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I. INTRODUCTION

When an object moves along a surface or through a
cous liquid or gas, the forces resisting its motion are refer
to as friction. Frictional forces are nonconservative, conv
ing the kinetic energy of materials in sliding contact to inte
nal energy. Thus, if an object is given an initial veloci
along a horizontal surface, the temperature of both the ob
and the surface upon which it slides will increase as
friction resisting its motion brings it to a stop. If an object
initially at rest, a minimum force must be applied to ove
come ‘‘static friction,’’ giving rise to the familiar phenom
enon of an object ‘‘jumping ahead’’ at the instant that slidi
is initiated. Static friction, in contrast to kinetic friction, i
associated with neither energy ‘‘loss’’ nor sample heating
is entirely absent for bodies moving through viscous flui
‘‘viscous friction’’ being parametrized at low velocities by

F5hv, ~1!

wherev is the velocity of the object through the fluid. Th
consequences of friction and wear have enormous econo
impact, and are of great concern from both a nation
security and quality-of-life point of view. Indeed, by mo
recent estimates, improved attention to friction and w
would save developed countries up to 1.6% of their gr
national product, or over $100 billion annually in the U.
alone.21

Modern study of friction began at least 500 years a
when Leonardo da Vinci recorded in unpublished notebo
the laws governing the motion of a rectangular block slid
over a planar surface.7 The French physicist Guillaume Am
890 Am. J. Phys.70 ~9!, September 2002 http://ojps.aip.or
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ontons is credited with the first published account, in 169932

of the familiar friction law for solid surfaces in sliding con
tact:

F5mN. ~2!

The ‘‘normal load’’N in Eq. ~2! is the force that presses th
surfaces together, andm is termed the ‘‘coefficient of fric-
tion.’’ Amontons also reported that the friction force is ind
pendent of the apparent area of contact: A small block ex
riences as much friction as does a large block of the sa
material so long as their weights are equal. A third law,
tributed to French physicist Charles Augustin Coulomb~bet-
ter known for his work in electrostatics! is frequently in-
cluded with those of Amontons: The friction force
independent of velocity for ordinary sliding speeds.

Amontons’ and Coulomb’s laws have far outlived a varie
of attempts to explain them on a fundamental basis, by
means owing to a lack of appreciation for the importance
friction or a lack of scientific interest. That so little is know
about how friction originates at microscopic length scales
simply because it occurs at a myriad of buried contacts
not only are extremely difficult to characterize, but are co
tinuously evolving as the microscopic irregularities of t
sliding surfaces touch and push into one another.

Many early investigators, including Amontons and Co
lomb, envisaged that friction arose from mechanical int
locking between rigid or elastically deforming asperities. T
friction force in this scenario is obtained by equating t
work done by the frictional force to that done against t
normal load as the surfaces separate to allow asperitie
slide up and over each other~Fig. 1!. This model is deeply
890g/ajp/ © 2002 American Association of Physics Teachers
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flawed however, since the normal load performs workon the
system after the asperities have passed over each othe
the upper body had settled back into its lowest position:
of the potential energy stored in the ‘‘separating’’ phase
the motion is recovered, so no net energy dissipation,
therefore no friction, can be present. The interlocking vi
of friction is also deeply flawed in that it contradicts a varie
of common macroscopic observations. For example, w
two highly polished and smooth metal surfaces are brou
into contact, they are far more likely to cold-weld than
exhibit low friction. Finally, advances in surface science31

have revealed that molecularly thin adsorbed films on s
faces can change friction by orders of magnitude while ma
taining virtually the same roughness that would give rise
the interlocking effect. In light of such overwhelming scie
tific evidence, the scientific community has abandoned in
locking as a viable explanation for friction.

An alternate, more successful model associated with
lecular adhesion at the contacting asperities was advanc
the mid-1950s by Bowden, Tabor, and co-workers at Ca
bridge University, England~Fig. 2!.1 The basic idea is tha
when two surfaces touch each other, the actual microsc
area of contact is much less than the apparent macrosc
area, perhaps by a factor of 104. Nonetheless, many asper
ties do come into contact and exhibit locally very high yie
stresses, not unlike tiny cold-welds. When the surfaces
forced to slide over each other, new contact regions are c

Fig. 1. Schematic of the interlocking theory of friction. From Charles A
gustin Coulomb,Théorie des Machines Simple~1785! ~Ref. 7!.

Fig. 2. Schematic of the adhesive model of friction: Increased normal fo
results in increased contact area.
891 Am. J. Phys., Vol. 70, No. 9, September 2002
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tinuously formed while others are severed. If the true area
contactA is constant on average, and the contacting ju
tions all have the same shear strengths, then the friction
force isF5As. Assuming the normal force to be collective
borne by the contact regions, the average pressure in a
tact region isP5N/A, so the ‘‘adhesive’’ contribution to the
coefficient of friction can be written as:

m5
F

N
5

As

N
5

As

AP
5

s

P
. ~3!

If the contact pressure is independent of normal load, wh
necessarily implies thatA}N, then Eq. ~3! reduces to
Amontons’ law, Eq.~2!, with m5s/P. ~Note that friction in
practice does not fall completely to zero for zero applied lo
on account of the presence of molecular adhesion.!

To explore the validity of the adhesive theory of frictio
using Eq.~3!, one must establish whether the contact pr
sure is indeed independent of load, ideally by directly m
suring the true contact area as a function of normal load
great number of methods, ranging from electrical resista
measurements to optical and acoustical methods, have
tempted to perform such direct measurements of true con
area,5,95,107but all have shortcomings.

In the absence of precise measurement methods, scien
have inferred the true area of contact by means of cont
mechanics models.3,33–40 The most well known of these
treating contact between two spheres, were derived
Johnson, Kendal, and Roberts~JKR!, Derjagion, Muller, and
Toporov ~DMT!, and Hertz. For contact between tw
spheres,A}N2/3 for perfect elastic deformation andA}N1

for plastic deformation. Experimental investigations of co
tacting spheres have confirmedA}Nn to be appropriate for a
range of materials, withn closer to 2/3 for rubber, wood
plastic, and textiles and closer to 1 for more brittle materi
such as glass, diamond, and rock salt. And though onl
limited number of materials exhibitA}N for two spheres in
contact, a far wider range of materials displays this dep
dence whenmulti-asperitycontact is considered.5

One well-known statistical theory for multi-asperity co
tact was presented by Greenwood and Williamson in 19
and is still widely cited.34 Greenwood and Williamson stud
ied the behavior of two difference distributions of asper
heights, Gaussian and exponential. They observed that
for elastic contact, whereA}N2/3 for a single contact, a lin-
ear relation holds for adistribution of contact regions. The
linear relation arises because as the load increases, not
the size of each individual contact spot increases, but also
number of contacting asperities. The mean size of a con
thus remains constant, as does the average contact pres
Greenwood and Williamson found an exact linear relation
an exponential distribution of asperity heights and a nea
linear relation for the more physical case of a Gaussian
tribution. Their model also has been extended to self-affi
fractal surface geometries~a type of Gaussian distribution
that describes a great many physical surfaces!, and a nearly
linear relation betweenA and N was again recovered.~It
should be noted that friction remains present for zeroexter-
nal load, owing to molecular adhesion of the counterfa
materials.!

The notion thatA}N, which underlies Bowden and Ta
bor’s molecular adhesion model, is thus well-grounded fo
wide range of materials. Assuming this to be the case,

e
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.
Fig. 3. Schematic of phononic friction
At the atomic level, the excitation of
vibrations of atoms due to sliding is
eventually dissipated as heat.
p

n
-

et

is
re
y
u
is

on
ar
n
d

in

e
ng
n
t

ns

u
t

O

it

p
o

re

la
in
be
ed
ni

s
s
b

ct
d

im-
en-
lline
ow
ure-
den
rtz-

ler
cts.
ions
such

r
bil-
r
in

f a
ple
ari-
d
s.
tting
a

tent.
nce

a
rce

one
rge
tive
ls?
ori-
y
f
lip

the
ore

rms
ip,
FM
ted
of
model, by Eq.~3!, predicts thatm5s/P, where boths andP
are properties of materials. Consider, however, the exam
of ductile metals, whereP'3Y for fully developed plastic
flow ands'Y/2, Y being the uniaxial yield stress. Equatio
~3! predicts values form that lie in the range 0.17–0.2, de
spite the fact that larger values form are routinely measured
for a range of materials combinations, including ductile m
als.

Tabor was hard pressed to explain how friction could r
above 0.2 within the molecular-adhesion model. He explo
the possibility that friction might arise from sufficientl
strong bonding at the true contact points so as to prod
continual tearing away of tiny fragments of material, but th
explanation failed to agree with experimental observati
Although high material wear rates and ploughing effects
routinely associated with high friction, friction levels ca
remain high even in the total absence of wear or plastic
formation.

A first-principles’ theory of ‘‘wearless’’ friction had been
suggested in fact as early as 1929 by Tomlinson, involv
phononic, or lattice vibration mechanisms.41 Friction arising
from phonons occurs when atoms close to one surface ar
into motion by the sliding action of atoms in the opposi
surface~Fig. 3!. The lattice vibrations are produced whe
mechanical energy needed to slide one surface over the o
is converted to sound energy, which is eventually tra
formed into heat.

Motivated by the Tomlinson model, Tabor attempted, b
failed to detect evidence for the phononic contributions
friction. Nonetheless, in a 1991 plenary lecture at a NAT
sponsored conference on Fundamentals of Friction11 ~the first
meeting to bring together long-established tribologists w
surface scientists new to the field!, he concluded that friction
in the absence of wear must be due to strains building u
the sliding contact that were being released in the form
atomic vibrations. That same year, Krim and coworkers
ported Quartz Crystal Microbalance~QCM! measurements
of the friction of krypton monolayers sliding on Au~111!.57

The data were subsequently modeled with molecu
dynamics simulation by Robbins and coworkers assum
that the friction was due to phonons excited in the adsor
layers.58 The combined QCM and numerical results provid
the first definitive evidence for the existence of a phono
mechanism for friction.

The discovery of phononic contributions to friction wa
symptomatic of a renewed interest in fundamental area
tribology that began in the late 1980s, sparked by a num
of new experimental and theoretical techniques capable
studying the force of friction in well-defined conta
geometries.24 These techniques benefited directly from a
892 Am. J. Phys., Vol. 70, No. 9, September 2002
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vances in surface science throughout the 1970s, whereby
provements in ultrahigh vacuum technology allowed sci
tists to prepare unprecedented, well-characterized crysta
surfaces. Surface scientists new to the field of tribology n
prepared well-defined interfaces in advance of the meas
ments rather than trying to characterize innumerable hid
interfaces. Experimental techniques such as the qua
crystal microbalance,56–65,97,98,101,102,124the surface forces
apparatus,66–76,102,105,110,114 and the lateral-force
microscope,77–94,128–130could now record friction in geom-
etries involving a single contacting interface, a vastly simp
situation than that of contact between macroscopic obje
Faster computers meanwhile allowed large-scale simulat
of condensed systems to be increasingly comparable to
experiments in a direct fashion.

The atomic-force microscope~AFM!, also referred to as a
lateral-force microscope~LFM! is perhaps the most familia
of these techniques, on account of its commercial availa
ity. The AFM was invented in 1986,77 and was adapted fo
lateral-force measurements of atomic-scale friction
1987.78 It consists of a sharp tip mounted at the end o
compliant cantilever. As the tip is scanned over a sam
surface, forces that act on the tip deflect the cantilever. V
ous electrical and optical means~such as capacitance an
interference! quantify the horizontal and vertical deflection
In the early 1990s, Mate and co-workers succeeded in se
up a friction-force microscope in ultrahigh vacuum, with
contact area estimated to be less than 20 atoms in ex
They measured a friction force that exhibited no depende
on normal load which, according to Eq.~2!, would have
implied zero friction. But not only was friction evident in
completely wear-free environment, the shear stress, or fo
per area required to maintain the sliding, was enormous:
billion Newtons per square meter, a force per unit area la
enough to shear high-quality steel! What energy dissipa
mechanism could be giving rise to such high friction leve

Energy dissipation mechanisms and the fundamental
gins of friction are in fact at the focus of ongoing efforts b
a number of groups worldwide.23 One interesting aspect o
all AFM measurements is that static friction and stick-s
phenomena are ubiquitous.105–124 In the vast majority of
cases, one stick-slip event is observed per unit cell of
substrate, even in cases where the atomic cell contains m
than one species. Accounting for such phenomena in te
of energy dissipation, which is distributed among the t
substrate, and cantilever, is an ongoing issue in the A
community. The high-energy dissipation rates associa
with AFM geometries in fact may be due to the creation
892J. Krim
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point defects or atom transfer to and from the tip, or may
due to lattice vibration effects that are as yet unaccoun
for.

AFM, as well as numerical simulations, have probed
frictional properties of model lubricant chain molecules
tached to atomically uniform substrates. For example, it
been observed that the average frictional force of alkylsil
molecules containing two to eighteen carbon atoms adso
on silicon substrates decreases with chain length up to e
carbon atoms, and then remains relatively constant. Sa
eron and co-workers have proposed that the chain-length
pendence arises from the interplay between packing en
of the monolayer film and local deformations in the film
since below eight carbon atom chain lengths, the molec
are relatively disordered. Energy-dissipation mechanism
be considered in such systems must involve vibrations wi
individual molecules as well as the creation of kinks a
Gauche defects~deformation of extended chains!. Numerical
simulation efforts by Harrison and co-workers are rapid
converging on a solution to the problem, investigating all
the chain lengths that have been experimentally probe92

These and similar efforts hold great promise for revealing
wide range of energy-dissipative mechanisms in such
tems, which are of intermediate complexity.

The surface forces apparatus~SFA! is another experimen
tal probe that is closely identified with microscopic studies
friction.66 It was invented nearly 40 years ago, and w
adapted for friction measurements by Israelachvili in 19
The apparatus takes advantage of the fact that the clea
surface of mica is molecularly smooth, with atomic-step-fr
areas as great as 1 cm2. When two mica surfaces are broug
into contact, an asperity-free interface is thus formed. T
traditional apparatus consists of two cleaved mica surfa
glued to crossed mica cylinders. The contact area and
tance between mica surfaces is determined by mean
optical-beam interferometry, with resolution on the order
0.2 nm or better. The mica surfaces are mounted so they
be moved horizontally or vertically, and the normal and l
eral ~friction! forces are measured directly from a forc
mapping spring. Although the SFA has occasionally be
used for direct measurements of friction between two m
surfaces, its more routine use has involved lubricant lay
that are squeezed between the contacting surfaces.

The SFA has been employed to study the dependenc
friction on contact area~Fig. 4! and the dependence of fric

Fig. 4. The surface-forces apparatus has been employed for direct mea
ments of true contact area, friction, and normal load~Ref. 66!.
893 Am. J. Phys., Vol. 70, No. 9, September 2002
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tion on the crystalline orientation. As for the case of AF
measurements, static friction and slip-stick phenomena
routinely observed in the SFA geometry. Experimental de
mination of the structure of films trapped between the SF
solid surfaces remains one of the most important goals of
nanotribology community. Current efforts to characterize
detailed atomic structure of films confined at an interfa
include combined synchrotron x-ray/surface-forces’ appa
tus methods.

The Quartz Crystal Microbalance is an instrument that
erates on a time scale short enough to detect phonons, w
lifetimes in the best of cases are no longer than a few ten
nanoseconds. The QCM was employed for decades for
croweighing and time standard purposes, and was adapte
the mid 1980s for sliding-friction measurements of adsorb
layers on metal surfaces.56 By simultaneously measuring th
shift in frequency and the broadening of the resonance~as
evidenced by a decrease in the amplitude of vibration of
microbalance!, the sliding friction of the layer with respect t
the metal substrate can be deduced. The friction can be m
sured only if it is sufficiently low so as to result in significa
sliding, which is accompanied by a measurable broaden
of the resonance. For this reason, QCM measurement
sliding friction tend to be carried out on systems exhibiti
very low friction, such as rare-gas solids adsorbed on no
metals. For the vast majority of other systems that exh
higher friction ~chemically bonded layers, etc.! the slippage
of an adsorbed monolayer on the surface of the QCM is
small to produce a measurable broadening. In this case in
facial slippage or bond breaking can be detected by perfo
ing measurements on micron-sized particles, whose la
inertial masses can more readily overcome the stronger
tional forces.

In 1991, Krim and co-workers reported QCM measu
ments of the friction of krypton monolayers sliding o
gold.57 The data were successfully modeled though dir
molecular dynamics simulation by Robbins and co-work
assuming that the friction was due to phonons excited in
adsorbed layers, and ultimately provided proof for the ex
tence of phononic mechanisms of friction.58 A surprising as-
pect of the excellent agreement between the numeri
simulation data and the experiments is that friction aris
from electronic mechanisms was totally neglected. Such f
tion is related to the resistance felt by mobile electrons i
conducting material as they are dragged along by forces
erted by the opposing surface. Could the simulations h
overestimated the friction slightly, masking electronic cont
butions? The answer is probably yes, since there is
enough uncertainty in the best estimates for corrugation
els of Au~111! substrates to allow for the presence of a mo
erate level of electronic friction to have been concealed.
deed, measurements of nitrogen sliding on lead in its nor
and superconducting state indicate that electronic contr
tions are non-negligible for the first adsorbed layer of ato
on conducting metallic substrates.

One of the more remarkable properties of the friction
the adsorbed layers studied so far is the frequent absenc
static friction and the fact that both solid–liquid and solid
solid interfaces have been observed to be governed by
viscous-friction law, Eq.~1!.61 The viscous-friction law also
has been observed recently in ‘‘blow-off’’ experimen
whereby films traveling many orders of magnitude slow
than those characteristic of a QCM measurement failed
exhibit static friction.99 While such observations are entire

re-
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ic friction
Fig. 5. Top and side view of contaminant molecules, which may lock two macroscopic surfaces together resulting in the occurrence of stat
~Ref. 114!.
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consistent with atomic-scale theories of friction at clean cr
talline interfaces, they are unheard of in the macrosco
world. This gives rise to the obvious question of how fund
mental dissipation mechanisms such as phononic and e
tronic effects are manifested in systems characterized by
ferent length and time scales. Do they play a substantive
in wear-free friction at the macroscopic scale, as Tabor
suspected, or are they simply the primary energy-dissipa
mechanisms in molecularly thin films adsorbed on open s
faces owing to the simplicity of the systems under stud
These questions have yet to be answered. But a grow
body of literature, particularly that focused on the role
commensurability effects in sliding friction, is helping t
shed light on this issue.

The relative commensurability of the two surfaces in sl
ing contact has a profound influence on phononic contri
tions to friction, at least from a theoretical perspective.~Sur-
faces are in ‘‘commensurate’’ contact whenever th
constituents are equally spaced and rotationally aligned.! For
example, a transition from commensurate to incommensu
sliding conditions theoretically can reduce the sliding fricti
levels by over ten orders of magnitude.42 Experimental in-
vestigations of the dependence of friction on lattice comm
surability routinely show dependence, but the variation
generally less than an order of magnitude.125–131 Another
manifestation of phononic friction is the theoretical pred
tion that static friction should vanish for nearly every pair
clean surfaces that deform elastically. But one of the m
common everyday experiences with friction at the mac
scopic scale is the occurrence of static friction: The force
initiate motion~which itself is quite variable, depending fo
example on how long the two surfaces have been in cont!
is virtually always larger than that required to keep an obj
in motion. A closely associated phenomenon is that of sti
894 Am. J. Phys., Vol. 70, No. 9, September 2002
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slip friction, whereby for certain sliding speeds, the veloci
weakening dependence of the transition from static to slid
friction leads to repetitive sticking and slipping at the inte
face, producing the all-too-familiar screeching noises ass
ated with brakes.

The key to solving the mystery of static friction and stic
slip phenomena appears to lie buried in the atomic-sc
structure of the myriad of contacts formed between the t
sliding surfaces, and the nature of the molecules confi
between them. The constantly changing nature of the in
facial geometry of the contact areas~even in cases where th
contact area is constant! gives rise to friction coefficients and
stick-slip event rates that are intrinsically variable. Moreov
the friction force at an individual asperity may or may n
increase with applied load, depending on the structure of
contacting solids, and molecules confined within them.

The question remains as to why static friction can be
ubiquitous when theoretically two clean interfaces in slidi
contact are not expected to exhibit it. The answer ultimat
may prove to lie in ‘‘third-body’’ effects, whereby additiona
adsorbed molecules act to initially pin the interface~Fig.
5!.114 Other issues that remain of particular interest inclu
the following. ~1! Understanding the chemical and tribo
chemical reactions that occur in a sliding contact owing
frictional-heating effects, and the energy-dissipation mec
nisms associated with such contacts.~2! Characterization of
the microstructural and mechanical properties of the con
regions between the sliding materials.~3! Merging and coor-
dinating information gained on the atomic scale with th
observed at the macroscopic scale. Much of the current
formation is fragmented, with linkages between individu
experimental results yet to have been established.~4! Devel-
opment of realistic interaction potentials for computer sim
lations of materials of interest to tribological applications.~5!
894J. Krim
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V.
Development of realistic laboratory test set-ups that are b
well-controlled and relevant to operating machinery. Giv
the recent increase of activity in these and related areas, t
is increased optimism that further breakthroughs will
achieved in the coming decades in fundamental aspect
friction.
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of tribology.

V. REVIEW ARTICLES

21. ‘‘Tribology: Origin and Future,’’ H.P. Jost, Wear136 ~1!, 1–17~1990!.
~I! This work provides useful references on the economic impac
friction and wear.

22. ‘‘Progress in Nanotribology: Experimental Probes of Atomic Sca
Friction,’’ J. Krim, Comments Condens. Matter Phys.17, 263 ~1995!.
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Liquid Crystal Film Under Confinement,’’ S.H.J. Idziaket al., Science
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