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Resource Pooling and Effective Bandwidths in
CDMA Networks with Multiuser Recelivers and
Spatial Diversity

Stephen V. HanlyMember, IEEEand David N. C. TseMember, IEEE

Abstract—Much of the performance analysis on multiuser re- into account the structure of the interference from other users
ceivers for direct-sequence code-division multiple-access (CDMA) when decoding a user. Another important line of work is the
systems is focused on worst case near—far scenarios. The user Cadevelopment of signal processing techniques in systems with

pacity of power-controlled networks with multiuser receivers are . .
less well-understood. In [1], it was shown that under some condi- antenna arrays [3]-{5]. While spread-spectrum techniques pro-

tions, the user capacity of an uplink power-controlled CDMA cell  Vide frequency diversityo the wireless system, antenna arrays
for several important linear receivers can be very simply charac- providespatial diversity Both frequency and space provide-

terized via a notion of effective bandwidthin the present paper, we grees of freedorthrough which communication can take place.
show that these results extend to the case of antenna arrays. We Much work has already been undertaken on characterizing

consider a CDMA system consisting of users transmitting to an th f f I . . h
antenna array with a multiuser receiver, and obtain the limiting € periormance or multiuser receivers, using measures such as

signal-to-interference (SIR) performance in a large system using a@symptotic efficiency and near—far resistance [2]. These mea-
random spreading sequences. Using this result, we show that thesures tend to beser-centri¢ focusing on the performance of
SIR requirements of all the users can be met if and only if the sum g particular user being demodulated. Moreover, nearfar resis-

of the effective bandwidths of the users is less than the total number 5o evaluates the worst case performance of a user in the face
of degrees of freedom in the system. The effective bandwidth of a . . .
of arbitrary received powers of the interferers.

user depends only on its own requirement. Our results show that . i : .
the total number of degrees of freedom of the whole system is the A different point of view can be taken from a networking per-
product of the spreading gain and the number of antennas. In the spective. Rather than focusing on the performance of individual
case when the f_ading distributions to the antennas a_re ider]tical, we ysers, we ask the f0||owing question: given desired levels of per-
show that a curious phenomenon of “resource pooling” arises: the {4 mance (quality of service, or QoS) for each of the users in
multiantenna system behaves like a system with only one antenna .
but with the processing gain the product of the processing gain of the networ.k, what is the number of u;ers that can be accommo-
the original system and the number of antennas, and the received dated? This leads to thestwork-centrigperformance measure
power of each user the sum of the received powers at the individual of user capacityIn the case of a heterogeneous network with
antennas. multiple class of users with different QoS, we are interested in
Index Terms—Antenna arrays, code-division multiple access theuser capacity regiorcharacterizing the tradeoff between the

(CDMA}, large system analysis, multiuser detection, random number of users in each class that can be simultaneously ac-
spreading, resource pooling. commodated. Because of the need to meet the QoS of each of
the users, power control is done in conjunction with multiuser
reception. This necessitates a better understanding of the perfor-
mance of multiuser receivers in a power-controlled environment

N recent years, there have been intense efforts in developpgher than one with worst case interference.

sophisticated multiuser techniques for wireless communi- p jine of work toward a better understanding of these issues
cations. A significant thrust of work has been on developingas recently been initiated in [1]. A network capacity analysis of
multiuserreceiver structures which mitigate the interference bgnear multiuser receivers is done in the context of synchronous
tween users in direct-sequence code-division multiple-acce§sva systems witirandomspreading sequences. The results
(DS-CDMA,) systems. (See [2] for a comprehensive account gfe for large networks, asymptotic as both the number of users
the state of the art.) Unlike the conventional matched filter rgng processing gain grow. The QoS measure for each user is
ceiver used in the 1S-95 CDMA system, these techniques tgen as the signal-to-interference ratio (SIR) achieved at the

output of the multiuser receiver. Related results for the case

. . , when all users have the same SIR requirement are obtained in-
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imum mean-square error (MMSE) receiver [7]-[10], the decor- In this paper, random variables are denoted by capital letters
relator [11], [12], and the matched-filter receiver (as in I1S-9%, Y, vectors by boldface lettelX, Y, and matrices by calli-
[13]). The effective bandwidths of a user with SIR requirememraphic fontssS, D.

5 under these three receivers are given by

II. MODEL
; A. Basic Multiantenna CDMA Model
Cmmse() = %{3 caec(f) =1  ems(B) =0. In a DS-CDMA system, each of the user's information or

coded symbols is spread onto a much larger bandwidth via mod-

The effective bandwidth concept is based on a more general HEtion by its ownsignatureor spreading sequencéVe con-
tion of effective interferencavhich captures the effect of an in-Sider asampled discrete-time baseband model for a symbol-syn-
terferer, received at arbitrary power, on the user to be demd&ionous multiaccess CDMA system with users,L receive

ulated. While the concept of effective bandwidth holds for @1tennas, and processing gain The received signal at tfieh
single power-controlled cell, the notion of effective interferenc@tenna is given by

can quantify the intercell interference effects as well. K
In this paper, we extend the above concepts to DS-CDMA Y()= Z XV Ty (D s + W(D) (1)
systems with spatial diversity. The spatial diversity can be ob- b1

tained by multiple antenna elements at a single base station (mj- ) ) .
crodiversity), or by combining of signals received at muItipl(‘-ﬁ\’here‘x’“,Is the symbol trangmltted by uskl_at transmit power
base stations (macrodiversity). We show that the notion of effe@' k(1) is the S:Vomplex f?‘d'”g channel gain from ugeto an-
tive bandwidths extends to both scenarios, again in the asyrﬁ 7nal, 8k € C_ IS th_e_ 5'9”"".‘”9 sequence Qf ugng(l) €
totic regime of a system with large processing gain and mafy andW () is additive white Gaussian n0|32e W|th variance
users but fixed number of antennas. The capacity region wfth: "dépendent acrogsThe symbol energf[.X7] is normal-

and without power constraints is characterized, the latter we d4fpdto bel. Here, we are assuming a flat-fading channel model.

theinterference-limitedapacity region of the network. In SomeMorgover, .the c.hannel gains are assumed to be circular sym-
gtric, as is typical for a baseband model.

cases, a curious phenomenon of “resource pooling” arises: tH
multiantenna system behaves like a system with only one an- et
tenna but with the processing gain the product of the processing
gain of the original system and the number of antennas, and the
received power of each user the sum of the received powers
at the individual antennas. The focus of the analysis is on the
linear MMSE receiver, which is the optimal linear receiver i@nd

= (X g ey XK)t
L YD)
=(WQ)', ..., WL

terms of maximizing the SIR of each user. However, the per- D = diag(T1, ..., Tx)
formance of suboptimal receivers such as the matched filter and Y

the decorrelator will also be presented for comparison. In con- Sl):=MmWss, - yr(sx]
trast to the MMSE receiver, which requires knowledge of the S:=[8Q), ..., ST

received powers and signature sequences of all users, these sub- ,
optimal receivers require less information. We remark that thé- theS()'s stacked one above the other. Also, 3gtbe the
effective bandwidth result for the matched filter, macrodiversityih column ofS. Then we can write the overall channel as
antenna array was proven earlier in [14] in a similar model, but K
in the present paper we provide a more rigorous proof, using a Y= Z X \/ﬁEk +W. (2)
more detailed model of the physical layer including flat fading. k=1

The effectivg bandwidth resylts described above hold in|aector form, the channel can be written as
large system withrandomspreading sequences. A natural ques-
tion is whether an effective bandwidth characterization exists in Y =SDY2X +W.
afinite-sizedsystem witharbitrary spreading sequences. In Sec-
tion VII, we present a characterization of the user capacity re-We should point out that it is of interest to extend our results
gion for the MMSE receiver in terms of given arbitrary signatur® the frequency-selective fading case, since that is often the
sequences, and show that under weak linear independence ¢elg¢vant case for spread-spectrum systems, and that work in this
ditions on the sequences and the channel fading, the resultiggction is already progressing (see [18]). The applicability of
interference-limiteccapacity region is identical to that underour flat-fading model depends on how the spread bandwidth
random sequences. These results provide insight as to why gagpares to the coherence bandwidth of the channel of interest.
effective bandwidth results emerge as they do in the limiting/e focus on the flat-fading model in an effort to keep model
regime of random signature sequences. complexity, and notation, to manageable levels.

Much work has already been undertaken on the signal .
processing aspects of CDMA antenna array systems, ek, MMSE Receiver
[15]-[17]. In contrast, this paper focuses on the issues ofA linearreceivere; for user 1 generates a soft decisitin =
performance from the point of view of user capacity. cI'Y for X, based on the entire observatiBn The key perfor-
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mance measure for a linear receiver is the oufghal-to-in- the same base station. The diversity captured in this scenario is

terferenceratio (SIR), defined by due to small-scale multipath fading effects. A reasonable model
He 1o is to assume that the random channel gair($)'s are indepen-
SIR, = Tile ‘?1| ) (3) dent for all users; and antennak and for any given user, the
o2(efey) + S0, Tilel3, |2 gains to all the antennas are identically distributed. The crucial

Consider now coherent receivers that demodulateom Y a_lssumpnon here is the symmetry of the channel fadlng statis-
ttlﬁs with respect to the antennas. However, the fading levels are

with perfect knowledge of the signature sequences as well as no%necessarily identically distributed across users. For example,

channel gains and transmit powers of the users. Among these re-
. . o some users may be close to the antenna array, and others far. We
ceivers, the MMSE receiver minimizes the mean-square erroras

. T I . i
well as maximizes the SIR for all the users, given the signattfrgn think of thedlstnputman the (%(l)).l:l as being a func

. : ion of the geographic location of uskmwith respect to the an-
sequences, channel gains, and transmit powers.

) S tenna array, on eoarsespace scale, and the actual realizations
The MMSE receiver for user 1 is given by . . ,
of these random variables as a function of the user’s random po-
H1\— * iti
e = (E[YY"]) E[X}Y] sition as measured on a small space scale.
— JT(SDSH + 023 We will allow the transmit power$;,’s to depend on the mag-
= Vi to H) 3; L nitudes of the channel gaing(!) for all j and!, butindependent
=constant (5;D1S;" +0°1)” "8 (4)  ofeverything else. This models the use of power control. We will
here s, is th trix obtained b ing th lure also assume that the transmit powers are a symmetrical func-
¥V ert; L 'Sd De n_1a(;|x ‘oTame Ty re_mlov:ngt te cc; u"nsn tion of the channel gains with respect to the different antennas.
rom &, andD, = diag(7s, ..., Tx). The last step follows .0 oo cisely: if we denotB(1) = (v (0), ..., vk (1)) be the

from the use of th_e matrix Inversion lemma. The expectation or of channel gains from all the users to antehniden
is taken by averaging all quantities that are unknown to the r;

ceiver; in this case the unknown symbols of the users, and ﬁ%é?ny pe;?;;i‘:%”;o?gi;’u's'éé L}, for any channel gains
background white noise. T
The SIR of the MMSE receiver for user 1 is given by the  7;(I'(x(1)), ..., [(n(L))) = Ti(I'(1), ..., T(L)).

expression _ _ ) _ )
The reason for needing this assumption will be explained at the

SIR, = 718/ (S D1 SH + 02175, (5) end of the next section. We believe that it holds for any sensible
) ) power control policy, and it certainly does for the power control
Observe that the SIRs achieved by each user are functions ofiglaﬁcy we consider in Section IV-B. It makes precise the no-
signature sequences, channel gains, and transmit powals ofjo, that with microdiversity, all antennas are identical and are
users. treated in an identical manner by power control policies.

C. Random Signature Sequence Model A. Resource Pooling

While (5) can be numerically computed given specific signa- The following is the main result in this section, yielding the
ture sequences, channel gains, and transmit powers, the qualimptotic performance of the MMSE receiver in a system with

tative dependence of performance on system parameters Sdghe processing gain and many users, but fixed number of an-
as the number of users, the processing gain, the number of gitmas.

tennas or the received power profile is not clear. To obtain more _
insight, we will assume aandomsignature sequence model: 1heorem 1:Let .
the chip values of the sequences are independent and identically 2
S o . . . P, =1 (1 6
distributed (i.i.d.) circular symmetric complex Gaussian random » » lz_; RO ©)

variables with mean zero and variangéV, and the sequencespe the sum of the received powers of usessume that al-

of different users are chosen independehflihe SIR depends mgst surely the empirical distribution ¢, ..., Px) con-

on the realization of the random sequences as well as the chaR@gyes weakly to a limiting distributiof asK goes large, and
gains, and is, therefore, also a random variable. It will be showRgt the P,’s are uniformly bounded for alk and N.2 Each
however, that in the cases of interest, this random variable cfer selects a signature sequence randomly, as described in Sec-
verges to adeterministicquantity in a large system, and thusjon |I-C. Then if N, K — oo with K/N — « but L fixed,
provides a sequence-independent performance measure ofgh@l/p1 converges in probability to a deterministic constant

system. It should be re-emphasized that although the sequergggreq, is the unique positive solution to the fixed-point equa-
are chosen randomly, knowledge of the sequences is assugssl

at the MMSE receiver so that interference suppression can be

1
performed. a= & (7)
o*+ E |
[ll. MICRODIVERSITY . _ . e
_ ] . ) ) _andP is a random variable having distributidn
In this section, we will focus on a fading model for microdi-  proof: See Appendix-B. O

versity, where the receive antennas are assumed to be placed at
2This latter assumption is a technicality to simplify the proofs, but we believe
Iwe conjecture that all our results hold for general i.i.d. chip distribution. that it is not really necessary.
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This result says that in a wide-band system with many usecosen sequencesil), sff), ceey s;”, and set the received
the SIR of a user does not depend on the specific realizati®uper signature sequence” to be
of the signature sequences, the channel gains, and the transmit 3 = (fyk(1)s§}>t, ’7k(2)3§€2)t, . ,yk(L)sch)t)t.

powers. The SIR is a function of the user’s own received powe_lt

at the antennas and depends on the the interferers’ receiv § k?yddlftferenr::e '? that ng"\; W?hdo n%t#ave ?ne seque;nc;a h
powers only through the limiting empirical distribution of thd EPeAted at each antenna, but rather a difierent sequence at eac

Py's. In a sense, there is an averaging of the effects across aenna. Somewhat surprisingly, we have the following result.

large number of interferers. The convergence of the empiricalTheorem 2:In the completely random sequence model,
distribution of the received power is a statistical regularity a$iR; /P, converges to exactly the same limit as that given in
sumption and is necessary for such averaging to occur. It is Spireorem 1.

isfied, for example, when the transmit powBy of any userk :
P POVIEY Y We conclude from the above theorem that, asymptotically,

depends on the channel gains for that user only, which impliehs . ; loss tition. Th f
independence across users, and there is a bound on hdy bi% ereis no periormance loss from sequence repetition. The proo

can be. It also arises naturally when there are several classe f0'¥heorem 1 shows that the uncorrelatedness of the channel

users with different SIR requirement, and power control is pegg'rllsfyt’;](l) N atcrosE ahntennastﬁrovu:]etsh enough randomness to
formed as a function of which class the user belongs to. make the systém benhave as though the Super sequences were

Theorem 1 is a natural extension of the single-antenna reJH y random. Theorem 2 follows immediately from Corollary 4

[1, Theorem 3.1]. The rate of convergence in Theorem 1 requi|18 e presented in the next section.

further study, but we note that there are results for the sing%e- (()jfurther reinforce t_Z'S nt(r)]non of n? ,:.OSS f?f_degreefs tﬁf
antenna case—see [19]. reedom, we can consider the asymptotic efficiency of the

. . receiver in the limiting system. By taking? 0, we see
When there is only one antenna eleméht = 1), P, is J SY y 9

. . thatas? — 1 — /L if @ < L. For a single-user system, the
simply the received power of usér Theorem 1, therefore, hasSIR is P, /o2, Hence, the asymptotic efficiency of the MMSE
the nice interpretation that for any fixed number of antenhas ;. | _ «/L; there are a total of.N degrees of freedom and
the limiting performance .Of the MMSE receveris the Same gy high signal-to-noise ratio (SNR), one interferer costs one
that for a system with a single antenna, having processing ga'ébree of freedom
LN gn((ij with the rtetﬁe“./eg. p(;)welr Oft each U_T_E.r the sfum OfftheThe performance of the MMSE receiver depends crucially on
receive pol\_/vers”ath Zm Wi ua; fan ((ajnnas.f th IS 1S d‘? _grmlo the (colored) spectrum of the interference, and an important step
source poolingall the degrees of ireedom of the individual ang, roving these results is to show that the empirical eigenvalue
tennas are pooled together into a single resource and the sys&e ibution of the interference covariance matsk®SH con-
behaves like a single-antenna system. verges to a limit and to characterize the limit. While the limiting

The crucial condition for the resource pooling phenomenoné(?gem/aIue distribution for the special caselof 1 in [1, The-
hold is that the limiting joint empirical distribution of received ’

h . ical with h orem 3.1] is known from existing random matrix results, new
powers at the antennas Is symmetrica W.'t respept to the zE@éhniques have to be used to compute the limiting eigenvalue
tennas; see the Proof of Theorem 1. This condition holds

distribution for the general case, due to the more complex de-

the m|crod|ver§|ty enwronm.ent under the assumption that.t %ndency in the elements of the random mafi©S” due to
power control is a symmetrical function of the channel gain

The general case will be analyzed in Section IV. results for the more general macrodiversity scenario, to be pre-

sented in Section IV, are only proved for the completely random

uence model. Our belief that the results also hold for the orig-

model with repeated sequences is supported by the asymp-

totic equivalence of the two models in the microdiversity sce-
0.

B. Repeated Versus Completely Random Signature Sequen%%%

One can consider the multiantenna spread-spectrum sys
as one withL NV degrees of freedom, given by units of pro-
cessing gain per antenna. The “super” signature sequence-Ofgffective Interference

userk, of lengthL NV, is then the signature sequersgewith the .
9 g quenge Due to the resource pooling phenomenon, we can treat the

same signature sequence repedtéiches and multiplied by the . . . . X .
9 q P P y dsystem with microdiversity as one with a single-antenna ele-

path gainsy; (1)’s. One might imagine that this repetition woul . . . - .
lead to some loss of degrees of freedom; the resource pooling ent, to which we can immediately apply the interpretation of
&

terpretation of Theorem 1, however, seems to suggest that t SC“VE interference derived in [1]: in a "'?“ge syster_n,_|t fol-
is actually no loss. To substantiate this point, we consider :l‘?éNS from () thaF the SIR of user 1 approximately satisfies the
following alternative model. xed-point equation

The “Completely Random” Sequences Modelinstead of SIR, = = L (8)
the basic model, suppose that the signature sequences received 0% + v Yo I(Pr, P, SIRy)
at each antenna, from the same user, are independently chageerel (P, Py, ) .= P P. /(P + P./3). Note that to deter-
sequences. Thus, for uskrwe generatd. distinct randomly mine the asymptotic performance we need to solve the fixed-
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point equation, which can be done numerically. However, to de- Proof: See Appendix-A. O
termine whether a desired SIR for user3l, is achievable, we

can substitute, into the right-hand side of (8), and check if Thus, in the limit, the SIR of a user is a function of its own

received powers at the antennas and system-wide constants
L > 3. a(1), ..., a(L) which are user-independent.
02 + T ,i‘=2 I(Py, P, 1) — In the case when the joint distributidnis exchangeable, i.e.,

(This is due to the fact that the right-hand side of (8) is a monEQr any permutationr of {1, ..., L}
tonic function of SIR. See [1] for details.) In doing so, we pro- Ga1, ..., 2r) = G(Tx),
vide a way to decouple the interference effects of each user, and

we can define theffective interferencef an interferer of re- we have

ceived powet”;, on user 1 ag (P, P, SIRy).

ey aZﬂ-(L))

1
=—E

P() Yk P(n) ]
1+ Y w_; P(n)a(n) 1+ Y, P(n)a(n)

The crucial assumption underlying our results in the microdine fixed point of (9) satisfiea(l) = « for all [, and the fol-
versity scenario is the symmetry of the fading distribution wittowing corollary holds.
respect to the receive antennas. This is justified by the close- orollary 4: If the limiting distribution is exchangeable,
ness of the antennas. In a system where the antenna elemgnis
. . . n SIR /P, converges to a constait where
are widely separated (macrodiversity) such symmetry does no{f1

IV. M ACRODIVERSITY

necessarily hold. For example, the antennas may be at two dif- L

ferent base stations, and a user may be closer to one base sta- P=Y" T

tion than the other. In this section, we will therefore relax the =1

assumption that the channel gaing1), ..., v.(L) to the dif- - andq is the unique solution to the fixed-point equation
ferent antennas are identically distributed for each ksés in

the case of microdiversity, we can think of thestribution of a = 1

the (yx(1))£ , as being a function of coarse-scale propagation o2+ 2E [H%}

conditions for usek, which are assumed fixed, and tiealiza-
tions as being functions of finer scale propagation conditiongjith P = Ele P(l).
which are assumed random. We will retain the assumption tha

theve(1), ..., v(L) areindependentandom variables. ﬁn this exchangeable case, the systerh efjuations becomes

a single equation, and resource pooling occurs. In the microdi-
A. Limiting SIR Performance versity scenario considered in Section Ill, the channel gains of
each user to all the antennas are i.i.d., and the transmit powers

The following result is the analog of Theorem 1 for the Pelre symmetrical functions of the channel gains with respect to

formance of the MMSE receiver in the macrodiversity SCcenaifyo different antennas. The exchangeability condition follows

At present, we are only able to prove the result for the (nonphyr?,(-) these assumptions
ical) completely random signature sequence model described " P '
in Section llI-A, but we conjecture that it also holds in the reg

peated signature sequence model of Section II-C. As discussed

earlier, this conjecture is supported by the equivalence of the-€t Us now consider the interference-limited user capacity of
two models in the microdiversity case. the macrodiversity antenna array. In spite of the fact that one

might expect the user capacity to depend on the user “geom-
Theorem 3:Let Pi(I) = Tx|w(1)|* be the received power etry,” i.e., the probability distribution of the fadings of the users
of userk at antennd. Assume that almost surely, the empiricajp the antennas, this turns out not to be so, and the effective band-
joint distribution of width results generalize from the single-antenna case [1] to the
(Pi(1), ..., Pi(L)),(Py(1), ..., Py(L)), muItlantenpa scenario. . . '
We consider the case in which users have particulart&R
o (Pre(@)s s Pre(L) gets i.e., userk has a target of;. for its SIR. To achieve such

converges weakly to some limiting joint distributichask — @ SIR target the user must control its transmit power, and we
oo. Each user selects independent signature sequences ramvish to find a necessary and sufficient condition on the targets
domly, as in the “completely random” model of Section III-ASx’s for this to be possible, asymptotically, in a large system.
Then, if N, K — oo with K/N — «, SIR; converges in prob- This yields the interference-limited user capacity region of the
ability to Ele Py(Da(l), where the constantg(l)’s are the system. Here, we allow the power control of a user to be pos-
unigue positive solution to the system of fixed-point equationsibly a function of the magnitudes of the channel gains of all

Interference-Limited Capacity and Effective Bandwidths

1 users, but not of the signature sequences. However, we will see
a(l) = , [=1,..., L (9) inSectionVllthatin a certain sense the interference-limited ca-
024 oF | —=r20 pacity does not increase even when the powers can depend on
14{:”:1 P(n)a(n)

the sighature sequences.
and(P(1), ..., P(L)) are random variables having joint dis- We make the following statistical assumptions on the targets
tribution G. Or’s.
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1) Almost surely, the joint empirical distribution of Conversely, suppose that (11) has a fixed paihtthat is

strictly positive. Let us now choose the transmit power for user
(ﬁla 71(1)a DR} ’Yl(L))a sy (ﬁlfa 7[((1)a R ’YK(L)) k to be

converges to some limiting distributidd as K grows; T B
2) The limiting distributionH satisfies YOS ORar ()

H(B, (1), ..., v(L)) = H(B)Hy((1), ..., v(L)). With this choice of tr_an_smit powers_and the fact that
(a*(1), ..., a"(L)) satisfies (11), it follows that

Assumptions 1) and 2) would hold, for example, when thef@” (1) -, a”(L)) also safisfies (9), with the expectation
are a finite number of classes of users and the fraction of user@4§" the limiting empirical distribution of (1), ..., P(L))
each class approaches a limit, and the fading gains of the udBpdiced by the choice of transmit powefd;;}. It follows
are independent of each other and independent of which /48 Theorem 3 that, due to the uniqueness of the solution to
the user belongs to. (9)., the limiting SIR (_)f usek is p_remsely/}k. Furthermore, the

Using Theorem 3, it can be seen that to meet the target SiRBidueness of the fixed point in (9) guarantees that (11) can

asymptotically, the transmit pow&i, of userk should satisfy Na@ve &t most one strictly positive fixed point.
Next, we investigate the condition on the SIR targets under

which (11) has a strictly positive solution. Note that such a con-
dition can only depend on the SIR targets through,.c. TO
derive a necessary condition, write (11) as

L
TS @Pald) = A (10)
=1

where «(l)'s satisfy the fixed-point equations (9), and y
(P(1), ..., P(L)) in (9) follows the limiting empirical distri- Y(OFa®) aBymse = 1 — a(l)a?
bution of the received powers 2521 [v(n)|2a(n)
(PL(1), ..., P(L)), ..., (Px(1), ..., Px(L)). and adding up thesk equations, we obtain
L
This limiting distrit_)ution can, in turn, be calculated from Bimee _L_O_QZ a(l). (12)
(10) and Assumptions 1) and 2). Let us denote the vector P
(a(1), a(2), ..., a(L)) by a. We note that Theorem 3 impliesthys, 4 necessary condition for there being a positive solution
thata is strictly positive. But since is thataBymse < L. The following proposition shows that this
(D25 condition is also sufficient.
2 one1 Ie(n)Pa(n) Proposition 5: If aBymse < L, then the system of equations
l=1,...,L, k=1,... ,K (11) has a unique strictly positive solution.
and Proof: Assumea B, < L, and define the mapping
. F:Rl — Rt
> Pu(n)a(n) = pi by
n=1 Fl(a) _ 1 7
it follows that 24 0B { MO }
P(l) 0% + ABmmse Zizl Iy (n)?a(n)
- 1=1,2,..., L.
143 P(n)a(n)

We will establish thatF" has a fixed point by generating a se-
_ [ B } E l Iyv(D)|? quence of vectora®, a¥), ... which provably converges to
2

1+7 rlel lvn)|2a(n) such a fixed point.

e Note that ifa‘® is defined inductively via
where(y(1))£, has the limiting distributiord> of the channel @) 1)
gains of the users, anglhas the limiting distributiorf{; of the a’ = F(a )

SIR targets of the users. Define andif0<a® <a*~Y, then by the monotonicity of the mapping
K F (i.e., F(x) < F(y) if £ <y component-wise)a™):2, is a
B — E B — lim 1 Z Pr ) decreasing sequence. Note also that in this case
mmse 1 + /3 Koo K T 1 + ﬁk

UQCL(i) (l) + OéBmmselE

_ § hOPaOW ] _|
It follows from the above calculations that a necessary condition -

. > >y y(m)]2at=D(n)
that the given SIR targets can be met asymptotically is that the d addi thesk i btai
fixed point equations and adding up thesk equations, we obtain

I L 2 (i)
i ne1l7(M) |76V (n
a(l) = ; = ].7 L 02 Z CL( )(l) + OéBnunseIE [ Z% 1| ( )2| (7‘—1() ) ] =
o2+ aB Fl— @2 =1 > nei[Y(R)Pal = (n)
mimnse Zizl |'y(n)|2a(n) - (13)
(11)  Letusset®(l)=1/021=1, 2, ... L. Then the inductive
have a strictly positive solution fdi:(1), . .., a(L)). condition is satisfied anfa(")s2,, is a decreasing sequence of

1
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positive vectors. Now the assumption of the theorem is that th&féhat do our results say about power consumption? Recall that
exists a positive > 0, such thatvB,,imse < L — ¢, and thus, it the transmit power of usdrto achieve targes;, is given by

follows that
_ Br
3 - L
limsup BuymeeE SiohmPaOm) | _ > n(DPal)

. L 2,(i—1) . . . .
P 2on=1ly(m)2at" =1 (n) where thea(n)’s satisfy the fixed-point equations (11). The
transmit power of usek certainly depends on its own target
We conclude from (13) thaElel o (1) is bounded away from SIR and channel gains, but the main observation is that it de-
0, and hence that it is not possible #f’ to converge t@. We pends on the effects of other users in the system only through the
conclude that( converges to a nonzero, nonnegative soluticgystem constanis(1), ..., a(L), which in turn depends only
a* to (11). on the empirical mean of their effective bandwidthd3,,,,sc-
Equations (11) admit the solutian= 0. However, we have Thus one can think afB,,,,sc as a measure abngestiorin the
established that* is not this solution. It is also immediate fromsystem. We will speculate this can be used as a basis of real-time
(11) that there can be no nonnegative solution that is a fixadmissions control. We will now show that this can be used to
point, with some components zero, apart from the soluien define a precise power-limited capacity region in the case when
0. Thus,a* must be strictly positive. Uniqueness follows fronthere are only a finite number of classes of users.
the fact that (11) can have at most one strictly positive fixed Suppose there aré classes of users, and all users in class
point. O having SIR requirement;. In this case, we assume that in the

L L s . . :
We can summarize the above development in the foIIowirlllglgT"t’ a proportion=: of users is of clasg. In this case

theorem.

Ty (15)

— €.

J
Theorem 6: Let (3;);2, be the SIR targets of the users, and Bumse = Y @B/ (L + ;). (16)
suppose Assumptions 1) and 2) hold. Define y=t
We also assume that users in classave a power constraint
K _ . . . . .
B — 1 1 Z B p;- Outage is said to occur for a user when its required transmit
manse = e K — 1+ Br’ power exceeds its power constraint. The capacity region is for a
- particular level of outage probability, which we denote &y
Then Let us denote the worst outage probability, among all users,

by 8(«Bmmse), Where we note explicitly the functional depen-
1) if aBumse > L then there is no way to assign transmitience of outage probability anB,, .. Thus,8(aBumse) in-
powers (13)72, such that the users asymptoticalljcreases monotonically with its argument, and there is a unique
achieve SIR targetsy, £ = 1, 2, .. ; C, C < L, such tha#(C) = 6*. Hence, to satisfy the outage
2) if @By < L, then (11) has a unique positive solutiorProbability constrainto By,mse < C'. Substituting (16), we con-
(a(1), ..., a(L)) and users’ target SIRs can be asympelude that the capacity region is described by the effective band-
totically met, with transmit powers given by width constraint

L —1 . J ' ﬁj
=1

Note thatC increases as the tolerable outage probalklityn-
Thus, the conditiom By, < L characterizes the interfer-creases, but that it can never excdedOon the other hand, no

ence-limited user capacity of the system. The above theor&matter how smalt*, C' can be made arbitrarily close o if
also provides us with a notion effective bandwidtiThere are USers can tolerate a large enough maximum transmit power con-
a total of LN degrees of freedom provided by spreading arfgraint.
the antenna array in the limit @ — oo. If userk achieves  Letus specialize the result to the microdiversity scenario and
its target SIR offy, then it occupies an effective bandwidth ofvith the channel gains;.({)’s identically distributed for alk:
2 degrees of freedom, and to achieve the SIR targets, #d!. In this case, whenBuunse < L, the unique solution”
sum of effective bandwidths must be less than the total numt¥{(11) satisfies:*() = «* for all 7, and
of degrees of freedom.

3 1 < aBnunse)
. : ¢ =2\
C. Capacity Under Power Constraints i

Theorem 6 characterizes the interference-limited user Cehe transmit power of usdrrequired to maintain an SIR ¢;
pacity of the system, when no power constraints are imposiecclassj is
on the users. To exploit the total degrees of freedom, however,
an enormous amount of transmit power may be required, as in T, = Bio?

the case when some antennas are very far away from the users. " (1 — aBumse S 2
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Hence, given the outage constraint for every usirclassj is A. The Matched-Filter Receiver

Consider the situation when the demodulator for user 1
P(Ix >p;) < 6" has knowledge of the signature sequence, channel gains, and
transmit power of user 1, but has no knowledge of those of
This translates to a power-limited user capacity region given ke interferers other than their statistics. In such a scenario,
we can consider the receiver for user 1 which minimizes the
J B; mean-square err@[(X; — X;)?], with the averaging over the
(a1, ..., ag): Z ¥ iy signature sequences, transmit powers, and channel gains of all
j=1 ! interferers in addition to the transmitted symbols and white

o2 3, noise. Following (4) for the MMSE receiver under perfect
<L{l—-—— max = knowledge, this present receiver can be derived in the same way
R1(1—-6*)1<i<1 p; . . - o
=154 Py but with expectations taken over all the additional quantities

assumed to be unknown to the receiver
where R is the cumulative distribution function (cdf) of the o
random variabl& -, |vx(1)|? (same for alk). So in this case, er = (E[YY"])) 'E[X[Y] (18)
the user capacity region (17) can be computed explicitly. The ]
observation is that in this case, the class with the highest vakyBich is proportional to the vector
of 3;/p; has the highest outage probability, and limits the us

capacity of the system. As the power constraints are relaxgd, 71 (1) E:
. _ . . . . _ . . - 17 ...
thls_ power-limited region approaches the interference-limited, - + ]\L E [Zi;g Tk|’7k(1)|2}
region.
t
D. Effective Interference (L) st

o1 K 2
A notion of “effective interference” was defined in [1] for o +xE [ k=2 Tl (L] }

the single-antenna case, and we showed in Section Il that ttﬁﬁ‘u

. . . . . . s, this receiver operates by despreading the received signal
notion extends to the microdiversity antenna array. This notion . : ; .

: . N . at each antenna usirg, and then performing a maximal ratio
pertains to the interference created by an individual mterfergr bining of the despread sianals according to the average SIR
on the desired user, and enables the system to be decoupled it g P gna's gto ag

at each antenna. We shall call this timatched-filter receiver.

a sum of interference effects from all the users in the syste o : T .
Y er observe that this is effectively the receiver implemented in

In the macrodlvgrsny array, it is not possible tlo Qecouple mtetrhe “softer handoff” mode of the 1S-95 standard [13], where
ference effects in this way. The reason for this is that there are . S : .

. . signals received in different sectors are combined. It is also the
now L constants:(1), ..., a(L) which depend on the interac-

. . . : . receiver considered in various works on CDMA with antenna
tion of all users in the system. In the microdiversity case, there IS

. . . rrays [15], [14], [4].
only one constant that is equivalent to an SIR, and this can b& The optimal MMSE receiver had perfect knowledge of the

replaced by a target SIR requirement for the desired user, pro—nature sequences and fading levels of all users, including

viding a way to decouple the SIR equations of the users in Tt . .
. : . . Inferferers, and such knowledge in practice must come from
system. However, in the macrodiversity case, this would require

knowing not just the target SIR requirement of the desired USmeasurements. The matched filter, however, explicitly assumes

ro i .
which is independent of the other users, butalsothetargeteffgIé interferers’ parameters are unknown, and this accounts

tive SIRs at the separate antenna elements, which does deq(ﬁ)rﬁéhe expectanqns in the _defmmon of the matched_ filter.
. . easurements will be required, of course, to determine the
on a tight coupling between the users.

. . . . statistics of the fading levels of the interferers, whichre
In [1], the notion of effective bandwidth was derived t?yassumed known. The matched filter should also be able to

to note that in the macrodiversity scenario, one can still defi |ﬁcc;£porate measurements relalizedtotal interference levels

2L i i

a meaningful notion of effective bandwidth even without the&*=1 Tl (D), | these are available. This can be

. o accommodated in our definition if we interpret the expecta-
existence of effective interference.

tions in (18) asconditional expectations, conditioned on the
measurements. Any remaining randomness then comes from
measurement error.

The MMSE receiver maximizes the SIR for user 1, given The matched-filter receiver is much simpler than the MMSE
knowledge of the signature sequences, channel gains, aaceiver considered in the previous subsections, but it entails a
transmit powers o#ll users. Suboptimal linear receivers catoss in capacity. Using effective bandwidths, we will quantify
be defined which do not require full knowledge of all therecisely this loss in performance. We will also find that there
attributes of the interferers. In this section, we consider tws a striking synergy between the results for the MMSE and for
such receivers, and their performance will be contrasted witme matched-filter receiver.
the optimal MMSE receiver. The analysis will be in the gen- We first evaluate the limiting SIR of user 1 under this
eral macrodiversity environment with the repeated signatumgatched-filter receiver. Although the receiver was derived
sequence model. assuming no knowledge of the sequences and channel gains of

V. SUBOPTIMAL RECEIVERS
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the other users, we shall prove a stronger result that the SI.)%° , . Proceeding exactly as in the derivation of (11), but re-
under the matched filter, viewed as a function of the signatupéacing (9) by (19)[E[1;Li8] by E[3], and Bymse bY But, Where
sequences, channel gains and transmit powers of all users as in '

definition (3), in fact converges to a quantity which depends _ K
only on the received powers of user 1. This result is analogous Bt = Blgréo K Z Br
to Theorem 3, but holds in the repeated signature sequence k=1
model.

we obtain the fixed-point equation

Theorem 7:Let Pi.(I) = Tx|v(1)]* be the received power 1

of userk at antennd. Assume that almost surely, the empiricala(7) = , I=1,..., L.
joint distribution of 2 4 qBF | =W
77t Bt | ST )
(20)
(PL(), ..., Pi(L), (Pa(1), ... (L)), The existence of a strictly positive solutiagt to (20) is
..., (Pg(1), ..., Pg(L)) @againanecessary and sufficient condition for users being able

to achieve their SIR targets. The necessity of the condition

o aBys < L follows directly from
converges weakly to some limiting joint distributichas K —

oo, and that the received powel% (1) are uniformly bounded
over allk; andl. Then, if N, K — oo with K/N — « andL aBue = L— 0" a(l) (21)
fixed, SIR, of the single-user matched filter converges in prob- =1

- I
ability to 3,—; P1(Da(l), where which itself can be derived in the same way as (12). Sufficiency,

and uniqueness, follow from Theorem 8 below, which provides
1 a remarkable synergy with Theorem 6.
S —— o, L
a(l) 0_2 + CYlE[P(l)r l ? ? (19)

[l
—

Theorem 8: Suppose Assumptions 1) and 2) from Section
IV-B hold for the limiting empirical distributions of the SIR

and(P(1), ..., P(L)) are random variables having joint disrequirementg/3; )72, and channel gains. Define
tribution G.
Proof: See Appendix-C. O K
. - . By :i= lim — Z Br.
Note thataE[P(I)] is the power of the limiting multiaccess koo K £~

interference at the output of the matched filter receiver for an- _
tennal, and P;(1)a(l) the limiting SIR at the output of the Then we have the following.

same filter. Also, the matched-filter receiver asymptotically ap- 1) If aByr > L then there is no way to assign transmit

proaches powers(1 )32, in such a way that the users asymptot-
ically achieve SIR target8y, £ =1, 2, . ...
(1) - Y1 (L) - ' 2) If aBy: < L then one can assign transmit powers
o2 +aE[P()] Y T o2 +aE[P(D)] Y] (Tw)?2., such that the users asymptotically achieve SIR
targetsfy, &k = 1, 2, .... This power control is of the

The proof of the theorem reveals that the overall SIR is the sum ~ form

of the SIRs at the individual antennas because of the asymptotic I -1
uncorrelatedness of the multiaccess interference at the despread Ti = B Z lya(n)|2a(n) (22)
outputs at the different antenna, for almost all choice of signa- o

ture sequences, channel gains, and transmit powers.

We have just given a straightforward interpretation for the ~ where (a(1), ..., a(L)) is the unique solution to the
a(n)’s in the matched-filter receiver, and it is tempting to give  fixed-point equations (20).
a similar interpretation to the(n)’s for the MMSE receiver in Proof: Analogous to the proof of Theorem 6. 0

Theorem 3; however, at the present time we have no proof ofag i the MMSE receiver case, th€l)’s depend on the target
this. We will discuss this further in Section VIII. SIRs only through a scald,..;. Moreover, the fixed-point equa-

In the special case of microdiversity, all th€l)'s are the tjons (20) are identical to the corresponding equations (11) for
same, and in this case resource pooling occurs, and we can thigkMMSE receiver, except fdB,..; replacingBimee. This im-
of the array as a single antenna with the effective received poes that in the case when there is a finite number of classes, if

of a user at the single resource being the sum of the receivgd power-limited capacity region under the MMSE receiver is
powers of the user at the separate antennas. In this case,qign py

notion of the effective interference of an interferer on a desired
user can be defined. J

Let us now consider the issue of user capacity and effective (a1, vy ag): Z o
bandwidths. Again, consider a set of SIR targets for the users: j=1

Bi
<C
1+5;
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then the user capacity region under the matched filter for thethe vectora, (1), k=2, ..., K, 1l =1, ..., L, while max-
same power constraints and outage probability is given by imizing the SIR of user 1. This receiver is given by the first row
of the matrix(V# V)=tV where

J
(a1, .. an): > ;B < C V= [ 1181, v2(1), ..., vk (1), ..., w2(L), ..., va(L)}
J=1

and we have assumad?V is invertible. The SIR for user 1

for the same constaxit. Perhaps the synergy here relies on théhder the decorrelator is given by the expression
fact that the matched filter is actually an MMSE receiver, albeit 1
one based on less information. The fact that the effective band- SIR, = W (23)
widths are larger for the matched-filter receiver is due to the lack 1
of knowledge about the signature sequences of the interferdr@}
and hence the inability to suppress them.
We remark that the effective bandwidth result in Theorem 8 U:=ls1, 82, ..., 8x]
was obtained earlier in [14], but for a slightly different model. Uy =82, ..., 8K]

In that paper, the underlying physical layer (complex fadings _ _ _ =
and signature sequences) were not explicitly modeled, althoudJifl consider the eigendecompositidn = 014,07’ . Let 71

in the present version of the result, such complex fadings &8 the diagonal matrix such that tfig <)th entry is1 if A;; =0
needed to obtain the asymptotic independence of the interféfd iSO if Ai; > 0, and defineH, := 0, F,0{". Using [18,
ence at each antenna. In [14], independence was taken as ar&&ma B.4] we have
sumption, with a heuristic justification based on the chip asyn- 1 H
chrony that results from realistic propagation delays, but no rig- W =8 His
orous justification was provided. While that approach might be
made rigorous, it is much stronger to prove the result in tt@nd
chip-synchronous case, and make use of the random phases that 1 . _
arise from multipath fading; chip asynchrony can also be mod- W = T3 diag (Ha, ..., Hi)s1.
eled, but we do not attempt this extension in the present paper.
Substituting this in (23) yields
B. The Decorrelator Receiver

L
The matched-filter receiver has no knowledge of the signa- SIR; = 2; Z EROIIZE 2
ture sequences of the interferers, but does make use of known S

statistics of the total interference levels of the interferers at eachrp,q quantity

antenna. Let us consider the other way we could lose informa-

tion at the receiver: assume the receiver knows the signature se- T (D)

quences of the interferers, but absolutely nothing about their in- o2(UHLN

terference levels. In a system where the signature sequence (%

an e s epaiedon Sy symbol basi but e o STeved o uput of he et for ver £ ot
fading is fast, it may be easier to keep track of the sequen j ' P

than the interference levels, so this is a plausible assumpt%%applymg aQecorre!aFor at each a’.‘t?””a and theryw performing
{naxmal—ratm combining of the individual antenna’s outputs.

to make. As for the matched-filter receiver, we assume perf e noise at the outputs is independent since it contains only the
knowledge of the gains and transmit power of the user to be de- P P y

modulated, to focus on the interference suppression capabi I%ckgro_und noise and not the mterfe_rence from any other users.
of the receiver. Applying [1, Theorem 7.2 ] now yields that &§, N — oo,

In the single-antenna case, an interferer lies in a single-&(/N —~a<l

mensional subspace @, which is known to the receiver even 1 P
when the receiver does not know the interferer’s channel gain. UHU —l-a

The decorrelator [11] operates by projecting the received signal . i
onto the subspace orthogonal to all interferers. In the cage of €NCe; it follows that under the decorrelator, for fixed
antennas, each interferer is only known to lie in/awnlimen- 7 X

sional subspace when its signature sequence is known but the SIRlﬂ(l - a)—; Z Iy (D]

channel gains are not. For interfeferthis L-dimensional sub- 7=

space is spanned by the vectors Hence, the system under the decorrelator is now equivalent

to one withK users,N degrees of freedom, and received power
up(1) =8/, 0, ..., 0, . oon(L) := [0, ..., 0, 571", of each user the coherent sum of the received powers at the
individual antennas. Compared to the single-antenna setting,
A natural generalization of the decorrelator for user 1 is owee see that having more antennas provides more diversity to
which projects the received signal onto the subspace orthogotied demodulated user through the pooling of received powers.
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This can be viewed as a “single-user” benefit, which exists even antenna 1 antenna 2
when there are no interferers. On the other hand, there is no im-

. . . . e f f
provement in the multiuser interference suppression ability in
the sense that the reduction in SIR is proportional te « for
any L, and that no more tharv interferers can be nulled out. 1 1
This is because each interferer essentially occubigsgrees of Y\ » < |
X X

freedom under the decorrelator. Thus, compared to the perfect

knowledge MMSE receiver, there is pooling of received powers V4 \
but no pooling of degrees of freedom for the decorrelator. Thus,
we can conclude that under the decorrelator, the effective band-
width of each user ig in a system with. N degrees of freedom.
One can also compare the asymptotic efficiencies of the declc_)iré-. 1. Two-antenna macrodiversity.
relator with that of the MMSE receiver. The formerlis- « and

the latter isl — ¢.

location 1 gptenna  location 2

combiner

antenna 1 antenna 2

VI. EXAMPLES

In this section, we will present a few simple examples to give
some insight into our effective bandwidth results, focusing on
the MMSE receiver (Theorem 6) and the matched filter (The-
orem 8). Both of these results boil down to solving the fixed-
point equations

1 location 1 location 2
a(l) = ., l=1,...,L
o2 + aBE [%} Fig. 2. Two cells without macrodiversity.
> wPaln)
(24)

where we useB := B,... in the MMSE receiver case, and It is interesting to contrast this capacity result with the user

B := B, in the matched-filter receiver case. capacity for the two-cell scenario depicted in Fig. 2 in which
macrodiversity is not used. We do this first for the MMSE re-

A. Capacity Gain of Macrodiversity Combining ceiver, and then for the matched-filter receiver.

Consider the two antenna scenario depicted in Fig. 1. User8Y Symmetry, we can obtain the capacity of this system by
are in one of two possible locations, and in each location, tfFUSing on cell 1 and using the single cell results of [1]. For
magnitudes of the gains to the antennas are deterministic. EBPPICity, let us assume th@at all users have the same SIR target
location 1, we sey(1)|2 = 1, [v(2)]? = f, and for location A, which implies thatB = . We can think of the user in cell
2, we sety(1)|]2 = £, |7(2)2 = 1. Here, typically we would 2, as beingin cell 1 but with SIR targgt, since thisis the SIR it
assume thaf < 1. ' ' will get there if it attains a target ¢f in its own cell. Therefore,

Consider first the case where an equal number of users ardfin [1, Sec. 6], we obtain the required common received power
the two locations, so that there a# users at each location, Of @ll users in cell 1 (excluding the users in cell 2)

Note that the limiting empirical distributiofl/> for the magni-

tudes of the channel gains is given by Prinee = — — (26)

P(h@)P* =1, v (2)] = f)
P(W)IP =f h(@)IP=1)

Since this joint distribution is exchangeable, it follows that N <B n 1B ) <2

0
0

ot Ut

It follows that without macrodiversity, the capacity constraint is

a(l) = a(2) := a, where 1+ /5
o= 1 <1 _ 1043) (25) We see that the loss in capacity is due to the interference in cell
o? 2 1 created by users in cell 2, and vice versa. We note that even if

f is very large, the other-cell interference effect is bounded, as

S0 that the transmit power of usewith SIR requiremeng; is we would expect since the MMSE receiver is near—far resistant.

given by Nevertheless, the example shows that other-cell interference can
Bro? still substantially reduce capacity, depending on the valug of
Ty = (1—aB/2)(1+ f) Now let us consider the matched-filter receiver, which has
B = j3and
Thus, aseB increases up t@, « decreases down to zero and
the transmit power required goes to infinity. As expecies, P = Bo? @7)

cannot go beyond, the user capacity of the system. 1—%ap—Safs
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In this case, the capacity without macrodiversity is given by ase | 0. But for any usek, (14) gives us that

2 —aB -t
o1+ /)B <2 Tk:/3k< Ba16+6(2—aB)+0(6)>
aB —
and the penalty term f B is unbounded ag increases, which is — 0@
a consequence of the fact that the matched filter is not near—far o )
resistant. Thus, transmit powers increase dramatically dscreases. The

Itis interesting to note that the macrodiv_ersitycapacitiesin OHHct thata(1) is small means that users need to transmit with
examples (MMSE and matched filter) are independeyfit bftu- - enough power to get received at antenna 2, but since this antenna

itively, as cells getcloser togethefiiicreases) auser experiences; far away, transmit powers are very large.
interference from a larger number of users, but at the same time

it gets more benefit from macrodiversity combining. We obsen@. Rayleigh Fading

that these two effects cancel each other out exactly [14]. A simple way to extend our example to incorporate Rayleigh

fading is to specify any random variakftg,(1), v%(2)) associ-

_ ) ated with location 1 as being a pair of independent, zero-mean,
To get a feel for nonuniform traffic, let us return to the macrq:omplex Gaussian random variables, the first with variahce

diversity model of Fig. 1, but consider the scenario in which aljnq the second with variancg In this model, the mean of

B. Nonuniform Traffic

users are located in location 1. Then we have Iy (D)|? is a function of large-scale geographic effects, while
1 its fluctuations are due to multipath fading.
a(1) = o2 + aB i (28) Let us return to our example in which the proportion of users
f(l)J’“@)f at each location are the same, but under the present Rayleigh
a(2) = 7 (29) fading model. In this case, the limiting empirical distribution of
0%+ @Bm the channel gains can be described as first a random selection

L ) _ of location 1 or location 2 with equal probability, followed by
Setr := Sryragyy- 1hen adding the above equations we gety conditional selection of channel gains. If location 1 is selected
thenthe gains are independent Rayleigh with paraméeterd,
1 1 f . i : . ) .
= + respectively, andiflocation 2 is selected the gains are independent
x  o'+aBr  o?+aBfr Rayleighwith parametersandl, respectively. Thus, the limiting
empirical distribution of the gains is exchangeable with respect
to the antennas. It follows from (24) that1l) anda(2) are the
(2—aB)aBfz? — (1+ f)o*(aB - 1)z —o* =0. same, and that the common valuis as given in (25). We have,
therefore, verified for this example that the capacity constraintis
If f<landl<aB<2,orf>1andaB <1, then the positive still «B < 2. The transmit powers are given by
solutionz is given by

which gives a quadratic equationin

3,02
y 1/2 T = (1— aB/2)(|’/7:(1)|2 + [ (2)?)
, 1+f+(1—f)(1+W>
o*(aB —1) (2 — aB)2aBf : and these tend to infinity as capacity is approached.

To get a better picture of the impact of macrodiversity, we now
In the other cased,<1andaB<1,or f>1andl<aB <2, present aumericalstudy of macrodiversity capacity, and con-

the positive solutionr is given by trast it with the single-cell case (without macrodiversity com-
1/2 bining, and treating out-of-cell signals as interference), both for

1+f-(1-1 (1 + W) the MMSE receiver and for the matched-filter receiver. As be-

o*(aB — 1) fore, we do the MMSE case first, followed by the matched filter.

2 —aB)2aB . . . .
(2—aB)2aBf In the MMSE case, the interference-limited macrodiversity

In all cases, the condition for a positive solution is that < 2.  capacity is2# users per degree of freedom of spreading,

Thus, we have numerically verified the capacity constraint givavhich we note to be independent ¢t This is plotted as

in Theorem 6, for this scenario. curve “mmse-macro” in Fig. 3 for the cage= 10 dB. In the
Note that we can substituieback into (28) and (29) to obtain single-cell case, the capacity depends forand (26) for the

numerical values fos(1) anda(2). To gain some insight, let us received power in either cell becomes

focus on the case in which the two antennas are far apart, i.e., 50

the case of smalf. We setf := ¢, wheree is a parameter that Prmse =
; L 1.8 1 lv)I”8
we take small, and obtain an approximation &t ) anda(2_) 1-gza-5aE [W}
up to O(e) accuracy. We assume thht< «B < 2. Then its
simple to derive that where the expectation is taken with respect to the fading from

5 B location 2. The expectation in the denominator
—

)= 1o P8
a(2) =2~ aB +0(¢ [Iv(l)l2/3+ |'7(2)I2}
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Fig. 3. User capacity per unit processing gain versu®r two antennas and Rayleigh fading. SIR requirentest 10 dB.

can be evaluated as the double integral freedom (d.f.) per cell) if we split the bandwidth between the
cells, giving/N/2 degrees of freedom to cell 1, a2 degrees
np ] of freedom to cell 2. This isessefficient than full frequency
! / / B+ exp(=rz —71/f) dridr reuse, except for very large values pfFull frequency reuse

seems optimal for “sensible” values @fin our example (say,

By evaluating this integral for different values ¢f and for f < 1), but we observe that bandwidth partitioning is superior
£ = 10 dB, we obtain the “single-cell (mmse)” curve in Fig. 3as f T oc, where the limiting value was calculated above to
Note that the capacity does not decrease to zero, as the me@rapproximatelyl.05 users per degree of spreading. This
other-cell interferencg tends to infinity, but instead approachegxample, therefore, illustrates the fact that full frequency reuse
a nonzero limiting value. The value of this limit can easily bé& not inherently optimal for spread-spectrum systems with
calculated numerically to k22/21. It can also be deduced fromlinear receivers (see [20] for more general information-theo-
single-antenna results [1], by noting that for larfjeeach user retic results about this issue) but we remark that it is likely to
in location 2 effectively takes up an effective bandwidth of provide a very good solution for real systems, or for models
degree of freedom in cell 1. In terms of single-antenna theonjth more realistic fading parameters. This is especially so for
[1], cell 1 consists ofaV) /2 users per degree of freedom eackhe MMSE receiver, which has the ability to null out a strong
taking an effective bandwidth of; = 10/11, and(aV)/2  interferer in an adjacent cell.
users each taking an effective bandW|dth10ﬂ' hus, the con-  In the matched-filter case, the macrodiversity capacity is also
straint onc is (21/22)a < 1. independent of , and is2/3 users per degree of spreading. This
In our example, we observe that the MMSE single-cel$ depicted in Fig. 3, for the cage= 10 dB. In the single-cell
capacity drops away very quickly from the macrodiversitgase, the capacity dependsfrand (27) for the received power
capacity asf increases. The gain from macrodiversity is dum either cell remains valid for our fading example. Using this
to the fact that “other-cell interference” does not exist witkequation, we plot the “mf-single cell” curve in Fig. 3, again for
this receiver, whereas other-cell interference increases in fhe- 10 dB. Note the matched filter, no-macrodiversity capacity
single-cell receiver case gsincreases. In the single-cell casegoes to zero ag increases, precisely because of the lack of
it is interesting to see if the other-cell interference effect cdnear—far resistance” in the matched-filter receiver.
be overcome by bandwidth partitioning. We note that the The present model of Rayleigh fading is still rather sim-
single-cell MMSE receiver can achieve a capacity of exactplistic. For example, we have assumed that the mean strengths
1.1 users per degree of spreading (i(e55 users per degree of of all users are deterministic, and the users split into two
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groups, each with identical mean strengths to the two antennsible, with SIRs bounded away from their targets. Thus, a subset
A more realistic example would allow each user to have distinot users is “feasible,” whereas the remainder is “infeasible.”
mean strengths, and a reasonable model would be to selduis is possible precisely because the feasible users have enough
the mean strengths from a log-normal distribution to moddegrees of freedom to “null out” the infeasible users. This ob-
shadow fading effects. Another aspect of realistic fading servation accounts for the reason why we have to consider con-
spread-spectrum systems is that it exhibits frequency selectistyaints on subsets of users, and not just the whole set of users,
i.e., multiple complex taps are required to model the chanrielthe following theorem. In what follows, let SI¥") denote
of a user. We will not attempt to extend our theory, or ouhe vector of attained SIRs when the transmit power vector is
examples, to more realistic fading models in the present papEr= (71, ..., Tx)'. Forasubsetofusets C {1, 2, ..., K},
but note that other results in this direction have been obtainletlS(U) be theL N x |U| matrix consisting of the columns &f
in [18]. corresponding to users iri, andD(l/) be the diagonal matrix

of transmit powers of users Iri. First we present the following

VII. A D ETERMINISTIC FORMULATION key lemma, proven in [21].

Lemma9: Let\(, ..., A\rn bethe eigenvalues of the matrix

In the previous sections, we have focused on an asymptogi U)YD(U)S(U)H, and SIF{ be the SIR of usek under the
model where the signature sequences are randomly chosen E receiver when only users in the sub&eare present in
the number of users and the processing gain are both Iarfhe-er system. Then

Moreover, the power control was allowed to be based on only U LN
- ific si i SIR;, A
the channel gains but not the specific signature sequences. It is Z k Z i (30)
j=1 Aj +o?

usually assumed that it is not appropriate for power control in 1+ SIRZ’

CDMA to be functionally dependent on the signature sequences

of users. In multiuser detection, however, it is required for the Theorem 10:The constraints

receiver to know the structure in the interference, as determine Pr < rank(S(U)) VUC{1,2, ...,K} (31)

by the signature sequences, and it may therefore be reasonablq%, 1+ Bk -

allow power control at the transmitter to depend on the choice gfe necessary and sufficient for there to exist a positive transmit

signature sequences as well. This seems plausible, especialpbifver vectof™ that solves the SIR equations

signature sequences are repeated on a symbol-by-symbol basis. SIRW(T") = B E—12 K. (32)
In the present section, we considefirate-sizedsystem with _ _ o

arbitrary signature sequences, and look at the capacity un(ijef1 solution exists then ',t IS unique.

the MMSE receiver. We show that the asymptotic capacity re- Proof: See Appendix-D. =

sults we derived in the preceding sections, actually hold in the fi- Corollary 11: Assume tha#X > LN. Suppose that the ma-

nite case, provided we can control transmit powers as a functigix S has the property

of the given signature sequences. Our results will also provideevery subset of N columns are linearly independent. (33)

insight into the structure of the interference-limited capacity ri— d sufficient dition for there to b
gions in the asymptotic regime in which signature sequences N anecessary and su 'f'en condition for there fo be a pos-
itive transmit power vectdI™ that solves the SIR equations in

chosen randomly.

kCU

Given a set of signature sequenses. . ., sx, channel gains (32) is that
~v(1)’s, and transmit power$;,’s, the SIR for user 1 is given by K 3
(5), with the matrixS; 7, defined there. We assume that uker Z 1 +Z 7 < LN. (34)
has a required SIR of,,.The power control problenis to find i=1 v
transmit powersly, ..., T; for the users in such a way that Proof: If U is a subset of users witli/| < LN then

each user attains its required SIR. We find necessary and sq}‘&iﬁk (S(U)) = U], but¥ i € U B < 1. Therefore, (31)
cient conditions for guaranteeing that the power control problem . i 171 S IN thenrarikl(f(iU)) _ LN and hence

is feasible, anq in this way obtagapacity constralr_1t$hat de- (31) is justY; o, 1'875- < LN. The tightest of all constraints
pend on the signature sequences and SIR requirements of is form is +hi

users. However, we show that under a weak assumption on the ’

signature sequences, the constraints reduce to a single constraint K B;

that only depends on the SIR requirements of the users. Z 1+ 5
The following theorem gives us the effective bandwidth char-

acterization of the capacity region of the finite system underdls-Unoler what conditions on the original signature se-

cussion. We remark that the result, and the argument we ”5%6%nce331, ..., sx doesS have the property (33)? Let

prove it, are both very similar to Theorem 6. The dn‘ferenc%: [s1, ..., 8] and for any subset of usets 7(U) be the

however, is that in Theorem 6, either the system is feasib ; . .
L . VRS ! x|U| matrix the columns of which are the signature sequences
for all users, or it is infeasible for all users; if it is infeasible ) O .
f users inU/ (in increasing order, say).

then all users’ SIRs remain bounded away from their targePs.
In the present case, it is possible to have a subset of users witProposition 12: AssumeK > LN. If every set of users of
bounded transmit powers and with SIRs converging to their taize LN can be partitioned intd disjoint subseté/;, ..., Uy,
gets, but with the complementary set of users remaining infegach of sizeV, such thatZ (U,), ..., 7 (Uyp) are all full-rank,

< LN. O

i=1
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then property (33) is satisfied almost surely in the (randorﬂ)}"), j # ¢. This can be thought of as a power control algo-

channel gaingy(1). rithm, for potential practical implementation, and in the present
Proof: Suppose first thalkl' = LNN. ThenS is anLN by section we wish to derive an explicit expressionﬁ?’“), the

LN matrix. LetP = {Uy, ..., U} be any partition of the users transmit power of user 1, at step+ 1 of the algorithm.

into L disjoint subsets each of siz€. By the Cauchy-Binet  The interference covariance matrix for user 1 is given by

formula [22, p. 22] »n) = 51D§")Sff, which is the matrix in which the effect

L L of user 1 has been removed. Ke§1’"))L§’ be the eigenvalues
j=1
det S = Z [H det T(U7) H H 'Vk(l)] of this matrix, and let(>:™ be the coordinates of the signature
P =1 =1 kel

' - ) . sequence of user 1 in the basis of eigenvectors. Then
where the sum is over all partitioff3. In this representation,
det S is a polynomial in the channel gains. By the assumed LN 1n)

. . (n+1) J

property of the signature sequences, there exist at least one 17 = O Z D) .
nonzero coefficient in this polynomial and the polynomial =1 A +o
is not identical to zero. Since the channel gains are circular
;ygnmetgc Ehfhr_‘c‘? C?ntlr}[lrj]Olthl phatses) larl[?] tget pha;est ffinterpret{"> " as the level of interference experienced by
indepenaent, this Implies that aimost sur€ly the determinant (de - ¢ i the direction of the orthogonal basis of eigenvec-

< Is nonzero and the rank _prop_erty (33) holds. For the genefg}s_ Equation (35) specifies a power control algorithm, in which
case whenk' > LN,_an identical argument holds for anypowers are selected as a function of interference measurements,
subset of columns of sizBN. and the user’s own energies, in the different directions.

It is worth noting that if the elements of the signature se- In the random sequence model, the proof of Theorem 6 can
quences are drawn randomly and independently from the sa@igo be viewed as providing a power control algorithm to satisfy
continuoudistribution then the assumed condition in Proposthe SIR requirements as expressed in (10). The proof explicitly
tion 12 will hold with probability1. Moreover, even when the identifies a sequence™ for which a™ | a*, asn — oo,
elements are discrete, say taking on valydsor —1, it can Wwherea® is the solution to (11). But if we set
be shown that the condition will hold almost surely in a large L -1
system asV, K — oo, K/N — «. (n+1) ._ 2_(n)

It is interesting to observe that the feasibility condition (34) h =k <; (D (0) (36)

is similar to the interference-limited capacity constraint fotrhen this provides an analogous power control algorithm to (35).

random sequences in a large system, as in Theorem 6. Howe¥ T . . ) .
. . & analogy with (35) is even stronger if we define a new set of
using random sequences, the power control to achieve the same

-1

(35)

an explicit representation of the power control algorithm. We

. L . . variables
capacity region is much simpler than for arbitrary sequences: 1
the transmit power of a user can be chosen as a function of only q(l) == = — o2, 1=1,2,...,L (37)
its SIR requirement and its own channel gains. Moreover, the a(l)

effective bandwidth characterization extends to power-limitetfter which (36) becomes
capacity regions for random sequences, and this does not hold L _1
for arbitrary sequences. These results are consequences of 7). 3 <Z Iy (D)) ) (@8)
deeper random matrix properties. ! - g™ (1) + o2

During the completion of this paper, a recent Ph.D. disserta- . , )
tion [23] has been brought to our attention, which investigatd!is IS @ power control algorithm based on the “macroscopic”
the issue of effective bandwidths for finite systems with CDMA(ar'aLk]’J,eS(Q1v -+, qr), as opposed to “microscopic” variables
and antenna arrays. In this work, one of our necessary confdld)i=1- o . . i
tions is derived, namely, the overall constraint in our equation I N€ reduction in dimensions froV variables toL vari-
(31). Simulation evidence is given that this constraint seemsB/€s iS @ consequence of the law of large numbers embodied in

describe capacity very well, and our Corollary 11 can be viewdd€0rem 3. This law of large numbers is very important from
as a substantiation of this claim. a practical point of view: in a large system, implementing an

algorithm of the form (35) involves measuring a large number
of “microscopic” variables, the;'s andu;’s, which are fluctu-
ating on the fast time scale of burstiness and fading. Theorem 3
states that if the underlying probability distributions are fixed,
The proof of Theorem 10, given in Appendix-D, relies on aghen the limitinga(n)'s are constants, and in a finite, but large
iterative procedure in which a solutidi" to (32) is shown to system, the fluctuations will be small. Moreover, Theorem 3
exist by constructing a sequerE&", n = 1,2, ... The basic shows that the constants are the same for all users. A power
idea of the proof is that given a set of transmit powlF®, this  control algorithm such as (36) can, therefore, be implemented,
specifies an interference covariance makfx) := SD™S",  in which the number of variables to be measured and fed back to
and a corresponding set of eigenvalgag” )~ . These inturn  the users is much smaller, and which change much more slowiy,
specify a new set of transmit powéF§™ 1) where the transmit as the underlying probability distributions change.
powerTf"*” of useri is chosen to satisfy usés SIR require- Both (35) and (36) fall into a general class of power control
ment assuming all the other user’s transmit powers are fixedadgorithms studied in [24] and also surveyed in [25]. That these

=1

VIIl. Power CONTROL:
MACROSCOPICVERSUSMICROSCOPICSCALE
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algorithms converge, when a solution exists, is due to an underdependent interference at each antenna element (see [29, Sec.
lying monotonicity inherent to these problems [26], [24], [14]7.4]). However, in our spread-spectrum model, the interference
and indeed central to the proofs in the present paper as wellalneach antenna isot independent; in fact, it is precisely the
the present paper, we have also exploited fundamental conslpendence of interference over chips and antennas that the
vation laws ((30) in the deterministic signature sequence mod€IMSE receiver exploits to gain its advantage. Therefore, it
and (12) in the asymptotic random sequences model) in orderquite surprising to see the same additivity of power that
to show existence of solutions to these power control problenogcurs in the independent interference case arising here as well.
See [25] for further discussions on conservation laws. Other r&loreover, our results show that not only is the received power
evant works on power control for multiuser CDMA receiverpooled for the user to be demodulated, it is also pooled for the
and for antenna arrays include [27] and [28]. interferers This certainly goes beyond the standard maximal
The matched-filter results in the random sequences model sa#o combining result.
surprisingly similar to the MMSE results; all one does is re- Generalizing the results in [1], we provided an effective band-
placesB.mse bY Bir. Thus, a power control algorithm for thewidth characterization of the user capacity region of a system
matched-filter receiver is also given by with antenna diversity. As a function of the target $IRhe ef-
fective bandwidths for each user under the MMSE, decorrelator,

L —1
n n hed fil
T}g +1) . B <Z |,yk(l)|2a( )(l)> k=12 .. . K and matched filter are
=1

3
ome8) = T cad =L el =8

We remark that th? convergence propgrtles Of, this algorltr\mth the interference-limited capacity region asymptotically
were obtained earlier in [14]. It is also interesting to obsery ven by

that in the matched-filter case, the change of variables (37) has

a direct interpretation;(!) is the interference level at the output K
of the matched-filter receiver at anteniyand this follows from > e(B) < LN.
the proof of Theorem 7. In the MMSE case, we conjecture that k=1

the ¢(I)s have a similar interpretation as despread interferenggys in a system with processing ga¥h) andL antennas, the
levels at the antennas, where we assume the global MMSE ggara|l number of degrees of freedomlisv. Analogous re-
ceiver s partitioned among the antennas to getintermediate Qs are obtained for power-limited user capacity regions where

puts before combining. users have transmit power constraints.
We observe that the matched filter gains capacity whenever
IX. CONCLUSION we increasd., but it is still susceptible to theear—farproblem;

Our main results are the limiting SIR performance and the dhe fact that the signature sequences of the interferers are not
fective bandwidth characterization of capacity for a DS-CDMAISed means that the receiver cannot null them out. Thus, the
system with random spreading, spatial diversity, and MMSE degrees of freedom from spreading are not used to their full
multiuser receiver. We also provide analogous results for tRetential. The decorrelator does not gain user capacity when we
decorrelator and matched-filter receiver, of interest in theffcreaseL, because the effective bandwidth occupied by each
own right, but particularly to provide a contrast with the perUser increases linearly with. Thus, thel degrees of freedom
formance of the optimal MMSE receiver. The asymptotics aRgovided by the antennas are not used to their full potential.
for large processing gailV and large number of usefs, but However, it does use th&y degrees of freedom provided by
fixed number of antennak. We consider both microdiversity, SPreading effectively; since it knows the signature sequences of
in which the channel gains to the antenna elements are i.i.d. fa¢ interferers it can null out their interference.

each user, and macrodiversity, in which the channel gains areS0mewhat surprisingly, the interference-limited capacity re-
independent but not identically distributed. gions do not depend on the statistics of the channel gains, and are

In the case of microdiversity, a curious “resource poolinghe same in both the macrodiversity and microdiversity models.

effect is observed. We have shown that one can considel the MMSE receiver, we gave an explanation of the inter-
the microdiversity array as a single antenna with processifgjence-limited capacity region by means of an underlying de-
gain LN, i.e., a pooling of degrees of freedom provided bysrministic conservation law governing the tradeoff between the
spreading and antennas. In the single-antenna system, MRAN-square errors of the different users.

equivalent amount of received power is obtained by adding upQur results are obtained in a synchronous CDMA model
the received power at each of the individual antenna elemeitéh flat fading. Extensions to asynchronous systems with
in the multiantenna system. This resource pooling result fi@gquency-selective fading can perhaps be obtained by com-
surprising in several ways. When one considers the pooliRiling the ideas of this paper with those in [30] and [18], which
of degrees of freedom, one notes that the signature sequerédiess similar questions in the asynchronous and multipath
are repeated at each antenna, so it is far from clear that §§&lings, respectively, for a single-antenna CDMA system.
hasLN “independent” dimensions, yet this is what our result

shows. As to the pooling of received power, this may appear APPENDIX

to be a fairly standard result for antenna arrays, where this

effect is observed to occur for maximal ratio combining oft: Proof of Theorem 3

antenna elements, but the underlying assumption there is ofMe need the following result, [31, Corollary 10.1.2].
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Theorem 13:Let . A be a|en| x |dn| random matrix with Proof of Theorem 3:In the completely random model, the
independent entries which are zero-mean and satisfy the cor®IR for user 1 is given by

tion SIR, = Tir (R DVRY + 021) 11y

nVar (A;j) < B wherel}, is the transmit power of usér

. . i = i]- Gy ey i]- 7y 1‘2 7 TR
for some uniform boun® < oc. Moreover, suppose that if we’ h (D, Yo, %2, .
define for each a functionu,: [0, ¢] x [0, d] — R by Vil LN (-1, - Vil L), i

R = [’7‘2, . 'T‘K], anle = diag(Tg, . TK). Here,uij

vp(x, y) = nVar(A;;), for4, j satisfying:
n(@ y) (i), ford, j ing are alli.i.d. random variables with mean zero and varidn@é.

L <z < i+l I <y < G+ Recall thatPy, (m) = Ty |y (m)|?. For simplicity, assume that
" " " " the power vectoréPy (1), ..., Py(L)) take on only a finite set
and thaty,, converges uniformly to a limiting bounded functionof J possible values, sagpy;, ..., pr;), 5 = 1, ..., J, and
v.3 Then for eachy, b € [0, ¢], a < b,andz € C*+ let the limiting empirical distribution of (1), ..., Pi(L)),
Lom] , k=1,..., K beequaltdp,,, ..., pr;) with probability ;.
1 Z (AAH _ 7])ilf>/ w(z, 2) dx With this assumption, we can identify each user with the class
n . T “ T j its vector of received powers belongs to. The same result can
i=lan] be proved for the continuous case using an approximation argu-
whereu(r, ) satisfies the equation ment. (See [30, proof of Theorem 4.1] for a similar argument.)

Consider now the random matri® := R,D./2. Condi-

(39) tional ontheP,’s andv,(1)’s, the entries of4 are independent.
Each column ofA is associated with a user. By reordering the
columns so that the users are in increasing order of the their

for everyz € [0, ¢]. The solution of (39) exists and is uniqueclass indexeg, the functiornw,, defined in the statement of The-

in the class of functions(z, z) > 0, analytic onz € C* and orem 13 for.A can be seen to converge tcalmost surely as

continuous orx € [0, ¢]. N, K — o0, K/N — «, where

Moreover, almost surely, the empirical eigenvalue distribu-
tion of AAM converges weakly to a limiting distributio&™, (@, ) =Py,

1

v(z, y) dy
w(w, z)v(w, y) dw

w(z, z) =

-d
—Z + jo l—l—fC
Q

whose Stieltjes transform if az g <y< Oéz ¢ and I -1<z <l (40)
- i<y i<y
m(z) = /0 1/(A = 2)dG"(X) Then, for eachs, b € [0, L], a < b
o L 1 Lbn) b
is given by [ u(z, 2) da. D DRCVLERE s / w(z)de  (41)
The following lemma is a modification of a corresponding i=lan] ¢
lemma of [32] and the proof proceeds along similar lines.  wherew satisfies the equation
Lemma 14: Suppose, ..., vy, are uncorrelated random w(z) = 1 (42)
variables, each zero mean and variabg¢# with finite fourth o 4 [ dy
moment. LetB be anLN by LN constant Hermitian matrix. 1+ [, ulw)u(w, v) dw
Define the vector for all z € [0, L]. It can be seen that sinaeis constant as
a function ofz in intervals[l — 1,1),1 = 1, ... L, u is also
s:=[dun, ... divw, davnn, -y constant in those intervals. Letz) = a(l) for z € [l — 1, I).
ALVN(L—1)+1s -+ +» dLuLN]t Using (40), (42) is now reduced to the following systemlof
simultaneous equations:
wheredy, ..., d;, € C. Then 1
. aol) =
. 1S N o2 +F _rw
Es” Bs = N ; |di] - lzlzN B | . L+>F  a(m)P(m)
= =DV where(P(1), ..., P(L)) = (py,, ---, pr;) With probability
If furthermore they;’s and i.i.d., then g;.J =1, ..., J. Applying Lemma 14 and (41) now yields the
. theorem, sinc@ ax ((AAY + 021)71) < 1/02.
Var [87Bs] < =+ A2, (B)
N B. Proof of Theorem 1

for some constar®; which depends only on the fourth moment The focus of the analysis is on the quantity
of 11 and thed;’s. Here \,,.x (B) is the largest eigenvalue 6f
e SIR, = T,3(&5, D187 + 0°1) '3, (43)
3We note that here the-axis is identified with the rows of the matrix, and ] ) ) ) )
the y-axis to the columns. where the various variables are defined in Section Il.
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The asymptotic behavior of the SIR is quite complicated tib should also be noted that there is no further repeat of terms
analyze due to the dependence of the elements of the super isiggach of the products, because of the first constraint. The fol-
nature sequences of the users. As aresult, we cannot directlylogeng result is due to Wachter [33, Theorem 1.1.4].
eX|st'|ng random matrix results asin the proof of Thec_)rem 3. E.S_Theorem 16: Almost surely the empirical distributioty,,
sentially, what we want to show is that the asymptotic behavior A .

: ) . converges to a limiG* if and only if for eachk, E[H(n, r)]
of SIR; is the same as if the super signature sequences were

generated in the completely random sequence model. There&re c19es a8 — co. Moreover, if the limitG:* exists , then

two main parts to the proof. /x,, dG*(z) = lim E [/ - dGn(a:)}

1) We show that the limiting spectrum 8DS* is the same
as that ofRDR, whereR is the analogous matrix in
the completely random sequence model. This is done by
bootstraping from the special case where the receivedTheorem 17: Assume there exists & such thatP,(I) < B
powers at all the antennas from all the users are the sarfwg, all £ and{. Then the moments of the expected empirical
aresult already proved in [18] using techniques from fregigenvalue distributions a$DS* andRDR" both converge
probability theory. The more general result follows fronto the same limits ay/’, K — oo andK/N — «. HereD =

= lim E[H(n, r)].

a combinatorial argument. diag (11, ..., Tx).
2) We show thatli 82 (S, D, SH + o21)~13, is asymptoti- Proof: First we condition on thé’,(I)’s. Define
cally 2 = V/NRDY?
L
T, Z |y1(m)|? - 1 Tr (S, D: Sy + o2) L. andletr = LN. LetG,, be the empirical eigenvalue distribution
—~ N of RDRY . We have for each

. . ._ ’ 1 1 r
This would hr_;lve_followed from a simple mean and vari 2" dG(z) = = Tr | (= ZzzH
ance calculation i#; were generated from the completely n n
random sequence model (as in Lemma 14). However, the 1 N N
dependence in entries 8f makes the proof much more = g+l Z ZsrssZaynn T Lrorraa Za o,
complicated. The analysis of this step is done in the main =H(n, r)+ G(n, r)

body of the proof. ) ) ) )
whereH (n, r) is as defined in (44) an€(n, r) consists of the

First Step: remaining terms in the sum. Léfy(n, ) andGo(n, r) be the
Lemma 15: Assume thall; |, (1)|* = 1 forall k andl. Then corresponding term whef, (1) = 1 for all I, k in the repeated
the moments of the expected empirical eigenvalue distributiosisquence modeH¢(n, ») andG¢(n, r) be the corresponding
of S8 andRR* both converge to the same limits&s K —  terms in the completely random sequence model, for general
oo andK/N — a. Py.(Iy's; andHg(n, r) andG§(n, r) be the corresponding terms
We now want to generalize the above result to the caseiffthe completely random model with, (1) = 1 forall 7, k. We
arbitrary but bounded?.|vx(1)|*’'s. We need another randomgpserve that

matrix result. . . _
Let Z be ann by |cn| random matrix with independent 1) E[H(n, r)]=E[H*(n, )], E[Ho(n, )] =E[HG(n, 7)];

zero-mean entries and such tB4€; ;|2 < B for some$ > 0 2) lim E[GG(n, )] =0
andB > 0, and letG,, be the empirical eigenvalue distribution 3) nhnolo E[Go(n, )] = 0:
of 1/nZZH . Therth moment ofG,,, | 2" dG,(z), is no0 ’ :
. 4) lim E[G°(n, r)] = lim E[G(n, r)] =0.
n [(n ) } The first statement follows from the fact tHatH (», )] and

1 . . E[H¢(n, r)] depend only on the variances of the individual en-
=t Z L5 2550, LsarmisanZarsne tries of SDSH andRDRH, respectively, which are identical.
The second fact follows from Theorem 16 applied to the com-
pletely random model withP, (1) = 1. The third fact follows
from Lemma 15 that the completely random and repeated se-
1 guence models have the same limiting moments. The fourth
H(n,r):i= — Z 2602ty B 150 Zn s, (44) statement follows from the fact that there is a one-to-one cor-

" Z respondence of the summandsifi(n, ») andG§(n, r) with

where each summand i satisfies the further constraints thaf!onZero expectation, each of which are positive and that the ex-
the number of distinct odd-indexesb;_; plus the number pectation of each such term ' (n, r) can_be at most a factor

of distinct even-indexed»; equalsr + 1 and that there is a Of B” larger than that of the corresponding termGfi(n, ).
one-to-one pairing of the unconjugated and conjugated terfalogous statement holds f6(n, ) andGo(n, 7).

in the product. Hence (n, r) can also be written as Now, in the completely random sequence model, the
empirical eigenvalue distribution converges almosst surely,

H(n, ) = 1206, 2t e, I*- from Theorem 3. Therefore, by Theorem 16, for each

and the summation is over all indexs . . ., s2,., with the odd
indexes ranging fror ton and the even indexes frotrto | cn | .
Consider now the following sum of a subset of the terms:
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lim,, .o, E[H¢(n, r)] exists and is the limit of theth moment as N — oc, where G* is the limiting expected empirical

of the expected empirical eigenvalue distribution&PSH. eigenvalue distribution ofSDSH. This convergence holds

Applying facts (1) and (4) to (45) allows us to conclude thatincef(\) = 1/(A+ ¢2) is a bounded continuous function and
the corresponding moments for the repeated sequence mddebs= converges weakly t6*. Let us define

converge to those same limits. Moreover, this limit is the same oo

almost surely in the received powels(l)’s. An application lin ;:/ 1

of the Dominated Convergence Theorem allows us to conclude o Ato?

that the same conclusions holds for expectations 8%€f)'s  \we now analyze what happens asymptotically to the left-hand

dG* ().

as well. 0 side of (46). Recalling thaP, = 7; 3% | |~:(1)|2, we first ob-
Second Step\We need one more lemma. serve that
Lemma 18:Let A be a deterministicV x N complex ma- By By
trix with uniformly bounded spectral radius for all. Letq = E { D } =E { { T3, [% (D - |%‘(L)|”
ﬁ[ql, ..., qn]¥, whereg;'s are i.i.d. zero-mean unit variance ’

random varlables with finite eighth moment, lzeite identically Which, by Lemma 14, implies that
distributed and independent @f Then

ﬁN 1 L
: 3]
H 4
Elle” A < 3 rlN lzl T 2
for some constanB that does not depend ofior V. N . I
Proof: The proof proceeds along the same lines as the : Z (SiD;S;" + o)}
proof of [34, Lemma 2.7]. O J=(I-1)N+1
We can now give a proof of Theorem 1. (48)
Proof of Theorem 1:Define since the circular symmetry and independence ofitreimply
that the entries o$; are uncorrelated.
S =[81, ..., 8i—1; Sit1s - Sk] In the microdiversity model, thex({)’s are identically dis-
D; = diag (Tl, vos Ty, Tigay ooy Ti) tributed and independent for each fixéd By permuting the
S =[5, .... 3] rows of (S;D;SH + o21)~1, we see that the random variables
D= dlag(ﬂ, ceey TK) IN
I . U= Y (&DiSF+o°D;},  1=1,...,L
wheres; is defined in Section II-A, and let : . i
j=(1—-1)N+1
By =13 (sS4 o2 D)7t (45) (49)

are identically distributed. So we can rewrite (48) as
which is the SIR achieved by useéunder the MMSE receiver.

In [21, eq. (12)], a key equation relating tf3¢’s and the trace E {/ﬁv} _ b E[Te(SDiSY +021)7 ] — g (50)

of (SDS" + o21)~! was derived P; LN
BN . ) asN — oco. Our goal now is to show from (46) that/F; in
LN Z Ty LT L_N Tr(SDPSY 4+ o°1) " fact converges t@* in probability for every:. To this end, let
3N
Rearranging terms and then taking expectation with respect to B =g+ AN,
the random sequences, channel gains, and transmit powers, we P
get Then, expanding about*
1 -1 1 1 P, P?
—E R - _ W AJV _ A]V
LN [2 1+ 8] 14+ 8N 1+Pp* (1+Pp*)? * (1+PEN)3 (A
52 N - . G
K 14E Z 1 (46) for some¢ in betweens,Y /P; and 3*. Substituting into the
~IN LN AN+ 02 left-hand side of (46), we get
whereAY, ..., A} are the eigenvalues &FDSH . Letusin- 1 e i Lo Z 1
vestigate what happens 85 — co. Applying Lemma 15, we [N 1_|_/3N LN i 1+P3*

have "

1 P, :

— __“* AN
1 1 <1 LNZ(l—i-P/}*)? i ]

— — | = ——— dFspsw(A i= v

LN ; AV o2 /0 "oz s () p

1 p? N
o L LN 2 wngy ™ )]

LN —E
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As N, K — ocandK/N — «, the first term approaches Substituting (47), (52), and (53) into (46) and taking limit as

K N — oo, we get that

1 1 o 1
LN ; 1P| " LE {1 T Pﬁ*} (52) LHS = % — 14028 (54)
where the random variable has the limiting empirical distri- \\here
bution F" of the P;’s. This follows from the almost sure conver- o 1
gence of the empirical distribution together with an applicatidoHS = I E [TP/}*}
of the Dominated Convergence Theorem.
Consider now the second expectation in (51). From (50) 4 lm E

N—oo

1 K P2 .
N 2 axpayp ™

. 1
E[AN] = — E[Tx (5;D;S + 02171 - B~
[&7] LN [T ( )l=f Recall that

If we let
g = / 1/(A+0%)dG* ()
Ci = (8D SH + o1 _ o _ o
and where G* is the limiting expected eigenvalue distribution of
0 g SDSH. However, we have shown in Theorem 17 that the
C:=(SDS" +07I) limiting distribution is the same in the repeated sequence and
application of the matrix inversion lemma yields completely random sequence models. This equality allows us
_ to apply Theorem 13, applicable for the completely random
C,=C+ TiCisis,"Cs model, to computed*. Because of the i.i.d. nature of the
1+ T387C;s; fading gains in the special case of microdiversity, the system
SO of fixed-point equations (39) collapses to a single fixed-point
) 1 T.3¢C3; equation, to which3* is a unique solution
Ela?] = oy EIT el + i B || - |
LN 1+Ts; C;s; /3* =
Note that o+ ¢E [1+m }
1 T.87C%3, 1 Some simple algebra translates this into
0< 77 E | T | < oy B sP) P
LN "1+ 183, -~ o'LN op[ L a1,
and L |1+pp) " L o
1 U oiB Comparing this with (54) yields
2 2
0'4LN [THSzH ] = T; Z |'Yz < —N 1 K P2 N ~
since the total received powers are assumed to be uniformly
bounded from above b. The remaining step of the proof is to show that this implies
Substituting this into the second term of (51) yields thatlimy .. E[(A]Y)?] = 0.

Using the matrix inversion lemma, for any j

K
1 P, ;
Elrv 2 7 panz &F T (37C3;)°
LN ; (1+ F;p)? §:’C(ij)§7‘, = 5:’67‘37‘, + 1(7_—,_(,“)1)_ (56)
LK P 1+158; Ciij)8;
>E TrC — 8%} . — o th where
<LN f ) LN ; (1+ Pp*)?
and C(ij) = (S7D7SZ — P;3 8J8 + O'QI)
P, N _—
il Tt Al Now, by definition
LN 722; (1 + -PzB*)Q ! g [31\" 1
L P AV = - = = 5 Ci%i — "
<E < TrC — /3*) L Z 712 ¢ 2o )
LN LN o (1+Pp) If we now define
¢ 1
otB 1 & P, No=—— 3HC, 8 - "
PEI -t ij L 8 “(iS )
TN | IN ; (1+ Pp+)? 2 Il )I2
= and
TheP;'s are a525umed to be uniformly bounded from above so "
that the termsl% are uniformly bounded from above for all gN .— 1 T;(3;Ciy85)”
i andN. Also, i E[TrC] — A*. We can now conclude that Y M @2 1+ 1585 Cu 8,
1 P, . then we have, from (56)
lim E — AN 0. 53
N T |ILN Z (1+ P,p*)2 (®3) =AY +6).
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Hence,

[El(e)*] = E(AN]
< 2[E[AN 6] + E[(6)%]

< 2\ [E[(AN P21 EL6)?] + EL(65)?].

Now, we can writes; = F;s;, wheres; is the original V-di-

mensional signature sequence of usemd
Fi=uWI, ..., u(L)I]*
is LN by N. And
E[(6])] < E[(s{'Gs;)"]

where
T}
G:= 7}"HC(“)}"H
El 1 RAOIE
We have
Pl @] = | = A (FFCi1)
max - L max ? 7 (¥}
2P
< e A EE) Al Ci)
—_ L max 3 7 max Z]
2 (D
T 1
2t I’n()l 4
el ey ————— % ’YJ
221 1|% z::

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 4, MAY 2001

is greater than

1 Pz?
LN 2 (S
A e

and we can conclude that the left-hand side is asymptotically
lower-bounded by some constaBf > 0 asN — oo. This, to-
gether with (60) and an application of Dominated Convergence
Theorem yields the conclusion that

E(AY) ] =E[(B /P —3)"] -0, asN — .
Henceps! /P, converges tg3* in probability, completing the
proof. O

C. Proof of Theorem 7
Let us begin by defining

ET() [ Zka ] 1=1,2,...,L

where the expectation is over the random fadings of the inter-

ferers. Since the interferers are independent of user 1, we can
also consider this expectation as taken conditional on user 1's
fading levels. Then the matched filter is given by

* * H
e — 71 (1) s 71 (L) s
T2+ EOQ) Y T g2 EGO(L)

and we can substitute this into (3) to obtain SIRet us consider

which is uniformly bounded for all, j, andN. Hence, we can the numerator and denominator in (3) separately. First

now apply Lemma 18 and obtain
, B
E[65)% < El(s/95)" < 3

N2

for some constan, . Similarly, one can show th&{(AN)?] <
B, for another constari®,. Substituting this and inequality (58)

into (57), we get

EL) -~ ElaN)) < 3

for constantB; independent of, j, N. It now follows that

ELA) Y] - EfANY)] < 22

for all ¢, 7. Combining this with (55) yields

1 K P2
lim E|[(AN?2-— S — i | o
N [( 1IN ; (1+Pi£7{\)3l

Now

N
0<eN < max{[; , [3*}

%

and

R A7 YL Ll
LD It Ol 7

uniformly in ¢ as well. So we have that

BN 1 _ oas. 1
5 < 3]

1 Z p?
LN =1 (1+R£7J\r)3

2
Ti(cl'3,)? =T EL: __m@F (61)
11¢1 21 1 £ O_2+E(I\’)(l)

and the two terms in the denominator are given by

o2 |’Yl
2_: 02+E<1‘> 07 (62)

and

K

sza al= g L[S o P k] (69

=1

(60) wherea; . := vV Ns{'s;. Note thata; , has mean zero, and

var|ance{E[|a1 «|?] = 1 when we average over the random se-
guences of both user 1 and ugderWe consider the limiting
asymptotics of the three separate terms (61)—(63), as we take
N, K to infinity, keepingK = aN.

By the weak convergence of the empirical distribution of the
received powers, assumed in the statement of the theorem, we
have that

is constant, almost surely, taking the vakelg”(7)]. This is still
true if we condition on the fading levels of user 1. We have also
assumed that the received powers are uniformly bounded over
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all £ andl, so the dominated convergence theorem applies, abd Proof of Theorem 10

we have that

lim E() = oE[P(D)].

K—oo

We conclude that the asymptotics for (61) and (62) are

L

Tl(C{ng)Q — Tl <Z

2
) P a.s. (64)

L
2 (O
P as. 65
(cl cl)—>0' lz:; (0'2+OC|E[P(Z)])2 a.s ( )
To analyze (63), we split it into two terms
K
@ (D P D )
K Tkzmlal,kl (66)
k=2 =1
and
OcK L ’YZ’YZ)’Y(Z)’V(Z)
2— 1 () v () v (b)) vl )
Kkzzg z_: z; (24 EEF) (1)) (02 +EE (] ))| 1Lkl"
(67)

It is clear from the weak convergence of the empirical distrib

tions of received powers, and the convergence ofthe)(1)’s
that the term (66) converges almost surely to

RAUIK
(02 + aE[P(D)])2

«E[P(D)].

Let us, therefore, focus on the term (67). It follows from the
circular symmetry of they,(I)’s, that if we average over the

random fading levels of the interferers, and their signature se-
quences, the expectation of (67) is zero. The variance of (67),is
therefore, the second moment, and this can be reduced via

cular symmetry to

a 2 K L
RIIRIPIPY
E[lv: () Plva ()P )P vel2) Plaa, 1]
(02 + EUO(11))? (02 4+ EUI(19))?

which isO(1/N) asN — co. We conclude that the expression(1, 2, - - -,
in (67) converges to zero almost surely, for any realization of

sighature sequences and fading levels of the interferers.

Putting the pieces of the denominator of (3) together, we see

that it is asymptotically given by

[ (OF (

B T OFPOD

(5

=1

(D
o2 + aE[P(D)]

The issue of power control for the MMSE receiver, and (32),
have already been considered in [27], where it is shown that
if a solution for transmit powers exists, then it is unique. We,
therefore, focus in our proof on existence.

Let T be an arbitrary vector of positive powers,

D= dlag(Tl, TQ, ey TK)
andX = SDSH, recalling thatS is the NL x K matrix of
“super” signature sequences, each column consisting of a stack
of repeated signature sequences, one for each antenna, and each
multiplied by the appropriate complex channel gain to that an-
tenna. Let us now consider the sufficiency condition in the the-
orem. We assume that (31) holds, and establish the existence
of a solutionT™ to the K nonlinear equations (32) by direct
construction. In particular, we generate a component-wise in-
creasing sequence of transmit power vectBf®, such that
™ 1",

The definition of the sequencﬁ@’(")) 1 is as follows. Start
with 7@ = 0. Clearly, forT® =0 we haveﬁ(o) =0, where
B is the vector ofachievedSIR values wheld” = T, To
getT(l) let T( ) be the minimum power required by ugeto

tain % esire under t eassumptlont t:T ora
gbtaing; (desired), under th wat=1" for all

other;j # k. Since” < B, it follows that7 " > T(O) and
this is true for allk = 1, 2, ..., K. Moreover, smcéZ’J( )
Tj(o) Vj # k, it follows thatﬁ,il) < B for all k. We repeat
this power adaptation procedure fo=2, 3, . ... By induction
on the above argument, we obtain taAE is component-wise
increasing, and

B < B, foralln=1,2,.... (68)
To obtain our solutiod™ as the limit of thel™, we must
first show that none of these powers tend to infinity. D&t be
ﬁ1eK x K diagonal matrix with diagonal entries g|venTﬁ R
Define £(™ := SDMSH and letA™ = (A, ..., )\(,",2)
denote some ordering of its eigenvalues. We will show that it is
impossible for the eigenvalues to tend to infinity, and then that
this implies that the transmit powers cannot tend to infinity.

Our approach will be to normalize the powers in such
a way that they remain bounded, and then take convergent
subsequences. To this end, It be the unique subset of
K} such that

limsup max —— < 00 (69)
n—oo Wi, U2 et T(n)
and
T(")
limsup  max =0

n—o0

u €U us €V T(n)

Thus, the ratios of transmit powers ih remain bounded, and
the other users’ powers become relatively negligible in the limit.
It shall be useful to refer to the precise value of the limsup in

Applying this with (64) we obtain the convergence result stat€@9), a number that is at least unity; let us denote this value by

in the theorem.

6.
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To obtain our normalization constant, define and hence, by (71), that
c(n) := max T, L LY o? T(n)
wcU ¢ liminf Z TI [)‘j > 0} > 0.
Note that the condition that at least one user’s transmit power nTee o)A + o

becomes unbounded in the limit is then equivalen(t®) — |y particular, it is not possible for all the positivén)X{™ to be

oo. We focus on users i/, and define the normalize’| x |U|  ynbounded along any subsequenag)s2, . Howevejr, we ob-

diagonal matrix of transmit powers served in (70) that there exists a particular subsequengg> ,
D) = diag (Ti(n)c(n)_l, = U) . along which allthe positivégn)’s converge, so along this subse-

Let S(I7) be theL N x |17] matrix consisting of the super-sig-9u€ncec(n,) mustremain bounded. However, the poviEHs

nature sequences I, and defines(™ = S(UyDWS(U)H. ~ are an increasing sequence, so they must be bounded along the
From the definition of, the entries irD™ are bounded above Whole sequence = 1, 2, ... We conclude that Eﬂ?re exists a
and below byl andé~, respectively, so there existstd] x |U]| posmvg vectorI™ of transmit powers for whicl™"' — T.. .
diagonal matrixD with strictly positive diagonal entries, and aR€turning to (69), we conclude that when all the constraints in

subsequencgn; )22, , along whichD() — D. It follows that  (31) hold,U'is, in fact, the set of all use)r;. .
SO0 _ $ o S(UYDS(UNE The monotonicity of our sequen@™ is, in fact, a funda-
— L:=5U)DsU) mental feature of the whole problem (see [25]). For example, if

which is a matrix of the same rank &§(U)). The limiting we have a feasible channel of users labéled, ..., K, then a
eigenvalues oE("+) are therefore given by the eigenvalues ofmaller channel with users from a subsetC {1, 2, ..., K}
)Y is also feasible, and the transmit powers that achieve feasibility
) in the larger channell™, dominate the transmit powers that
AR AL (70) ; P = ;
achieve feasibility in the smaller chanril That is,
There are preciselyank (S(U)) elements of\ that are strictly VuelU, 1,7,
positive, and the rest are zero. To see why this is the case, start wWith” = T*vYueUand

Clearly, there is a relationship between the eigenvalues gdnerate the decreasing Seque:ﬁvgé? 1T
£t andZ™. The intuition is that>™ provides all the infor- ~ Necessity follows almost immediately from monotonicity
mation about users ity in the limit asn — oo, since the other and the conservation law. Monotonicity implies that if our
users are asymptotically negligible. To make this precise, coyystem is feasible, then so is the “fictitious” system in which

sider the fictitious channel in which usersliff are not present, ysers inl/ are the only ones present. The conservation law for
and users it/ are allocated powers as prescribed by the diaghe fictitious channel is

onal matrixc(n)D™. The corresponding interference covari- 5; LN 2
ance matrix is ther(n)X ™), with eigenvalues:(n)A™). For > - =rank (S(U) - Y

. R L. . 1+ [31 - )\j + o
all n, preciselyrank (S(U)) of these eigenvalues are positive, iU j=1

and the rest are zero. The above convergent subsequence régigife we note that the;’s are the eigenvalues of the covariance
therefore tells us about the limiting ratios of the eigenvalues Bfatrix = of the fictitious channel.

c(n)Sm, The conservation law must hold when all ths are achieved.
We now apply the conservation law (30) to this fictitioudt is, therefore, necessary that
i 3(n) i iter- 3
channel. First, le3\™) be the_ vector of SIRs achieved at iter Z Bi < rank(S(U))
ationn of the power adaptation. Then ey 1+ 5
B . g\: o2 foralU C {1,2,..., K}.
L 4 4 g - — 3 () 2’
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