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Abstract. Success of Cloud computing requires that both customers
and providers can be confident that signed Service Level Agreements
(SLA) are supporting their respective business activities to their best
extent. Currently used SLAs fail in providing such confidence, especially
when providers outsource resources to other providers. These resource
providers typically support very simple metrics, or metrics that hinder
an efficient exploitation of their resources.

In this paper, we propose a resource-level metric for specifying fine-
grain guarantees on CPU performance. This metric allows resource
providers to allocate dynamically their resources among the running ser-
vices depending on their demand. This is accomplished by incorporating
the customer’s CPU usage in the metric definition, but avoiding fake
SLA violations when the customer’s task does not use all its allocated
resources. As demonstrated in our evaluation, which has been conducted
in a virtualized provider where we have implemented the needed infras-
tructure for using our metric, our solution presents fewer SLA violations
than other CPU-related metrics.

Keywords: QoS metrics, SLA, Cloud provider.

1 Introduction

The emergence of Cloud computing solutions has attracted many potential con-
sumers, such as enterprises, looking for a way to reduce the costs associated
with supporting their business processes. Using the Cloud, these customers can
outsource services (offered by service providers) which can be easily composed to
build distributed applications. Additionally, the Cloud allows resource providers
to offer raw resources as a service where the consumers can outsource the ex-
ecution of their own services. In the same way, service providers can also use
the Cloud to overcome an unexpected demand on their services by outsourcing
additional resources to other providers, or even they can fully rely on external
resources to provide their services. In all these scenarios, it is highly desirable
that the consumers receive fine-grain Quality of Service (QoS) guarantees from
the providers. However, this becomes essential when service providers outsource
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resources to resource providers, since the QoS guarantees they can provide to
their respective customers depend on the QoS guarantees they receive from the
resource providers.

Typically, a provider agrees the QoS with its customers through a Service
Level Agreement (SLA), which is a bilateral contract between the customer
and the provider (or between providers) that states not only the conditions of
service, but also characterizes the agreed QoS between them using a set of met-
rics. Service providers naturally offer service-level metrics (e.g. service execution
deadline [6]) to their customers for specifying the QoS. Using service-level met-
rics has advantages for both the customer and the provider. The former does
not need to provide detailed information about the resource requirements of the
service to be executed (probably the customer does not know this exactly), but
only a high-level performance goal (e.g. a deadline for executing the service).
The latter can freely decide the allocated resources to the service whereas it
guarantees that the service meets the agreed performance goals. Being able to
dynamically allocate resources to the different services is especially important
for Cloud providers considering that, aiming for profitability, they tend to share
their resources among multiple concurrent services owned by different customers.

On the other hand, resource providers in the Cloud must offer resource-level
metrics that can be used to provide fine-grain QoS guarantees. First, the QoS
agreement can be naturally expressed using resource-level metrics (e.g. number
of processors, frequency of processors, FLOPS, etc.), since raw resources are the
traded good. Second, having fine-grain metrics, which guarantee a given resource
allocation during a time period, is especially important for service providers that
outsource resources to resource providers, as we have stated before. For instance,
try to figure out how a service provider could guarantee that a service will finish
within a given deadline if he does not receive fine-grain guarantees on the FLOPS
supplied at every instant by the resource provider where the service is running.

Furthermore, some service providers can also benefit in some situations from
supporting resource-level metrics. First, those that do not support the inference
of the resource requirements of a service to fulfill a given service-level metric,
and for this reason, cannot offer service-level metrics in the SLA. Second, those
dealing with customers (typically coming from the HPC domain) that prefer to
stay with the resource-level metrics that they have been using for a long time,
instead of moving to service-level metrics.

Nevertheless, current Cloud providers do not support fine-grain resource-level
QoS guarantees on their SLAs. In fact, most of them only support SLAs with very
simple metrics based on resource availability [2,12,14]. For instance, whereas Ama-
zon EC2 [4] offers different instances according to their computing capacity (which
is measured in ECUs, EC2 compute units), there is not any guarantee in the SLA
that this computing capacity will be supplied during the whole execution of the
instance, as Amazon’s SLAs only provide availability guarantees [12].

According to this, one could think on using Amazon’s ECUs to support fine-
grain resource-level guarantees on Cloud SLAs, considering also the porting of
traditional resource-level metrics from the Grid environment to Cloud providers.
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However, this must be carried out carefully, since it can prevent the providers
from obtaining the maximum profit of their resources if done naively. In particu-
lar, metrics related to the provider’s computing capacity (i.e. CPU) are especially
susceptible to naive usage. For instance, if the agreed metric in the SLA estab-
lishes that the number of processors allocated to a given service must be greater
or equal to some value, the provider must maintain this assignment during the
whole execution of the service, even if that service is not using all the allocated
capacity during some phases of its execution (i.e. the provider is forced to stat-
ically overprovision processors to the service to avoid SLA violations). Notice
that the unused resources could be temporarily allocated to another service,
improving in this way the utilization and the profit for the provider.

In this paper, we derive a resource-level metric for specifying fine-grain QoS
guarantees regarding the computing capacity of a Cloud provider by extending
the Amazon’s approach. Our metric overcomes the limitations of traditional
CPU-related metrics. By taking into account the customer’s resource usage, it
allows the provider to implement dynamic resource provisioning and allocate to
the different services only the amount of CPU they need. In this way, better
resource utilization in the provider can be achieved. In addition, it avoids fake
SLA violations, which we define as those situations where the SLA evaluator
mechanism detects that an SLA is being violated, the provider will be penalized
for this, but the violation is not provoked by the provider’s resource allocation.
In general, this occurs when the provider uses a poorly designed resource-level
metric and the customer’s service does not use all the resources it has allocated.
Of course, the customer is free to use the amount of resources he wants, and
this must not provoke any SLA violation. Therefore, the solution is to design
solid resource-level metrics that support this. Finally, the proposed metric can
be used in heterogeneous environments, since it is based on Amazon’s ECUs.

The remainder of this paper is organized as follows: Section 2 explains our
approach to deal with platform heterogeneity. Section 3 describes the derivation
of our resource-level CPU metric. Section 4 presents the experimental environ-
ment where this resource-level metric has been implemented. Section 5 describes
the evaluation results. Section 6 presents the related work. Finally, Section 7
presents the conclusions of the paper and the future work.

2 Metric Unification among Heterogeneous Machines

Cloud providers typically present very diverse architectures: different processor
models, each of them with different clock frequencies, etc. For this reason, a
good resource-level metric has to be platform-independent so it can be used in
all these architectures. In this section, we describe our approach for unifying
computing capacity metrics among machines with heterogeneous architectures.

Commonly, megahertz have been used to measure the computing capacity of a
machine. Nevertheless, this does not directly measure the computing power of a
machine, since noticeable differences can be observed depending on the processor
architecture. For instance, using this measure a Intel Pentium III with 500 MHz



Resource-Level QoS Metric for CPU-Based Guarantees in Cloud Providers 37

would be 20 times slower than a Intel Xeon 4-core with 2.6 GHz (4·2600
500 = 20).

However, simple tests demonstrate that it can be up to 85 times slower.
In order to consider the heterogeneity of the different processor architectures,

Amazon uses EC2 compute units (ECU) in its services [4]. An ECU is equivalent
in CPU power to a 1.0-1.2 GHz 2007-era AMD Opteron or Intel Xeon processor.
This serves as a unified measure for the computing power, though it is not easily
portable among different architectures. In this work, we use ECUs in order to
unify CPU-related SLA metrics among heterogeneous machines, and additionally
we extend the Amazon’s approach in order to set up SLAs that provide fine-grain
CPU guarantees based on ECUs during a time period.

In our proposal, the maximum computing capacity of a given machine is mea-
sured using its maximum amount of CPU1 (maxCPU) and the ECUs associated
to the processor installed in that machine (maxCPU

100 · ECUs).

3 Derivation of CPU-Based SLA Metric

This section describes how our resource-level metric for establishing computing
power guarantees is derived, and at the same time, discusses the limitations of
alternative metrics. All the metrics discussed in this section intent to establish a
guarantee on the computing performance (in terms of CPU) of a service over a
time period in a given provider using the idea presented in the previous section.
This guarantee is a fixed value for each SLA, represented by the SLAi term in
the formulas, which results from the negotiation between the customer and the
provider. The customer is only required to specify the computing performance
he requires (in terms of ECUs), which will be accepted by the provider if he is
able to provide that performance.

The main difference among the metrics is how the amount of CPU for a
service is defined. The more natural approach is specifying CPU performance as
a function of the allocated CPU to a service, as shown in Equation 1. This metric
specifies that the computing power for a service i at every time period t has to
be at least the agreed value in the SLA (SLAi) and depends on the amount
of CPU that the provider assigns to the service in that time period (assigi(t)).
This assignment can vary over time depending on the provider’s status, and it
is periodically obtained by means of the monitoring subsystem.

assigi(t)
100

· ECUs ≥ SLAi (1)

Note that using this metric forces the provider to statically allocate to each
customer at least the amount of CPU agreed in the SLA (he can assign more if
he wants), because otherwise, the SLA will be violated. Note that there is not any
control on whether the customer uses its allocated CPU or not. This is a quite
restrictive approach, especially when the customers’ services have a variable
1 All CPU-related measures are quantified using the typical Linux CPU usage metric

(i.e. for a computer with 4 CPUs, the maximum amount of CPU will be 400%).
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CPU usage over time. In this case, the provider will suffer from low resource
utilization when the services do not use all the CPU they have allocated, since
unused resources cannot be allocated to other services running in the provider.

As we have commented before, the provider aims to dynamically allocate
its resources to the services depending on their demand, in order to improve
resource utilization (and then increase profit). This requires an SLA metric that
considers the CPU usage of the services. However, as the CPU usage depends on
the client’s task behavior, it must be carefully used as a CPU guarantee because
it can provoke undesired effects.

For instance, Equation 2 shows an SLA metric where the computing power
for a service i at every time period t depends on the amount of CPU that the
service uses in that time period (usedi(t)). This metric assumes a provider that
is able to predict the CPU usage of a given service during the next time period
using the CPU usage measures of the service from the previous time periods. This
could be achieved with reasonable accuracy using techniques such as Exponential
Weighted Moving Average (EWMA). The provider will assign CPU to the service
according to its CPU usage prediction. This allows the provider to dynamically
allocate the CPU among the services whereas it assigns each service at least with
the CPU required to fulfill the SLA.

usedi(t)
100

· ECUs ≥ SLAi (2)

When using this metric, an SLA could be violated in two situations. First, when
the provider assigns to the service an amount of CPU that is not enough to
fulfill the SLA. This is a real violation, the provider is responsible for it, and
must pay the corresponding penalty. Second, when the provider assigns to the
service an amount of CPU that should be enough to fulfill the SLA, but the
service does not use all the assigned CPU. This is what we have defined as fake
violation, since the provider is not causing it, and for this reason, he should not
pay any penalty. However, Equation 2, as currently defined, provokes this to be
considered as a real violation, thus penalizing the provider for it.

Of course, the service should be able to use only a part of the CPU it has
assigned without incurring on SLA violations. In order to allow this, we introduce
our metric, in which we introduce a factor that represents the percentage of CPU
used by the service with respect to its total amount of allocated CPU. As shown
in Equation 3, when the service is using all the assigned resources, Equation 1
applies, so an SLA violation will only arise when the assigned resources are
not enough to fulfill the SLA. When the service is not using all the allocated
resources then the SLA is considered to be fulfilled, since the provider is not
responsible that the service does not exploit its allocated resources.

assigi(t)
100

· ECUs ≥ SLAi ·
⌊

usedi(t)
assigi(t)

⌋
(3)

However, some services, even being CPU-intensive, do not use the 100% of their
assigned CPU during their whole execution. For these services, Equation 3 does
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not work. In order to overcome this limitation, we introduce an α factor as
shown in Equation 4. This factor acts as a threshold to choose when the service
is considered to be using all its assigned resources. For instance, if we consider
that a service is using all its allocated resources when it reaches a 90% utilization,
α should be set to 0.1.

assigi(t)
100

· ECUs ≥ SLAi ·
⌊

usedi(t)
assigi(t)

+ α

⌋
(4)

Operating on Equation 4, we obtain the version of our metric ready to be used
in an SLA:

assigi(t)
100 · ECUs⌊
usedi(t)
assigi(t)

+ α
⌋ ≥ SLAi (5)

Notice that equation in this form can have an undefined value when the denom-
inator is zero, which happens when the service is not considered to use all its
allocated resources. We avoid this by defining SLA′

i as 1/SLAi and operating
the equation. Notice that, when using this metric, the value specified in the SLA
is SLA′

i instead of SLAi. The final version of our metric is as follows:
⌊

usedi(t)
assigi(t)

+ α
⌋

assigi(t)
100 · ECUs

≤ 1
SLAi

= SLA′
i (6)

4 Experimental Environment

In order to compare how our metric performs with respect to other CPU-based
metrics, we use the SLA enforcement framework built on top of the virtualized
provider presented in [15]. This provider, which has been developed within the
BREIN European IST Project [9], uses virtual machines to execute the tasks,
which allows taking advantage of virtualization features such as migration and
easy resource management. In addition, virtualization allows the consolidation
of services in the same physical resources, which enhances resource utilization.
However, if the amount of resources assigned to these services is static and does
not consider the real resource usage, the underutilization problem remains, as
we have discussed in this paper. The virtualized provider also has a monitoring
subsystem that allows easily consulting the amount of CPU allocated to a VM
(assigi) and the amount that it is really using (usedi). In addition, the ECUs
of the underlying machine can be also calculated from the processor model, its
frequency, and its associated BogoMips [11]. These BogoMips are used to convert
the computing power among different architectures.

The SLA framework allows assigning its own SLA to each service by us-
ing a XML description that combines both WS-Agreement [5] and WSLA [16]
specifications. Using these specifications, we can accurately define the metrics
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derived in the previous sections. In addition, we use some features of the above-
mentioned SLA specifications to define the window size of the average (i.e. 10)
and the interval between two consecutive measures (i.e. 2 seconds).

Each SLA Si specifies the revenue that the customer will pay if the SLA
is fulfilled (Rev(Si)), and the penalty that the provider will pay otherwise
(Pen(Si)). According to this, the provider’s profit for running a given appli-
cation (Prof(Si)) results from the revenue paid by the customer minus the
penalties that the provider has to pay due to SLA violations, i.e. Prof(Si) =
Rev(Si) − Pen(Si).

In order to establish the penalties, we use a methodology similar to the one
presented in [13], which is built over the same Cloud infrastructure. Each penalty
Pen(Si) is calculated as a percentage of the revenue obtained when fulfilling the
corresponding SLA in the following way: Pen(Si) = Rev(Si) · Gom(σ(Si))

100 . This
percentage is calculated by using a Gompertz function, which is a kind of sigmoid
function. Its basic form is y(t) = aebect

, where a is the upper asymptote, c is
the growth rate, and b, c are negative numbers.

Fig. 1. Gompertz Function for SLA Penalties

For our purposes, we have adapted this function as shown in Figure 1, which
displays the penalty percentage depending on a σ(Si) function that represents
the SLA violation ratio. In particular, as shown in Equation 7, when this ratio is
zero or less, the penalty percentage is 0. When this ratio is one, the percentage
tends to MAXP % of the price that the client pays for SLA Si. Notice that this
upper limit (MAXP % of the price) can be agreed with the client during the
SLA negotiation process.

Gom(σ(Si)) =

{
0 if σ(Si) ≤ 0

MAXP · e−e−7·σ(Si)+e1

otherwise
(7)

As shown in Equation 8, σ(Si) function depends on the number of violations
occurred for that SLA (Vi) and is parameterized with two thresholds, λmin and
λmax, which indicate the minimum number of SLA violations in order to start
paying penalties and the maximum number of SLA violations that could occur
during the execution of the application, respectively.

σ(Si) =
Vi

λmax − λmin
− λmin

λmax − λmin
(8)
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5 Evaluation

In this section, we compare how our metric performs with respect to the other
CPU-related metrics introduced in Section 3. First, we use a small proof-of-
concept workload composed of three tasks to show in detail the consequences of
using each metric and then, we use a real workload to evaluate each metric.

5.1 Proof-of-Concept Workload

We have conducted three experiments. Each of them consists of the concurrent
execution of three tasks, which are basically CPU-consuming tasks with variable
CPU requirements over time, in a single node of the virtualized provider during
400 seconds. This makes the system able to dynamically change the resources
allocated to each virtual machine and allows demonstrating the benefits of our
metric in such a scenario. This node is a 64-bit architecture with 4 Intel Xeon
CPUs at 2.6GHz and 16GB of RAM, which runs Xen 3.3.1 [22] in the Domain-0.
This processor has been measured to have 5322.20 BogoMips, which corresponds
to 10.4 ECUs approximately. Each task is started at a different time to simulate
what could happen in a real scenario, where different customers can reach the
provider at different times.

Each task has its own SLA, which describes the agreed QoS with the provider.
For each experiment, a different SLA metric is used to specify this QoS. In
particular, in the first experiment all tasks use the metric referred in Equation 1
(from now on denoted as SLA Metric A), in the second one they use the metric
referred in Equation 2 (denoted as SLA Metric B), and in the last one they use
the metric referred in Equation 6 (denoted as SLA Metric C ).

For each experiment, we have monitored the allocated CPU to each task,
its real CPU usage, and the value of the SLA metric at each moment in time.
Comparing this value with the guarantee agreed in the SLA, we can know if
the SLA is being violated or not. Figure 2 displays all this information. The
top graphic in this figure shows the CPU assignment and usage for each task
over time. These values will be the same independently of the metric used in
the SLA. We have forced the provider to execute the three tasks, but there are
not enough resources for fulfilling all the SLAs. This allows us evaluating how
the different metrics deal with real SLA violations. The provider distributes the
resources in such a way that the SLAs of Task2 and Task3 are never violated
in these experiments, while Task1 behavior shows all the possible situations
regarding SLA management. For this reason, we focus the explanation only on
Task1, which has negotiated an SLA with a CPU requirement of 6 ECUs (1/6
for Metric C).

As shown in the top graphic of Figure 2, at the beginning of the experiment
Task1 is assigned with the whole machine, since it is the only task running in
the provider. When Task2 arrives at the provider at second 150, the CPU is
redistributed among Task1 and Task2 according to their requirements. Finally,
at second 250, Task3 arrives at the provider, which redistributes again the CPU
among the three tasks. Regarding the CPU usage of Task1, it starts its execution
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Fig. 2. CPU-Based SLA Metrics Comparison

consuming almost 400% of CPU. After 100 seconds of execution, it reduces its
CPU consumption and starts using just 20% of CPU for the next 40 seconds.
Then, it begins increasing its CPU usage until it consumes around 150% of CPU.

Next three graphics in Figure 2 show the value of the SLA metric over time and
its agreed value in the SLA, for Metric A, B and C, respectively. As described
in Section 3, SLA Metric A only takes into account the amount of resources
assigned to the task. While this value is above of the agreed value in the SLA,
SLA is fulfilled. Otherwise, an SLA violation arises. As shown in the second
graphic, due to the redistribution of CPU occurred when Task3 arrives at the
provider at second 250, the value of the SLA Metric A for Task1 falls below
the agreed value in the SLA, thus violating it. The shaded zone identifies in the
figure the interval where Task1 is violating the SLA (from second 250 to 400).
In order to avoid this, the provider would be forced to refuse executing Task3,
even if this would be initially possible since the other tasks are not using all
their allocated CPU. Notice that using this metric makes the provider unable to
exploit adequately its resources, in the sense that it should always assign enough
resources to fulfill the SLA, despite that tasks use them or not.

On the other side, SLA Metric B considers the resource usage of the tasks.
Using this metric allows the provider moving freely the CPU assignment if tasks
do not use all their allocated resources. Nevertheless, as shown in the third
graphic, this metric can give fake SLA violations. In particular, when the CPU
usage of Task1 goes below the agreed value in the SLA (from second 115 to 400),
the SLA is being violated. However, not all these violations are a responsibility
of the provider. In particular, between second 115 and 250 (light gray zone in
the graphic), the SLA is being violated because although the provider is giving
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enough resources to guarantee the SLA, the task does not use all its assigned
CPU. As we have described before, this is a fake violation. On the other side,
from second 250 to 400, the SLA is being violated (dark gray zone in the graphic)
because the provider has not allocated enough resources to the task to fulfill its
SLA, and consequently, even if it used all of them, its CPU usage would be under
the SLA threshold. This is then a real violation. Notice that the value of SLA
Metric B has some start delay with respect to the CPU usage. This is because of
the different sampling rates between the SLA monitoring system and the CPU
usage monitoring system.

Finally, SLA Metric C (the one proposed in this paper) gets the best from
the two other ones, since it considers both the CPU assigned to a task and its
real CPU usage. As discussed in Section 3, this metric specifies the inverse value
in the SLA with respect to the other metrics. For this reason, when using this
metric, an SLA violation will happen when the measured value of the metric is
greater than the agreed one (1/6 in this particular experiment). As shown in
the fourth graphic, this only occurs in the shaded zone, that is, from second 290
to 400. As commented before, this is the only zone where the task is using all
its allocated resources and the provider has not allocated enough resources to
the task to fulfill its SLA. On the other side, notice that when using this metric
fake SLA violations are avoided, even when the task is not using all its allocated
resources (as occurs from second 115 to 290). In these experiments, we have
considered that a task is using all its allocated resources when it uses more than
70% of them (this corresponds to a 0.3 value for the α factor in Equation 6).

Summarizing, three well-differentiated phases can be appreciated in the figure.
In the first one, the assigned CPU is enough to fulfill the SLA and Task1 is using
all its allocated resources. Consequently, none of the metrics is violating the SLA.
In the second one, CPU allocated to Task1 has been reduced, but the task is not
using all its allocated resources. In this case, using the SLA Metric A causes low
resource utilization because unused resources cannot be assigned to any other
task without violating the SLA, while using the SLA Metric B causes fake SLA
violations. Finally, in the last phase, the resources assignment is not enough to
fulfill the SLA, and Task1 uses all its assigned resources. In this case, all the
metrics violate the SLA.

5.2 Real Workload

In this section, we evaluate the different metrics by executing a real workload.
The workload is a whole day load obtained from Grid5000 [1] corresponding to
Monday first of October of 2007. 215 jobs of 10 different applications are sub-
mitted during this period. The size of our real testbed is not enough to execute
this workload. For this reason, we have built a simulated provider composed by
24 nodes, which mimics the behavior of the virtualized provider used in previous
experiments. The number of nodes has been chosen in order to able to execute
the maximum number of concurrent jobs of the workload, while still violating
some SLAs to demonstrate the behavior of the different metrics.
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We set up three types of nodes in the simulated provider in order to demon-
strate how our proposal can deal with heterogeneous machines. The first type is
the one already used in previous experiments. The other two nodes types com-
prise a 64-bit architecture with 4 Intel Xeon CPUs at 3GHz and 16GB of RAM,
and a 64-bit architecture with 8 Intel Xeon CPUs at 2.8GHz and 16GB of RAM,
which respectively correspond to 12 and 22.4 ECUs. For each task, we specify
a static requirement of resources, and the dynamic resource usage it performs
during its execution. Each task is executed within a VM with 2 VCPUs, since
this is enough to fulfill the CPU requirements of all the applications. In order to
demonstrate the impact on each metric of having dynamic CPU usage pattern
over time, we have forced two of the 10 applications to use more CPU than the
requested during some parts of their execution. Resource requirements and us-
ages constitute the input of the simulator, which implements a backfilling policy
taking into account these requirements in order to decide the allocated resources
to each task and simulates the specified resource consumption for each task in
a given time slot.

Each task has a different SLA. All of them use the same metric for specify-
ing the CPU guarantee, but with a different agreed value, which depends on the
task CPU requirement. In addition, the SLA specifies a revenue of $0.38 per hour
(we use the pricing of an Amazon EC2 medium instance [4], which has similar
features to the VMs used in the experiment). The SLA is evaluated every 100
seconds, and the penalty is calculated following Equation 7 using a maximum
penalty (MAXP ) of 125%. As the SLA is evaluated every 100 seconds, the max-
imum number of SLA violations (λmax) occurs when the SLA is violated every
sample. Hence, λmax is equal to the number of samples, which is calculated by
dividing the application execution time (Texec) by the sampling period (Tsample).
Using this information, and considering that λmin is zero in our case, we can
operate on Equation 8 and calculate σ(Si) as follows: σ(Si) = Vi·Tsample

Texec
.

Table 1 shows the obtained results using each one of the metrics, including the
number of violations (real, fake, and total) and the final profit. For SLA Metric
C, we have also evaluated the impact of the α factor. These results demonstrate
that using our metric the provider can get the highest profit, since it avoids all
the fake SLA violations and reduces the real ones when the application is not
using all the allocated resources. In particular, we have reduced the incurred
penalties in more than a 58% regarding SLA Metric A and more than a 72%
compared to SLA Metric B when α = 0.1. In addition, note that the lower the
alpha factor is, the lower the number of SLA violations is, though the difference
is not very noticeable. Nevertheless, this difference highly depends on the CPU
usage of the applications. This occurs because for higher alpha values the task
is considered to be using all its allocated resources during more time, which
increases the probability of SLA violations imputable to the provider.

These results allow us to conclude that our metric has globally less SLA
violations than the other ones, it is able to avoid fake SLA violations, and it
allows the provider to freely redistribute the resources when the tasks are not
using them.
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Table 1. Number of SLA Violations and Profit (Real Workload)

SLA Metric (α) Real Fake Total Profit ($)

A 3891 0 3891 231.0
B 3891 2857 6748 176.6
C 0.05 1674 0 1674 277.5
C 0.1 1782 0 1782 271.3
C 0.2 1877 0 1877 266.9
C 0.4 1884 0 1884 266.6

6 Related Work

As Cloud technology is still in its early stage, current Cloud providers only
support the specification of QoS guarantees by means of SLAs in a very simple
way. For instance, the SLAs supported by Amazon EC2 [4] only consider an
availability metric, so-called annual uptime percentage [12]. It is noticeable that
the violations must be monitored and claimed by the user. Furthermore, whereas
Amazon EC2 offers different instances according to their ECUs, there is not any
guarantee in the SLA that this computing capacity will be supplied during the
whole execution of the instance.

Similarly, GoGrid also considers availability metric [14], including the avail-
ability of the storage and the primary DNS. It also offers some metrics related
with network performance such as jitter, latency, and packet loss rate. Analo-
gously, 3Tera also provides availability guarantees on its Virtual Private Data-
center [2]. Nevertheless, none of the Cloud approaches for SLA considers CPU-
related metrics since they implement static provisioning of resources. As this can
lead to low resource utilization, moving to dynamic provisioning is recommended
to increase profit.

Until now, SLAs have been primarily used to provide QoS guarantees on e-
business computing utilities. Due to this, most of the works focusing in this
area [3,7,8,17,23] have used metrics of interest in these environments such as
throughput, response time, and availability. None of them has included resource-
level metrics as part of its solution, as we suggest in this paper.

On the other side, some effort has been carried out in the Grid environment in
order to provide QoS guarantees using SLAs. Some proposals focus on service-
level metrics. For instance, [10,20] propose SLA management systems for Grid
environments which use the expected completion time of the jobs for defining
SLA metrics. Similarly, [18] defines latency, throughput, and availability metrics
and tries to minimize execution times and costs in a Grid provider. Whereas these
works neglect resource-level metrics in their solution, other works define metrics
for providing CPU guarantees in the SLA, but usually in a very limiting way for
the resource provider. For instance, [21] allows defining the CPU count, the CPU
architecture, and the CPU performance when executing a physics application on
the Grid. Similarly, [19] uses metrics such as the number of processors, the CPU
share, and the amount of memory. As we have discussed, when used incorrectly,
some these metrics force the provider to statically overprovision CPU to the
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applications in order to avoid SLA violations, while others induce fake SLA
violations when the applications do not use all their allocated resources. As
demonstrated in the evaluation, our solution overcomes these limitations.

7 Conclusion

In this paper, we have proposed a resource-level SLA metric for specifying fine-
grain QoS guarantees regarding the computing capacity of a provider. This met-
ric overcomes the limitations of traditional CPU-related metrics. In particular,
it takes into account if services are really using their allocated resources. This
allows the provider to implement dynamic resource provisioning, allocating to
the different services only the amount of CPU they need. In this way, better re-
source utilization in the provider can be achieved. In addition, dynamic resource
provisioning can be accomplished while avoiding the fake SLA violations that
could happen with other metrics when the customers’ services do not use all the
resources they have allocated. Finally, it can be used in heterogeneous machines,
since it is based on Amazon’s ECUs. As demonstrated in the evaluation, using
this metric reduces the number of SLA violations, since it only detects those
that are a real responsibility of the provider.

Although we have derived a metric for managing CPU, the idea of considering
the real resource usage of the services can be used with other resources such as
the memory or the network. This is part of our future work. In addition, we are
working on mechanisms for supporting the inference of the resource requirements
of a service to fulfill a given service-level metric.
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