffiffi

3
p

¼

0 0
ffiffiffi

3
p

0 ¼

..

. ..
. ..

. ..
. . .

.

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

(27)

This means that the square of q̂, often used in vibrational and
bosonic Hamiltonians, is pentadiagonal but with zeros for terms
where jl � l0j ¼ 1:

q̂
2 ¼ 1

2

1 0
ffiffiffiffiffiffiffiffiffi

1 � 2
p

0 0 ¼

0 3 0
ffiffiffiffiffiffiffiffiffi

2 � 3
p

0 ¼

ffiffiffiffiffiffiffiffiffi

1 � 2
p

0 5 0
ffiffiffiffiffiffiffiffiffi

3 � 4
p

¼

0
ffiffiffiffiffiffiffiffiffi

2 � 3
p

0 7 0 ¼

0 0
ffiffiffiffiffiffiffiffiffi

3 � 4
p

0 9 ¼

..

. ..
. ..

. ..
. ..

. . .
.

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

: (28)

Notably, jl � l0j for non-zero entries is either 0 or 2, making the

Gray code less useful for this operator. The momentum operator
p̂ ¼ i

ffiffi

2
p ðâyj � âjÞ and its square p̂

2
have the same sparsity patterns

as q̂ and q̂
2
, respectively. The number operator n̂ ¼ â

y
â of Eq. (23)

is diagonal and DBD, which leads to efficient SB mappings as
discussed in Section Diagonal binary-decomposable operators.
Finally, we study the two-site bosonic interaction operator

â
y
i âj þ âiâ

y
j : (29)

In order to consider spin Hamiltonians such as Heisenberg
models11,40, we encode spin-s operators of arbitrary s, where the
number of levels is d= 2s+ 1. Matrix elements for transitions lj i l0h j
are defined as follows41

lh jŜz l0j i ¼ _ðsþ 1� lÞδl;l0 (30)

lh jŜx l0j i ¼
_

2
ðδl;l0þ1 þ δlþ1;l0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðsþ 1Þðl þ l0 � 1Þ � ll0
p

(31)

lh jŜy l0j i ¼
i_

2
ðδl;l0þ1 � δlþ1;l0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðsþ 1Þðl þ l0 � 1Þ � ll0
p

(32)

where δα,β is the Kronecker delta. The Ŝz are DBD operators, while
Ŝx and Ŝy are tridiagonal with zeros on the diagonal, the same
sparsity pattern as bosonic p̂ and q̂ operators.
The local operators considered thus far are effectively second

quantization operators—each ket tends to correspond to an
eigenstate in an isolated d-level system. Also of note is a recently
proposed approach19,20 which maps bosons to qubits using the
first quantized representation of the quantum harmonic oscillator.
The original proposal maps Hermite–Gauss functions, the
eigenfunctions of the quantum harmonic oscillator, into a
discretized position space. The approximate position operator is
defined as

~XFQ ¼
X

Nx�1

i¼0
xi xij i xih j (33)

and Nx is the number of discrete position points such that

xi ¼ ði � Nx=2ÞΔ; i 2 ½0;Nx � 1� (34)

where Δ is chosen such that the desired highest-order
Hermite–Gauss function is contained within ðx0; xNx�1Þ. Advan-
tages and disadvanteges are discussed in the Supplementary
Section 5. We raise the possibility of using this approach partly to
point out that a Nx-by-Nx matrix operator may be mapped to

Fig. 5 Entangling gates for a single Suzuki–Trotter step of an arbitrary diagonal evenly-spaces (DES) operator Ô (left), and its square
(right). Gate counts are for optimized quantum circuits. DES operators are a subset of the diagonal binary-decomposable (DBD) operator class.
Because it is diagonal, the unary code always requires only single-qubit operations. When log 2d is an integer, the SB code requires no
entangling gates and just log 2d single-qubit operations, making it the most efficient encoding (in terms of both qubits and operations). DBD

operators are a common operator class, encompassing e.g., the bosonic number operator n̂ and the spin-s operator Ŝz .
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qubits using the exact same procedure as the other operators,
with Nx replacing d. Note that ~XFQ is a DBD operator.
Quantum circuits for approximating the exponential of each

operator and for each d were compiled and then optimized using
the procedure given in the Supplementary Section 2. The
optimization consists of searching for and performing gate
cancellations where possible. For instance, two adjacent CNOT
gates or two adjacent Hadamard gates will cancel. Entangling gate
counts for the optimized circuits of bosonic operators q̂, q̂

2
, and

â
y
i âj þ âi â

y
j : are plotted in Fig. 6. We place significant focus on

smaller d values because they tend to be more common in physics
simulation, but we note that applications requiring larger d values
do exist, for example in vibronic simulations where occupation
numbers can approach d= 7018.
Comparing the tridiagonal operator q̂ with the upper bounds

given in Fig. 4 demonstrates that the circuit optimization greatly
reduces gate count for the compact codes and block unary, often
by a factor of 2–3. On the other hand, the unary encoding
effectively sees no improvement from optimization, although it
remains the code with fewest entangling gates for a large subset
of d values.
As was the case in the upper bound calculations, operators built

from tridiagonal matrices (q̂ and â
y
i âj þ âi â

y
j :) show the Gray

encoding outperforming SB, although after optimization the
advantage is less pronounced. In contrast, for the pentadiagonal
q̂
2
, the Gray code outperforms SB asymptotically, while SB is better

for lower d values (and lower d values are likely to be more

common in relevant bosonic Hamiltonian simulations). The
changed trend can be explained by noting that the unity
Hamming distance of the Gray code is not as advantageous for
the sparsity structure of q̂

2
, given in Eq. (28). Also notable is the

apparent dip in operation count at d= 8, due to the fact that the
diagonal of q̂

2
is DBD.

Importantly, when mapping bosonic problems using compact
encodings, it is sometimes the case that increasing the truncation
value d is beneficial. For instance, suppose one knows one can
safely truncate at d= 5 for a bosonic problem. When implement-
ing q̂

2
, one would instead simply implement the operator for d=

8, as the number of gates decreases while the number of qubits
remains the same. Note that this is not possible in spin-s particles,
as it would cause leakage to unphysical states.
One of the more intriguing results is that the unary code is often

inferior to the Gray or SB encodings. Pronounced examples of this
inversion include d= 4, 7, 8 for q̂ and d= 4 and 8 for q̂

2
, among

others. This is notable because, for these values of d, Trotterizing
the operator requires both fewer qubit and fewer operations if
Gray or SB is used. These results are in contrast to the naively
expected trend that there would be a more consistent trade-off
between qubit count and operation count. Results for single-
particle spin-s operators Ŝx and Ŝz , as well as interaction operator
Ŝ
ðiÞ
z Ŝ
ðjÞ
z are plotted in Fig. 7. Unlike bosonic Hamiltonians, the d

values are not simulation parameters but are determined by s in
the system we wish to simulate. The trends in spin operators tend
to be more unruly than those in the bosonic operators.

Fig. 6 CNOT gate counts for optimized circuits of the bosonic position operator (first row), position operator squared (second row), and
two-site bosonic interaction operator (third row). Plots on the left correspond to enlargements of the dotted boxes in the plots on the right.
There are several notable trends and anomalies: a Although unary usually requires the fewest operations as d increases, there are several
operators for which the Gray or SB code is more efficient than the unary in both qubit and operation count. This occurs most pronouncedly at
values such as d= 4, 7, and 8. b The Gray code is usually more efficient than SB even after circuit optimization, especially for operators

composed of tridiagonal operators (top and bottom rows). c The Gray code's advantage is either less pronounced or disappears for q̂
2
,

because q̂
2
is a pentadiagonal operator, for which the unity Hamming distance of the Gray code is less useful. d The reduction in operation

count for q̂
2
at values such as d= 8, 24, or 32 occur because the diagonal of q̂

2
is DBD.
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Analogous to the bosonic case, Ŝz is DBD and therefore SB
requires only single-qubit gates when d= 4, 8 (s= 3

2
,7
2
) and no

entangling gates. For these two values, SB uses both the fewest
operations and the fewest qubits (fewer than unary). However, the
Gray code is superior to SB for other values of s, the same behavior
seen in the general DES matrix of Fig. 5. Because Ŝz is diagonal, the
unary always requires just d single-qubit rotations and no
entangling gates. The two-particle operator Ŝ

ðiÞ
z Ŝ
ðjÞ
z displays similar

trends to Ŝz .
As expected, the Gray code is usually superior to SB for the

tridiagonal Ŝx , because of the unity Hamming distance between
nearest levels. Unary is inferior in both gate count and qubit count
for most values, a result highlighted earlier in low-d bosonic
operators. For both bosonic and spin-s operators, we have until
now omitted discussion of the Gray-based block unary encoding
with parameter g= 3. There is never a case where this BU
mapping is the sole encoding with the lowest entangling gate
count. However, at least in principle, there may be limited cases
where a particular hardware budget (Fig. 1) dictates the need for a
block unary encoding. A necessary condition for even considering
the use of BU

Gray
g¼3 is that its operation count is less than both

compact codes, but more than unary. In such cases (q̂ and
â
y
i âiþ1 þ h:c: for d= 9; n̂

2	 Ô
2
in Fig. 5 for several values; Ŝ

ðiÞ
z Ŝ
ðjÞ
z

and Ŝz for s= 2), there may be a particular hardware budget
would require this encoding for its particular memory/operation
trade-off. Such highly specific hardware budgets seem unlikely to
often appear.
Note that the results herein should generally be considered

constant-factor savings, because in most relevant systems d does
not increase with system size, i.e., with the number of particles. For
the simulation of scientifically relevant quantum systems,
Hamiltonians are composed of more than one simple operator.
For such situations, one may calculate the overall cost within a
given encoding, as we do in Section Composite systems. As will be
discussed in Section Conversions between encodings, it is often
beneficial to Trotterize different parts of the Hamiltonian in
different encodings, if the cost difference outweighs the overhead
of conversion.

Conversions between encodings

It is often the case that different terms in a Hamiltonian are more
efficiently simulated in different encodings. For example, in the

Bose–Hubbard model, the number operator n̂ is usually more
efficient in SB, while the hopping term b̂

y
i b̂iþ1 þ h:c: is usually

more efficient in the Gray encoding (see Fig. 6). Here we show that
the cost of converting from one encoding to another is often
substantially less than the difference in resource efficiency
between two encodings, which means that it can be advanta-
geous to continually be compacting and uncompacting the data.
For example, if unary is the most efficient for implementing an
operator, one may wish to compact the data between operations
to save memory resources, as shown in Fig. 8. In this section we
give general quantum circuits and resource counts for converting
between all encodings considered in this work.
One can convert between the Gray and SB encodings by applying
ðdlog 2de � 1Þ CNOTs in sequential order42 as shown in Fig. 9.

Algorithm 1. An algorithm to build a quantum circuit for SB–unary

conversion given an arbitrary truncation d. For multi-qubit gates, the first

argument specifies the control qubit and the successive ones are targets.

function stdbin-unary-converter (d)

K  dlog 2de ▹ Qubit count in SB

SWAP (K − 1,d − 1) ▹Move positions of SB bits

for b ← K − 2 to 0 do

SWAP (b,2b+1 − 1)

end for

X(0) ▹First two gates

CNOT(1,0)

for b ← 1 to K − 1 do ▹SWAP and CNOT gates do

ictr = MININUM(2b+1 − 1,d − 1) ▹Define ‘control’ bit

for L ← 2b to (ictr − 1) do

CSWAP(ictr, L, L − 2b)

end for

for L ← 2b to (ictr − 1) do

CNOT(L,ictr)

end for

CNOT(ictr, ictr − 2b) ▹Last CNOT gate

end for

end function

Fig. 7 CNOT gate counts of optimized Suzuki–Trotter circuits, for approximating the exponentials of the spin-s operators shown. There is

no clean overall trend for Ŝx and Ŝ
ðiÞ
z Ŝ
ðjÞ
z (except that Gray tends to out-perform SB), highlighting the need to study encodings thoroughly for

each new use case. Notably, because Ŝz is diagonal binary-decomposable, for values of s ¼ 3
2
; 7
2
(which are 4- and 8-level system, respectively)

the SB code requires both fewest operations and fewest qubits.
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The conversion between unary and SB is more complex. The
conversion may be especially relevant in a future fault-tolerant
quantum computing era, when extra quantum resources are
available, because the unary encoding becomes more beneficial
as d increases and because the conversion cost is significant.
Inspired by previous work43, in Fig. 10 we show an example case
for converting from SB to unary when d= 16. A state is initially
encoded in SB using qubits on the left, and the memory space is
enlarged to include the number of qubits needed for unary. No
ancilla qubits are required. As quantum circuits are reversible,
unary-to-SB conversion follows by inversion of the circuit. In Table
4, we provide the converter circuit resource count for a general d-
level truncated quantum system, following Fig. 10. Resource
counts assume a decomposition of CSWAP into Clifford+T gates44.
A general algorithm to build the converter circuit can be seen in
the Algorithm 1. ⌈ ⋅ ⌉ and ⌊ ⋅ ⌋ are, respectively, the ceiling and
floor functions. The validity of the conversion procedure is most
easily shown by tracing a single unary state through the reverse
algorithm. When d is not a power of 2, modifications are needed.

These modifications are already accounted for in Algorithm 1 and
example circuits for d= 5 and 7 are given in the Supplementary
Section 3.
For completeness, we constructed a circuit for converting

between SB and block unary, for BUSB
g¼3, shown in the Supplemen-

tary Section 4. We do not further analyze BU conversions, as block
unary is expected to have limited utility, and even then it will
usually be the case that decoherence times are too low to allow for
conversions (see Section Local operators).

Composite systems

Here we consider resource counts for simulating five physically and
chemically relevant Hamiltonian systems. The Hamiltonians corre-
spond to the shifted one-dimensional QHO, the Bose–Hubbard
model9,45,46, multidimensional molecular Franck–Condon fac-
tors17,18,47, a spin-s transverse-field Heisenberg model11,40, and
simulating Boson sampling48 on a digital quantum computer. The
former four systems consist of an arbitrary number of d-level
particles. For the Franck–Condon factors, the Duschinsky matrix is
assumed to have a constant k= 4 non-zero entries per row. With
the exception of the simple QHO, all of these problem classes
would benefit from digital quantum simulation, because there are
limits to the theoretical and practical questions that can be
answered by classical computers. Supplementary Section 6 gives a
more thorough overview of these problems. Assuming that d
remains constant as the particle number increases, differences in
resource counts between mappings are constant-factor savings
that are independent of system size.
Using resource counts from the optimized circuits for Trotteriz-

ing individual operators and from the circuits for interencoding
conversion, we calculated and compared the required two-qubit
entangling gate counts for the selected composite Hamiltonians.
We considered five encoding schemes: (i) SB-only, (ii) Gray-code-
only, (iii) unary-only, (iv) allowing for conversion between SB and
Gray, and (v) using all three while compacting to save memory.
For (iv) and (v), the reported results include the cost of conversion.
To the best of our knowledge, schemes (ii), (iv), and (v) are novel
to digital quantum simulation. In Fig. 8, an example of encoding
scheme (v) is shown. These encoding schemes do not directly
correspond to the ‘scenarios’ discussed below; the scenarios

Fig. 8 Schematic showing the utility of swapping between encodings. When extra memory resources are available and the unary code is
the most efficient for implementing an operator, one may expand into the unary representation, perform the operation, and then compact

the data back to SB or Gray. The example shown here is the bosonic interaction operator â
y
i âiþ1 þ h:c:. This operator is present in bosonic

Hamiltonians and for digital simulations of beamsplitters. For many values of d, implementing this operator in unary is much cheaper than
implementing it in Gray or SB. When this strategy is worth the cost of conversion, the Hamiltonian simulation is in Scenario C discussed in
Section Composite Systems. Hence each particle starts with dlog 2de qubits, expands out to d qubits, and then compacts back. Whether this
procedure leads to cost savings is heavily dependent on the problem and the parameters.

Fig. 9 Quantum circuit for SB to Gray conversion. The number of
gates required is logarithmic in d.
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denote the optimal encoding scheme under different hardware
budgets.
The result for (iv), the encoding scheme that combines both the

SB and Gray codes, is reported only when it represents an
improvement over both SB-only and Gray-only. We give results for
(v), which compacts and uncompacts the qubits for unary
computations, only when the unary code was the most efficient
of the first four encoding schemes. We give all results in terms of
resource counts relative to the SB mapping, noting again that the
relative resource requirements between encoding schemes are
independent of system size (i.e., number of particles or modes).
For some local bosonic operators, the number of entangling

gates is not a monotonically increasing function of d. Such
operators include n̂, n̂

2
, and q̂

2
(Figs. 5 and 6). Our numerics for the

composite systems take this into account, increasing the cutoff d if
it is beneficial. For instance, if d= 5 is a sufficient truncation and
we implement q̂

2
, we use resource counts for d= 8, because this

uses the same number of qubits but fewer operations (Fig. 6). This
trick is not possible for the spin-s systems, where d is determined
not by a sufficient truncation value but by the nature of the
particle itself (its spin s).
A selection of resource comparisons is shown in Fig. 2. We show

results from d= 4 and 10 because they highlight the variety of
rankings that occur, and demonstrate that the best encoding
scheme can be highly sensitive to d even within the same
Hamiltonian class. Numerical results up to d= 16 are given in the
Supplementary Section 7.
In terms of which encoding class should be used, the results can

be categorized into four scenarios. Scenario A applies when using
just one of the compact encodings (SB or Gray) is the best choice.

Of the results shown in Fig. 2, the Bose–Hubbard and 1D QHO
models for d= 4 fit this description. The optimal choice is to stay
in one of the compact encodings for the entire calculation, while
never using more than log 2d qubits per particle for the
calculation.
Scenario B refers to Hamiltonians for which the optimal strategy

is to use a compact amount of memory but to allow for conversion
between Gray and SB. This includes the Heisenberg model for
s ¼ 7

2
and the Franck–Condon Hamiltonian for d= 4. Because the

cost of conversion is very small, this scenario usually implies that
at least one of the local operators in the Hamiltonian are optimal
in Gray, at least one is optimal in SB, and none are optimal in
unary. To take the Heisenberg model with s ¼ 7

2
as an example,

one can see this is the case by comparing Ŝx and Ŝ
ðiÞ
z Ŝ
ðjÞ
z in Fig. 7.

Scenario C applies when unary is the superior encoding and it is
still considered the best encoding even if one repeatedly unravels
and compacts to preserve memory (as in Fig. 8). This latter trait is
important because it means that, even including the substantial
cost of SB-to-unary conversion, with a cost of ~9d entangling
gates (Table 4), it is still better to convert back and forth between
unary and SB/Gray. This is true even when memory constraints
require that one stores the information compactly for most of the
time. This occurs with d= 10 for the Bose–Hubbard, boson
sampling, and Franck–Condon Hamiltonians, all of which are
bosonic problems.
Scenario D refers to cases where unary is the superior encoding,

assuming that the information is not compacted back to SB in
order to save memory. This scenario implies that, if one has the
qubit space to stay in unary form for the entire calculation, unary
is optimal. If one does not have the memory resources for this, it is
best to simply perform all operations in Gray and/or SB. The
reason for this discrepancy is that the cost of converting binary to
unary is substantial, as mentioned above. This scenario applies to
the 1D QHO for d= 10 as well as the Heisenberg model for s= 2.
Results for d values up to 16 are given in the Supplementary

Section 7. Note that the novel memory-efficient schemes (ii), (iv),
and (v) did not lead to improvements in every case; in a minority
of the problem instances we considered, the optimal encoding
scheme was to use only SB or only unary. By memory-efficient we
mean that the scheme stores the encoded subsystems in dlog 2de
qubits, with the possible exception of when they are being
operated on. Comparing to the memory-inefficient unary-only

Table 4. Resource counts for the SB to unary conversion, for arbitrary d.

Before Clifford+T decomposition After Clifford+T decomposition

n(CNOT)= d− 1 nðCNOTÞ ¼ 9d � 8dlog 2de � 9

nðCSWAPÞ ¼ d � dlog 2de � 1 nðHÞ ¼ 2d � 2dlog 2de � 2

nðσ̂xÞ ¼ 1 nðσ̂xÞ ¼ 1

nðTÞ ¼ 4d � 4dlog 2de � 4

nðTyÞ ¼ 3d � 3dlog 2de � 3

Fig. 10 Circuit to convert the SB representation into the unary representation. Every CSWAP is accompanied by a CNOT. Modifications are
required when d is not a power of two, as discussed in the main text and Supplementary Section 3.
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scheme, our novel approaches reduced two-qubit entangling gate
counts by up to 33%. Compared to the memory-efficient SB-only
scheme, we observed gate count reductions of up to 49%. The
latter case is more relevant when qubit count is a substantial
constraint. These savings are especially important for running
algorithms on near-term hardware, since by simply modifying the
encoding procedure one can substantially decrease the effective
circuit depth.

DISCUSSION

After introducing a general framework for encoding d-level
systems to multi-qubit operators, we have analyzed the utility
and trade-offs of several integer-to-bit encodings for qubit-based
Hamiltonian simulation. The mappings may be used for Hamilto-
nians built from subsystems of bosons, spin-s particles, molecular
electronic energy levels, molecular vibrational modes, or other d-
level subsystems.
We analyzed the mappings primarily in terms of qubit counts

and the number of entangling operations required to estimate the
exponential of an operator.
Of the Gray and SB codes, we demonstrated that the Gray code

tends to be more efficient for tridiagonal matrix operators, while
SB tends to be superior for a common class of diagonal matrix
operator. Importantly, we show that converting between encod-
ings within a Suzuki–Trotter step often leads to savings. Notably,
although the unary code tends to require more qubits but fewer
operations, it is often the case that the SB or Gray code is more
efficient both in terms of qubit counts and operation counts. To
the best of our knowledge, the Gray code had not been previously
used in Hamiltonian simulation.
We compared resource requirements between encodings for

the following composite Hamiltonians: the Bose–Hubbard model,
one-dimensional quantum harmonic oscillator, vibronic molecular
Hamiltonian (i.e., Franck–Condon factors), spin-s Heisenberg
model, and boson sampling. The optimal encoding, and whether
it was beneficial to interconvert between encodings, was heavily
dependent both on the Hamiltonian class and on the truncation
level d for the particle. We placed optimal encoding strategies into
four different "scenarios,” each of which points to a different
optimal encoding and simulation strategy. The simulation scenario
depends on which encodings require the fewest operations, on
whether interconverting between mappings is worth the addi-
tional cost, and on qubit memory constraints. The many anomalies
in our results highlight the need to perform an analysis of each
new class of Hamiltonian simulation problem, determining
numerically which simulation strategy is optimal before perform-
ing a simulation on real hardware.
There are several directions open for future research. First, there

are ways to analyze resource requirements other than enumerat-
ing the entangling operations. For long-term error-corrected
hardware, estimating T gate count may be most relevant49.
Additionally, we assumed all-to-all connectivity in this work, which
tends to be a feature of ion trap quantum computers50. But other
quantum hardware types require one to consider the topology of
the qubit connections and implementation of SWAP gates51, a
consideration that would modify the resource counts and may
modify some trends observed here.
We envision that the methodology and results of this work will

be helpful for both theorists and experimentalists in designing
resource efficient approaches to quantum simulation of a broader
set of physically and chemically relevant Hamiltonians.
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