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Resource-efficient verification of quantum computing
using Serfling’s bound
Yuki Takeuchi1,2, Atul Mantri3,4,5, Tomoyuki Morimae6,7, Akihiro Mizutani1,8 and Joseph F. Fitzsimons3,4,9

Verifying quantum states is central to certifying the correct operation of various quantum information processing tasks. In
particular, in measurement-based quantum computing, checking whether correct graph states are generated is essential for reliable
quantum computing. Several verification protocols for graph states have been proposed, but none of these are particularly resource
efficient: multiple copies are required to extract a single state that is guaranteed to be close to the ideal one. The best protocol
currently known requires O(n15) copies of the state, where n is the size of the graph state. In this paper, we construct a significantly
more resource-efficient verification protocol for graph states that only requires O(n5 log n) copies. The key idea is to employ
Serfling’s bound, which is a probability inequality in classical statistics. Utilizing Serfling’s bound also enables us to generalize our
protocol for qudit and continuous-variable graph states. Constructing a resource-efficient verification protocol for them is non-
trivial. For example, the previous verification protocols for qubit graph states that use the quantum de Finetti theorem cannot be
generalized to qudit and continuous-variable graph states without tremendously increasing the resource overhead. This is because
the overhead caused by the quantum de Finetti theorem depends on the local dimension. On the other hand, in our protocol, the
resource overhead is independent of the local dimension, and therefore generalizing to qudit or continuous-variable graph states
does not increase the overhead. The flexibility of Serfling’s bound also makes our protocol robust: our protocol accepts slightly
noisy but still useful graph states.
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INTRODUCTION
The verification of quantum states plays an important role in
ensuring the integrity of a number of quantum technologies
including quantum computing, quantum cryptography, and
quantum simulations. Graph states are a particularly important
class of quantum states, since they can be resource states for
measurement-based quantum computation (MBQC).1–8 In the
case of MBQC, the problem of verifying quantum computation
reduces to simply certify the measurements and the resource
state. In this paper, we consider the task of verifying these
important resource states that include qubit graph states, qudit
graph states, and continuous-variable (CV) graph states.
Let us consider the following general setup (as shown in Fig. 1):

Bob has a universal quantum computer and he can prepare
arbitrary quantum states. Alice, on the other hand, can only
perform single-qubit measurements. She does not have any
quantum memory and the ability to apply entangling gate
operations. Therefore, Alice delegates the preparation of graph
states to Bob. Bob generates an nNtotal-qubit state ρB and sends it
to Alice. The state ρB consists of Ntotal registers, and each register
contains n qubits. If Bob is honest, then the state of each register
received by Alice is the correct n-qubit graph state |G〉. In other

words,

ρB ¼ Gj i Gh j�Ntotal : (1)

If Bob is malicious, on the other hand, ρB can be any arbitrary
nNtotal-qubit state. Alice randomly chooses Ntotal− 1 registers and
measures all of them. In such a scenario, is it possible to construct
a protocol such that if these measurement results satisfy certain
conditions, then the state of the remaining (i.e., unmeasured)
single register is guaranteed to be close to the ideal state |G〉? If
such a verification protocol is possible, Alice can safely use the
verified register for her desired MBQC. If we consider the qudit
(qumode) case, the word “qubit” in the explanation should be
replaced with “qudit” (“qumode”).
This setup models usual experiments. Bob is regarded to be an

experimental equipment that is expected to generate many
copies of the n-qubit graph state |G〉, and Alice is an
experimentalist who has constructed the equipment. She would
like to check the correctness of the experimental equipment. In
this case, it is unreasonable to assume that ρB is any state, since
the “attack” by the experimental equipment is not a malicious one,
but is due to natural noise. In other words,

ρB ¼ E Gj i Gh j�Ntotal

� �
; (2)
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where E is a completely positive trace-preserving (CPTP) map that
represents certain noise caused by the interaction between the
experimental equipment and the environment.
Due to the inherent asymmetry between Alice and Bob, the

verification setup shown in Fig. 1 can also be considered as a
cloud quantum computing scenario.9,10 Imagine that Bob is the
owner of a company, which provides a quantum computing
service over the cloud, and Alice as a (computationally weak)
client who wants to use the cloud service to perform her desired
quantum operations. One way to achieve this task is that Bob
generates graph states and send them to Alice one qubit at a
time. Alice, who can only perform single-qubit measurements,
measures each qubit, as it arrives, to perform her MBQC. Since
Alice does not trust Bob, she has to verify the correctness of the
graph states by herself. This situation is well modeled by taking E
in Eq. (2) to be a general CPTP map, since Bob is restricted to non-
adaptive attacks, which is equivalent to maliciously preparing the
initial state.
Several verification protocols, including ones based on self-

testing, have been proposed for graph states.11–18 However, all the
previous protocols encounter at least one of the three problems
described below. First, they are not resource efficient, i.e., Ntotal is
large. For example, protocols of refs. 11,12 use the idea of the
quantum de Finetti theorem19 to make ρB close to independent
and identically distributed (i.i.d.) copies of a single fixed state, but
this comes at the cost of large overhead. Such protocols require
Ntotal=O(n21) to complete the verification. There are some
protocols that do not use the quantum de Finetti theorem,13–16

but nonetheless Ntotal=O(n15) (for details, see the “Resource
efficiency” subsection in the RESULTS section).
Second, although extensions to qudit or CV states are in

principle possible for existing protocols13,15,16 (and in fact,
extensions to qudit systems are explicitly mentioned in
refs. 13,15,16), extending the previous verification protocols11,12,17,18

to higher dimension without increasing Ntotal is highly non-trivial.
In fact, in the case when the quantum de Finetti theorem is used
for a qudit system with the qudit dimension d ≥ 3, for example,
Ntotal depends on

ffiffiffiffiffiffiffiffiffiffi
log d

p
, and therefore if we take d→∞ to

construct a CV verification protocol, we come across the
unpleasant consequence that Ntotal→∞. Note that recently, in
ref. 16, the generalization to qudit systems has been made without
increasing Ntotal=O(n15). However, this resource overhead is large.
Resource-efficient verification protocols for qudit and CV states are
indispensable. In fact, there are many important qudit or CV

quantum states such as the photon orbital angular momentum
states20 and the Gottesman-Kitaev-Preskill (GKP) states.21 Recently,
large-scale CV entangled states composed of more than 104

qumodes have been generated.22

Finally, although many previous protocols13,15–17 have an error
tolerance, it is low or its evaluation is insufficient (for details, see
the “Robustness” subsection in the RESULTS section). The error
tolerance is an important feature of verification protocols due to
the following reason: Even if Bob is honest, the state ρB that Alice
receives might be slightly different from the ideal state Gj i�Ntotal

because of the imperfections of Bob’s operations and the channel
noise between Bob and Alice. These slightly perturbed states can
still be useful for fault-tolerant computation. The acceptance of
such states by Alice would lead to better verification protocols. A
fault-tolerant verification protocol14 that accepts noisy but still
error-correctable states has been proposed, but it can be only
used for the bipartite graph states.
In this paper, we introduce a new verification protocol that

overcomes all the three aforementioned problems. First, we show
that our protocol is significantly more resource efficient than
previous approaches, i.e., Ntotal= O(n5 log n). (Recall that the best
known previous protocols need Ntotal=O(n15)13–16). The key idea
to achieve this efficiency is by employing Serfling’s bound.23,24

Serfling’s bound is a probability inequality for the sum in sampling
without replacement, and is often used in classical statistics (for
details, see Lemma 1). Serfling’s bound has also been used in the
security proofs of quantum key distribution,24–27 but to the best of
our knowledge, so far, Serfling’s bound has never been applied to
the verification of quantum computation.
Second, our protocol can be generalized to qudit and CV graph

states, while maintaining resource efficiency. As we have
explained, constructing a resource-efficient qudit or CV verifica-
tion protocol is non-trivial. The reason why we succeed in the
construction is again because of Serfling’s bound; When we use
Serfling’s bound for a qudit system with d ≥ 3, Ntotal is
independent of d. Therefore, we can increase d without increasing
Ntotal. Note that our verification protocol for CV graph states can
also be generalized to CV weighted hypergraph states. Hyper-
graph states are generalizations of graph states, and “weighted”
implies that a real number is associated with each hyperedge. The
precise definition will be given in the “CV weighted hypergraph
states” subsection in the RESULTS section. Several important CV
states are weighted hypergraph states, such as the CV cluster
state5 and the CV weighted toroidal lattice state,28 and our
protocol is useful for verifying these states. We also point out that
our verification protocol for CV graph states can be used to
construct a verifiable blind quantum computing protocol with CV
states. To the best of our knowledge, no verifiable blind CV
quantum computing protocol was known previously except for
the protocol of ref. 29. The protocol of ref. 29 assumes that the
malicious server is restricted to preparing i.i.d. copies of single-
qumode states while the malicious server in our protocol can
perform any CPTP map as an attack.
Finally, our protocol is robust to some extent against slight

perturbations of quantum states. For example, in previous
protocols,13,15–17 all Ntotal− 1 registers have to pass a test in
order for Alice to accept the remaining state as correct, which
means that slightly perturbed but still useful states are rejected by
Alice. In our protocol, on the other hand, Alice accepts even if
some of the Ntotal− 1 registers fail a test. This relaxed acceptance
criteria allows Alice to accept noisy but still useful resource states.
As non-fault-tolerant small-scale quantum processors are becom-
ing available,30–32 our protocols may be useful to verify these
near-term quantum computers.
In addition to the verification protocols for graph states

mentioned above, there are other approaches to verifiable
quantum computing. The protocols in refs. 33,34 use trap based
techniques to perform verifiable blind quantum computing. In

Fig. 1 The schematic shows the setup considerd within this paper.
Bob generates an nNtotal-qubit state ρB that consists of Ntotal
registers. Each register is represented by a box and contains
n qubits. Bob sends the state ρB to Alice. Alice randomly chooses
Ntotal− 1 registers, and measures each qubit of them. If the
measurement results satisfy certain conditions, the unmeasured
single register is guaranteed to be close to the ideal graph state |G〉.
If Bob sends Alice each qubit of ρB one by one, and if Alice measures
each qubit sequentially, Alice does not need any quantum memory.
If we consider the qudit (qumode) case, the word “qubit” in the
above explanation should be replaced with “qudit” (“qumode”)
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their protocols, a client is required to prepare single-qubit states
whereas single-qubit measurements are required in our setup. In
order to make the client classical, several multi-server protocols
have been proposed.35–39 Particularly, Coladangelo et al. have
recently constructed two resource-efficient protocols for a classical
client to verifiably delegate quantum computing to two non-
communicating but entangled quantum servers.38 Other multi-
server protocols have also been proposed to make verification
protocols device independent.40,41 However, the assumption that
servers do not communicate with each other is hard to impose in
practice due to latency in real-world networks and the finite speed
of quantum operations. Recently, Mahadev has shown that
quantum computation can be verified by an entirely classical
client even when only one quantum processor is available, under
computational assumptions.42 Such protocols, however, necessi-
tate extremely large quantum processors due to the relatively
large key sizes necessary for cryptographic security.

RESULTS
This section is organized as follows: first, as preliminaries, we
review the definitions of qudit graph states and their stabilizer
operators. Second, we construct a stabilizer test as a sub-protocol
of our verification protocol. With respect to CV weighted
hypergraph states, we also review their definitions and construct
a stabilizer test. After that, based on the stabilizer tests, we
propose our verification protocol, which is the main result of this
paper. We also discuss the resource efficiency and the error
tolerance of our verification protocol. Finally, we generalize our
verification protocol so that it can be used to verify multiple
quantum states simultaneously.

Qudit graph states
A graph G≡ (V, E) is a pair of a set V � vif gni¼1 of vertices and a set

E � eif gjEji¼1 of edges with n≡ |V|. Here, |V| and |E| denote the

number of elements of V and E, respectively. Let jkif gd�1
k¼0 be an

orthonormal basis in a d-dimensional Hilbert space, where d( ≥ 2)
is finite. A qudit graph state |Gd〉 that corresponds to G is defined
by

Gdj i �
Y
ði;jÞ2E

CZij

0
@

1
A þdj i�n; (3)

where

þdj i � 1ffiffiffi
d

p
Xd�1

k¼0

kj i (4)

is the +1 eigenvector of the generalized Pauli-X operator

X �
Xd�1

k¼0

k þ 1 ðmod dÞj i kh j; (5)

and

CZij �
Xd�1

k¼0

Xd�1

k0¼0

exp i2π
kk0

d

� �
kk0j iij kk0h jij (6)

is a qudit analogue of the controlled-Z (CZ) gate acting on the ith
and the jth qudits. It is easy to confirm that when d= 2, a qudit
graph state becomes a conventional qubit graph state. The ith

stabilizer gðdÞi (with 1 ≤ i ≤ n) of |Gd〉 is given by

gðdÞi �
Y
ði;jÞ2E

CZij

0
@

1
AXi

Y
ði;jÞ2E

CZy
ij

0
@

1
A (7)

¼ Xi
Y
vj2NðiÞ

Zj ; (8)

where N(i) is the set of neighbors of the ith vertex, and

Zj �
Xd�1

k¼0

ei2πk=d kj i kh j (9)

is the generalized Pauli-Z operator acting on the jth qudit. It is easy
to check that gðdÞi Gdj i ¼ Gdj i.

Stabilizer test for qudit graph states
Consider a stabilizer test which is an essential sub-protocol of our
verification protocol for qudit graph states. Let ρ be an n-qudit
quantum state. We define the stabilizer test for gðdÞi on ρ as
follows: Alice measures Xi and Zj for all j∈ N(i). Let xi∈ {0, …, d− 1}
and zj∈ {0, …, d− 1} be the measurement outcomes of Xi and Zj,

respectively. We say that Alice passes the stabilizer test for gðdÞi on
ρ if

xi þ
X
j2NðiÞ

zj � 0 ðmod dÞ: (10)

Since the correct qudit graph state |Gd〉 always satisfies Eq. (11), it

passes the stabilizer test for gðdÞi with unit probability for all i.

CV weighted hypergraph states
A weighted hypergraph G≡ (V, E, Ω) is a triple of a set V � fvigni¼1

of vertices, a set E � eif gjEji¼1 of hyperedges, and a set Ω � Ωif gjEji¼1
of weights, where n≡ |V|. Here, a hyperedge is a set of vertices,
and Ωi 2 R represents the weight of the ith hyperedge. An edge is
a special case of the hyperedge when |e|= 2, where |e| denotes
the number of vertices linked to the hyperedge e. Let

GCVj i �
YjEj
j¼1

CZej ðΩjÞ
 !

0p
�� ��n

(11)

be a CV weighted hypergraph state corresponding to G, where
0p
�� �

vi
is a phase-squeezed state corresponding to the ith vertex,

i.e., the eigenvector of the phase quadrature operator p̂ � �iðâ�
âyÞ= ffiffiffi

2
p

corresponding to the eigenvalue 0, â ðâyÞ is the boson
annihilation (creation) operator,

CZej ðΩjÞ � exp iΩj

Y
vi2ej

x̂i

 !
(12)

is a CV analogue of the CZ gate acting on qumodes corresponding
to vertices in the hyperedge ej, and x̂i � ðâi þ âyi Þ=

ffiffiffi
2

p
is the

amplitude quadrature operator acting on the ith qumode. From
Eqs. (12) and (13), it can be seen that when |ej|= 2 for all j, a CV
weighted hypergraph state becomes a CV weighted graph state.
Since a hypergraph has at most 2n− 1 hyperedges, the time
required to generate a hypergraph state is at most O(2n).
Hereafter, we assume that |E|= poly(n), because states with
superpolynomial scaling in n in general require greater than
polynomial time to generate, which is considered inefficient. The

ith stabilizer gðCVÞi (with 1 ≤ i ≤ n) of |GCV〉 is defined by

gðCVÞi �
YjEj
j¼1

CZej ðΩjÞ
 !

p̂i
YjEj
j¼1

CZej ð�ΩjÞ
 !

; (13)
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where p̂i is the phase quadrature operator acting on the ith
qumode. Let E(i) be the set of hyperedges that contain the ith
vertex vi. From Eq. (14),

gðCVÞi ¼ p̂i �
X
ej2EðiÞ

Ωj

Y
vk2ej�fvig

x̂k ; (14)

where we have used the Baker-Hausdorff lemma and the
commutation relation ½x̂; p̂� ¼ i. It is easy to check that

gðCVÞi GCVj i ¼ 0 GCVj i. Since the quadrature operators can be
measured using homodyne measurements, and Ω are known, the

measurement of gðCVÞi can be accomplished using only homodyne
measurements, which are single-qumode measurements.

Stabilizer test for CV weighted hypergraph states
The stabilizer test for CV weighted hypergraph states forms an
essential sub-protocol of our CV verification protocol. Let ρ be an
n-qumode quantum state. We define the stabilizer test for gðCVÞi on
ρ as follows: Alice measures p̂i on the ith qumode and x̂k on all
qumodes in ∪ ej2EðiÞej � fvig. Let pi 2 R and xk 2 R be the
measurement outcomes of p̂i and x̂k , respectively. We say that
Alice passes the stabilizer test for gðCVÞi on ρ if

pi �
X
ej2EðiÞ

Ωj

Y
vk2ej�fvig

xk ¼ 0: (15)

Here, we assume that measurements are infinitely accurate.
However, as shown in the “Robustness” subsection in the RESULTS
section, we can relax this assumption to some extent. Since we
assume that |E|= poly(n), Alice can calculate the left-hand side of
Eq. (16) in classical polynomial time. The correct CV weighted
hypergraph state |GCV〉 passes the stabilizer test for gðCVÞi with unit
probability for all i because the correct CV weighted hypergraph
state |GCV〉 always satisfies Eq. (16).

Main protocol
Our verification protocol for qudit graph states (CV weighted
hypergraph states) runs as follows (see Fig. 2):

1. Bob sends an nNtotal-qudit (qumode) state ρB to Alice as
shown in Fig. 1. The state ρB consists of Ntotal registers, and
each register stores n qudits (qumodes). If Bob is honest, the
state of each register is |Gd〉 (|GCV〉), i.e., ρB ¼ Gdj i Gdh j�Ntotal

(ρB ¼ GCVj i GCVh j�Ntotal ). On the other hand, if he is malicious,
ρB can be any arbitrary state.

2. Alice repeats the following for i= 1, …, n: she chooses Ntest

registers from the remaining Ntotal− (i− 1)Ntest registers
independently and uniformly at random, and then she
performs the stabilizer tests for gðdÞi ðgðCVÞi Þ on each of them.
Let Npass,i be the number of registers that pass the stabilizer
test for gðdÞi ðgðCVÞi Þ.

3. Alice uniformly and randomly chooses a single register from
the remaining Ntotal− nNtest registers that were not used for
the stabilizer tests in step 2. We call the chosen single
register the target register. Therefore, the averaged state of
the target register is ρtgt �

P
i
ρi=ðNtotal � nNtestÞ, where ρi is

the ith remaining register. All the other Ntotal− nNtest− 1
registers are discarded.

4. If

Xn
i¼1

Npass;i � n� 1
2n

� �
Ntest; (16)

she uses the target register for her MBQC, otherwise she discards
the target register.
We will later show that our verification protocol gives the lower

bound on the fidelity between the state ρtgt of the target register
and the ideal graph state |Gd〉 (|GCV〉) (see Theorem 1).

Note that in the above protocol, no quantum memory is
needed for Alice. This is because Bob sends each qubit of ρB one
by one to Alice, and she randomly chooses her action from the
stabilizer tests, MBQC on the target register, and discarding. Most
importantly, our protocol does not assume any i.i.d. property on
the quantum state ρB. In other words, ρB can be any state, and we
do not assume that ρB ¼ σ�Ntotal , where σ is an n-qudit (qumode)
state.
To show that our protocol is valid, we now show its

completeness and soundness. Intuitively, if Alice accepts the
correct quantum state with high probability, we say that
the verification protocol has the completeness. In other words,
the completeness means that Alice does not mistakenly reject the
correct quantum state. On the other hand, if the verification
protocol guarantees that the accepted quantum state is close to
the correct state with high probability, we say that the verification
protocol has the soundness. That is, the soundness means that
Alice does not mistakenly accept any quantum state that is far
from the ideal state. It is not difficult to show the completeness of
our protocol. In fact, when Bob is honest, i.e., when he sends
Gdj i�Ntotal ð GCVj i�NtotalÞ to Alice, she uses the target register for her
MBQC in step 4 with unit probability, because

Pn
i¼1 Npass;i ¼ nNtest.

With respect to the soundness, the following theorem holds:

Theorem 1. (Soundness) Let Npass �
Pn

i¼1 Npass;i . If we set Ntotal=
2nNtest and Ntest ¼ 5n4 log n=32d e, the n-qudit (qumode) averaged
state ρtgt of the target register (over all random selections)
satisfies, with probability at least 1− n1−5c/64,

Gh jρtgt Gj i � 1� 2
ffiffiffi
c

p
n

� 2n 1� Npass

n 5n4 log n=32d e
� �

; (17)

where �d e is the ceiling function, c is any constant satisfying 64/5 <
c < (n− 1)2/4, n ≥ 9, and |G〉∈ {|Gd〉, |GCV〉}.

We defer the detailed proof of Theorem 1 to the Supplementary
Information Section A. A brief explanation of the proof is given in
the METHODS section.
If Eq. (17) holds, Theorem 1 gives the non-trivial lower bound:

Gh jρtgt Gj i � 1� 2
ffiffiffi
c

p þ 1
n

: (18)

Hence Theorem 1 shows the soundness of our verification
protocol.

Resource efficiency
To show the resource efficiency of our protocol, we compare it
with the verification protocol of ref. 15, which can verify any graph
state and is one of the most efficient protocols currently known.
For simplicity, let us consider the situation where the quantum
state ρB generated by Bob consists of Ntotal− 1 ideal states
Gj i�ðNtotal�1Þ and a single incorrect n-qudit (qumode) state η. In
other words, ρB ¼ P½ð Gj i Gh jÞ�ðNtotal�1Þ � η�, where P is a permuta-
tion operator for registers. Bob knows that how P permutes
ð Gj i Gh jÞ�ðNtotal�1Þ � η while Alice does not. In this case, since
Npass ≥ nNtest− 1 holds with unit probability, Eq. (19) holds with
probability at least 1− n1−5c/64. In order to satisfy this statement,
our verification protocol requires Ntotal ¼ 2n 5n4 log n=32d e regis-
ters. The verification protocol of ref. 15 guarantees the fidelity 1−
1/(αM) with probability at least 1− α using (Ntotal= )M registers.
Here, α is an upper bound on the probability of a quantum state
whose fidelity is less than 1− 1/(αM) being selected as the target
register. Therefore, if we require the protocol of ref. 15 to achieve
the same fidelity and the probability as ours,

1� 1
αM ¼ 1� 2

ffiffi
c

p þ1
n

α ¼ n1�5c=64

(
(19)
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have to be satisfied. From these equations, we obtain

M ¼ n5c=64

2
ffiffiffi
c

p þ 1
: (20)

For example, if c= 192, M=O(n15), which should be compared
with our resource overhead Ntotal=O(n5 log n). In general, if c >
64, the order of M is larger than that of Ntotal, because if c > 64,
M=O(nt) and

t ¼ 5c
64

>
5 ´ 64
64

¼ 5 (21)

while Ntotal=O(n5 log n). (Note that n ≥ 18 is required to satisfy
c > 64 because c < (n− 1)2/4). A similar argument holds for other
previous protocols.13,14,16

The reason why our protocol is more efficient than that of ref. 15

can be explained as follows: the fidelity F′= 1− 1/(αM) of their
protocol depends on M and α, and therefore, M has to be
increased in order to decrease the order of α while keeping the
order of 1− F′ same. Our fidelity, F ¼ 1� ð2 ffiffiffi

c
p þ 1Þ=n, also

depends on Ntotal and the probability, because n does, but our
fidelity also contains the constant c, which is independent of Ntotal.
Therefore, by increasing c instead of increasing Ntotal, we can
improve the order of the probability without increasing the order
of 1−F. The existence of such an extra parameter c is the
advantage of using Serfling’s bound. (The constant c comes from ν
of Serfling’s bound via ν ¼ ffiffiffi

c
p

=n2). Note that in general, it is

difficult to compare our protocol with previous protocols without
performing experiments. This is because the parameter Npass in
Theorem 1 is determined by experiment. In addition, it is also
difficult to compare our protocol with other approaches
mentioned in the last paragraph in the INTRODUCTION section.
This is because their definitions of the soundness (verifiability) is
different from ours. Our definition of the soundness relies on the
fidelity between the ideal resource state and the actual one. On
the other hand, their definitions do not (directly) rely on the
fidelity.

Robustness
To investigate the error tolerance of our protocol, consider a
simple example where all registers of ρB are in the same state σ,
and the state σ is a slightly deviated state from the ideal state |G〉:

σ ¼ 1� ϵð Þ Gj i Gh j þ ϵη; (22)

where 0< ϵ< 1, and η is any n-qudit (qumode) state. In other
words,

ρB ¼ σ�Ntotal : (23)

When ϵ ¼ 1=polyðnÞ, such σ is still useful for quantum computing,

Fig. 2 The schematic shows our verification protocol. a The ideal case, i.e., ρB ¼ Gj i Gh j�Ntotal , where |G〉∈ {|Gd〉, |GCV〉}. In this figure, |G〉 is
represented by the five-vertex graph (n= 5). In the first repetition of step 2 of our protocol, Alice chooses Ntest registers uniformly and
independently at random from Ntotal registers. The chosen Ntest registers are highlighted in green color. Alice performs the stabilizer test for
g1 2 fgðdÞ1 ; gðCVÞ1 g on each of these chosen green registers. In the second repetition of step 2 of our protocol, Alice chooses Ntest registers
uniformly and independently at random from the remaining Ntotal− Ntest registers. These chosen Ntest registers are highlighted in blue color.
Alice performs the stabilizer test for g2 2 fgðdÞ2 ; gðCVÞ2 g on each of these chosen blue registers. Alice repeats the same procedure n times. In the
n-th repetition, i.e., in the last repetition, Alice chooses Ntest registers uniformly and independently at random from the remaining Ntotal− (n−
1)Ntest registers. These chosen Ntest registers are highlighted in yellow color. Alice performs the stabilizer test for gn 2 fgðdÞn ; gðCVÞn g on each of
these chosen yellow registers. Finally, Alice chooses one register, which we call the target register, from the remaining Ntotal− nNtest registers.
The target register is highlighted in red color. If the results of the stabilizer tests satisfy a certain condition (see step 4 of our protocol), the
state ρtgt of the target register is guaranteed to be close to |G〉 with high probability. b In general, ρB can be any nNtotal-qudit (qumode) state.
The state ρB consists of Ntotal registers, and each register contains n qudits (qumodes). Each register is represented by a box. Any
entanglement can be generated amongst registers, which is indicated by the purple “cloud” behind boxes
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because

jTr½Aσ� � Tr½A Gj i Gh j�j � jj 1� ϵð Þ Gj i Gh j þ ϵη� Gj i Gh jjj (24)

� 2
ffiffiffi
ϵ

p
; (25)

where ||·|| is the trace norm, for any positive operator-valued
measure (POVM) element A. Therefore, the output probability
distribution of MBQC on σ is close to that on |G〉 within the 1/poly
(n) error, which is sufficient enough to solve, for example,
bounded error quantum polynomial time (BQP) decision
problems.
When ϵ<Oð1=ðn5 log nÞÞ, our protocol can accept ρB of Eq. (24)

with almost unit probability. In fact, by a direct calculation, our
protocol accepts ρB with the probability

pacc �
XNtest=ð2nÞb c

k¼0

nNtest

k

� �
ð1� ϵÞnNtest�kϵk ; (26)

where �b c is the floor function. From pacc gt; ð1� ϵÞnNtest and nNtest=
O(n5 log n), if ϵ<Oð1=ðn5 log nÞÞ, pacc approaches 1 in the limit of
large n.
The acceptance probability pacc of our protocol is higher than

that of ref. 15, suggesting that our protocol is more robust than
that of ref. 15. In fact, the protocol of ref. 15 accepts ρB of Eq. (24)
with the probability

p0acc � ð1� ϵÞM�1: (27)

Therefore, if c > 64,

pacc>ð1� ϵÞnNtest � ð1� ϵÞM�1 ¼ p0acc; (28)

where we have used Eq. (26) and the fact that nNtest ≤M− 1,
which is asymptotically true for large n when c > 64, because
nNtest= Ntotal/2=O(n5 log n) and M=O(nt) where t > 5 from
Eq. (22).
For simplicity, we have considered the tensor product of the

same state σ as shown in Eq. (24). However, it is easy to confirm
that a similar argument holds even when small entanglement is
created among registers of ρB. Furthermore, since the errors
considered above can also be treated as errors in measurements,
we can relax the assumption where measurements are ideal to
some extent.

Verification of multiple quantum states
In step 3 of our protocol, Alice chooses a single register, which we
call the target register. What happens if she chooses ~n registers,
instead of a single register? We can show the following theorem:

Theorem 2. Let Npass �
Pn

i¼1 Npass;i . If we set Ntotal= 2nNtest and
Ntest ¼ 5n4 log n=32d e, the averaged state ~ρtgt of ~n target registers
(over all random selections) satisfies, with probability at least 1−
n1−5c/64,

Gh j�~n~ρtgt Gj i�~n � 1� ð2 ffiffiffi
c

p þ 2n2 � 2nNpass=NtestÞ~nNtest

nNtest � ð~n� 1Þ ; (29)

where �d e is the ceiling function, c is any constant satisfying
64=5< c < ½n=~n� 32ð~n� 1Þ=ð5~nn4 log nÞ � 1�2=4, n � 9~n,
~n ¼ OðntÞ, t < 1, and |G〉∈ {|Gd〉, |GCV〉}.

If Eq. (17) holds, Theorem 2 gives the non-trivial lower bound:

Gh j�~n~ρtgt Gj i�~n � 1� ð2 ffiffiffi
c

p þ 1Þ5~nn4 log n
5n5 log n� 32ð~n� 1Þ : (30)

Note that setting ~n ¼ 1 in Theorem 2 results in Theorem 1. This
implies that Theorem 1 is a special case of Theorem 2. In several
tasks, such as sampling problems, Alice would like to have several
copies of graph states. Theorem 2 is useful in such situations. In
simple terms, Eq. (30) implies that Alice can obtain ~n ¼ OðntÞ

quantum states with the fidelity 1−O(1/n1–t) using Ntotal=O(n5

log n) registers. For verifying a single quantum state, the resource
overhead O(n5−t log n) of our protocol is almost the same as that
O(n4 log n) of some previous device-independent multi-server
verification protocols.40,41 Particularly, in the protocol of ref. 40, the
Azuma-Hoeffding bound43,44 is used to achieve such overhead
while we use Serfling’s bound. A proof of Theorem 2 is provided in
the Supplementary Information Section B.

DISCUSSION
We have proposed an efficient and robust verification protocol for
any qudit graph state and any polynomial-time-generated CV
weighted hypergraph state using Serfling’s bound. Our protocol is
much more efficient than the existing verification protocols when
the size of the quantum state, the guaranteed fidelity, and the
probability are sufficiently large.
Our analysis which is based on Serfling’s bound is not directly

applicable to the verification protocols for qubit hypergraph
states.11,12,16 This is mainly due to two reasons: (a) in our analysis,
the required number Ntotal of registers is proportional to the
number of measurement settings, which is n in our case. However,
in some existing protocols,11,12 the number of settings is more
than poly(n). (b) The ratio of the number of randomly chosen
registers in step 3 to that of the remaining registers must be less
than O(1/(n4 log n)). This is crucial in order for Theorems 1 and 2 to
work. In an existing protocol,16 the number of the remaining
(unmeasured) register is only one. It would be interesting to apply
our analysis to these existing verification protocols11,12,16 by
appropriately modifying them. However, we leave this as an open
problem for further research.
If the open problem will be solved, our analysis would become

more attractive. This is because hypergraph states are also
resource states of MBQC.8,45 Particularly, in ref. 45, a hypergraph
state Gd

n

�� �
has been constructed such that it enables to perform

universal MBQC with only Pauli-X and Z basis measurements. Note
that the CV analogue of Gd

n

�� �
can be efficiently verified using our

protocol presented in this paper. This is because a CV hypergraph
state is a special case of CV weighted hypergraph states.
Besides an application to the verification of universal quantum

computing, our protocol can be applied to the verifiable blind
quantum computing (VBQC) scenario. In VBQC, a client with weak
quantum resources delegates an arbitrary quantum computing to
a remote (universal) quantum server in such a way that the client’s
privacy is preserved and at the same time the integrity of the
server is verified. Almost all of the VBQC protocols can be divided
into two types, i.e., remote state preparation (RSP) type33 and
measurement-only (MO) type.13 In the former type, the client is
required to prepare single- or multi-qubit quantum states. On the
other hand, in the latter one, the client is required to perform
single-qubit projective measurements on the quantum states
(usually graph states). A non-verifiable blind quantum computing
(BQC) protocol using CV graph states has already been proposed
for both types,46 but a VBQC protocol using CV graph states has
not yet been proposed. In this paper, we focus on the MO type
because the homodyne measurement is generally considered to
be significantly easier than the generation of highly squeezed
states. By combining the original MO-type BQC protocol10 with
our verification protocol of CV weighted hypergraph states, we
construct a MO-type CV VBQC protocol as follows:

1. The quantum server generates Ntotal CV cluster states,5 and
sends them to the client.

2. The client performs our CV verification protocol. If the
verification protocol succeeds (If Eq. (17) holds), they
proceed to the next step. Otherwise, the client aborts the
protocol.

3. The client performs MBQC on the verified quantum states.
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Note that this VBQC protocol requires no quantum memory for
the client. Although the protocol above is phrased sequentially,
when no quantum memory is used, the computation is actually
interspersed with the test runs which themselves take place out of
order. The decision to accept or reject is taken once all qumodes
have been measured or discarded.
From the universality of the CV cluster state, it follows that our

CV VBQC protocol has perfect correctness, i.e., the client can
obtain the correct result if the server is honest. Next, our protocol
is blind, i.e., the server cannot learn client’s inputs, algorithms, and
outputs, because there does not exist any communication channel
from the client to the server. Finally, the verifiability of our VBQC
protocol follows from our CV verification protocol given in the
RESULTS section.
In our CV VBQC protocol, we assume that the honest server

sends the client an ideal CV graph state whose squeezing level is
infinite. One possible approach to relax this assumption is to
construct a test where even finitely squeezed states can pass with
sufficiently high probability. Recently, Liu et al. have constructed a
fidelity witness with respect to the tensor products of finitely
squeezed cubic phase states.29 Based on this fidelity witness, they
have also proposed another CV VBQC protocol. Therefore, their
VBQC protocol does not need infinitely squeezed states unlike our
VBQC protocol. On the other hand, their protocol assumes that the
malicious server is restricted to preparing i.i.d. copies of single-
qumode states while the malicious server in our protocol can
perform any CPTP map as the attack. It would be interesting to
combine these two approaches to design better and more
practical CV VBQC protocols.

METHODS
In this section, we provide the primary mathematical tool used in the proof
of Theorem 1 and an intuitive explanation of the proof. Our main tool is
Serfling’s bound:

Lemma 1. (Serfling's bound 23,24) Consider a set of binary random variables
Y= (Y1, Y2,…, YT) with Yj taking values in {0, 1} and T= N+ K. Then, for any
0 < ' ν< 1,

Pr
X
j2Π

Yj � N
K

X
j2Π

Yj þ Nν

2
4

3
5 � exp � 2ν2NK2

ðN þ KÞðK þ 1Þ
	 


; (31)

where Π is a set of K samples chosen independently and uniformly at
random from Y without replacement. Π is the complementary set of Π.

Note that the sampling without replacement means that once a sample
is selected, it is removed from the population in all subsequent selections.
In step 2 of our protocol, when i= 1, Alice measures the stabilizer

operator g1 2 fgðdÞ1 ; gðCVÞ1 g for Ntest samples of the set Π(1) that is uniformly
and randomly chosen out of the total Ntotal registers. In this case when
Alice passes the stabilizer test for g1 on the jth register (1 ≤ j ≤ Ntest), Yj= 0;
else Yj= 1. Therefore, by setting K= Ntest and T= Ntotal in Lemma 1, it
reveals the upper bound

Ntotal � Ntest

Ntest

X
j2Πð1Þ

Yj þ ðNtotal � NtestÞν (32)

on the number of registers that are not stabilized by g1 in the remaining

complementary set Π
ð1Þ
, which includes Ntotal− Ntest registers (for details,

see the second paragraph of the proof in the Supplementary Information
Section A).
Next, Alice performs the stabilizer tests for g2 (when i= 2) by uniformly

and randomly choosing Ntest registers, which are in the set Π(2), from Ntotal−
Ntest remaining registers. Similarly, in Lemma 1, by setting K=Ntotal and T=
Ntotal−Ntest, Alice can estimate that at most

Ntotal � 2Ntest

Ntest

X
j2Πð2Þ

Yj þ ðNtotal � 2NtestÞν (33)

registers are not stabilized by g2 in the remaining Ntotal− 2Ntest registers
that are not measured by g1 and g2.
From Eqs. (32) and (33), we find a lower bound

ðNtotal � 2NtestÞ � Ntotal � Ntest

Ntest

X
j2Πð1Þ

Yj þ Ntotal � Ntestð Þν
2
4

3
5

� Ntotal � 2Ntest

Ntest

X
j2Πð2Þ

Yj þ Ntotal � 2Ntestð Þν
2
4

3
5

(34)

on the number of remaining Ntotal− 2Ntest registers that are stabilized by
both g1 and g2. In estimating this lower bound, we use the pigeonhole
principle. In other words, we consider a worst case scenario where the
remaining registers that are not stabilized by g1 and g2 do not completely
overlap with each other.
Using the same argument recursively, Alice estimates a lower bound on

the number of the remaining registers stabilized by all of gif gni¼1 in the
remaining Ntotal− nNtest registers. Since only the ideal state |G〉 is stabilized
by all the gi with 1 ≤ i ≤ n, this bound gives a lower bound NL

cor on the
number of the ideal states in the remaining registers. If NL

cor=ðNtotal �
nNtestÞ is large, the averaged fidelity of the target register is also large
because Alice finally selects one registers uniformly at random from the
remaining registers.
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