
Resource Management in Fog/Edge Computing: A Survey on
Architectures, Infrastructure, and Algorithms
Hong, C-H., & Varghese, B. (2019). Resource Management in Fog/Edge Computing: A Survey on Architectures,
Infrastructure, and Algorithms. ACM Computing Surveys, 52(5), [97]. https://doi.org/10.1145/3326066

Published in:
ACM Computing Surveys

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2019 Association for Computing Machinery. This work is made available online in accordance with the publisher’s policies. Please refer to
any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:27. Aug. 2022

https://doi.org/10.1145/3326066
https://pure.qub.ac.uk/en/publications/53a46651-fede-4f75-8a88-c9fe52a64dd5

Resource Management in Fog/Edge Computing: A Survey on

Architectures, Infrastructure, and Algorithms

CHEOL-HO HONG, Chung-Ang University, South Korea

BLESSON VARGHESE, Queen’s University Belfast, United Kingdom

Contrary to using distant and centralized cloud data center resources, employing decentralized resources

at the edge of a network for processing data closer to user devices, such as smartphones and tablets, is an

upcoming computing paradigm, referred to as fog/edge computing. Fog/edge resources are typically resource-

constrained, heterogeneous, and dynamic compared to the cloud, thereby making resource management an

important challenge that needs to be addressed. This article reviews publications as early as 1991, with 85% of

the publications between 2013–2018, to identify and classify the architectures, infrastructure, and underlying

algorithms for managing resources in fog/edge computing.

CCS Concepts: • General and reference→ Surveys and overviews; • Computer systems organization

→ Cloud computing;

Additional Key Words and Phrases: fog/edge computing, resource management, architectures, infrastructure,

algorithms

ACM Reference Format:

Cheol-Ho Hong and Blesson Varghese. 2018. Resource Management in Fog/Edge Computing: A Survey on

Architectures, Infrastructure, and Algorithms. ACM Comput. Surv. 0, 0, Article 0 (2018), 37 pages. https:

//doi.org/0000001.0000001

1 INTRODUCTION

Accessing remote computing resources o�ered by cloud data centers has become the de facto model
for most Internet-based applications. Typically, data generated by user devices such as smartphones
and wearables, or sensors in a smart city or factory are all transferred to geographically distant
clouds to be processed and stored. This computing model is not practical for the future because
it is likely to increase communication latencies when billions of devices are connected to the
Internet [174]. Applications will be adversely impacted because of the increase in communication
latencies, thereby degrading the overall Quality-of-Service (QoS) and Quality-of-Experience (QoE).
An alternative computing model that can alleviate the above problem is bringing computing

resources closer to user devices and sensors, and using them for data processing (even if only
partial) [154, 176]. This would reduce the amount of data sent to the cloud, consequently reduc-
ing communication latencies. To realize this computing model, the current research trend is to
decentralize some of the computing resources available in large data centers by distributing them
towards the edge of the network closer to the end-users and sensors, as depicted in Figure 1. These
resources may take the form of either (i) dedicated ‘micro’ data centers that are conveniently and

Authors’ addresses: Cheol-Ho Hong, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea,

cheolhohong@cau.ac.kr; Blesson Varghese, Queen’s University Belfast, University Road, Belfast, BT7 1NN, United Kingdom,

b.varghese@qub.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and the

full citation on the �rst page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0360-0300/2018/0-ART0 $15.00

https://doi.org/0000001.0000001

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 2018.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

0:2 Hong and Varghese

Cloud Data Center

Fog/Edge Nodes

User Devices

/Sensors

Fig. 1. A fog/edge computing model comprising the cloud, resources at the edge of the network, and end-user

devices or sensors

safely located within public/private infrastructure or (i) Internet nodes, such as routers, gateways,
and switches that are augmented with computing capabilities. A computing model that makes use
of resources located at the edge of the network is referred to as ‘edge computing’ [146, 147]. A
model that makes use of both edge resources and the cloud is referred to as ‘fog computing’ [20, 44].
Contrary to cloud resources, the resources at the edge are: (i) resource constrained - limited

computational resources because edge devices have smaller processors and a limited power budget,
(ii) heterogeneous - processors with di�erent architectures, and (iii) dynamic - their workloads
change, and applications compete for the limited resources. Therefore, managing resources is one of
the key challenges in fog and edge computing. The focus of this article is to review the architectures,
infrastructure, and algorithms that underpin resource management in fog/edge computing. Figure 2
presents the areas covered by this article.

Figure 3 shows a histogram of the total number of research publications reviewed by this article
between 1991 and 2018 under the categories: (i) books and book chapters, (ii) reports, including
articles available on pre-print servers or white papers, (iii) conference or workshop papers, and (iv)
journal or magazine articles. Similar histograms are provided for each section. More than 85% of
the articles reviewed were published from 2013.

The remainder of this article is structured as follows. Section 2 discusses resource management
architectures, namely the data�ow, control, and tenancy architectures. Section 3 presents the
infrastructure used for managing resources, such as the hardware, system software, and middleware
employed. Section 4 highlights the underlying algorithms, such as discovery, benchmarking, load
balancing, and placement. Section 5 suggests future directions and concludes the paper.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 2018.

R
eso

u
rce

M
a
n
a
g
em

en
t
in

F
o
g
/E
d
g
e
C
o
m
p
u
tin

g
0:3

Resource Management
in Fog/Edge Computing

Architectures

Dataflow

Aggregation

Sharing

Offloading

Control

Centralized

Distributed

Hierarchical

Tenancy

Single

Multi

Infrastructure

Hardware

Computation Devices

Network Devices

System Software

System Virtualization

Network Virtualization

Middleware

Volunteer Edge Computing

Hierarchical Fog/Edge Computing

Mobile Fog/Edge Computing

Cloud Orchestration Management

Algorithms

Discovery

Programming Infrastructure

Handshaking Protocol

Message Passing

Benchmarking

Evaluating Functional Properties

Application Benchmarking

Integrated Benchmarking

Load-balancing

Optimization

Cooperative Load-balancing

Graph-based

Breadth First Search

Placement

Dynamic Condition-aware

Iterative techniques

Fig. 2. A classification of the architectures, infrastructure, and algorithms for resource management in fog/edge computing

A
C
M

C
o
m
p
u
t.
Su

rv.,V
o
l.
0,N

o
.
0,A

rticle
0.
P
u
b
licatio

n
d
ate:2018.

0:4 Hong and Varghese

0

10

20

30

40

50

60

19
91

20
02

20
03

20
04

20
05

20
06

20
07

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

F
re
q
u
e
n
c
y

Year

B R C J

Fig. 3. A histogram of the total number of research publications on resource management in fog/edge

computing reviewed by this article. Legend: B - books or book chapters; R - reports, including articles available

on pre-print servers or white papers; C - conference or workshop papers; J - journal or magazine articles.

0

5

10

15

20

25

20
02

20
03

20
04

20
05

20
06

20
07

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

F
re
q
u
e
n
c
y

Year

B R C J

Fig. 4. A histogram of publications reviewed for the classification of architectures for resource management in

fog/edge computing. Legend: B - books or book chapters; R - reports, including articles available on pre-print

servers or white papers; C - conference or workshop papers; J - journal or magazine articles.

2 ARCHITECTURES

In this survey, the architectures used for resource management in fog/edge computing are classi�ed
on the basis of data �ow, control, and tenancy.

• Data �ow architectures: These architectures are based on the direction of movement of workloads
and data in the computing ecosystem. For example, workloads could be transferred from the user
devices to the edge nodes or alternatively from cloud servers to the edge nodes.

• Control architectures: These architectures are based on how the resources are controlled in the
computing ecosystem. For example, a single controller or central algorithm may be used for
managing a number of edge nodes. Alternatively, a distributed approach may be employed.

• Tenancy architecture: These architectures are based on the support provided for hosting multiple
entities in the ecosystem. For example, either a single application or multiple applications could
be hosted on an edge node.

The survey used 82 research publications to obtain the classi�cation of the architectures shown
in the histogram in Figure 4. 86% of publications have been published since 2013.

2.1 Data Flow

This survey identi�es key data �ow architectures based on how data or workloads are transferred
within a fog/edge computing environment. This section considers three data �ow architectures,
namely aggregation, sharing, and o�oading.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 2018.

Resource Management in Fog/Edge Computing 0:5

Aggregation

Techniques

For Modeling and

Implementing Aggregation

Graph-based

Tree-based

Directed Graph-based

Cluster-based

Petri net-based

Decoupled

Batch

Hybrid

For Improving

Aggregation

Efficiency-aware

Bandwidth

Latency

Energy

Quality-aware

Security and

Privacy-aware

Heterogeneity-aware

Fig. 5. A classification of aggregation techniques

2.1.1 Aggregation. In the aggregation model, an edge node obtains data generated from
multiple end devices that is then partially computed for pruning or �ltering. The aim in the
aggregation model is to reduce communication overheads, including preventing unnecessary tra�c
from being transmitted beyond the edge of the network. Research on aggregation can broadly
be classi�ed on the basis of (i) techniques for modeling and implementing aggregation, and (ii)
techniques for improving aggregation, as shown in Figure 5.
i. Techniques for Modeling and Implementing Aggregation: The underlying techniques imple-

mented for supporting aggregation have formed an important part of Wireless Sensor Networks
(WSNs) [138] and distributed data stream processing [46]. Dense and large-scale sensor networks
cannot route all data generated from sensors to a centralized server, but instead need to make use
of intermediate nodes along the data path that aggregate data. This is referred to as in-network
data aggregation [50]. We consider WSNs to be predecessors of modern edge computing systems.
Existing research in the area of in-network data aggregation can be classi�ed into the following six
ways on the basis of the underlying techniques used for modeling and implementing aggregation:

a. Graph-based Techniques: In this survey, we report two graph-based techniques that are used
for data aggregation, namely tree-based and directed graph-based techniques.

Tree-based Techniques: Two examples of tree-based techniques are Data Aggregation Trees (DATs)
and spatial index trees. DATs are commonly used for aggregation in WSNs using Deterministic
Network Models (DNMs) or Probabilistic Network Models (PNMs). Recent research highlights the
use of PNMs over DNMs for making realistic assumptions of lossy links in the network by using tree-
based techniques for achieving load balancing [70]. Spatial index trees are employed for querying
within networks, but have recently been reported for aggregation. EGF is an energy e�cient index
tree used for both data collection and aggregation [166]. This technique is demonstrated to work
well when the sensors are unevenly distributed. The sensors are divided into grids, and an index
tree is �rst constructed. Based on the hierarchy, an EGF tree is constructed by merging neighboring
grids. Multi-region queries are aggregated in-network and then executed.

Directed Graph-based Techniques: The Data�ow programming model uses a directed graph and is
used for WSN applications. Recently, a Distributed Data�ow (DDF) programming model has been
proposed in the context of fog computing [59]. The model is based on the MQTT protocol, supports
the deployment of �ow on multiple nodes, and assumes the heterogeneity of devices [190].

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 2018.

0:6 Hong and Varghese

b. Cluster-based Techniques: These techniques rely on clustering the nodes in the network. For
example, energy e�ciency could be a key criterion for clustering the nodes. One node from each
cluster is then chosen to be a cluster head. The cluster head is responsible for local aggregation in
each cluster and for transmitting the aggregated data to another node. Clustering techniques for
energy e�cient data aggregation have been reported [82]. It has been highlighted that the spatial
correlation models of sensor nodes cannot be used accurately in complex networks. Therefore,
Data Density Correlation Degree (DDCD) clustering has been proposed [193].

c. Petri Net-based Techniques: In contrast to tree-based techniques, recent research highlights the
use of High Level Petri Net (HLPN) referred to as RedEdge for modeling aggregation in edge-based
systems [65]. Given that fog/edge computing accounts for three layers, namely the cloud, the user
device, and the edge layers, techniques that support heterogeneity are required. HLPN facilitates
heterogeneity, and the model is validated by verifying satis�ability using an automated solver. The
data aggregation strategy was explored for a smart city application and tested for a variety of
e�ciency metrics, such as latency, power, and memory consumption.
d. Decoupled Techniques: The classic aggregation techniques described above usually exhibit

high inaccuracies when data is lost in the network. The path for routing data is determined on
the basis of the aggregation technique. However, Synopsis Di�usion (SD) is a technique proposed
for decoupling routing from aggregation so that they can be individually optimized to improve
accuracy [127]. The challenge in SD is that if one of the aggregating nodes is compromised, false
aggregations will occur. More recently, there has been research to �lter outputs from compromised
nodes [140]. In more recent edge-based systems, Software-De�ned Networking (SDN) is employed
to decouple computing from routing [190, 196]. SDN will be considered in Section 3.2.2.
e. Batch Techniques: This model of aggregation is employed in data stream processing. The

data generated from a variety of sources is transmitted to a node where the data is grouped at
time intervals to a batch job. Each batch job then gets executed on the node. For example, the
underlying techniques of Apache Flink rely on batch processing of incoming data1. Similarly,
Apache Spark2 employs the concept of Discretized Streams (or D-Streams) [194], a micro-batch
processing technique that periodically performs batch computations over short time intervals.
f. Hybrid Techniques: These techniques combine one or more of the techniques considered

above. For example, the Tributary-Delta approach combines tree-based and Synopsis Di�usion (SD)
techniques in di�erent regions of the network [104]. The aim is to provide low loss rate and present
few communication errors while maintaining or improving the overall e�ciency of the network.

ii. Techniques for Improving Aggregation: Aggregation can be implemented, such that it optimizes
di�erent objectives in the computing environment. These objectives range from communication
e�ciency in terms of bandwidth, latency, and energy constraints (that are popularly used) to the
actual quality of aggregation (or analytics) that is performed on the edge node. The following is a
classi�cation obtained after surveying existing research on techniques for improving aggregation:
a. E�ciency-aware Techniques: We present three categories of e�ciency-aware techniques: the

�rst for optimizing bandwidth, the second for minimizing latency, and the third for reducing energy
consumption.

Bandwidth-aware: The Bandwidth E�cient Cluster-based Data Aggregation (BECDA) algorithm
has three phases [106]. First, distributed nodes are organized into a number of clusters. Then, each
cluster elects a cluster head that aggregates data from within the cluster. Thereafter, each cluster
head contributes to intra-cluster aggregation. This approach utilizes bandwidth e�ciently for data
aggregation in a network and is more e�cient than predecessor methods.

1https://�ink.apache.org/
2https://spark.apache.org/

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 2018.

Resource Management in Fog/Edge Computing 0:7

Latency-aware: Another important metric that is often considered in edge-based systems for
aggregation includes latency [12, 97]. A mediation architecture has been proposed in the context
of data services for reducing latency [110]. In this architecture, policies for �ltering data produced
by the source based on concepts of complex event processing are proposed. In the experimental
model, requests are serviced in near real-time with minimum latency. There is a trade-o� against
energy e�ciency when attempting to minimize latency [98]. Therefore, techniques to keep latency
to a minimum while maintaining constant energy consumption were employed.

Energy-aware: Research in energy e�ciency of data aggregation focuses on reducing the power
consumption of the network by making individual nodes e�cient via hardware and software
techniques. For example, in a multi-hop WSN, the energy consumption trade-o� with aggregation
latency has been explored under the physical interference model [98]. A successive interference
cancellation technique was used, and an energy e�cient minimum latency data aggregation
algorithm proposed. The algorithm achieves lower bounds of latency while maintaining constant
energy. In a mobile device-based edge computing framework, RedEdge, it was observed that the
energy consumption for data transfer was minimized [65]. However, there is a data processing
overhead on the edge node. Energy awareness techniques for edge nodes are an open research
area3.

b. Quality-aware Techniques: Selective forwarding is a technique in which data from end devices
are conditionally transmitted to a node for reducing overheads. ‘Quality-aware’ in this context
refers to making dynamic decisions for improving the quality of predictive analytics in selective
forwarding [9]. In a recent study, the optimal stopping theory was used for maximizing the quality
of aggregation without compromising the e�ciency of communication [68]. It was noted that
instantaneous decision-making that is typically employed in selective forwarding does not account
for the historical accuracy of prediction. Quality awareness is brought into this method by proposing
optimal vector forwarding models that account for historical quality of prediction.

c. Security-aware Techniques: Aggregation occurring at an edge node between user devices and a
public cloud needs to be secure and ensure identity privacy. An Anonymous and Secure Aggre-
gation (ASAS) scheme [184] in a fog environment using elliptic curve public-key cryptography,
bilinear pairings, and a linearly holomorphic cryptosystem, namely the Castagnos-Laguillaumie
cryptosystem [26], has been developed. Another recently proposed technique includes the Light-
weight Privacy-preserving Data Aggregation (LPDA) for fog computing [101]. LPDA, contrary to
ASAS, is underpinned by the homomorphic Paillier encryption, the Chinese Remainder Theorem,
and one-way hash chain techniques. Other examples of privacy-aware techniques include those
employed in fog computing-based vehicle-to-infrastructure data aggregation [33].

d. Heterogeneity-aware Techniques: Edge-based environments are inherently heterogeneous [178].
Heterogeneity of resources here is a reference to di�erent types of fog/edge nodes, including
CPU architectures, combination of dedicated micro data centers (CPU-based systems), and tra�c
routing devices such as routers, base stations, and switches at the edge of the network. Traditional
cloud techniques for data aggregation have assumed homogeneous hardware, but there is a need
to account for heterogeneity. Some research takes heterogeneous nodes into account for data
aggregation in WSNs [105, 107]. Heterogeneous edge computing is still in infancy [188]. While
there is indication of the possibility to use heterogeneous resources in an ideal fog/edge computing
model, there is little evidence of such a system that is fully implemented.

2.1.2 Sharing. Contrary to the aggregation model, the sharing model is usually employed
when the workload is shared among peers. This model aims at satisfying computing requirements
of a workload on a mobile device without o�oading it into the cloud, but onto peer devices that are

3http://www.uniserver2020.eu/

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 2018.

0:8 Hong and Varghese

Sharing
Techniques

Based on Control

Centralized Control

Distributed Control

Based on Adaptive Techniques

Connectivity-aware

Single Hop

Multi-hop

Opportunistic

Heterogeneity-aware

Security-aware

Fairness-aware

Based on Cooperation

Ad hoc Cooperation

Infrastructure-based Cooperation

Fig. 6. A classification of sharing techniques

likely to be battery-powered. This results in a more dynamic network given that devices may join
and leave the network without notice. Practically feasible techniques proposed for cooperative task
execution will need to be inherently energy aware. Research in this area is generally pursued under
the umbrella of Mobile Cloud Computing (MCC) [47] and Mobile Edge Computing (MEC) [109]
and is a successor to peer-to-peer computing [113].

Research on techniques for sharing can be classi�ed into the following three ways, as shown in
Figure 6:
i. Based on Control: Research on control of the sharing model employed in mobile edge devices

can be distinguished on the basis of (a) centralized control and (b) distributed control.
a. Centralized Control: In this technique, a centralized controller is used to manage the workload

on each edge device in a network. For example, a collection of devices at the edge is modeled as a
Directed Acyclic Graph (DAG)-based work�ow. The coordination of executing tasks resides with
a controller in the cloud [63, 64]. A Software De�ned Cooperative O�oading Model (SDCOM)
was implemented based on Software De�ned Networking (SDN) [43]. A controller is placed on a
Packet Delivery Network (PDN) gateway that is used to enable cooperation between mobile devices
connected to the controller. The controller aims at reducing tra�c on the gateway and ensuring
fairness in energy consumption between mobile devices. To deal with dynamically arriving tasks,
an Online Task Scheduling (OTS) algorithm was developed.
Centralized techniques are fairly common in the literature since they are easier to implement.

However, they su�er from scalability and single point failures as is common in most centralized
systems.
b. Distributed Control: In the area of distributed control among edge devices, there seems to be

relatively limited research. A game theoretic approach was employed as a decentralized approach
for achieving the Nash equilibrium among cooperative devices [30]. The concept of the Nash
equilibrium in the sharing model is taken further to develope the Multi-item Auction (MIA) model
and Congestion Game (COG)-based sharing [102].

ii. Based on Adaptive Techniques: These techniques are nature inspired and solve multi-objective
optimization problems [89]. There are di�erent objectives in a system that employs a sharing model.
For example, the sharing model at the edge can be employed in a battle�eld scenario [58]. In this
context, latencies need to be minimum, and the energy consumption of the devices needs to be at
optimum. Based on existing research, the following adaptive techniques are considered:
a. Connectivity-aware: The sharing model needs to know the connectivity between devices, for

example, in the above battle�eld scenario. A mobile device augments its computing when peer
devices come within its communication range [58]. Then a probabilistic model predicts whether a

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 2018.

Resource Management in Fog/Edge Computing 0:9

task potentially scheduled on a peer device can complete execution in time when it is in the coverage
of the device. Connectivity-aware techniques can be single hop, multi-hop, or opportunistic [121].

Single Hop Techniques: In this technique, a device receives a list of its neighbors that form a fully
connected network. When a workload is shared by a device, the workload will be distributed to
other devices that are directly connected to the device [121].

Multi-hop Techniques: Each device computes the shortest path to every other node in the network
that can share its workload. The work is usually shared with devices that may reduce the overall
energy footprint. The bene�t of a multi-hop technique in the sharing model compared to single hop
techniques is that a larger pool of resources can be tapped into for more computationally intensive
workloads. A task distribution approach using a greedy algorithm to reduce the overall execution
time of a distributed workload was recently proposed [55].

Opportunistic Techniques: The device that needs to share its workload in these techniques checks
whether its peers can execute a task when it is within the communication range. This is predicted
via contextual pro�ling or historical data of how long a device was within the communication
range of its peers. In recent research, a connectivity-aware opportunistic approach was designed
such that: (i) data and code for the job can be delivered in a timely manner, (ii) sequential jobs are
executed on the same device so that intermediate data does not have to be sent across the network,
and (iii) there is distributed control, and jobs are loosely coupled [153]. The jobs are represented as
a Directed Acyclic Graph (DAG), and the smallest component of a job is called a PNP-block that is
used as the unit scheduled onto a device. In the context of Internet-of-Things (IoT) for data-centric
services, it is proposed that a collection of mobile devices forms a mobile cloud via opportunistic
networking to service the requests of multiple IoT sensors [21].

b. Heterogeneity-aware: Edge devices in a mobile cloud are heterogeneous at all levels. Therefore,
the processor architecture, operating system, and workload deployment pose several challenges
in facilitating cooperation [144]. There is research that assumes that the architectures of the
cooperating edge are similar, but have di�erent energy and memory or system utilization require-
ments. These parameters are used for coded computation [87]. There is recent research tackling
heterogeneity-related issues in mobile networks. For example, a work sharing approach named
Honeybee was proposed in which cycles of heterogeneous mobile devices are used to serve the
workload from a given device [52]. The approach accounts for devices leaving/joining the system.
Similarly, a framework based on service-oriented utility functions was proposed for managing
heterogeneous resources that share tasks [130]. A resource coordinator delegates tasks to resources
in the network so that parameters, such as gain and energy, are optimized using convex optimization
techniques.

c. Security-aware: A technique to identify and isolate malicious attacks that could exist in a device
used in the sharing model, referred to as HoneyBot, has been proposed [122]. A few of the devices
in a mobile network are chosen as HoneyBots for monitoring malicious behavior. In the provided
experimental results, a malicious device can be identi�ed in 20 minutes. Once a device is identi�ed
to be malicious, it is isolated from the network to keep the network safe.
d. Fairness-aware: Fairness has been de�ned as a multi-objective optimization problem. The

objectives are to reduce the drain on the battery of mobile devices so as to prolong the network
lifetime, and at the same time improve the performance gain of the workload shared between
devices [181]. The processing chain of mobile applications was modeled as a DAG and assumed
that each node of the DAG is an embarrassingly parallel task. Each task was considered as a
Multi-objective Combinatorial Bottleneck Problem (M-CBP) solved using a heuristic technique.

iii. Based on Cooperation: Edge devices can share workloads (a) either in a less de�ned environment
that is based on ad hoc cooperation, or (b) in a more tightly coupled environment where there is
infrastructure to facilitate cooperation.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 2018.

0:10 Hong and Varghese

Offloading
Techniques

From Device to Edge

Application Partitioning

Approaches

Brute Force

Greedy Heuristic

Simulated Annealing

Fuzzy Logic

Models

Graph-based

Component-based

Neural Network-based

Caching Mechanisms

Chunking and Aggregation

Reverse Auction Game-based

From Cloud to Edge

Server Offloading

Replication

Database Cloning

Application Specific Data Replication

Partitioning

Parameters

Latency-aware

Functionality-aware

Geography-aware

Approaches Manual

Caching Mechanisms

Content Popularity-based

Multi-layer

Fig. 7. A classification of o�loading techniques

a. Ad Hoc Cooperation: Setting up ad hoc networks for device-to-device communication is not a
new area of research. Ad hoc cooperation has been reported for MCC in the context of the sharing
model for the edge [134]. There is recent research that has coined the term “transient clouds,” in
which neighboring mobile devices form an ad hoc cloud and the underlying task management
algorithm is based on a variant of the Hungarian method [136].

b. Infrastructure-based Cooperation: There is research on the federation of devices at the edge of
the network to facilitate cooperation [49]. This results in more tightly coupled coalitions than ad
hoc clouds, and more cost e�ectiveness than dedicated micro cloud deployment.

2.1.3 O�loading. O�oading is a technique in which a server, an application, and the associated
data are moved on to the edge of the network. This either augments the computing requirements
of individual or a collection of user devices, or brings services in the cloud that process requests
from devices closer to the source. Research in o�oading can be di�erentiated in the following two
ways, as presented in Figure 7:

i. O�oading from User Device to Edge: This technique augments computing in user devices by
making use of edge nodes (usually a single hop away). The twomain techniques used are application
partitioning and caching mechanisms.
a. Application Partitioning: One example of o�oading from devices to the edge via application

partitioning is in the GigaSight architecture in which Cloudlet VMs [147] are used to process videos
streamed from multiple mobile devices [156]. The Cloudlet VM is used for denaturing, a process
of removing user-speci�c content for preserving privacy. The architecture employed is presented

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 2018.

Resource Management in Fog/Edge Computing 0:11

as a Content Delivering Network (CDN) in reverse. In this survey, we discuss the following four
approaches and three models used for application partitioning.
Approaches: Four approaches are considered, namely, brute force, greedy heuristic, simulated

annealing, and fuzzy logic.
Brute Force: There is a study under the umbrella of ENGINE that proposes an exhaustive brute

force approach, in which all possible combinations of o�oading plans (taking the cloud, edge nodes,
and user devices) are explored [29]. The plan with the minimum execution time for a task is then
chosen. This approach simply is not a practical solution given the time needed to derive a plan, but
instead could provide insight into the search space.

Greedy Heuristic: ENGINE also incorporates a greedy approach that focuses on merely minimiz-
ing the time taken for completing the execution of a task on the mobile device [29]. An o�oading
plan is initially generated for each task on a mobile device, and then iteratively re�ned to keep
the total monetary costs low. Similarly, FogTorch, a prototype implementation of an o�oading
framework, uses a greedy heuristic approach for deriving o�oading plans [23].
Simulated Annealing: Another approach is simulated annealing, in which the search space is

based on the utilization of fog and cloud nodes, total costs, and the completion time of an application
to obtain an o�oading plan that minimizes the costs and the completion time of the task [29].
Fuzzy Logic: There is research highlighting that an application from a user device can be

partitioned and placed on fog nodes using fuzzy logic [103]. The goal is to improve the Quality-
of-Experience (QoE) measured by multiple parameters such as service access rate, resource re-
quirements, and sensitivity toward data processing delay. Fuzzy logic is used to prioritize each
application placement request by considering the computational capabilities of the node.

Models: The three underlying models used for application partitioning from devices to the edge
are graph-based, component-based, and neural network-based.
Graph-based: CloneCloud employs a graph-based model for the automated partitioning of an

application [38]. Applications running on a mobile device are partitioned and then o�oaded onto
device clones in the cloud. In the run-time, this concept translates to migrating the application
thread onto the clone, after which it is brought back onto the original mobile device. Similarly, in
another graph-based approach, each mobile application task to be partitioned is represented as a
Directed Acyclic Graph (DAG) [17]. The model assumes that the execution time, migration time,
and data that need to be migrated for each task are known a priori via pro�ling. Aspect-oriented
programming is then used to obtain traces of sample benchmarks. Thereafter, a trace simulation is
used to determine whether o�oading to the edge nodes would reduce execution time.
Component-based: In this case, the functionalities of an application (a web browser) that runs

on a device are modeled as components that are partitioned between the edge server and the
device [163]. The example demonstrated is Edge Accelerated Web Browsing (EAB), in which
individual components of a browser are partitioned across the edge and the device. The contents of
a web page are fetched and evaluated on the edge while the EAB client merely displays the output.
Neural Network-based: Recent research highlights the distribution of deep neural networks

across user devices, edge nodes, and the cloud [84, 168]. The obvious bene�t is that the latency
of inferring from a deep neural network is reduced for latency-critical applications without the
need to transmit images/video far from the source. Deep networks typically have multiple layers
that can be distributed over di�erent nodes. The Neurosurgeon framework models the partitioning
between layers that will be latency- and energy-e�cient from end-to-end [84]. The framework
predicts the energy consumption at di�erent points of partitioning in the network and chooses a
partition that minimizes data transfer and consumes the least energy. This research was extended
towards distributing neural networks across geographically distributed edge nodes [168].

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 2018.

0:12 Hong and Varghese

b. Caching Mechanisms: This is an alternative to application o�oading. In this mechanism, a
global cache is made available on an edge node that acts as a sharedmemory for multiple devices that
need to interact. This survey identi�es two such mechanisms, namely chunking and aggregation,
and a reverse auction game-based mechanism.

Chunking and Aggregation: The multi Radio Access Technology (multi-RAT) was proposed as an
architecture for upload caching. In this model, VMs are located at the edge of the network, and a
user device uploads chunks of a large �le onto them in parallel [169]. Thereafter, an Aggregation
VM combines these chunks that are then moved onto a cloud server.

Reverse Auction Game-based: An alternate caching mechanism based on cooperation of edge
nodes was proposed in [189]. The users generate videos that are shared between the users via edge
caching. The mechanism uses a reverse auction game to incentivize caching.
ii. O�oading from the Cloud to the Edge: The direction of data �ow is opposite that considered

above; in this case, a workload is moved from the cloud to the edge. There are three techniques
that are identi�ed in this survey including server o�oading, caching mechanisms, and web pro-
gramming.
a. Server O�oading: A server that executes on the cloud is o�oaded to the edge via either

replication or partitioning. The former is a naive approach that assumes that a server on the cloud
can be replicated on the edge.
Replication: Database cloning and application data replication are considered [57, 99].
Database Cloning: The database of an application may be replicated at the edge of the network

and can be shared by di�erent applications or users [99].
Application-speci�c Data Replication: In contrast to database cloning, a speci�c application

may choose to bring data relevant to the users to the edge for the seamless execution of the
application [57]. However, both database cloning and application-speci�c data replication assume
that edge nodes are not storage-limited, so they may not be feasible in resource-constrained edge
environments.

Partitioning: We now consider the server partitioning parameters that are taken into account in
o�oading from the cloud to the edge. The parameters considered in partitioning are functionality-
aware, geography-aware, and latency-aware.
Functionality-aware: Cognitive assistance applications, for example Google Glass, are latency-

critical applications, and the processing required for these applications cannot be provided by the
cloud alone. Therefore, there is research on o�oading the required computation onto Cloudlet
VMs to meet the processing and latency demands of cognitive assistance applications [34]. The
Gabriel platform built on OpenStack++ is employed for VM management via a control VM, and for
deploying image/face recognition functionalities using a cognitive VM on Cloudlet.
Geography-aware: The service requests of online games, such as PokeMon Go, are typically

transmitted from user devices to a cloud server. Instead of sending tra�c to data centers, the
ENORM framework partitions the game server and deploys it on an edge node [186]. Geographical
data relevant to a speci�c location is then made available on an edge node. Users from the relevant
geographical region connect to the edge node and are serviced as if they were connected to the
data center. ENORM proposes an auto-scaling mechanism to manage the workload for maximizing
the performance of containers that are hosted on the edge by periodically monitoring resource
utilization.

Latency-aware: Similar to ENORM, a study by Báguena et al. aimed at partitioning the back-end
of an application logic traditionally located on clouds so as to service application requests in
real-time [24]. In the proposed hybrid edge-assisted execution model for LTE networks, application
requests are serviced by both the cloud and the edge networks based on latency requirements.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 2018.

Resource Management in Fog/Edge Computing 0:13

Control
Architectures

Centralized

Solver-based

Graph Matching-based

Distributed

Blockchain-based

Game Theoretic Approach-based

Genetic Algorithm-based

Fig. 8. A classification of control architectures for resource management in fog/edge computing

This di�ers from the ENORM framework, in which the server is partitioned along geographical
requirements.
b. Caching Mechanisms: Content popularity and multi-layer caching are identi�ed.
Content Popularity-based: Content-Delivery Networks (CDNs) and ISP-based caching are tech-

niques employed to alleviate congestion in the network when downloading apps on user devices.
However, there are signi�cant challenges arising from the growing number of devices and apps. A
study by Bhardwaj et al. presented the concept of caching mechanisms speci�c to apps on edge
nodes, such as routers and small cells, referred to as eBoxes [16]. This concept is called AppSachets
and employs two caching strategies: based on popularity and based on the cost of caching. The
research was validated on Internet tra�c originating from all users at the Georgia Institute of
Technology for a period of 3 months.

Similarly, there is research aimed at caching data at base stations that will be employed in 5G
networks [195]. To achieve this, tra�c is monitored to estimate content popularity using a Hadoop
cluster. Based on the estimate, content is proactively cached at a base station.
Multi-layer Caching: Multi-layer caching is a technique used in content delivery for Wireless

Sensor Networks (WSNs) [183]. The model assumes that a global cache is available at a base station
that can cache data from data centers, and that localized caches are available on edge nodes. Two
strategies are employed in this technique. The �rst is uncoded caching, in which each node is
oblivious of the cache content of other nodes, and therefore no coordination of data is required.
The second technique is coded caching, in which the cached content is coded such that all edge
nodes are required to encode the content for the users.

Other miscellaneous techniques are used to support o�oading from the cloud to the edge. These
are application speci�c, and are determined by the way the application is programmed. For example,
there is research highlighting the use of web programming that makes use of the client-edge-
server architecture, such that some component of the client executes in edge nodes. The Spaceify
ecosystem enables the execution of Spacelets on edge nodes that are embedded JavaScripts that
use the edge nodes to execute tasks to service user requests [149]. An indoor navigation use-case is
demonstrated for validating the Spaceify concept.

2.2 Control

A second method for classifying architectures for resource management in fog/edge environments is
based on control of the resources. This survey identi�es two such architectures, namely centralized
and distributed control architectures, as shown in Figure 8. Centralized control refers to the use of
a single controller that makes decisions on the computations, networks, or communication of the
edge resources. On the contrary, when decision-making is distributed across the edge nodes, we
refer to the architecture as distributed. This section extends the discussion on control techniques
that was previously presented on sharing techniques in the survey.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 2018.

0:14 Hong and Varghese

2.2.1 Centralized. There is a lot of research on centralized architectures, but we identify two
centralized architectures, namely, (i) solver-based, and (ii) graph matching-based.
i. Solver-based: Mathematical solvers are commonly used for generating deployment and rede-

ployment plans for scheduling workloads in grids, clusters, and clouds. Similar approaches have
been adopted for edge environments. For example, a Least Processing Cost First (LPCF) method
was proposed for managing task allocation in edge nodes [114]. The method is underpinned by a
solver aimed at minimizing processing costs and optimizing network costs. The solver is executed
on a centralized controller for generating the assignment plan.

ii. Graph Matching-based: An o�oading framework that accounts for device-to-device and cloud
o�oading techniques was proposed [32]. Tasks were o�oaded via a three-layer graph-matching
algorithm that is �rst constructed by taking the o�oading space (mobiles, edge nodes, and the
cloud) into account. The problem of minimizing the execution time of the entire task is mapped
onto the minimum weight-matching problem in the three-layer graph. A centralized technique
using the Blossom algorithm was used to generate a plan for o�oading.

2.2.2 Distributed. Three distributed architectures are identi�ed: (i) blockchain-based, (ii) game
theoretic-based, and (iii) genetic algorithm-based.

i. Blockchain-based: Blockchain technology is used as an underpinning technique for implement-
ing distributed control in edge computing systems [161]. The technique is built on the IEC 61499
standard that is a generic standard for distributed control systems. In this model, Function Blocks,
an abstraction of the process, was used as an atomic unit of execution. Blockchains make it possible
to create a distributed peer-to-peer network without having intermediaries, and therefore naturally
lend themselves to the edge computing model in which nodes at the edge of the network can
communicate without mediators. The Hyperledger Fabric, a distributed ledger platform used for
running and enforcing user-de�ned smart contracts securely, was used.

ii. Game Theoretic Approach-based: The game theoretic approach is used for achieving distributed
control for o�oading tasks in the multi-channel wireless interference environment of mobile-edge
cloud computing [31]. It was demonstrated that �nding an optimal solution via centralized methods
is NP-hard. Therefore, the game theoretic approach is very suitable in such environments. The
Nash equilibrium was achieved for distributed o�oading, while two metrics, namely the number
of bene�tting cloud users and the system-wide computational overhead, were explored to validate
the feasibility of the game theoretic approach over centralized methods.
iii. Genetic Algorithm-based: Typically, in IoT-based systems, the end devices are sensors that

send data over a network to a computing node that makes all the decision regarding all aspects
of networking, communication, and computation. The Edge Mesh approach aims at distributing
decision-making across di�erent edge nodes [142]. For this purpose, Edge Mesh uses a computation
overlay network along with a genetic algorithm to map a task graph onto the communication
network to minimize energy consumption. The variables considered in the genetic algorithm are
the Generation Gap used for crossover operations, mutation rate, and population size.
Additionally, there are other upcoming concepts, such as sensor function virtualization (SFV),

which can support distributed decision-making. SFV modularizes and deploys sensor functions
anywhere in an IoT network [171]. The advantage of the SFV technique is that modules can be added
at runtime on multiple nodes. SFV as a concept is still in infancy and needs to be demonstrated in a
real world IoT testbed.

2.3 Tenancy

A third method for classifying architectures for resource management in fog/edge environments is
tenancy. The term tenancy in distributed systems refers to whether or not underlying hardware

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 2018.

Resource Management in Fog/Edge Computing 0:15

Multiple Application,

Multiple User (MAMU)

Single Application,

Multiple User (SAMU)

Single Application,

Single User (SASU)

Multiple Application,

Single User (MASU)

User

A
p

p
lic

a
ti
o

n

Fig. 9. A taxonomy of tenancy-based architectures for resource management in Fog/Edge computing.

resources are shared between multiple entities for optimizing resource utilization and energy
e�ciency. A single-tenant system refers to the exclusive use of the hardware by an entity. Conversely,
a multi-tenant system refers to multiple entities sharing the same resource. An ideal distributed
system that is publicly accessible needs to be multi-tenant.

The OpenFog reference architecture highlights multi-tenancy as an essential feature in fog/edge
computing [1]. An application server may be o�oaded from the cloud to the edge and service users.
Therefore, the entities that share the hardware resources in this context are the applications that
are hosted on the edge, and the users that are serviced by the edge server.

In this article, we propose a classi�cation of tenancy in fog/edge computing in two dimensions
- applications and users. As shown in Figure 9, the followings are the four possibilities in the
taxonomy:

i. Single Application, Single User (SASU): The edge node executes one application, and only the user
can connect to the application. The application and the user solely use the hardware resources.
The infrastructure is likely to be a private experimental test-bed.

ii. Single Application, Multiple User (SAMU): The edge node executes one application that supports
multiple users. Although the underlying hardware resources are not shared among applications,
there is a higher degree of sharing than SASU since multiple user requests are serviced by the
edge node.

iii. Multiple Application, Single User (MASU): The edge node hosts multiple applications, but each
application can only support a single user. This form of tenancy may be used for experimental
purposes (or stress-testing the system) during the development of an ideal infrastructure.

iv. Multiple Application, Multiple User (MAMU): The edge node hosts multiple applications, and
many users can connect to an individual application. This is an ideal infrastructure and is
representative of a publicly accessible infrastructure.

There are two techniques that support multi-tenancy, namely, system virtualization and network
slicing.
1) System Virtualization: At the system level, virtualization is a technique employed to support

multi-tenancy. A variety of virtualization technologies are currently available such as traditional
virtual machines (VMs) and containers (considered in Section 3.2.1). VMs have a larger resource
footprint than containers. Therefore, lightweight virtualization currently utilized in edge computing
incorporates the latter [100, 118, 186]. Virtualization makes it possible to isolate resources for
individual applications, whereby users can access applications hosted in a virtualized environment.
For example, di�erent containers of multiple applications may be concurrently hosted on an edge
node.
2) Network Slicing: At the network level, multiple logical networks can be run on top of the

physical network, so that di�erent entities with di�erent latency and throughput requirements
may communicate across the same physical network [143]. The key principles of Software De�ned
Networking (SDN) and Network Functions Virtualization (NFV) form the basis of slicing (considered

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 2018.

0:16 Hong and Varghese

0

5

10

15

20

20
03

20
05

20
06

20
07

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

F
re
q
u
e
n
c
y

Year

B R C J

Fig. 10. A histogram of publications reviewed for the classification of the infrastructure for resource manage-

ment in fog/edge computing. Legend: B - books or book chapters; R - reports, including articles available on

pre-print servers or white papers; C - conference or workshop papers; J - journal or magazine articles.

in Section 3.2.2). The ongoing European project SESAME4 (Small cells coordination for Multi-
tenancy and Edge services) tackles the challenges posed by network slicing. The network bandwidth
may also be partitioned across tenants, and also referred to as slicing. EyeQ is a framework
that supports �ne-grained control of network bandwidth for edge-based applications [81]. The
framework provides end-to-end minimum bandwidth guarantees, thereby providing an e�cient
implementation for network performance isolation at the edge.

3 INFRASTRUCTURE

The infrastructure for fog/edge computing provides facilities comprising hardware and software
to manage the computation, network, and storage resources [40] for applications utilizing the
fog/edge. In this article, the infrastructure for resource management in fog/edge computing is
classi�ed into the following three categories:

• Hardware: Recent studies in fog/edge computing suggest exploiting small-form-factor devices
such as network gateways, WiFi Access Points (APs), set-top boxes, small home servers, edge
ISP servers, cars, and even drones as compute servers for resource e�ciency [162]. Recently,
these devices are being equipped with single-board computers (SBCs) that o�er considerable
computing capabilities. Fog/edge computing also utilizes commodity products such as desktops,
laptops, and smartphones.

• System software: System software runs directly on fog/edge hardware resources such as the
CPU, memory, and network devices. It manages resources and distributes them to the fog/edge
applications. Examples of system software include operating systems and virtualization software.

• Middleware: Middleware runs on an operating system and provides complementary services
that are not supported by the system software. The middleware coordinates distributed compute
nodes and performs deployment of virtual machines or containers to each fog/edge node.

This section reviewed 63 research publications to obtain the classi�cation of the infrastructure
shown in the histogram in Figure 10. 83% of publications were published since 2013.

3.1 Hardware

Fog/edge computing forms a computing environment that uses low-power mobile devices, home
gateways, home servers, edge ISP servers, and routers. These small-form-factor devices nowadays
have competent computing capabilities and are connected to the network. The combination of
these small compute servers enables a cloud computing environment that can be leveraged by a

4http://www.sesame-h2020-5g-ppp.eu/Home.aspx

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 2018.

http://www.sesame-h2020-5g-ppp.eu/Home.aspx

Resource Management in Fog/Edge Computing 0:17

Hardware

Computation Devices

Single-board Computers

Commodity Products

Network Devices

Gateways and Routers

WiFi APs

Edge Racks

Fig. 11. A classification of hardware

rich set of applications processing Internet of Things (IoT) and cyber-physical systems (CPS) data.
Hardware used for fog/edge computing can be classi�ed in two ways as shown in Figure 11.

3.1.1 Computation Devices. Computation devices for the fog/edge include single-board comput-
ers and commodity products that are designed for processing fog/edge data.

i. Single-board Computers: Single-board computers (SBC) such as Raspberry Pi are often used as
fog/edge nodes [8, 14, 83]. An SBC is a small computer based on a single circuit board integrating a
CPU, memory, network, and storage devices, and other components together. The small computer
does not have expansion slots for peripheral devices. FocusStack [8] uses multiple Raspberry Pi
boards installed in connected vehicles and drones to build a cloud system. FocusStack deploys
a video sharing application where cameras in cars and drones capture moving scenes, and the
Raspberry Pi boards process and share them. Bellavista et al. [14] used Raspberry Pi for IoT gateways
that are close to sensors and actuators and therefore enable e�cient data aggregation. Hong et al.
[75] utilized Raspberry Pi for crowd-sourced fog computing and programmable IoT analytics.

ii. Commodity Products: Commodity products such as desktops, laptops, and smartphones have
been utilized as fog/edge nodes as well. For example, a recent study [76] attempted to build a cloud
computing environment with laptops and smartphones used in classrooms, movie theaters, and
cafes. As the owners of these devices do not always fully utilize the computational resources, fog
computing providers may purchase the devices for reselling idle resources to other users. Hong et
al. [76] developed an animation rendering service using under-utilized laptops in fog computing
that o�ers cost-e�ectiveness compared to services in traditional cloud computing.

3.1.2 Network Devices. Network devices for fog/edge computing consist of gateways, routers,
WiFi APs, and edge racks that are located in the edge and mainly process network tra�cs.

i. Gateways and Routers: Network gateways and routers are potential devices for edge computing
because they establish a data path between end users and network providers. Aazam et al. adopted
a common gateway to decide whether the received data from IoT devices would be sent to data
center clouds [2]. Such smart gateways help in better utilization of network bandwidth.
ii. WiFi APs: ParaDrop [100], an edge computing framework, exploits the fact that WiFi APs or

other wireless gateways are ubiquitous and always turned on.
iii. Edge Racks: Global Environment for Network Innovations (GENI) packs network, computing,

and storage resources into a single rack [60]. GENI implements an edge computing environment
by deploying GENI racks at several networked sites. These racks currently connect over 50 sites in
the USA and are used as Future Internet and Distributed Cloud (FIDC) testbeds.

3.2 System So�ware

System software for the fog/edge is a platform designed to operate directly on fog/edge devices and
manage the computation, network, and storage resources of the devices. Examples include virtual

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 2018.

0:18 Hong and Varghese

System Software

System Virtualization

Virtual Machines

Containers

Virtual Machine/Container Migration

Network Virtualization

Software-defined Networking (SDN) &

Network Function Virtualization (NFV)

Overlay Network

Fig. 12. A classification of system so�ware

Hypervisor

Host OS

Hardware

Bins/Libs

App A

VM

Bins/Libs

App B

VM

Bins/Libs

App C

VM

Guest OS Guest OS Guest OS

(a) Virtual machines

Container Engine

Host OS

Hardware

Bins/Libs

App A

Container

Bins/Libs

App B

Container

Bins/Libs

App C

Container

(b) Containers

Hypervisor/Middleware

Host OS

Hardware

Bins/Libs

App A

VM

Bins/Libs

App B

VM

Bins/Libs

App C

VM

Guest OS Guest OS Guest OS

(c) Middleware

Middleware Middleware Middleware

Fig. 13. Architectures of virtual machines, containers, and middleware for resource management in fog/edge

computing

machines (VMs) and containers. The system software needs to support multi-tenancy and isolation
because fog/edge computing accommodates several applications from di�erent tenants. System
software used for fog/edge computing can be classi�ed into two categories, system virtualization
and network virtualization, as shown in Figure 12.

3.2.1 System Virtualization. System virtualization allows multiple operating systems to run on
a single physical machine. System virtualization enables fault and performance isolation between
multiple tenants in the fog/edge. It partitions resources for each tenant so that one tenant cannot
access other tenants’ resources. The fault of a tenant, therefore, cannot a�ect other tenants. System
virtualization also limits and accounts for the resource usage of each tenant so that a tenant cannot
monopolize all the available resources in the system. In particular, system virtualization is only
an enabling technology for fog computing, as fog computing accommodates multiple tenants at
the edge of a network. This section deals with traditional virtual machines, recent containers, and
VM/container migration software for supporting system virtualization.

i. Virtual Machines: A Virtual Machine (VM) is a set of virtualized resources used to emulate a
physical computer. Virtualized resources include CPUs, memory, network, storage devices [36],
and even GPUs and FPGAs [74]. Virtualization software called a hypervisor (e.g., Xen [11] or KVM
[90]) virtualizes the physical resources and provides the virtualized resources in the form of a VM.
The tenant installs an operating system and runs applications in the VM, regarding the VM as a real
physical machine. The VM architecture is shown in the left side of Figure 13. Virtualization isolates
the execution environment between fog/edge tenants. Each tenant maintains its own VMs, and IoT
and CPS devices of the tenant send data to the VMs for processing and storage [60, 61, 147, 185].
Cloudlet provides an early form of fog computing by o�ering resource-rich VMs for mobile

devices in close proximity [147]. As a mobile device connects to a VM over a wireless LAN, Cloudlets
achieve low latency when the mobile device o�oads tasks to the VM.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 2018.

Resource Management in Fog/Edge Computing 0:19

Gu et al. [61] proposed a fog computing architecture using VMs for a medical cyber-physical
system (MCPS) [96]. To receive fast and accurate medical feedbacks, the MCPS system utilizes
computational resources close to medical devices. The research utilizes low power sensors and
actuators for collecting health information and then sends the collected information to a VM in the
network edge (e.g., base stations) for storage and analyses. The research associates several medical
devices of a tenant with a VM running in the edge.

Wang et al. [185] implemented a real time surveillance infrastructure where surveillance cameras
send images to a distributed edge cloud platform. The surveillance system launches a group of
VMs to which surveillance tasks are distributed. When the load is high across the cloud, the system
elastically launches new VMs to secure more computational power and network bandwidth.

GENI [60] provides GENI racks to realize an edge-based cloud computing platform for university
campuses. Each rack consists of Layer-2 and -3 switches and compute nodes that provide VMs to
university students on demand. This infrastructure is available around 50 campuses in the USA.

ii. Containers: Containers are an emerging technology for cloud computing that provides process-
level lightweight virtualization [69, 179]. Containers are multiplexed by a single Linux kernel, so
that they do not require an additional virtualization layer compared to virtual machines. Although
they share the same OS kernel, they still o�er operating systems virtualization principles [132]
where each user is given an isolated environment for running applications. The architecture of
containers is shown in the middle of Figure 13.
Namespaces in Linux provide containers with their own view of the system, and cgroups are

responsible for resource management such as CPU allocation to containers. This lightweight
virtualization allows containers to start and stop rapidly and to achieve performance similar to that
of the native environment. In addition, containers are usually deployed with a pre-built application
and its dependent libraries, focusing on Platform-as-a-Service (PaaS) that makes container-based
applications easily deployed and orchestrated. Representative container tools include LXC [73] and
Docker [112] for building and deploying containers, and Kubernetes [22] for orchestration.
Lightweight virtualization implemented by containers facilitates the adoption of performance-

limited resources in fog/edge computing nodes [14, 100, 117]. Bellavista et al. [14] employed
Docker-based containers on a Raspberry Pi 1 board that is used as a fog node for collecting data
from heterogeneous sensors in a transit vehicle or other infrastructural components. Morabito et
al. [117] utilized single-board computers, including RaspberryPi 2, Odroid C1+, and Odroid XU4
boards as edge processing devices running Docker containers. ParaDrop [100] adopted lightweight
containerization for WiFi Access Points (APs) or other wireless gateways.
Containers provide feasible performance for fog/edge computing with performance-limited

resources. Morabito et al. [115–117] showed that the container engine only incurs a CPU overhead
of approximately 2% in the worst case compared with the native environment. They employed
various powerful embedded boards that equip recent ARM processors. Kaur et al. [86] claimed that
containers do not impose signi�cant overheads on the CPU and memory utilization and network
bandwidth based on their evaluations.

In these studies, containers provide low overhead for performance-limited hardware platforms.
In addition, a system administrator can package an application into a container for aggregating
and processing data and send the container to any device for creating a new fog/edge node on the
�y. Finally, containers allow a high density of applications due to small images, which is useful on
resource-limited devices.
iii. Virtual Machine/Container Migration: Virtual Machine (VM) or container migration moves

a running VM or container to di�erent physical machines for load-balancing and fault tolerance
[6, 54, 111, 131]. VM/container migration approaches can be categorized into three classes [131]:
cold migration, hot migration, and live migration. Cold migration shuts down the VM/container

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 2018.

0:20 Hong and Varghese

before migration and restarts it on a di�erent machine. Hot migration suspends the VM/container
before migration and resumes it later rather than shutting down it. Hot migration does not a�ect the
applications running on the VM or container as the applications are not restarted. Live migration
allows the applications to run continuously during migration as the VM/container is seamlessly
moved to a di�erent machine. For this purpose, the storage and network connectivity of the
transferred VM or container also needs to be moved to the target physical machine [27]. In fog/edge
computing, location-awareness should be considered for migration performance [162].

INDICES [152] points out that server overloading needs to be addressed when a VM is migrated
from a cloud data center to a fog cloud platform. INDICES considers the performance interference
caused by resource contention between co-located VMs during VM migration. INDICES �rst
identi�es a user experiencing service level objective (SLO) violations and moves the user’s VM to a
fog cloud platform that can o�er the lowest performance interference.

Bittencourt et al. [18] detected the movement and behavior of a mobile device to decide where and
when to migrate the user’s VM among fog cloud platforms. When a user’s device is disconnected
from the access point of one fog cloud, the study identi�es the user’s location using a GPS system,
and moves the user’s VM to a nearby fog cloud. As data migration may incur a service suspension
during migration, the research adopts a proactive technique that migrates the VM in advance,
predicting the user’s movement.

3.2.2 Network Virtualization. Network virtualization combines hardware and software network
resources into a virtual network that is a software-based administrative entity for a tenant [37].

i. Software-De�ned Networking (SDN) and Network Function Virtualization (NFV): A fog/edge cloud
has an option to adopt software-de�ned networking (SDN) and network functions virtualization
(NFV) for managing the network through software. SDN separates the control plane from the
data plane [94]. The control plane decides where the tra�c is sent, and the data plane forwards
the tra�c to the destination decided by the control plane. NFV decouples networking functions
such as routing and �re-walling from the underlying proprietary hardware, and allows each of the
functions to run on a VM on commodity hardware [67]. NFV is a complementary concept to SDN
and is independent of it, although they are often combined together in modern clouds [108].

A virtual network enabled by SDN and NFV interconnects fog/edge clouds that are geographically
dispersed [19]. The virtual network is required to support Layer 2 (L2) and Layer 3 (L3) networks,
IPv4 and IPv6 protocols, and di�erent addressing modes. Hybrid Fog and Cloud, called HFC [120],
extends the BEACON [119] project that implements a federated cloud network for the e�cient and
automated provision of virtual networks to distributed fog/edge clouds. The framework installs an
HFC agent in each cloud that manages the control plane implemented by an SDN technology. The
HFC agent also implements required Virtual Network Functions (VNFs) such as virtual switches
and routers in order to interconnect the distributed clouds.
Constructing SDN and NFV in fog/edge platforms implies that clients can leverage elastic

virtualized environments where all VMs for the same tenant can be in the same virtual LAN (VLAN)
even if they are located in di�erent areas. Wang et al. built an urban video surveillance system
that exploits Virtualized Network Functions (VNFs) VMs as computational units for video analysis
algorithms [185]. More VMs can be allocated to higher priority tasks, and the source data can be
sent between VMs by virtual switches controlled by the SDN routing strategies.
Conventional mobile clouds that o�oad tasks from mobile devices to centralized data centers

are moving their applications to fog/edge clouds so as to reduce processing latency. NFV in
fog/edge devices constructs a virtualized network infrastructure where computational resources
can be scaled on the infrastructure based on demand. Yang et al. proposed a set of algorithms for
dynamic resource allocation in such an NFV-enabled mobile fog/edge cloud [191, 192]. An o�ine

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 2018.

Resource Management in Fog/Edge Computing 0:21

algorithm estimates the desired response time with minimum resources, and the auto-scaling and
load-balancing algorithm makes provision for workload variations. When the capacity violation
detection algorithm identi�es a failure of the auto-scaling mechanism, a network latency constraint
greedy algorithm initializes an NFV-enabled edge node to cope with the failure.

SDN is also applied to inter-vehicle communication using �fth generation (5G) vehicular networks
or Vehicular Adhoc Network (VANET) [170, 180]. In this context, SDN can e�ciently manage
connected vehicles, called a vehicular neighbor group, with e�cient member selection, group
establishment, and �exible resource scheduling. 5G-SDVN abstracts vehicles on a 5G network as
SDN switches and simpli�es network management [78]. In this study, mobile fog computing is also
exploited by considering vehicles as mobile users. As with 5G-SDVN, FSDN VANET applies both
SDN and fog computing to connected vehicles on a VANET [170]. VANET is limited; it has long
delays and unbalanced �ow tra�c when the number of vehicles increases. The separation of the
control and data planes in SDN simpli�es network management as the number of vehicles increases,
while fog computing improves VANET services with additional computational capabilities.

In recent fog computing use cases, data tend to be internally generated and consumed between
sensors [79]. In this setup, each fog node is expected to act as a wireless router to transfer data
between sensors. Hakiri et al. [66] employed SDN for managing wireless fog networks. SDN
generally adopts a centralized control plane, but the authors pointed out that this can be a single
point of failure and might deteriorate reliability. This study developed a hybrid control plane in
which a centralized controller manages the entire network, and additional controllers are attached
during runtime to serve as backup should the centralized controller fail.

Huge tra�c volumes from IoT devices can disrupt conventional IoT networks. SDN architectures
can help to alleviate this problem. Xu et al. incorporated a Message Queuing Telemetry Transport
(MQTT) that is an application layer protocol for IoT, with SDN-enabled fog computing [85, 190].
MQTT consists of publishers, subscribers, and the broker. The broker receives messages from a
publisher and relays the published messages to subscribers. The study developed an SDN-based
proxy broker where the broker acts as a control plane. The broker aggregates tra�cs from clients
for e�ective transmission and utilizes an Open vSwitch (OVS) to forward tra�c.
ii. Overlay Network: An overlay network is a virtual network that is based on an underlying

physical network and that provides additional network services (for example, peer-to-peer net-
works). Nodes in the overlay network are connected by virtual links to enable a new data path over
physical links.

Koala [167] proposed an overlay network for decentralized edge computing. Di�erent from cloud
computing, there is no controller in decentralized edge computing, so each node has a limited
view of the network. Koala built an overlay network to encourage collaboration between the
decentralized nodes. However, proactively maintaining the overlay network incurs signi�cant
network tra�c for identifying nodes joining or leaving the network. This is addressed by injecting
maintenance messages into general applications tra�c. Frugal [5] focused on constructing an
overlay network for online social networks. Frugal analyzed the social graphs between users and
built a degree-constrained overlay topology using minimum degree-constrained spanning trees.

3.3 Middleware

Middleware provides complementary services to system software. Middleware in fog/edge comput-
ing provides performance monitoring, coordination and orchestration, communication facilities,
protocols, and so on. Middleware used for fog/edge computing can be classi�ed into four categories,
as shown in Figure 14. The architecture of middleware is shown on the right side of Figure 13.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 2018.

0:22 Hong and Varghese

Middleware

Volunteer
Edge Computing

Hierarchical
Fog/Edge Computing

Mobile Fog/Edge
Computing

Cloud Orchestration
Management

Fig. 14. A classification of middleware

3.3.1 Volunteer Edge Computing. Nebula is middleware software that enables a decentralized
edge cloud that consists of volunteer edge nodes that contribute resources [28, 141]. Nebula com-
prises four major components. First, the Nebula Central provides a web-based portal for volunteer
nodes and users to join the cloud and to deploy applications. Second, the DataStore, a data storage
service, enables location-aware data processing. Third, the ComputePool o�ers computational
resources to the volunteer edge nodes. Finally, the Nebula Monitor performs computation and
network performance monitoring. In Nebula, the ComputePool coordinates with the DataStore to
o�er compute resources that have proximity to the input data in the DataStore.
Alonso-Monsalve et al. [7] proposed a heterogeneous mobile cloud computing model where

desktop computers or mobile devices donate their resources and form volunteer platforms. The
authors pointed out that some clouds are experiencing network and computation saturation
owing to a signi�cant amount of user devices. To alleviate this situation, mobile users can exploit
idle computation and storage resources of volunteer devices in geographically near places. As
volunteer devices may not be long-lasting, the research also utilizes a cloud system that enables
the applications to continue operations in the event of failures.

3.3.2 Hierarchical Fog/Edge Computing. A hierarchical fog/edge computing platform provides
middleware that exploits both conventional cloud computing and recent fog/edge computing
paradigms. Tasks that require prompt reaction are processed in fog/edge nodes whereas complex
or long-term analysis tasks are performed at more powerful cloud nodes [77, 124, 165].

Mobile Fog facilitates hierarchical fog/edge computing. It enables easy communication between
computing nodes at each hierarchical level and provides scaling capabilities during runtime [77].
In Mobile Fog, an application consists of three processes, each of which is mapped to a leaf node
in smartphones or vehicles, an intermediate node in fog/edge computing, and a root node in the
data center. Mobile Fog provides a range of APIs for communications and event handling between
distributed processes. When a computing instance becomes congested, Mobile Fog creates a new
instance at the same hierarchy level so as to load-balance workloads between nodes.

Tang et al. [165] proposed a hierarchical fog computing platform for processing big data generated
by smart cities. The platform consists of four layers. The bottom layer, Layer 4, contains a massive
number of sensor nodes that are widely distributed in public infrastructures. Layer 3 consists of
low-power fog/edge devices that receive raw data from the sensor nodes in Layer 4. One fog/edge
device is connected to nearby sensors to provide timely data analyses. Layer 2 comprises more
powerful computing nodes, each of which is connected to a group of fog/edge devices in Layer
3. Layer 2 associates temporal data with spatial data to analyze potential risky events whereas
Layer 3 focuses on immediate small threats. Layer 1 is a cloud computing platform that performs
long-term analyses spanning a whole city by employing Hadoop.

Nastic et al. [124] developed a uni�ed edge and cloud platform for real-time data analytics. In this
study, edge devices are used to execute simple data analytics such as measuring human vital signs
sent from IoT mobile healthcare devices. Cloud computing receives preprocessed and �ltered data
from the edge devices and focuses on comprehensive data analytics to gain long-term insight about

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 2018.

Resource Management in Fog/Edge Computing 0:23

the person. The analytics function wrapper and API layer in the middleware provides a frontend for
users to send and receive data to and from analytics functions in the cloud. The orchestration layer
determines whether the provided data need to be processed in the edge or cloud node according
to the high-level objectives of the application. Finally, the runtime mechanism layer schedules
analytics functions and executes them while satisfying QoS requirements.

3.3.3 Mobile Fog/Edge Computing. Conventional mobile cloud computing [38, 42, 92] allows
low-power mobile devices such as smartphones to o�oad their computation-intensive tasks to
more powerful platforms in cloud computing. This feature can improve the user experience and
save power in mobile devices. However, cloud platforms in data centers cannot support low
network latency and high bandwidth. To address this limitation, developers are exploiting fog/edge
computing to o�oad their tasks for achieving satisfactory latency and bandwidth.
FemtoClouds [63] pay attention to recent powerful mobile devices such as smartphones and

laptops, and form a compute cluster using these devices. A controller in FemtoClouds receives
requests from users who installed the FemtoCloud service and schedules the requests in idle devices
with su�cient capability. A business holder such as a co�ee shop owner or a university can provide
the controller. The Discovery Module in the controller discovers FemtoCloud devices and estimates
the compute capacity of each one. Upon users’ requests, the Execution Prediction Module predicts
the completion time based on each device’s execution load. The Task Assignment Module then
iteratively assigns several tasks to less loaded devices to e�ciently obtain the desired results.
Sensors Of Ubiquitous Life (SOUL) [80] constructs an edge-cloud for e�ciently processing

various sensors in mobile devices. The authors pointed out that an application in a mobile device
might not know how to handle device-speci�c sensors. SOUL provides APIs to virtualize sensors,
thereby making it possible for diverse sensors to be treated in the same way. SOUL externalizes the
virtualized sensors to the edge-cloud to leverage the cloud’s computational and storage services. The
SOUL Engine in each mobile device manages sensor-related operations executed by the application
and sends these requests to the edge-cloud. The SOUL Core in the edge-cloud performs the received
requests on behalf of the device. The two entities are connected by SOUL Streams.
Silva et al. [155] extended mobile cloud computing to an edge-cloud where nearby devices are

connected by WiFi-Direct. The connected devices work together as a pool of computing resources
for data caching and video streaming. Mobile devices that share the same interest (e.g., devices in
the same sports stadium) establish a WiFi-Direct group. The cloud middleware tracks the members
of the group along with their connection information and provides the content stored in each
mobile device. This architecture relieves the load in the access points at a certain large venue and
improves the quality of experience.

Human-driven edge computing (HEC) [13] points out that mobile edge computing has limitations
because the number of edges is not su�cient, and some highly populated areas may result in
congestion on edges. To address these limitations, HEC combines mobile edge computing with
mobile crowdsensing [56], where smartphones or tablet computers become edge nodes, share
sensor data, and analyze the data for common interest. HEC does not implement a controller, but
instead exploits local one-hop communications using VM/container migration between participants.
The middleware for HEC consists of two components. Elijah is responsible for cloud resource
management andmigrates a VM to an identi�ed edge node. The Elijah extensionmodule additionally
supports Docker-oriented containers and enables seamless VM/container migration when hando�s
occur between di�erent edge nodes.

3.3.4 Cloud Orchestration Management. In fog/edge computing, each device is regarded as a
small compute server. The inter-device coordination for these devices is challenging compared
to conventional clouds because (i) fog/edge devices have limited capabilities, (ii) the number of

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 2018.

0:24 Hong and Varghese

fog/edge devices expected to participate is greater than that of compute servers in a cloud data
center, and (iii) fog/edge devices may be moving, and therefore the connectivity to the network
may be intermittent [8].

While container-based cloud computing provides low overhead, a device in fog/edge computing
still has resource limitations that cause the device to perform until it reaches the maximum
computing capacity. The microCloud [117] overcomes this limitation by exploiting resources
of other edge devices. It adopts the Cloudy software [151], an open source cloud management
framework for local communities that is associated with Docker-based containers. Using the
framework, a user can publish applications to a set of containers running on several edge devices.
The microCloud thereby provides elasticity like other public clouds. The microCloud focused on
local homogeneous devices, while Khan et al. [88] extended the concept of the microCloud to
geographically distributed and heterogeneous devices.
Edge compute nodes may consist of thousands to millions of moving devices such as cars and

drones. In this scenario, it is challenging to orchestrate the management of the devices using existing
cloud management platforms such as OpenStack [150]. FocusStack [8] introduces location-based
awareness to OpenStack to deploy containers into devices that are geographically in the focus
of attention. FocusStack minimizes managed devices at a single time by only paying attention to
healthy devices in the target area. For this purpose, when a cloud operation specifying certain
requirements is invoked by a FocusStack API, the Geocast Georouter sends broadcast messages
to edge devices in the target area to ask whether the devices can satisfy the request. If the Geo-
cast Georouter receives responses from the devices, it regards them as healthy devices currently
connected to the network. The Conductor component then sends the corresponding OpenStack
operation to the selected devices. The minimization of managed devices at a single time allows
FocusStack to be more e�cient and scalable in edge clouds.
Foggy [145] provided an orchestration tool for hierarchical fog computing that consists of the

cloud (the highest tier), edge Cloudlets, edge gateways, and Swarm of Things tiers (the lowest tier
near sensors). The Orchestrator deploys each Application Component, which is a module of a large
application in a container image, on a node in each tier that satis�es user requirements.
Studies by Vogler and Nastic et al. [125, 126, 182] introduced middleware for IoT clouds. In

these studies, software-de�ned IoT gateways (SDGs) are de�ned for encapsulating infrastructure
resources in a container. The IoT middleware focuses on the execution of provisioning work�ows
by supporting e�ective deployment of SDGs and customizing the SDGs to application-speci�c
demands. When executing a provisioning work�ow, the SDG manager decides compatible SDG
images on a set of devices selected by the API manager. The Deployment Handler sends the selected
SDG images to the Provisioning Daemon in each device that then starts the SGD and con�gures its
virtual environment. Finally, the Provisioning Agent receives a speci�c application image from the
Provisioning Daemon and installs and executes the image.

4 ALGORITHMS

There are several underlying algorithms used to facilitate fog/edge computing. In this section, we
discuss four algorithms, namely (i) discovery - identifying edge resources within the network that
can be used for distributed computation, (ii) benchmarking - capturing the performance of resources
for decision-making to maximize the performance of deployments, (iii) load-balancing - distributing
workloads across resources based on di�erent criteria such as priorities, fairness, etc, and (iv)
placement - identifying resources appropriate for deploying a workload. Figure 15 denotes this
classi�cation. A histogram of the research publications used is shown in Figure 16.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 2018.

Resource Management in Fog/Edge Computing 0:25

Algorithms

Discovery

Programming Infrastructure

Handshaking Protocol

Message Passing

Benchmarking

Evaluating Functional Properties

Application Benchmarking

Integrated Benchmarking

Load-balancing

Optimization

Cooperative Load-balancing

Graph-based

Breadth First Search

Placement

Dynamic Condition-aware

Iterative techniques

Iterative Over Resources

Iterative Over Problem Space

Fig. 15. A classification of algorithms in fog/edge computing

0

5

10

15

19
91

20
02

20
03

20
12

20
14

20
15

20
16

20
17

20
18

F
re
q
u
e
n
c
y

Year

B R C J

Fig. 16. A histogram of publications reviewed for the classification of the algorithms employed for resource

management in fog/edge computing. Legend: B - books or book chapters; R - reports, including articles

available on pre-print servers or white papers; C - conference or workshop papers; J - journal or magazine

articles.

4.1 Discovery

Discovery refers to identifying edge resources so that workloads from the clouds or from user
devices/sensors can be deployed on them. Typically, edge computing research assumes that edge
resources are discovered. However, this is not an easy task [176]. Three techniques that use pro-
gramming infrastructure, handshaking protocols, and message passing are employed in discovery.
The �rst technique uses programming infrastructure such as Foglets, proposed as a mechanism

for edge resources to join a cloud-edge ecosystem [148]. A discovery protocol was proposed that
matches the resource requirements of an application against available resources on the edge.
Nonetheless, the protocol assumes that the edge resource is publicly known or available for use.
An additional join protocol is implemented that allows the selection of one edge node from among
a set of resources that have the same geographic distance from the user.

The second technique uses handshaking protocols. The Edge-as-a-Service (EaaS) platform presents
a lightweight discovery protocol for a collection of homogeneous edge resources [177]. The platform
requires a master node that may be a compute available network device or a dedicated node that
executes a manager process and communicates with edge nodes. The manager communicates with

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 2018.

0:26 Hong and Varghese

potential edge nodes and executes a process on the edge node to run commands. Once discovered,
the Docker or LXD containers can be deployed on edge nodes.

The bene�t of the EaaS platform is that the discovery protocol implemented is lightweight and
the overhead is only a few seconds for launching, starting, stopping, or terminating containers.
Up to 50 containers with an online game workload similar to PokeMon Go were launched on an
individual edge node. However, this has been carried out in the context of a single collection of edge
nodes. Further research will be required to employ such a model in a federated edge environment.
The major drawback of the EaaS platform is that it assumes a centralized master node that can
communicate with all potential edge nodes. The handshaking protocol assumes that the edge
nodes can be queried and can be made available in a common marketplace via owners. In addition,
the security-related implications of the master node installing a manager on the edge node and
executing commands on it was not considered.
The third technique for discovery uses message passing. In the context of a sensor network in

which the end devices may not necessarily have access to the Internet, there is research suggesting
that messages may be delivered in such a network using services o�ered by the nodes (referred
to as processing nodes) connected to the Internet [91]. A discovery method for identifying the
processing nodes was presented. The research assumed that a user can communicate with any
node in a network and submit queries, and relies on simulation-based validation.

4.2 Benchmarking

Benchmarking is a de facto approach for capturing the performance (of entities such as memory,
CPU, storage, network, etc) of a computing system [172]. Metrics relevant to the performance of
each entity need to be captured using standard performance evaluation tools. Typical tools used
for clusters or supercomputers include LINPACK [48] or NAS Parallel Benchmarks [10].

On the cloud, this is performed by running sample micro or macro applications that stress-tests
each entity to obtain a snapshot of the performance of a Virtual Machine (VM) at any given point in
time [51, 133]. The key challenge of benchmarking a dynamic computing system (where workloads
and conditions change signi�cantly, such as the cloud and the edge) is obtaining metrics in near
real-time [172, 173]. Existing benchmarking techniques for the cloud are time-consuming and
are not practical solutions because they incur a lot of monetary costs. For example, accurately
benchmarking a VMwith 200 GB RAM and 1 TB storage requires a few hours. Alternate lightweight
benchmarking techniques using containers have been proposed that can obtain results more quickly
on the cloud than traditional techniques [93, 175]. However, a few minutes are still required to get
results comparable to traditional benchmarking.

Edge benchmarking can be classi�ed into: (i) benchmarking for evaluating functional properties,
(ii) application-based benchmarking, and (iii) integrated benchmarking. The majority of edge
benchmarking research evaluates power, CPU, and memory performance of edge processors [116].
Benchmarking becomes more challenging in an edge environment for a number of reasons.

First, because edge-speci�c application benchmarks that capture a variety of workloads are not
yet available. Existing benchmarks are typically scienti�c applications that are less suited for the
edge [35]. Instead, voice-driven benchmarks [160] and Internet-of-Things (IoT) applications have
been used [95]. Benchmarking object stores in edge environments have also been proposed [39].
Second, running additional time-consuming applications on resource constrained edge nodes

can be challenging. Spark has been evaluated in a highly resource constrained fog environment
consisting of eight Raspberry Pi single-board computers [71]. The job completion time of Spark is
reduced signi�cantly with the cluster of Raspberry Pi computers, but it still requires a few minutes
to get results. Instead of running time-consuming applications, CloudSim [25] has been used to

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 2018.

Resource Management in Fog/Edge Computing 0:27

simulate edge workloads for estimating resource usage and developing a pricing model in fog
computing [3]. There is a need for lightweight benchmarking tools for the edge.
Finally, it is not su�cient to merely benchmark edge resources, but an integrated approach for

benchmarking cloud and edge resources is required [53]. This will ensure that the performance of all
possible combinations of deployments of the application across the cloud and the edge is considered
for maximizing overall application performance.

4.3 Load-Balancing

As edge data centers are deployed across the network edge, the issue of distributing tasks using
an e�cient load-balancing algorithm has gained signi�cant attention. Existing load-balancing
algorithms at the edge employ four techniques, namely optimization techniques, cooperative load
balancing, graph-based balancing, and using breadth-�rst search.
He et al. [72] proposed the Software De�ned Cloud/Fog Networking (SDCFN) architecture for

the Internet of Vehicles (IoV). SDCFN allows centralized control for networking between vehicles
and helps the middleware to obtain the required information for load balancing. The study adopted
Particle Swarm Optimization - Constrained Optimization (PSO-CO) [135] for load-balancing to
decrease latency and e�ectively achieve the required quality of service (QoS) for vehicles.
CooLoad [15] proposed a cooperative load-balancing model between fog/edge data centers to

decrease service suspension time. CooLoad assigns each data center a bu�er to receive requests
from clients. When the number of items in the bu�er is above a certain threshold, incoming requests
to the data center are load-balanced to an adjacent data center. This work assumed that the data
centers were connected by a high-speed transport for e�ective load balancing.
Song et al. [129] pointed out that existing load-balancing algorithms for cloud platforms that

operate in a single cluster cannot be directly applied to a dynamic and peer-to-peer fog computing
architecture. To realize e�cient load-balancing, they abstracted the fog architecture as a graphmodel

where each vertex indicates a node, and the graph edge denotes data dependency between tasks.
A dynamic graph-repartitioning algorithm that uses previous load-balancing result as input and
minimizes the di�erence between the load-balancing result and the original status was proposed.
Puthal et al. focused on developing an e�cient dynamic load-balancing algorithm with an

authentication method for edge data centers [137]. Tasks were assigned to an under-utilized edge
data center by applying the Breadth First Search (BFS) method. Each data center was modeled using
the current load and the maximum capacity used to compute the current load. The authentication
method allows the load-balancing algorithm to �nd an authenticated data center.

4.4 Placement

One challenging issue in fog/edge computing is to place incoming computation tasks on suitable
fog/edge resources. Placement algorithms address this issue and need to consider the availability
of resources in the fog/edge layer and the environmental changes [45]. Existing techniques can be
classi�ed as dynamic condition-aware techniques and iterative techniques. Iterative techniques can
be further divided into two spaces: iterative over resources, and iterative over the problem spaces.

Wang et al. pointed out that existing work solved placement issues in fog/edge computing under
static network conditions and predetermined resource demands and were not dynamic condition-

aware (do not consider users’ mobility and changes in resource availability) [187]. This shortcoming
was addressed by considering an additional set of parameters including the location and preference
of a user, database location, and the load on the system. A method that predicts the values of the
parameters when service instances of a user are placed in a certain con�guration was proposed.
The predicted values yielded an expected cost and optimal placement con�guration with lowest
cost. Ni et al. [128] predicted the completion time and price of a task based on priced timed Petri

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 2018.

0:28 Hong and Varghese

nets (PTPNs) in order to develop a resource allocation strategy to reduce latency and maximize
resource utilization in fog computing. PTPN e�ectively deals with the dynamic behavior of the fog
system to generate the performance and time cost [4].
Iterative methods over resources in the fog computing hierarchy is another e�ective technique.

Taneja et al. [164] proposed a placement algorithm for hierarchical fog computing that exploits
both conventional cloud and recent fog computing. The algorithm iterates from the fog towards
the cloud for placing computation modules �rst on the available fog nodes. In this algorithm, a
node is represented as a set of three attributes: the CPU, memory, and network bandwidth. Each
computation module expresses its requirement in the form of the three attributes. The proposed
solution �rst sorts the nodes and modules in ascending order to respectively associate the provided
capacity with the requirement. The algorithm then places each module on an appropriate node
that has enough resources, iterating from fog nodes to cloud nodes. The authors validated this
algorithm using iFogSim, a fog computing simulation toolkit developed by Gupta et al. [62].
Souza et al. [159] proposed service placement strategies for hierarchical Fog-to-Cloud (F2C)

architectures in collaboration with service atomization and parallel execution. Service atomization
divides a large service into smaller sub-services for workload distribution between the fog and
the cloud. Parallel execution allows the divided sub-services to run on fog and cloud resources
concurrently. Based on these techniques, the study suggests following three placement strategies:
First-Fit (FF), Best-Fit (BF), and Best-�t with Queue (BQ). FF just selects available edge devices for
allocation of sub-services, and if there are not available ones, FF sends the services to the cloud.
BF sorts sub-services in ascending order based on the requested resources and allocates them to
available edge devices. If the requested amount reaches a certain threshold for edge devices, the
sub-services are sent to the cloud. BQ adopts BF as a basic strategy, but when edge devices are
congested, it determines whether to send sub-services to the cloud or to queue them to the edge
devices based on estimation.

In contrast to the above iterative method, multiple iterations can be performed over the identi�ed

problem space. Skarlat et al. proposed an approach called the Fog Service Placement Problem (FSPP)
to optimally share resources in fog nodes among IoT services [157]. The FSPP considers QoS
constraints such as latency or deadline requirements during placement. In the FSPP, a fog node is
characterized by three attributes, the CPU, memory, and storage, similar to the work of Taneja et
al. [164]. The FSPP suggests a proactive approach where the placement is performed periodically
to meet the QoS requirement. When the response time of an application reaches the upper bound,
the FSPP prioritizes the application and places it on a node that has enough resources. If there are
not enough resources, the algorithm sends the service to the nearest fog network or cloud. The
proposed model was evaluated on an extended iFogSim [62].

5 CONCLUSIONS

In this survey, we noted that technical challenges to managing the limited resources in fog/edge
computing have been addressed to a high degree. However, a few challenges still remain to be
made to improve resource management in terms of the capabilities and performance of fog/edge
computing. We discuss some future research directions to address the remaining challenges.

Fog/edge computing often employs resource-limited devices such as WiFi APs and set-top boxes
that are not suitable for running heavyweight data processing tools such as Apache Spark and
deep learning libraries. An alternative lightweight data processing tool such as Apache Quarks can
be employed in resource-limited edge devices, but it lacks advanced data analytics functions. The
imbalance between lightweight implementations and high performance needs to be addressed.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 2018.

Resource Management in Fog/Edge Computing 0:29

In fog/edge computing, containers are widely used because they realize lightweight virtualization.
However, e�cient accelerator management in containers has not been explored su�ciently, com-
pared to the research in virtual machines [74]. In fog/edge devices, graphics processing units (GPUs),
�eld programmable gate array (FPGAs), and tensor processing units (TPUs) can be employed for
data analytics and deep learning algorithms. To reduce latency in the time-constrained workloads,
accelerator scheduling algorithms that consider real-time characteristics are required in fog/edge
computing.

Hierarchical fog/edge computing exploits both conventional cloud computing and recent fog/edge
computing. In general, tasks that need prompt reaction are processed in fog/edge devices whereas
long-term analysis tasks are performed at the cloud. However, it is challenging how to partition
a single large workload into small tasks and distribute them to both the cloud and fog/edge for
concurrent executions. An e�cient partitioning method and task placement strategy based on
accurate prediction are required.
There are only a few infrastructure options available for pursuing real fog/edge computing

environments. Many academic researchers rely on simulation studies using tools, such as iFogSim
[62] and EdgeCloudSim [158]. Miniature experimental environments have been also set up. For
example, using single-board computers (SBCs) such as Odroid [186] or Raspberry Pi boards [83].
More realistic and large-scale testbeds have been recently set up, but have limited public availability.
These include fog/edge testbeds implemented by Raytheon BBN Technologies [60], the Institut
National de la Recherche Scienti�que [123], Optical Networks and Systems Department [139], and
Princeton University [41]. An e�ort to build realistic and large-scale fog/edge testbeds is required.
Fog/edge computing has gained signi�cant attention over the last few years as an alternative

approach to the conventional centralized cloud computing model. It brings computing resources
close to mobile and IoT devices to reduce communication latency and enable e�cient use of
the network bandwidth. In this survey paper, research on resource management techniques in
fog/edge computing was studied to identify and classify the key contributions in the three areas of
architectures, infrastructure, and algorithms.

ACKNOWLEDGMENTS

The authors are grateful to the anonymous reviewers for their valuable comments and suggestions.

REFERENCES

[1] 2017. OpenFog Reference Architecture for Fog Computing. https://www.openfogconsortium.org/wp-content/uploads/

OpenFog_Reference_Architecture_2_09_17-FINAL.pdf. Accessed: 08/03/2018.

[2] Mohammad Aazam and Eui-Nam Huh. 2014. Fog Computing and Smart Gateway Based Communication for Cloud of

Things. In Future Internet of Things and Cloud (FiCloud), 2014 International Conference on. IEEE, 464–470.

[3] Mohammad Aazam and Eui-Nam Huh. 2015. Fog computing micro datacenter based dynamic resource estimation and

pricing model for IoT. In 2015 IEEE 29th International Conference on Advanced Information Networking and Applications.

IEEE, 687–694.

[4] Parosh Aziz Abdulla and Richard Mayr. 2009. Minimal cost reachability/coverability in priced timed Petri nets. In

International Conference on Foundations of Software Science and Computational Structures. Springer, 348–363.

[5] Saumitra Aditya and Renato J Figueiredo. 2017. Frugal: Building Degree-Constrained Overlay Topology from Social

Graphs. In IEEE 1st International Conference on Fog and Edge Computing. IEEE, 11–20.

[6] Raja Wasim Ahmad, Abdullah Gani, Siti Ha�zah Ab Hamid, Muhammad Shiraz, Abdullah Yousafzai, and Feng Xia.

2015. A Survey on Virtual Machine Migration and Server Consolidation Frameworks for Cloud Data Centers. Journal

of Network and Computer Applications 52 (2015), 11–25.

[7] Saúl Alonso-Monsalve, Félix García-Carballeira, and Alejandro Calderón. 2018. A heterogeneous mobile cloud

computing model for hybrid clouds. Future Generation Computer Systems 87 (2018), 651–666.

[8] Brian Amento, Bharath Balasubramanian, Robert J Hall, Kaustubh Joshi, Gueyoung Jung, and K Hal Purdy. 2016.

FocusStack: Orchestrating Edge Clouds Using Location-Based Focus of Attention. In Edge Computing (SEC), IEEE/ACM

Symposium on. IEEE, 179–191.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 2018.

https://www.openfogconsortium.org/wp-content/uploads/OpenFog_Reference_Architecture_2_09_17-FINAL.pdf
https://www.openfogconsortium.org/wp-content/uploads/OpenFog_Reference_Architecture_2_09_17-FINAL.pdf

0:30 Hong and Varghese

[9] Christos Anagnostopoulos. 2014. Time-optimized contextual information forwarding in mobile sensor networks. J.

Parallel and Distrib. Comput. 74, 5 (2014), 2317–2332.

[10] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A.

Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga. 1991. The NAS Parallel Benchmarks

- Summary and Preliminary Results. In Proceedings of the 1991 ACM/IEEE Conference on Supercomputing. 158–165.

[11] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew

War�eld. 2003. Xen and the Art of Virtualization. In ACM SIGOPS operating systems review, Vol. 37. 164–177.

[12] Luca Becchetti, Peter Korteweg, Alberto Marchetti-Spaccamela, Martin Skutella, Leen Stougie, and Andrea Vitaletti.

2006. Latency constrained aggregation in sensor networks. In European Symposium on Algorithms. Springer, 88–99.

[13] Paolo Bellavista, Stefano Chessa, Luca Foschini, Leo Gioia, and Michele Girolami. 2018. Human-Enabled Edge

Computing: Exploiting the Crowd as a Dynamic Extension of Mobile Edge Computing. IEEE Communications

Magazine 56, 1 (2018), 145–155.

[14] Paolo Bellavista and Alessandro Zanni. 2017. Feasibility of Fog Computing Deployment based on Docker Container-

ization over Raspberry Pi. In Proceedings of the 18th International Conference on Distributed Computing and Networking.

ACM, 16.

[15] Roberto Beraldi, Abderrahmen Mtibaa, and Hussein Alnuweiri. 2017. Cooperative Load Balancing Scheme for Edge

Computing Resources. In 2nd International Conference on Fog and Mobile Edge Computing. IEEE, 94–100.

[16] Ketan Bhardwaj, Pragya Agrawal, Ada Gavrilovska, and Karsten Schwan. 2015. AppSachet: Distributed App Delivery

from the Edge Cloud. In Mobile Computing, Applications, and Services - 7th International Conference, MobiCASE 2015,

Berlin, Germany, November 12-13, 2015, Revised Selected Papers. 89–106.

[17] Arani Bhattcharya and Pradipta De. 2016. Computation O�oading from Mobile Devices: Can Edge Devices Perform

Better Than the Cloud?. In Proceedings of the Third International Workshop on Adaptive Resource Management and

Scheduling for Cloud Computing. 1–6.

[18] Luiz Fernando Bittencourt, Márcio Moraes Lopes, Ioan Petri, and Omer F Rana. 2015. Towards Virtual Machine

Migration in Fog Computing. In 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing.

IEEE, 1–8.

[19] Flavio Bonomi, Rodolfo Milito, Preethi Natarajan, and Jiang Zhu. 2014. Fog Computing: A Platform for Internet of

Things and Analytics. In Big data and internet of things: A roadmap for smart environments. 169–186.

[20] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. 2012. Fog computing and its role in the internet of

things. In Proceedings of the �rst edition of the MCC workshop on Mobile cloud computing. ACM, 13–16.

[21] E. Borgia, R. Bruno, M. Conti, D. Mascitti, and A. Passarella. 2016. Mobile Edge Clouds for Information-Centric IoT

Services. In IEEE Symposium on Computers and Communication. 422–428.

[22] Eric A Brewer. 2015. Kubernetes and the Path to Cloud Native. In Proceedings of the Sixth ACM Symposium on Cloud

Computing. 167–167.

[23] A. Brogi and S. Forti. 2017. QoS-Aware Deployment of IoT Applications Through the Fog. IEEE Internet of Things

Journal 4, 5 (2017), 1185–1192.

[24] M. Báguena, G. Samaras, A. Pamboris, M. L. Sichitiu, P. Pietzuch, and P. Manzoni. 2016. Towards Enabling Hyper-

responsive Mobile Apps Through Network Edge Assistance. In 13th IEEE Annual Consumer Communications Network-

ing Conference. 399–404.

[25] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF De Rose, and Rajkumar Buyya. 2011. CloudSim:

a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning

algorithms. Software: Practice and experience 41, 1 (2011), 23–50.

[26] Guilhem Castagnos and Fabien Laguillaumie. 2015. Linearly Homomorphic Encryption from DDH. In Topics in

Cryptology — CT-RSA 2015, Kaisa Nyberg (Ed.). Springer International Publishing, 487–505.

[27] Walter Cerroni and Franco Callegati. 2014. Live Migration of Virtual Network Functions in Cloud-based Edge

Networks. In IEEE International Conference on Communications. IEEE, 2963–2968.

[28] Abhishek Chandra, Jon Weissman, and Benjamin Heintz. 2013. Decentralized Edge Clouds. IEEE Internet Computing

17, 5 (2013), 70–73.

[29] Long Chen, JigangWu, Xin Long, and Zikai Zhang. 2017. ENGINE: Cost E�ective O�oading inMobile Edge Computing

with Fog-Cloud Cooperation. CoRR abs/1711.01683 (2017). arXiv:1711.01683 http://arxiv.org/abs/1711.01683

[30] X. Chen. 2015. Decentralized Computation O�oading Game for Mobile Cloud Computing. IEEE Transactions on

Parallel and Distributed Systems 26, 4 (2015), 974–983.

[31] X. Chen, L. Jiao,W. Li, and X. Fu. 2016. E�cient Multi-User Computation O�oading forMobile-Edge Cloud Computing.

IEEE/ACM Transactions on Networking 24, 5 (2016), 2795–2808.

[32] X. Chen and J. Zhang. 2017. When D2D Meets Cloud: Hybrid Mobile Task O�oadings in Fog Computing. In IEEE

International Conference on Communications. 1–6.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 2018.

http://arxiv.org/abs/1711.01683
http://arxiv.org/abs/1711.01683

Resource Management in Fog/Edge Computing 0:31

[33] Yanan Chen, Zhenyu Lu, Hu Xiong, and Weixiang Xu. 2018. Privacy-Preserving Data Aggregation Protocol for Fog

Computing-Assisted Vehicle-to-Infrastructure Scenario. Security and Communication Networks (2018), 14.

[34] Zhuo Chen, Lu Jiang, Wenlu Hu, Kiryong Ha, Brandon Amos, Padmanabhan Pillai, Alex Hauptmann, and Mahadev

Satyanarayanan. 2015. Early Implementation Experience with Wearable Cognitive Assistance Applications. In

Proceedings of the Workshop on Wearable Systems and Applications. 33–38.

[35] Ronan-Alexandre Cherrueau, Dimitri Pertin, Anthony Simonet, Adrien Lebre, and Matthieu Simonin. 2017. Toward

a Holistic Framework for Conducting Scienti�c Evaluations of OpenStack. In Proceedings of the 17th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing. 544–548.

[36] Susanta Nanda Tzi-cker Chiueh and Stony Brook. 2005. A survey on virtualization technologies. Rpe Report 142

(2005).

[37] NM Mosharaf Kabir Chowdhury and Raouf Boutaba. 2010. A survey of network virtualization. Computer Networks

54, 5 (2010), 862–876.

[38] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin Patti. 2011. CloneCloud: Elastic

Execution Between Mobile Device and Cloud. In Proceedings of the Sixth Conference on Computer Systems. 301–314.

[39] B. Confais, A. Lebre, and B. Parrein. 2016. Performance Analysis of Object Store Systems in a Fog/Edge Computing

Infrastructures. In IEEE International Conference on Cloud Computing Technology and Science. 294–301.

[40] Bastien Confais, Adrien Lebre, and Benoît Parrein. 2017. An Object Store Service for a Fog/Edge Computing

Infrastructure Based on IPFS and a Scale-Out NAS. In IEEE 1st International Conference on Fog and Edge Computing.

41–50.

[41] OpenFog Consortium et al. 2017. OpenFog reference architecture for fog computing. Architecture Working Group

(2017).

[42] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan Saroiu, Ranveer Chandra, and Paramvir

Bahl. 2010. MAUI: Making Smartphones Last Longer with Code O�oad. In Proceedings of the 8th international

conference on Mobile systems, applications, and services. ACM, 49–62.

[43] Yong Cui, Jian Song, Kui Ren, Minming Li, Zongpeng Li, Qingmei Ren, and Yangjun Zhang. 2017. Software De�ned

Cooperative O�oading for Mobile Cloudlets. IEEE/ACM Transactions on Networking 25, 3 (2017), 1746–1760.

[44] Amir Vahid Dastjerdi and Rajkumar Buyya. 2016. Fog computing: Helping the Internet of Things realize its potential.

Computer 49, 8 (2016), 112–116.

[45] Amir Vahid Dastjerdi, Harshit Gupta, Rodrigo N Calheiros, Soumya K Ghosh, and Rajkumar Buyya. 2016. Fog

computing: Principles, architectures, and applications. In Internet of Things. Elsevier, 61–75.

[46] Marcos Dias de Assunção, Alexandre da Silva Veith, and Rajkumar Buyya. 2018. Distributed Data Stream Processing

and Edge Computing: A Survey on Resource Elasticity and Future Directions. Journal of Network and Computer

Applications 103 (2018), 1 – 17.

[47] Hoang T. Dinh, Chonho Lee, Dusit Niyato, and Ping Wang. 2013. A Survey of Mobile Cloud Computing: Architecture,

Applications, and Approaches. Wireless Communications and Mobile Computing 13, 18 (2013), 1587–1611.

[48] Jack J Dongarra, Piotr Luszczek, and Antoine Petitet. 2003. The LINPACK benchmark: past, present and future.

Concurrency and Computation: practice and experience 15, 9 (2003), 803–820.

[49] I. Farris, L. Militano, M. Nitti, L. Atzori, and A. Iera. 2017. MIFaaS: A Mobile-IoT-Federation-as-a-Service Model for

Dynamic Cooperation of IoT Cloud Providers. Future Generation Computer Systems 70 (2017), 126–137.

[50] Elena Fasolo, Michele Rossi, Jorg Widmer, and Michele Zorzi. 2007. In-network aggregation techniques for wireless

sensor networks: a survey. IEEE Wireless Communications 14, 2 (2007), 70–87.

[51] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad Alisafaee, Djordje Jevdjic, Cansu

Kaynak, Adrian Daniel Popescu, Anastasia Ailamaki, and Babak Falsa�. 2012. Clearing the Clouds: A Study of

Emerging Scale-out Workloads on Modern Hardware. Proceedings of the Seventeenth International Conference on

Architectural Support for Programming Languages and Operating Systems (2012).

[52] N. Fernando, S. W. Loke, and W. Rahayu. 2017. Computing with Nearby Mobile Devices: a Work Sharing Algorithm

for Mobile Edge-Clouds. IEEE Transactions on Cloud Computing PP, 99 (2017), 1–1.

[53] M. Ficco, C. Esposito, Y. Xiang, and F. Palmieri. 2017. Pseudo-Dynamic Testing of Realistic Edge-Fog Cloud Ecosystems.

IEEE Communications Magazine 55, 11 (2017), 98–104.

[54] Mattias Forsman, Andreas Glad, Lars Lundberg, and Dragos Ilie. 2015. Algorithms for Automated Live Migration of

Virtual Machines. Journal of Systems and Software 101 (2015), 110–126.

[55] C. Funai, C. Tapparello, and W. Heinzelman. 2016. Mobile to Mobile Computational O�oading in Multi-Hop

Cooperative Networks. In IEEE Global Communications Conference. 1–7.

[56] Raghu K Ganti, Fan Ye, and Hui Lei. 2011. Mobile Crowdsensing: Current State and Future Challenges. IEEE

Communications Magazine 49, 11 (2011).

[57] Lei Gao, Mike Dahlin, Amol Nayate, Jiandan Zheng, and Arun Iyengar. 2003. Application Speci�c Data Replication

for Edge Services. In Proceedings of the 12th International Conference on World Wide Web. 449–460.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 2018.

0:32 Hong and Varghese

[58] W. Gao. 2014. Opportunistic Peer-to-Peer Mobile Cloud Computing at the Tactical Edge. In IEEE Military Communi-

cations Conference. 1614–1620.

[59] Nam Ky Giang, Michael Blackstock, Rodger Lea, and Victor CM Leung. 2015. Developing iot applications in the fog:

A distributed data�ow approach. In 2015 5th International Conference on the Internet of Things (IOT). IEEE, 155–162.

[60] Abhimanyu Gosain, Mark Berman, Marshall Brinn, Thomas Mitchell, Chuan Li, Yuehua Wang, Hai Jin, Jing Hua,

and Hongwei Zhang. 2016. Enabling Campus Edge Computing Using Geni Racks and Mobile Resources. In Edge

Computing (SEC), IEEE/ACM Symposium on. 41–50.

[61] Lin Gu, Deze Zeng, Song Guo, Ahmed Barnawi, and Yong Xiang. 2017. Cost E�cient Resource Management in Fog

Computing Supported Medical Cyber-Physical System. IEEE Transactions on Emerging Topics in Computing 5, 1 (2017),

108–119.

[62] Harshit Gupta, Amir Vahid Dastjerdi, Soumya K Ghosh, and Rajkumar Buyya. 2017. iFogSim: A toolkit for modeling

and simulation of resource management techniques in the Internet of Things, Edge and Fog computing environments.

Software: Practice and Experience 47, 9 (2017), 1275–1296.

[63] Karim Habak, Mostafa Ammar, Khaled A. Harras, and Ellen Zegura. 2015. Femto Clouds: Leveraging Mobile Devices

to Provide Cloud Service at the Edge. In Proceedings of the IEEE 8th International Conference on Cloud Computing.

9–16.

[64] Karim Habak, Ellen W. Zegura, Mostafa H. Ammar, and Khaled A. Harras. 2017. Workload Management for Dynamic

Mobile Device Clusters in Edge Femtoclouds. In Proceedings of the 2nd ACM/IEEE Symposium on Edge Computing.

6:1–6:14.

[65] Muhammad Habib ur Rehman, Prem Prakash Jayaraman, Saif ur Rehman Malik, Atta ur Rehman Khan, and Mohamed

Medhat Gaber. 2017. RedEdge: A Novel Architecture for Big Data Processing in Mobile Edge Computing Environments.

Journal of Sensor and Actuator Networks 6, 3 (2017).

[66] Akram Hakiri, Bassem Sellami, Prithviraj Patil, Pascal Berthou, and Aniruddha Gokhale. 2017. Managing Wireless

Fog Networks using Software-De�ned Networking. In IEEE/ACS 14th International Conference on Computer Systems

and Applications.

[67] Bo Han, Vijay Gopalakrishnan, Lusheng Ji, and Seungjoon Lee. 2015. Network Function Virtualization: Challenges

and Opportunities for Innovations. IEEE Communications Magazine 53, 2 (2015), 90–97.

[68] N. Harth and C. Anagnostopoulos. 2017. Quality-aware Aggregation and Predictive Analytics at the Edge. In IEEE

International Conference on Big Data. 17–26.

[69] Nicholas Haydel, Sandra Gesing, Ian Taylor, Gregory Madey, Abdul Dakkak, Simon Garcia De Gonzalo, and Wen-

Mei W Hwu. 2015. Enhancing the Usability and Utilization of Accelerated Architectures via Docker. In IEEE/ACM 8th

International Conference on Utility and Cloud Computing. 361–367.

[70] Jing He, Shouling Ji, Yi Pan, and Yingshu Li. 2014. Constructing load-balanced data aggregation trees in probabilistic

wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems 25, 7 (2014), 1681–1690.

[71] Jianhua He, Jian Wei, Kai Chen, Zuoyin Tang, Yi Zhou, and Yan Zhang. 2018. Multitier fog computing with large-scale

iot data analytics for smart cities. IEEE Internet of Things Journal 5, 2 (2018), 677–686.

[72] Xiuli He, Zhiyuan Ren, Chenhua Shi, and Jian Fang. 2016. A Novel Load Balancing Strategy of Software-de�ned

Cloud/Fog Networking in the Internet of Vehicles. China Communications 13, 2 (2016), 140–149.

[73] Matt Helsley. 2009. LXC: Linux Container Tools. IBM developerWorks Technical Library 11 (2009).

[74] Cheol-Ho Hong, Ivor Spence, and Dimitrios S Nikolopoulos. 2017. GPU Virtualization and Scheduling Methods: A

Comprehensive Survey. ACM Computing Surveys (CSUR) 50, 3 (2017), 35.

[75] Hua-Jun Hong. 2017. From Cloud Computing to Fog Computing: Unleash the Power of Edge and End Devices. In

IEEE International Conference on Cloud Computing Technology and Science. IEEE, 331–334.

[76] Hua-Jun Hong, Jo-Chi Chuang, and Cheng-Hsin Hsu. 2016. Animation Rendering on Multimedia Fog Computing

Platforms. In IEEE International Conference on Cloud Computing Technology and Science. IEEE, 336–343.

[77] Kirak Hong, David Lillethun, Umakishore Ramachandran, Beate Ottenwälder, and Boris Koldehofe. 2013. Mobile

Fog: A Programming Model for Large-scale Applications on the Internet of Things. In Proceedings of the second ACM

SIGCOMM workshop on Mobile cloud computing. 15–20.

[78] Xumin Huang, Rong Yu, Jiawen Kang, Yejun He, and Yan Zhang. 2017. Exploring Mobile Edge Computing for

5G-enabled Software De�ned Vehicular Networks. IEEE Wireless Communications 24, 6 (2017), 55–63.

[79] Stepan Ivanov, Sasitharan Balasubramaniam, Dmitri Botvich, and Ozgur B Akan. 2016. Gravity Gradient Routing for

Information Delivery in Fog Wireless Sensor Networks. Ad Hoc Networks 46 (2016), 61–74.

[80] Minsung Jang, Hyunjong Lee, Karsten Schwan, and Ketan Bhardwaj. 2016. SOUL: An Edge-Cloud System for Mobile

Applications in a Sensor-rich World. In IEEE/ACM Symposium on Edge Computing. 155–167.

[81] Vimalkumar Jeyakumar, Mohammad Alizadeh, David Mazières, Balaji Prabhakar, Changhoon Kim, and Albert

Greenberg. 2013. EyeQ: Practical Network Performance Isolation at the Edge. In Proceedings of the 10th USENIX

Conference on Networked Systems Design and Implementation. 297–312.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 2018.

Resource Management in Fog/Edge Computing 0:33

[82] Hongbo Jiang, Shudong Jin, and Chonggang Wang. 2011. Prediction or not? An energy-e�cient framework for

clustering-based data collection in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems 22,

6 (2011), 1064–1071.

[83] Steven J. Johnston, Philip J. Basford, Colin S. Perkins, Herry Herry, Fung Po Tso, Dimitrios Pezaros, Robert D.

Mullins, Eiko Yoneki, Simon J. Cox, and Jeremy Singer. 2018. Commodity Single Board Computer Clusters and Their

Applications. Future Generation Computer Systems (June 2018).

[84] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason Mars, and Lingjia Tang. 2017.

Neurosurgeon: Collaborative Intelligence Between the Cloud and Mobile Edge. In Proceedings of the Twenty-Second

International Conference on Architectural Support for Programming Languages and Operating Systems. 615–629.

[85] Vasileios Karagiannis, Periklis Chatzimisios, Francisco Vazquez-Gallego, and Jesus Alonso-Zarate. 2015. A Survey on

Application Layer Protocols for the Internet of Things. Transaction on IoT and Cloud Computing 3, 1 (2015), 11–17.

[86] Kuljeet Kaur, Tanya Dhand, Neeraj Kumar, and Sherali Zeadally. 2017. Container-as-a-service at the edge: Trade-o�

between energy e�ciency and service availability at fog nano data centers. IEEE wireless communications 24, 3 (2017),

48–56.

[87] Yasaman Keshtkarjahromi, Yuxuan Xing, and Hulya Seferoglu. 2018. Dynamic Heterogeneity-Aware Coded Coopera-

tive Computation at the Edge. In 26th IEEE International Conference on Network Protocols. 23–33.

[88] Amin M Khan and Felix Freitag. 2017. On Edge Cloud Service Provision with Distributed Home Servers. In Cloud

Computing Technology and Science (CloudCom), 2017 IEEE International Conference on. IEEE, 223–226.

[89] Dragi Kimovski, Humaira Ijaz, Nishant Saurabh, and Radu Prodan. 2018. Adaptive Nature-inspired Fog Architecture.

In IEEE International Conference on Fog and Edge Computing.

[90] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. 2007. KVM: The Linux Virtual Machine Monitor.

In Proceedings of the Linux symposium, Vol. 1. 225–230.

[91] R. Kolcun, D. Boyle, and J. A. McCann. 2015. Optimal processing node discovery algorithm for distributed computing

in IoT. In 5th International Conference on the Internet of Things. 72–79.

[92] Sokol Kosta, Andrius Aucinas, Pan Hui, Richard Mortier, and Xinwen Zhang. 2012. Thinkair: Dynamic Resource

Allocation and Parallel Execution in the Cloud for Mobile Code O�oading. In Infocom, 2012 Proceedings IEEE. 945–953.

[93] Zhanibek Kozhirbayev and Richard O. Sinnott. 2017. A Performance Comparison of Container-based Technologies

for the Cloud. Future Generation Computer Systems 68 (2017), 175 – 182.

[94] Diego Kreutz, Fernando MV Ramos, Paulo Esteves Verissimo, Christian Esteve Rothenberg, Siamak Azodolmolky,

and Steve Uhlig. 2015. Software-De�ned Networking: A Comprehensive Survey. Proc. IEEE 103, 1 (2015), 14–76.

[95] A. Krylovskiy. 2015. Internet of Things Gateways Meet Linux Containers: Performance Evaluation and Discussion. In

IEEE 2nd World Forum on Internet of Things (WF-IoT). 222–227.

[96] Insup Lee, Oleg Sokolsky, Sanjian Chen, John Hatcli�, Eunkyoung Jee, BaekGyu Kim, Andrew King, Margaret Mullen-

Fortino, Soojin Park, Alexander Roederer, et al. 2012. Challenges and Research Directions in Medical Cyber–Physical

Systems. Proc. IEEE 100, 1 (2012), 75–90.

[97] Hongxing Li, Chuan Wu, Qiang-Sheng Hua, and Francis C. M. Lau. 2014. Latency-minimizing Data Aggregation in

Wireless Sensor Networks Under Physical Interference Model. Ad Hoc Networks 12 (Jan. 2014), 52–68.

[98] H. Li, C. Wu, D. Yu, Q. S. Hua, and F. C. M. Lau. 2013. Aggregation Latency-Energy Trade-o� in Wireless Sensor

Networks with Successive Interference Cancellation. IEEE Transactions on Parallel and Distributed Systems 24, 11

(2013), 2160–2170.

[99] Y. Lin, B. Kemme, M. Patino-Martinez, and R. Jimenez-Peris. 2007. Enhancing Edge Computing with Database

Replication. In 26th IEEE International Symposium on Reliable Distributed Systems (SRDS 2007). 45–54.

[100] P. Liu, D. Willis, and S. Banerjee. 2016. ParaDrop: Enabling Lightweight Multi-tenancy at the Network’s Extreme

Edge. In IEEE/ACM Symposium on Edge Computing. 1–13.

[101] R. Lu, K. Heung, A. H. Lashkari, and A. A. Ghorbani. 2017. A Lightweight Privacy-Preserving Data Aggregation

Scheme for Fog Computing-Enhanced IoT. IEEE Access 5 (2017), 3302–3312.

[102] Xiao Ma, Chuang Lin, Xudong Xiang, and Congjie Chen. 2015. Game-theoretic Analysis of Computation O�oading

for Cloudlet-based Mobile Cloud Computing. In Proceedings of the 18th ACM International Conference on Modelling,

Analysis and Simulation of Wireless and Mobile Systems. 271–278.

[103] Redowan Mahmud, Satish Narayana Srirama, Kotagiri Ramamohanarao, and Rajkumar Buyya. 2018. Quality of

Experience (QoE)-aware Placement of Applications in Fog Computing Environments. J. Parallel and Distrib. Comput.

(2018).

[104] Amit Manjhi, Suman Nath, and Phillip B. Gibbons. 2005. Tributaries and Deltas: E�cient and Robust Aggregation

in Sensor Network Streams. In Proceedings of the ACM SIGMOD International Conference on Management of Data.

287–298.

[105] D. Mantri, N. R. Prasad, and R. Prasad. 2013. BHCDA: Bandwidth e�cient heterogeneity aware cluster based data

aggregation for Wireless Sensor Network. In International Conference on Advances in Computing, Communications

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 2018.

0:34 Hong and Varghese

and Informatics. 1064–1069.

[106] Dnyaneshwar S. Mantri, Neeli Rashmi Prasad, and Ramjee Prasad. 2015. Bandwidth E�cient Cluster-based Data

Aggregation for Wireless Sensor Network. Computers and Electrical Engineering 41, C (Jan. 2015), 256–264.

[107] Dnyaneshwar S. Mantri, Neeli Rashmi Prasad, and Ramjee Prasad. 2016. Mobility and Heterogeneity Aware Cluster-

Based Data Aggregation for Wireless Sensor Network. Wireless Personal Communications 86, 2 (01 Jan 2016), 975–993.

[108] Antonio Manzalini, Roberto Minerva, Franco Callegati, Walter Cerroni, and Aldo Campi. 2013. Clouds of Virtual

Machines in Edge Networks. IEEE Communications Magazine 51, 7 (2013), 63–70.

[109] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief. 2017. A Survey on Mobile Edge Computing: The Communication

Perspective. IEEE Communications Surveys Tutorials 19, 4 (2017), 2322–2358.

[110] Stephan Rei� Marganiec, Marcel Tilly, and Helge Janicke. 2014. Low-Latency Service Data Aggregation Using Policy

Obligations. In ICWS ’14 Proceedings of the 2014 IEEE International Conference on Web Services. 526–533.

[111] Violeta Medina and Juan Manuel García. 2014. A Survey of Migration Mechanisms of Virtual Machines. Comput.

Surveys 46, 3 (2014), 30.

[112] Dirk Merkel. 2014. Docker: Lightweight Linux Containers for Consistent Development and Deployment. Linux

Journal 2014, 239 (2014), 2.

[113] D. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, and B. Richard. 2002. Peer-to-Peer Computing. Technical

Report HPL-2002-57. HP Laboratories.

[114] N. Mohan and J. Kangasharju. 2016. Edge-Fog Cloud: A Distributed Cloud for Internet of Things Computations. In

Cloudi�cation of the Internet of Things. 1–6.

[115] Roberto Morabito. 2016. A performance evaluation of container technologies on Internet of Things devices. In 2016

IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). IEEE, 999–1000.

[116] R. Morabito. 2017. Virtualization on Internet of Things Edge Devices With Container Technologies: A Performance

Evaluation. IEEE Access 5 (2017), 8835–8850.

[117] Roberto Morabito and Nicklas Beijar. 2016. Enabling Data Processing at the Network Edge Through Lightweight

Virtualization Technologies. In IEEE International Conference on Sensing, Communication and Networking. 1–6.

[118] R. Morabito, V. Cozzolino, A. Y. Ding, N. Beijar, and J. Ott. 2018. Consolidate IoT Edge Computing with Lightweight

Virtualization. IEEE Network 32, 1 (Jan 2018), 102–111.

[119] Rafael Moreno-Vozmediano, Eduardo Huedo, Ignacio M Llorente, Rubén S Montero, Philippe Massonet, Massimo

Villari, Giovanni Merlino, Antonio Celesti, Anna Levin, Liran Schour, et al. 2015. BEACON: A Cloud Network

Federation Framework. In European Conference on Service-Oriented and Cloud Computing. 325–337.

[120] Rafael Moreno-Vozmediano, Ruben S Montero, Eduardo Huedo, and Ignacio M Llorente. 2017. Cross-site Virtual

Network in Cloud and Fog Computing. IEEE Cloud Computing 4, 2 (2017), 46–53.

[121] Abderrahmen Mtibaa, Afnan Fahim, Khaled A. Harras, and Mostafa H. Ammar. 2013. Towards Resource Sharing in

Mobile Device Clouds: Power Balancing Across Mobile Devices. ACM SIGCOMM Computer Communication Review

43, 4 (Aug. 2013), 51–56.

[122] A. Mtibaa, K. Harras, and H. Alnuweiri. 2015. Friend or Foe? Detecting and Isolating Malicious Nodes in Mobile Edge

Computing Platforms. In 7th International Conference on Cloud Computing Technology and Science (CloudCom). 42–49.

[123] Raul Muñoz, Laia Nadal, Ramon Casellas, Michela Svaluto Moreolo, Ricard Vilalta, Josep Maria Fàbrega, Ricardo

Martínez, Arturo Mayoral, and Fco Javier Vílchez. 2017. The ADRENALINE testbed: An SDN/NFV packet/optical

transport network and edge/core cloud platform for end-to-end 5G and IoT services. In 2017 European Conference on

Networks and Communications (EuCNC). IEEE, 1–5.

[124] Stefan Nastic, Thomas Rausch, Ognjen Scekic, Schahram Dustdar, Marjan Gusev, Bojana Koteska, Magdalena Kostoska,

Boro Jakimovski, Sasko Ristov, and Radu Prodan. 2017. A Serverless Real-Time Data Analytics Platform for Edge

Computing. IEEE Internet Computing 21, 4 (2017), 64–71.

[125] Stefan Nastic, Sanjin Sehic, Duc-Hung Le, Hong-Linh Truong, and Schahram Dustdar. 2014. Provisioning Software-

De�ned IoT Cloud Systems. In International Conference on Future Internet of Things and Cloud. 288–295.

[126] Stefan Nastic, Hong-Linh Truong, and Schahram Dustdar. 2016. A Middleware Infrastructure for Utility-based

Provisioning of IoT Cloud Systems. In IEEE/ACM Symposium on Edge Computing. 28–40.

[127] Suman Nath, Phillip B. Gibbons, Srinivasan Seshan, and Zachary R. Anderson. 2004. Synopsis Di�usion for Robust

Aggregation in Sensor Networks. In Proceedings of the 2nd International Conference on Embedded Networked Sensor

Systems. 250–262.

[128] Lina Ni, Jinquan Zhang, Changjun Jiang, Chungang Yan, and Kan Yu. 2017. Resource allocation strategy in fog

computing based on priced timed petri nets. ieee internet of things journal 4, 5 (2017), 1216–1228.

[129] SongNingning, Gong Chao, An Xingshuo, and ZhanQiang. 2016. Fog Computing Dynamic Load BalancingMechanism

Based on Graph Repartitioning. China Communications 13, 3 (2016), 156–164.

[130] Takayuki Nishio, Ryoichi Shinkuma, Tatsuro Takahashi, and Narayan B. Mandayam. 2013. Service-oriented Hetero-

geneous Resource Sharing for Optimizing Service Latency in Mobile Cloud. In Proceedings of the 1st International

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 2018.

Resource Management in Fog/Edge Computing 0:35

Workshop on Mobile Cloud Computing and Networking. 19–26.

[131] Opeyemi Osanaiye, Shuo Chen, Zheng Yan, Rongxing Lu, Kim-Kwang Raymond Choo, and Mqhele Dlodlo. 2017.

From cloud to Fog Computing: A Review and a Conceptual Live VM Migration Framework. IEEE Access 5 (2017),

8284–8300.

[132] Claus Pahl and Brian Lee. 2015. Containers and Clusters for Edge Cloud Architectures–A Technology Review. In

Future Internet of Things and Cloud (FiCloud), 2015 3rd International Conference on. IEEE, 379–386.

[133] Tapti Palit, Yongming Shen, and Michael Ferdman. 2016. Demystifying Cloud Benchmarking. In IEEE International

Symposium on Performance Analysis of Systems and Software. 122–132.

[134] J. Panneerselvam, J. Hardy, L. Liu, B. Yuan, and N. Antonopoulos. 2016. Mobilouds: An Energy E�cient MCC

Collaborative Framework With Extended Mobile Participation for Next Generation Networks. IEEE Access 4 (2016),

9129–9144.

[135] Konstantinos E Parsopoulos, Michael N Vrahatis, et al. 2002. Particle Swarm Optimization Method for Constrained

Optimization Problems. Intelligent Technologies–Theory and Application: New Trends in Intelligent Technologies 76, 1

(2002), 214–220.

[136] T. Penner, A. Johnson, B. Van Slyke, M. Guirguis, and Q. Gu. 2014. Transient clouds: Assignment and Collaborative

Execution of Tasks on Mobile Devices. In IEEE Global Communications Conference. 2801–2806.

[137] Deepak Puthal, Mohammad S Obaidat, Priyadarsi Nanda, Mukesh Prasad, Saraju P Mohanty, and Albert Y Zomaya.

2018. Secure and Sustainable Load Balancing of Edge Data Centers in Fog Computing. IEEE Communications Magazine

56, 5 (2018), 60–65.

[138] Ramesh Rajagopalan and Pramod K Varshney. 2006. Data-aggregation Techniques in Sensor Networks: A Survey.

IEEE Communications Surveys Tutorials 8, 4 (2006), 48–63.

[139] Bhaskar Prasad Rimal, Martin Maier, and Mahadev Satyanarayanan. 2018. Experimental Testbed for Edge Computing

in Fiber-Wireless Broadband Access Networks. IEEE Communications Magazine 56, 8 (2018), 160–167.

[140] Sankardas Roy, Mauro Conti, Sanjeev Setia, and Sushil Jajodia. 2014. Secure data aggregation in wireless sensor

networks: Filtering out the attacker’s impact. IEEE Transactions on Information Forensics and Security 9, 4 (2014),

681–694.

[141] Mathew Ryden, Kwangsung Oh, Abhishek Chandra, and Jon Weissman. 2014. Nebula: Distributed Edge Cloud for

Data Intensive Computing. In IEEE International Conference on Cloud Engineering. 57–66.

[142] Y. Sahni, J. Cao, S. Zhang, and L. Yang. 2017. Edge Mesh: A New Paradigm to Enable Distributed Intelligence in

Internet of Things. IEEE Access 5 (2017), 16441–16458.

[143] O. Sallent, J. Perez-Romero, R. Ferrus, and R. Agusti. 2017. On Radio Access Network Slicing from a Radio Resource

Management Perspective. IEEE Wireless Communications 24, 5 (October 2017), 166–174.

[144] Z. Sanaei, S. Abolfazli, A. Gani, and R. Buyya. 2014. Heterogeneity in Mobile Cloud Computing: Taxonomy and Open

Challenges. IEEE Communications Surveys Tutorials 16, 1 (2014), 369–392.

[145] Daniele Santoro, Daniel Zozin, Daniele Pizzolli, Francesco De Pellegrini, and Silvio Cretti. 2017. Foggy: A Platform

for Workload Orchestration in a Fog Computing Environment. In IEEE International Conference on Cloud Computing

Technology and Science. 231–234.

[146] Mahadev Satyanarayanan. 2017. The emergence of edge computing. Computer 50, 1 (2017), 30–39.

[147] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and Nigel Davies. 2009. The Case for VM-based Cloudlets

in Mobile Computing. IEEE pervasive Computing 8, 4 (2009).

[148] Enrique Saurez, Kirak Hong, Dave Lillethun, Umakishore Ramachandran, and Beate Ottenwälder. 2016. Incremental

Deployment and Migration of Geo-distributed Situation Awareness Applications in the Fog. In Proceedings of the 10th

ACM International Conference on Distributed and Event-based Systems. 258–269.

[149] Petri Savolainen, Sumi Helal, Jukka Reitmaa, Kai Kuikkaniemi, Giulio Jacucci, Mikko Rinne, Marko Turpeinen, and

Sasu Tarkoma. 2013. Spaceify: A Client-edge-server Ecosystem for Mobile Computing in Smart Spaces. In Proceedings

of the 19th Annual International Conference on Mobile Computing and Networking. 211–214.

[150] Omar Sefraoui, Mohammed Aissaoui, and Mohsine Eleuldj. 2012. OpenStack: Toward an Open-source Solution for

Cloud Computing. International Journal of Computer Applications 55, 3 (2012).

[151] Mennan Selimi, Amin M Khan, Emmanouil Dimogerontakis, Felix Freitag, and Roger Pueyo Centelles. 2015. Cloud

services in the gui�. net community network. Computer Networks 93 (2015), 373–388.

[152] Shashank Shekhar, Ajay Dev Chhokra, Anirban Bhattacharjee, Guillaume Aupy, and Aniruddha Gokhale. 2017. IN-

DICES: Exploiting Edge Resources for Performance-aware Cloud Hosted Services. In IEEE 1st International Conference

on Fog and Edge Computing. IEEE, 75–80.

[153] Cong Shi, Vasileios Lakafosis, Mostafa H. Ammar, and EllenW. Zegura. 2012. Serendipity: Enabling Remote Computing

Among Intermittently Connected Mobile Devices. In Proceedings of the 13th ACM International Symposium on Mobile

Ad Hoc Networking and Computing. 145–154.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 2018.

0:36 Hong and Varghese

[154] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. 2016. Edge computing: Vision and challenges. IEEE

Internet of Things Journal 3, 5 (2016), 637–646.

[155] Pedro M Pinto Silva, Joao Rodrigues, Joaquim Silva, Rolando Martins, Luís Lopes, and Fernando Silva. 2017. Using

Edge-Clouds to Reduce Load on TraditionalWi� Infrastructures and Improve Quality of Experience. In 1st International

Conference on Fog and Edge Computing. IEEE, 61–67.

[156] Pieter Simoens, Yu Xiao, Padmanabhan Pillai, Zhuo Chen, Kiryong Ha, and Mahadev Satyanarayanan. 2013. Scalable

Crowd-sourcing of Video from Mobile Devices. In Proceeding of the 11th Annual International Conference on Mobile

Systems, Applications, and Services. 139–152.

[157] Olena Skarlat, Matteo Nardelli, Stefan Schulte, and Schahram Dustdar. 2017. Towards qos-aware fog service placement.

In Fog and Edge Computing (ICFEC), 2017 IEEE 1st International Conference on. IEEE, 89–96.

[158] Cagatay Sonmez, Atay Ozgovde, and Cem Ersoy. 2018. EdgeCloudSim: An environment for performance evaluation

of Edge Computing systems. Transactions on Emerging Telecommunications Technologies 29, 11 (2018), e3493.

[159] VB Souza, Xavier Masip-Bruin, Eva Marín-Tordera, Sergio Sànchez-López, Jordi Garcia, Guang-Jie Ren, Admela Jukan,

and A Juan Ferrer. 2018. Towards a proper service placement in combined Fog-to-Cloud (F2C) architectures. Future

Generation Computer Systems 87 (2018), 1–15.

[160] S. Sridhar and M. E. Tolentino. 2017. Evaluating Voice Interaction Pipelines at the Edge. In IEEE International

Conference on Edge Computing. 248–251.

[161] A. Stanciu. 2017. Blockchain Based Distributed Control System for Edge Computing. In 21st International Conference

on Control Systems and Computer Science (CSCS). 667–671.

[162] Ivan Stojmenovic. 2014. Fog Computing: A Cloud to the Ground Support for Smart Things and Machine-to-Machine

Networks. In Australasian Telecommunication Networks and Applications Conference. 117–122.

[163] N. Takahashi, H. Tanaka, and R. Kawamura. 2015. Analysis of Process Assignment in Multi-tier mobile Cloud

Computing and Application to Edge Accelerated Web Browsing. In 3rd IEEE International Conference on Mobile Cloud

Computing, Services, and Engineering. 233–234.

[164] Mohit Taneja and Alan Davy. 2017. Resource aware placement of IoT application modules in Fog-Cloud Computing

Paradigm. In Integrated Network and Service Management (IM), 2017 IFIP/IEEE Symposium on. IEEE, 1222–1228.

[165] Bo Tang, Zhen Chen, Gerald He�erman, Tao Wei, Haibo He, and Qing Yang. 2015. A Hierarchical Distributed Fog

Computing Architecture for Big Data Analysis in Smart cities. In Proceedings of the ASE BigData & Social Informatics.

ACM, 28.

[166] Jine Tang, ZhangBing Zhou, Jianwei Niu, and QunWang. 2013. EGF-tree: An energy e�cient index tree for facilitating

multi-region query aggregation in the Internet of things. In 2013 IEEE International Conference on Green Computing

and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing. IEEE, 370–377.

[167] Genc Tato, Marin Bertier, and Cédric Tedeschi. 2017. Designing Overlay Networks for Decentralized Clouds. In

International Workshop on the Future of Cloud Computing and Cloud Services.

[168] S. Teerapittayanon, B. McDanel, and H. T. Kung. 2017. Distributed Deep Neural Networks Over the Cloud, the Edge

and End Devices. In IEEE 37th International Conference on Distributed Computing Systems. 328–339.

[169] K. Tokunaga, K. Kawamura, and N. Takaya. 2016. High-speed Uploading Architecture using Distributed Edge Servers

on Multi-RAT Heterogeneous Networks. In IEEE International Symposium on Local and Metropolitan Area Networks.

1–2.

[170] Nguyen B Truong, GyuMyoung Lee, and Yacine Ghamri-Doudane. 2015. Software de�ned networking-based vehicular

adhoc network with fog computing. In Integrated Network Management (IM), 2015 IFIP/IEEE International Symposium

on. 1202–1207.

[171] Floris Van den Abeele, Jeroen Hoebeke, Girum Ketema Teklemariam, Ingrid Moerman, and Piet Demeester. 2015.

Sensor Function Virtualization to Support Distributed Intelligence in the Internet of Things. Wireless Personal

Communications 81, 4 (01 Apr 2015), 1415–1436.

[172] B. Varghese, O. Akgun, I. Miguel, L. Thai, and A. Barker. 2014. Cloud Benchmarking for Performance. In 6th IEEE

International Conference on Cloud Computing Technology and Science. 535–540.

[173] B. Varghese, O. Akgun, I. Miguel, L. Thai, and A. Barker. 2017. Cloud Benchmarking For Maximising Performance of

Scienti�c Applications. IEEE Transactions on Cloud Computing (2017).

[174] Blesson Varghese and Rajkumar Buyya. 2018. Next Generation Cloud Computing: New Trends and Research

Directions. Future Generation Computer Systems 79 (2018), 849 – 861.

[175] B. Varghese, L. T. Subba, L. Thai, and A. Barker. 2016. DocLite: A Docker-Based Lightweight Cloud Benchmarking

Tool. In 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. 213–222.

[176] B. Varghese, N. Wang, S. Barbhuiya, P. Kilpatrick, and D. S. Nikolopoulos. 2016. Challenges and Opportunities in

Edge Computing. In IEEE International Conference on Smart Cloud. 20–26.

[177] Blesson Varghese, Nan Wang, Jianyu Li, and Dimitrios S. Nikolopoulos. 2017. Edge-as-a-Service: Towards Distributed

Cloud Architectures. In International Conference on Parallel Computing (Advances in Parallel Computing). IOS Press,

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 2018.

Resource Management in Fog/Edge Computing 0:37

784–793.

[178] Blesson Varghese, Nan Wang, Dimitrios S. Nikolopoulos, and Rajkumar Buyya. 2017. Feasibility of Fog Computing.

CoRR abs/1701.05451 (2017). http://arxiv.org/abs/1701.05451

[179] Stephen J Vaughan-Nichols. 2006. New approach to virtualization is a lightweight. Computer 39, 11 (2006).

[180] Alexey Vinel, Jakob Breu, Tom H Luan, and Honglin Hu. 2017. Emerging Technology for 5G-enabled Vehicular

Networks. IEEE Wireless Communications 24, 6 (2017), 12–12.

[181] H. Viswanathan, E. K. Lee, and D. Pompili. 2016. A Multi-Objective Approach to Real-Time In-Situ Processing of

Mobile-Application Work�ows. IEEE Transactions on Parallel and Distributed Systems 27, 11 (2016), 3116–3130.

[182] Michael Vögler, Johannes Schleicher, Christian Inzinger, Stefan Nastic, Sanjin Sehic, and Schahram Dustdar. 2015.

LEONORE–Large-Scale Provisioning of Resource-constrained IoT Deployments. In IEEE Symposium on Service-

Oriented System Engineering. 78–87.

[183] Thang X. Vu, Symeon Chatzinotas, and Björn E. Ottersten. 2017. Edge-Caching Wireless Networks: Energy-E�cient

Design and Optimization. CoRR abs/1705.05590 (2017). arXiv:1705.05590 http://arxiv.org/abs/1705.05590

[184] Huaqun Wang, Zhiwei Wang, and Josep Domingo-Ferrer. 2018. Anonymous and Secure Aggregation Scheme in

Fog-based Public Cloud Computing. Future Generation Computer Systems 78 (2018), 712 – 719.

[185] Jianyu Wang, Jianli Pan, and Flavio Esposito. 2017. Elastic Urban Video Surveillance System Using Edge Computing.

In Proceedings of the Workshop on Smart Internet of Things. 7.

[186] N. Wang, B. Varghese, M. Matthaiou, and D. S. Nikolopoulos. 2017. ENORM: A Framework For Edge NOde Resource

Management. IEEE Transactions on Services Computing PP, 99 (2017), 1–1.

[187] Shiqiang Wang, Rahul Urgaonkar, Ting He, Kevin Chan, Murtaza Zafer, and Kin K Leung. 2017. Dynamic service

placement for mobile micro-clouds with predicted future costs. IEEE Transactions on Parallel and Distributed Systems

28, 4 (2017), 1002–1016.

[188] Y. Xiao, M. Noreikis, and A. Ylä-Jaäiski. 2017. QoS-oriented Capacity Planning for Edge Computing. In IEEE

International Conference on Communications. 1–6.

[189] Q. Xu, Z. Su, Q. Zheng, M. Luo, and B. Dong. 2017. Secure Content Delivery with Edge Nodes to Save Caching

Resources for Mobile Users in Green Cities. IEEE Transactions on Industrial Informatics PP, 99 (2017), 1–1.

[190] Yiming Xu, V Mahendran, and Sridhar Radhakrishnan. 2016. Towards SDN-based fog computing: MQTT broker

virtualization for e�ective and reliable delivery. In 2016 8th International Conference on Communication Systems and

Networks (COMSNETS). IEEE, 1–6.

[191] Binxu Yang, Wei Koong Chai, George Pavlou, and Konstantinos V Katsaros. 2016. Seamless Support of Low Latency

Mobile Applications with NFV-EnabledMobile Edge-Cloud. In Cloud Networking (Cloudnet), 2016 5th IEEE International

Conference on. IEEE, 136–141.

[192] Binxu Yang, Wei Koong Chai, Zichuan Xu, Konstantinos V Katsaros, and George Pavlou. 2018. Cost-E�cient

NFV-Enabled Mobile Edge-Cloud for Low Latency Mobile Applications. IEEE Transactions on Network and Service

Management (2018).

[193] Fei Yuan, Yiju Zhan, and YonghuaWang. 2014. Data density correlation degree clustering method for data aggregation

in WSN. IEEE Sensors Journal 14, 4 (2014), 1089–1098.

[194] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and Ion Stoica. 2013. Discretized streams:

Fault-tolerant streaming computation at scale. In Proceedings of the twenty-fourth ACM symposium on operating

systems principles. ACM, 423–438.

[195] E. Zeydan, E. Bastug, M. Bennis, M. A. Kader, I. A. Karatepe, A. S. Er, and M. Debbah. 2016. Big Data Caching for

Networking: Moving from Cloud to Edge. IEEE Communications Magazine 54, 9 (2016), 36–42.

[196] Ning Zhang, Peng Yang, Shan Zhang, Dajiang Chen, Weihua Zhuang, Ben Liang, and Xuemin Sherman Shen. 2017.

Software de�ned networking enabled wireless network virtualization: Challenges and solutions. IEEE Network 31, 5

(2017), 42–49.

Received February 2007; revised March 2009; accepted June 2009

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 2018.

http://arxiv.org/abs/1701.05451
http://arxiv.org/abs/1705.05590
http://arxiv.org/abs/1705.05590

	Abstract
	1 Introduction
	2 Architectures
	2.1 Data Flow
	2.2 Control
	2.3 Tenancy

	3 Infrastructure
	3.1 Hardware
	3.2 System Software
	3.3 Middleware

	4 Algorithms
	4.1 Discovery
	4.2 Benchmarking
	4.3 Load-Balancing
	4.4 Placement

	5 Conclusions
	Acknowledgments
	References

