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Abstract—Much of the performance analysis on multiuser re-
ceivers for direct-sequence code-division multiple-access (CDMA)
systems is focused on worst case near–far scenarios. The user ca-
pacity of power-controlled networks with multiuser receivers are
less well-understood. In [1], it was shown that under some condi-
tions, the user capacity of an uplink power-controlled CDMA cell
for several important linear receivers can be very simply charac-
terized via a notion ofeffective bandwidth. In the present paper, we
show that these results extend to the case of antenna arrays. We
consider a CDMA system consisting of users transmitting to an
antenna array with a multiuser receiver, and obtain the limiting
signal-to-interference (SIR) performance in a large system using
random spreading sequences. Using this result, we show that the
SIR requirements of all the users can be met if and only if the sum
of the effective bandwidths of the users is less than the total number
of degrees of freedom in the system. The effective bandwidth of a
user depends only on its own requirement. Our results show that
the total number of degrees of freedom of the whole system is the
product of the spreading gain and the number of antennas. In the
case when the fading distributions to the antennas are identical, we
show that a curious phenomenon of “resource pooling” arises: the
multiantenna system behaves like a system with only one antenna
but with the processing gain the product of the processing gain of
the original system and the number of antennas, and the received
power of each user the sum of the received powers at the individual
antennas.

Index Terms—Antenna arrays, code-division multiple access
(CDMA}, large system analysis, multiuser detection, random
spreading, resource pooling.

I. INTRODUCTION

I N recent years, there have been intense efforts in developing
sophisticated multiuser techniques for wireless communi-

cations. A significant thrust of work has been on developing
multiuserreceiver structures which mitigate the interference be-
tween users in direct-sequence code-division multiple-access
(DS-CDMA) systems. (See [2] for a comprehensive account of
the state of the art.) Unlike the conventional matched filter re-
ceiver used in the IS-95 CDMA system, these techniques take
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into account the structure of the interference from other users
when decoding a user. Another important line of work is the
development of signal processing techniques in systems with
antenna arrays [3]–[5]. While spread-spectrum techniques pro-
vide frequency diversityto the wireless system, antenna arrays
providespatial diversity. Both frequency and space providede-
grees of freedomthrough which communication can take place.

Much work has already been undertaken on characterizing
the performance of multiuser receivers, using measures such as
asymptotic efficiency and near–far resistance [2]. These mea-
sures tend to beuser-centric, focusing on the performance of
a particular user being demodulated. Moreover, near–far resis-
tance evaluates the worst case performance of a user in the face
of arbitrary received powers of the interferers.

A different point of view can be taken from a networking per-
spective. Rather than focusing on the performance of individual
users, we ask the following question: given desired levels of per-
formance (quality of service, or QoS) for each of the users in
the network, what is the number of users that can be accommo-
dated? This leads to thenetwork-centricperformance measure
of user capacity. In the case of a heterogeneous network with
multiple class of users with different QoS, we are interested in
theuser capacity region, characterizing the tradeoff between the
number of users in each class that can be simultaneously ac-
commodated. Because of the need to meet the QoS of each of
the users, power control is done in conjunction with multiuser
reception. This necessitates a better understanding of the perfor-
mance of multiuser receivers in a power-controlled environment
rather than one with worst case interference.

A line of work toward a better understanding of these issues
has recently been initiated in [1]. A network capacity analysis of
linear multiuser receivers is done in the context of synchronous
CDMA systems withrandomspreading sequences. The results
are for large networks, asymptotic as both the number of users
and processing gain grow. The QoS measure for each user is
taken as the signal-to-interference ratio (SIR) achieved at the
output of the multiuser receiver. Related results for the case
when all users have the same SIR requirement are obtained in-
dependently in [6].

A concept ofeffective bandwidthhas emerged from this work
as a succinct measure of network capacity: given a set of SIR re-
quirements for the users in an uplink power-controlled cell, they
can all be met if and only if the sum of the effective bandwidths
of the users is less than a certain invariant quantity, which de-
pends only on the total degrees of freedom and the power con-
straints. Results are obtained for three linear receivers: the min-
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imum mean-square error (MMSE) receiver [7]–[10], the decor-
relator [11], [12], and the matched-filter receiver (as in IS-95
[13]). The effective bandwidths of a user with SIR requirement

under these three receivers are given by

The effective bandwidth concept is based on a more general no-
tion of effective interference, which captures the effect of an in-
terferer, received at arbitrary power, on the user to be demod-
ulated. While the concept of effective bandwidth holds for a
single power-controlled cell, the notion of effective interference
can quantify the intercell interference effects as well.

In this paper, we extend the above concepts to DS-CDMA
systems with spatial diversity. The spatial diversity can be ob-
tained by multiple antenna elements at a single base station (mi-
crodiversity), or by combining of signals received at multiple
base stations (macrodiversity). We show that the notion of effec-
tive bandwidths extends to both scenarios, again in the asymp-
totic regime of a system with large processing gain and many
users but fixed number of antennas. The capacity region with
and without power constraints is characterized, the latter we call
theinterference-limitedcapacity region of the network. In some
cases, a curious phenomenon of “resource pooling” arises: the
multiantenna system behaves like a system with only one an-
tenna but with the processing gain the product of the processing
gain of the original system and the number of antennas, and the
received power of each user the sum of the received powers
at the individual antennas. The focus of the analysis is on the
linear MMSE receiver, which is the optimal linear receiver in
terms of maximizing the SIR of each user. However, the per-
formance of suboptimal receivers such as the matched filter and
the decorrelator will also be presented for comparison. In con-
trast to the MMSE receiver, which requires knowledge of the
received powers and signature sequences of all users, these sub-
optimal receivers require less information. We remark that the
effective bandwidth result for the matched filter, macrodiversity
antenna array was proven earlier in [14] in a similar model, but
in the present paper we provide a more rigorous proof, using a
more detailed model of the physical layer including flat fading.

The effective bandwidth results described above hold in a
largesystem withrandomspreading sequences. A natural ques-
tion is whether an effective bandwidth characterization exists in
afinite-sizedsystem witharbitrary spreading sequences. In Sec-
tion VII, we present a characterization of the user capacity re-
gion for the MMSE receiver in terms of given arbitrary signature
sequences, and show that under weak linear independence con-
ditions on the sequences and the channel fading, the resulting
interference-limitedcapacity region is identical to that under
random sequences. These results provide insight as to why the
effective bandwidth results emerge as they do in the limiting
regime of random signature sequences.

Much work has already been undertaken on the signal
processing aspects of CDMA antenna array systems, e.g.,
[15]–[17]. In contrast, this paper focuses on the issues of
performance from the point of view of user capacity.

In this paper, random variables are denoted by capital letters
, , vectors by boldface letters , and matrices by calli-

graphic fonts .

II. M ODEL

A. Basic Multiantenna CDMA Model

In a DS-CDMA system, each of the user’s information or
coded symbols is spread onto a much larger bandwidth via mod-
ulation by its ownsignatureor spreading sequence. We con-
sider a sampled discrete-time baseband model for a symbol-syn-
chronous multiaccess CDMA system with users, receive
antennas, and processing gain. The received signal at theth
antenna is given by

(1)

where is the symbol transmitted by userat transmit power
, is the complex fading channel gain from userto an-

tenna , is the signature sequence of user,
, and is additive white Gaussian noise with variance

, independent across. The symbol energy is normal-
ized to be . Here, we are assuming a flat-fading channel model.
Moreover, the channel gains are assumed to be circular sym-
metric, as is typical for a baseband model.

Let

and

i.e., the ’s stacked one above the other. Also, letbe the
th column of . Then we can write the overall channel as

(2)

In vector form, the channel can be written as

We should point out that it is of interest to extend our results
to the frequency-selective fading case, since that is often the
relevant case for spread-spectrum systems, and that work in this
direction is already progressing (see [18]). The applicability of
our flat-fading model depends on how the spread bandwidth
compares to the coherence bandwidth of the channel of interest.
We focus on the flat-fading model in an effort to keep model
complexity, and notation, to manageable levels.

B. MMSE Receiver

A linear receiver for user 1 generates a soft decision
for based on the entire observation. The key perfor-
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mance measure for a linear receiver is the outputsignal-to-in-
terferenceratio (SIR), defined by

SIR (3)

Consider now coherent receivers that demodulatefrom
with perfect knowledge of the signature sequences as well as the
channel gains and transmit powers of the users. Among these re-
ceivers, the MMSE receiver minimizes the mean-square error as
well as maximizes the SIR for all the users, given the signature
sequences, channel gains, and transmit powers.

The MMSE receiver for user 1 is given by

constant (4)

where is the matrix obtained by removing the column
from , and . The last step follows
from the use of the matrix inversion lemma. The expectation
is taken by averaging all quantities that are unknown to the re-
ceiver; in this case the unknown symbols of the users, and the
background white noise.

The SIR of the MMSE receiver for user 1 is given by the
expression

SIR (5)

Observe that the SIRs achieved by each user are functions of the
signature sequences, channel gains, and transmit powers ofall
users.

C. Random Signature Sequence Model

While (5) can be numerically computed given specific signa-
ture sequences, channel gains, and transmit powers, the quali-
tative dependence of performance on system parameters such
as the number of users, the processing gain, the number of an-
tennas or the received power profile is not clear. To obtain more
insight, we will assume arandomsignature sequence model:
the chip values of the sequences are independent and identically
distributed (i.i.d.) circular symmetric complex Gaussian random
variables with mean zero and variance , and the sequences
of different users are chosen independently.1 The SIR depends
on the realization of the random sequences as well as the channel
gains, and is, therefore, also a random variable. It will be shown,
however, that in the cases of interest, this random variable con-
verges to adeterministicquantity in a large system, and thus
provides a sequence-independent performance measure of the
system. It should be re-emphasized that although the sequences
are chosen randomly, knowledge of the sequences is assumed
at the MMSE receiver so that interference suppression can be
performed.

III. M ICRODIVERSITY

In this section, we will focus on a fading model for microdi-
versity, where the receive antennas are assumed to be placed at

1We conjecture that all our results hold for general i.i.d. chip distribution.

the same base station. The diversity captured in this scenario is
due to small-scale multipath fading effects. A reasonable model
is to assume that the random channel gains ’s are indepen-
dent for all users and antennas, and for any given user, the
gains to all the antennas are identically distributed. The crucial
assumption here is the symmetry of the channel fading statis-
tics with respect to the antennas. However, the fading levels are
not necessarily identically distributed across users. For example,
some users may be close to the antenna array, and others far. We
can think of thedistributionof the as being a func-
tion of the geographic location of userwith respect to the an-
tenna array, on acoarsespace scale, and the actual realizations
of these random variables as a function of the user’s random po-
sition as measured on a small space scale.

We will allow the transmit powers ’s to depend on the mag-
nitudes of the channel gains for all and , but independent
of everything else. This models the use of power control. We will
also assume that the transmit powers are a symmetrical func-
tion of the channel gains with respect to the different antennas.
More precisely: if we denote be the
vector of channel gains from all the users to antenna, then
for any permutation on , for any channel gains

and for any user

The reason for needing this assumption will be explained at the
end of the next section. We believe that it holds for any sensible
power control policy, and it certainly does for the power control
policy we consider in Section IV-B. It makes precise the no-
tion that with microdiversity, all antennas are identical and are
treated in an identical manner by power control policies.

A. Resource Pooling

The following is the main result in this section, yielding the
asymptotic performance of the MMSE receiver in a system with
large processing gain and many users, but fixed number of an-
tennas.

Theorem 1: Let

(6)

be the sum of the received powers of user. Assume that al-
most surely the empirical distribution of con-
verges weakly to a limiting distribution as goes large, and
that the ’s are uniformly bounded for all and .2 Each
user selects a signature sequence randomly, as described in Sec-
tion II-C. Then if with but fixed,
SIR converges in probability to a deterministic constant,
where is the unique positive solution to the fixed-point equa-
tion

(7)

and is a random variable having distribution.
Proof: See Appendix-B.

2This latter assumption is a technicality to simplify the proofs, but we believe
that it is not really necessary.
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This result says that in a wide-band system with many users,
the SIR of a user does not depend on the specific realization
of the signature sequences, the channel gains, and the transmit
powers. The SIR is a function of the user’s own received powers
at the antennas and depends on the the interferers’ received
powers only through the limiting empirical distribution of the

’s. In a sense, there is an averaging of the effects across the
large number of interferers. The convergence of the empirical
distribution of the received power is a statistical regularity as-
sumption and is necessary for such averaging to occur. It is sat-
isfied, for example, when the transmit power of any user
depends on the channel gains for that user only, which implies
independence across users, and there is a bound on how big
can be. It also arises naturally when there are several classes of
users with different SIR requirement, and power control is per-
formed as a function of which class the user belongs to.

Theorem 1 is a natural extension of the single-antenna result
[1, Theorem 3.1]. The rate of convergence in Theorem 1 requires
further study, but we note that there are results for the single-
antenna case—see [19].

When there is only one antenna element , is
simply the received power of user. Theorem 1, therefore, has
the nice interpretation that for any fixed number of antennas,
the limiting performance of the MMSE receiver is the same as
that for a system with a single antenna, having processing gain

and with the received power of each user the sum of the
received powers at the individual antennas. This is a form ofre-
source pooling: all the degrees of freedom of the individual an-
tennas are pooled together into a single resource and the system
behaves like a single-antenna system.

The crucial condition for the resource pooling phenomenon to
hold is that the limiting joint empirical distribution of received
powers at the antennas is symmetrical with respect to the an-
tennas; see the Proof of Theorem 1. This condition holds in
the microdiversity environment under the assumption that the
power control is a symmetrical function of the channel gains,
an assumption we made just before the statement of Theorem 1,
at the end of the preceding section. Without the symmetry con-
dition, the SIR still converges but there is no resource pooling.
The general case will be analyzed in Section IV.

B. Repeated Versus Completely Random Signature Sequences

One can consider the multiantenna spread-spectrum system
as one with degrees of freedom, given by units of pro-
cessing gain per antenna. The “super” signature sequence of
user , of length , is then the signature sequence, with the
same signature sequence repeatedtimes and multiplied by the
path gains ’s. One might imagine that this repetition would
lead to some loss of degrees of freedom; the resource pooling in-
terpretation of Theorem 1, however, seems to suggest that there
is actually no loss. To substantiate this point, we consider the
following alternative model.

The “Completely Random” Sequences Model:Instead of
the basic model, suppose that the signature sequences received
at each antenna, from the same user, are independently chosen
sequences. Thus, for userwe generate distinct randomly

chosen sequences and set the received
“super signature sequence” to be

The key difference is that now we do not have one sequence
repeated at each antenna, but rather a different sequence at each
antenna. Somewhat surprisingly, we have the following result.

Theorem 2: In the completely random sequence model,
SIR converges to exactly the same limit as that given in
Theorem 1.

We conclude from the above theorem that, asymptotically,
there is no performance loss from sequence repetition. The proof
of Theorem 1 shows that the uncorrelatedness of the channel
gains ’s across antennas provides enough randomness to
make the system behave as though the super sequences were
fully random. Theorem 2 follows immediately from Corollary 4
to be presented in the next section.

To further reinforce this notion of no loss of degrees of
freedom, we can consider the asymptotic efficiency of the
receiver in the limiting system. By taking , we see
that if . For a single-user system, the
SIR is . Hence, the asymptotic efficiency of the MMSE
is ; there are a total of degrees of freedom and
at high signal-to-noise ratio (SNR), one interferer costs one
degree of freedom.

The performance of the MMSE receiver depends crucially on
the (colored) spectrum of the interference, and an important step
in proving these results is to show that the empirical eigenvalue
distribution of the interference covariance matrix con-
verges to a limit and to characterize the limit. While the limiting
eigenvalue distribution for the special case of in [1, The-
orem 3.1] is known from existing random matrix results, new
techniques have to be used to compute the limiting eigenvalue
distribution for the general case, due to the more complex de-
pendency in the elements of the random matrix due to
code repetition. The proofs are presented in Appendix-B.

While the completely random sequence model is not physi-
cally realizable, it is technically much easier to analyze than the
realistic model with repeated signature sequences. In fact, our
results for the more general macrodiversity scenario, to be pre-
sented in Section IV, are only proved for the completely random
sequence model. Our belief that the results also hold for the orig-
inal model with repeated sequences is supported by the asymp-
totic equivalence of the two models in the microdiversity sce-
nario.

C. Effective Interference

Due to the resource pooling phenomenon, we can treat the
system with microdiversity as one with a single-antenna ele-
ment, to which we can immediately apply the interpretation of
effective interference derived in [1]: in a large system, it fol-
lows from (7) that the SIR of user 1 approximately satisfies the
fixed-point equation

SIR
SIR

(8)

where . Note that to deter-
mine the asymptotic performance we need to solve the fixed-
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point equation, which can be done numerically. However, to de-
termine whether a desired SIR for user 1,, is achievable, we
can substitute into the right-hand side of (8), and check if

(This is due to the fact that the right-hand side of (8) is a mono-
tonic function of SIR. See [1] for details.) In doing so, we pro-
vide a way to decouple the interference effects of each user, and
we can define theeffective interferenceof an interferer of re-
ceived power on user 1 as SIR .

IV. M ACRODIVERSITY

The crucial assumption underlying our results in the microdi-
versity scenario is the symmetry of the fading distribution with
respect to the receive antennas. This is justified by the close-
ness of the antennas. In a system where the antenna elements
are widely separated (macrodiversity) such symmetry does not
necessarily hold. For example, the antennas may be at two dif-
ferent base stations, and a user may be closer to one base sta-
tion than the other. In this section, we will therefore relax the
assumption that the channel gains to the dif-
ferent antennas are identically distributed for each user. As in
the case of microdiversity, we can think of thedistribution of
the as being a function of coarse-scale propagation
conditions for user , which are assumed fixed, and therealiza-
tions as being functions of finer scale propagation conditions,
which are assumed random. We will retain the assumption that
the areindependentrandom variables.

A. Limiting SIR Performance

The following result is the analog of Theorem 1 for the per-
formance of the MMSE receiver in the macrodiversity scenario.
At present, we are only able to prove the result for the (nonphys-
ical) completely random signature sequence model described
in Section III-A, but we conjecture that it also holds in the re-
peated signature sequence model of Section II-C. As discussed
earlier, this conjecture is supported by the equivalence of the
two models in the microdiversity case.

Theorem 3: Let be the received power
of user at antenna. Assume that almost surely, the empirical
joint distribution of

converges weakly to some limiting joint distributionas
. Each user selects independent signature sequences ran-

domly, as in the “completely random” model of Section III-A.
Then, if with , SIR converges in prob-
ability to , where the constants ’s are the
unique positive solution to the system of fixed-point equations

(9)

and are random variables having joint dis-
tribution .

Proof: See Appendix-A.

Thus, in the limit, the SIR of a user is a function of its own
received powers at the antennas and system-wide constants

which are user-independent.
In the case when the joint distributionis exchangeable, i.e.,

for any permutation of

we have

the fixed point of (9) satisfies for all , and the fol-
lowing corollary holds.

Corollary 4: If the limiting distribution is exchangeable,
than SIR converges to a constant, where

and is the unique solution to the fixed-point equation

with .

In this exchangeable case, the system ofequations becomes
a single equation, and resource pooling occurs. In the microdi-
versity scenario considered in Section III, the channel gains of
each user to all the antennas are i.i.d., and the transmit powers
are symmetrical functions of the channel gains with respect to
the different antennas. The exchangeability condition follows
from these assumptions.

B. Interference-Limited Capacity and Effective Bandwidths

Let us now consider the interference-limited user capacity of
the macrodiversity antenna array. In spite of the fact that one
might expect the user capacity to depend on the user “geom-
etry,” i.e., the probability distribution of the fadings of the users
to the antennas, this turns out not to be so, and the effective band-
width results generalize from the single-antenna case [1] to the
multiantenna scenario.

We consider the case in which users have particular SIRtar-
gets, i.e., user has a target of for its SIR. To achieve such
a SIR target the user must control its transmit power, and we
wish to find a necessary and sufficient condition on the targets

’s for this to be possible, asymptotically, in a large system.
This yields the interference-limited user capacity region of the
system. Here, we allow the power control of a user to be pos-
sibly a function of the magnitudes of the channel gains of all
users, but not of the signature sequences. However, we will see
in Section VII that in a certain sense the interference-limited ca-
pacity does not increase even when the powers can depend on
the signature sequences.

We make the following statistical assumptions on the targets
’s.
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1) Almost surely, the joint empirical distribution of

converges to some limiting distribution as grows;

2) The limiting distribution satisfies

Assumptions 1) and 2) would hold, for example, when there
are a finite number of classes of users and the fraction of users in
each class approaches a limit, and the fading gains of the users
are independent of each other and independent of which class
the user belongs to.

Using Theorem 3, it can be seen that to meet the target SIRs,
asymptotically, the transmit power of user should satisfy

(10)

where ’s satisfy the fixed-point equations (9), and
in (9) follows the limiting empirical distri-

bution of the received powers

This limiting distribution can, in turn, be calculated from
(10) and Assumptions 1) and 2). Let us denote the vector

by . We note that Theorem 3 implies
that is strictly positive. But since

and

it follows that

where has the limiting distribution of the channel
gains of the users, andhas the limiting distribution of the
SIR targets of the users. Define

It follows from the above calculations that a necessary condition
that the given SIR targets can be met asymptotically is that the
fixed point equations

(11)
have a strictly positive solution for .

Conversely, suppose that (11) has a fixed pointthat is
strictly positive. Let us now choose the transmit power for user

to be

With this choice of transmit powers and the fact that
satisfies (11), it follows that

also satisfies (9), with the expectation
over the limiting empirical distribution of
induced by the choice of transmit powers . It follows
from Theorem 3 that, due to the uniqueness of the solution to
(9), the limiting SIR of user is precisely . Furthermore, the
uniqueness of the fixed point in (9) guarantees that (11) can
have at most one strictly positive fixed point.

Next, we investigate the condition on the SIR targets under
which (11) has a strictly positive solution. Note that such a con-
dition can only depend on the SIR targets through . To
derive a necessary condition, write (11) as

and adding up these equations, we obtain

(12)

Thus, a necessary condition for there being a positive solution
is that . The following proposition shows that this
condition is also sufficient.

Proposition 5: If , then the system of equations
(11) has a unique strictly positive solution.

Proof: Assume , and define the mapping

by

We will establish that has a fixed point by generating a se-
quence of vectors which provably converges to
such a fixed point.

Note that if is defined inductively via

and if , then by the monotonicity of the mapping
(i.e., if component-wise), is a

decreasing sequence. Note also that in this case

and adding up these equations, we obtain

(13)
Let us set . Then the inductive

condition is satisfied and is a decreasing sequence of
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positive vectors. Now the assumption of the theorem is that there
exists a positive , such that , and thus, it
follows that

We conclude from (13) that is bounded away from
, and hence that it is not possible for to converge to . We

conclude that converges to a nonzero, nonnegative solution
to (11).

Equations (11) admit the solution . However, we have
established that is not this solution. It is also immediate from
(11) that there can be no nonnegative solution that is a fixed
point, with some components zero, apart from the solution

. Thus, must be strictly positive. Uniqueness follows from
the fact that (11) can have at most one strictly positive fixed
point.

We can summarize the above development in the following
theorem.

Theorem 6: Let be the SIR targets of the users, and
suppose Assumptions 1) and 2) hold. Define

Then

1) if then there is no way to assign transmit
powers such that the users asymptotically
achieve SIR targets ;

2) if , then (11) has a unique positive solution
and users’ target SIRs can be asymp-

totically met, with transmit powers given by

(14)

Thus, the condition characterizes the interfer-
ence-limited user capacity of the system. The above theorem
also provides us with a notion ofeffective bandwidth. There are
a total of degrees of freedom provided by spreading and
the antenna array in the limit as . If user achieves
its target SIR of , then it occupies an effective bandwidth of

degrees of freedom, and to achieve the SIR targets, the
sum of effective bandwidths must be less than the total number
of degrees of freedom.

C. Capacity Under Power Constraints

Theorem 6 characterizes the interference-limited user ca-
pacity of the system, when no power constraints are imposed
on the users. To exploit the total degrees of freedom, however,
an enormous amount of transmit power may be required, as in
the case when some antennas are very far away from the users.

What do our results say about power consumption? Recall that
the transmit power of user to achieve target is given by

(15)

where the ’s satisfy the fixed-point equations (11). The
transmit power of user certainly depends on its own target
SIR and channel gains, but the main observation is that it de-
pends on the effects of other users in the system only through the
system constants which in turn depends only
on the empirical mean of their effective bandwidths, .
Thus one can think of as a measure ofcongestionin the
system. We will speculate this can be used as a basis of real-time
admissions control. We will now show that this can be used to
define a precise power-limited capacity region in the case when
there are only a finite number of classes of users.

Suppose there are classes of users, and all users in class
having SIR requirement . In this case, we assume that in the
limit, a proportion of users is of class. In this case

(16)

We also assume that users in classhave a power constraint
. Outage is said to occur for a user when its required transmit

power exceeds its power constraint. The capacity region is for a
particular level of outage probability, which we denote by.
Let us denote the worst outage probability, among all users,
by , where we note explicitly the functional depen-
dence of outage probability on . Thus, in-
creases monotonically with its argument, and there is a unique

, , such that . Hence, to satisfy the outage
probability constraint, . Substituting (16), we con-
clude that the capacity region is described by the effective band-
width constraint

(17)

Note that increases as the tolerable outage probabilityin-
creases, but that it can never exceed. On the other hand, no
matter how small , can be made arbitrarily close to if
users can tolerate a large enough maximum transmit power con-
straint.

Let us specialize the result to the microdiversity scenario and
with the channel gains ’s identically distributed for all
and . In this case, when , the unique solution
of (11) satisfies for all , and

The transmit power of userrequired to maintain an SIR of
in class is
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Hence, given the outage constraint for every userin class is

This translates to a power-limited user capacity region given by

where is the cumulative distribution function (cdf) of the
random variable (same for all ). So in this case,
the user capacity region (17) can be computed explicitly. The
observation is that in this case, the class with the highest value
of has the highest outage probability, and limits the user
capacity of the system. As the power constraints are relaxed,
this power-limited region approaches the interference-limited
region.

D. Effective Interference

A notion of “effective interference” was defined in [1] for
the single-antenna case, and we showed in Section III that this
notion extends to the microdiversity antenna array. This notion
pertains to the interference created by an individual interferer
on the desired user, and enables the system to be decoupled into
a sum of interference effects from all the users in the system.
In the macrodiversity array, it is not possible to decouple inter-
ference effects in this way. The reason for this is that there are
now constants which depend on the interac-
tion of all users in the system. In the microdiversity case, there is
only one constant that is equivalent to an SIR, and this can be
replaced by a target SIR requirement for the desired user, pro-
viding a way to decouple the SIR equations of the users in the
system. However, in the macrodiversity case, this would require
knowing not just the target SIR requirement of the desired user,
which is independent of the other users, but also the target effec-
tive SIRs at the separate antenna elements, which does depend
on a tight coupling between the users.

In [1], the notion of effective bandwidth was derived by
building on the concept of effective interference. It is interesting
to note that in the macrodiversity scenario, one can still define
a meaningful notion of effective bandwidth even without the
existence of effective interference.

V. SUBOPTIMAL RECEIVERS

The MMSE receiver maximizes the SIR for user 1, given
knowledge of the signature sequences, channel gains, and
transmit powers ofall users. Suboptimal linear receivers can
be defined which do not require full knowledge of all the
attributes of the interferers. In this section, we consider two
such receivers, and their performance will be contrasted with
the optimal MMSE receiver. The analysis will be in the gen-
eral macrodiversity environment with the repeated signature
sequence model.

A. The Matched-Filter Receiver

Consider the situation when the demodulator for user 1
has knowledge of the signature sequence, channel gains, and
transmit power of user 1, but has no knowledge of those of
the interferers other than their statistics. In such a scenario,
we can consider the receiver for user 1 which minimizes the
mean-square error , with the averaging over the
signature sequences, transmit powers, and channel gains of all
interferers in addition to the transmitted symbols and white
noise. Following (4) for the MMSE receiver under perfect
knowledge, this present receiver can be derived in the same way
but with expectations taken over all the additional quantities
assumed to be unknown to the receiver

(18)

which is proportional to the vector

Thus, this receiver operates by despreading the received signal
at each antenna using, and then performing a maximal ratio
combining of the despread signals according to the average SIR
at each antenna. We shall call this thematched-filter receiver.
We observe that this is effectively the receiver implemented in
the “softer handoff” mode of the IS-95 standard [13], where
signals received in different sectors are combined. It is also the
receiver considered in various works on CDMA with antenna
arrays [15], [14], [4].

The optimal MMSE receiver had perfect knowledge of the
signature sequences and fading levels of all users, including
interferers, and such knowledge in practice must come from
measurements. The matched filter, however, explicitly assumes
the interferers’ parameters are unknown, and this accounts
for the expectations in the definition of the matched filter.
Measurements will be required, of course, to determine the
statistics of the fading levels of the interferers, whichare
assumed known. The matched filter should also be able to
incorporate measurements ofrealizedtotal interference levels

, if these are available. This can be
accommodated in our definition if we interpret the expecta-
tions in (18) asconditional expectations, conditioned on the
measurements. Any remaining randomness then comes from
measurement error.

The matched-filter receiver is much simpler than the MMSE
receiver considered in the previous subsections, but it entails a
loss in capacity. Using effective bandwidths, we will quantify
precisely this loss in performance. We will also find that there
is a striking synergy between the results for the MMSE and for
the matched-filter receiver.

We first evaluate the limiting SIR of user 1 under this
matched-filter receiver. Although the receiver was derived
assuming no knowledge of the sequences and channel gains of
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the other users, we shall prove a stronger result that the SIR
under the matched filter, viewed as a function of the signature
sequences, channel gains and transmit powers of all users as in
definition (3), in fact converges to a quantity which depends
only on the received powers of user 1. This result is analogous
to Theorem 3, but holds in the repeated signature sequence
model.

Theorem 7: Let be the received power
of user at antenna. Assume that almost surely, the empirical
joint distribution of

converges weakly to some limiting joint distributionas
, and that the received powers are uniformly bounded

over all and . Then, if with and
fixed, SIR of the single-user matched filter converges in prob-
ability to , where

(19)

and are random variables having joint dis-
tribution .

Proof: See Appendix-C.

Note that is the power of the limiting multiaccess
interference at the output of the matched filter receiver for an-
tenna , and the limiting SIR at the output of the
same filter. Also, the matched-filter receiver asymptotically ap-
proaches

The proof of the theorem reveals that the overall SIR is the sum
of the SIRs at the individual antennas because of the asymptotic
uncorrelatedness of the multiaccess interference at the despread
outputs at the different antenna, for almost all choice of signa-
ture sequences, channel gains, and transmit powers.

We have just given a straightforward interpretation for the
’s in the matched-filter receiver, and it is tempting to give

a similar interpretation to the ’s for the MMSE receiver in
Theorem 3; however, at the present time we have no proof of
this. We will discuss this further in Section VIII.

In the special case of microdiversity, all the ’s are the
same, and in this case resource pooling occurs, and we can think
of the array as a single antenna with the effective received power
of a user at the single resource being the sum of the received
powers of the user at the separate antennas. In this case, the
notion of the effective interference of an interferer on a desired
user can be defined.

Let us now consider the issue of user capacity and effective
bandwidths. Again, consider a set of SIR targets for the users:

. Proceeding exactly as in the derivation of (11), but re-
placing (9) by (19), by , and by , where

we obtain the fixed-point equation

(20)
The existence of a strictly positive solution to (20) is
again a necessary and sufficient condition for users being able
to achieve their SIR targets. The necessity of the condition

follows directly from

(21)

which itself can be derived in the same way as (12). Sufficiency,
and uniqueness, follow from Theorem 8 below, which provides
a remarkable synergy with Theorem 6.

Theorem 8: Suppose Assumptions 1) and 2) from Section
IV-B hold for the limiting empirical distributions of the SIR
requirements and channel gains. Define

Then we have the following.

1) If then there is no way to assign transmit
powers in such a way that the users asymptot-
ically achieve SIR targets .

2) If then one can assign transmit powers
such that the users asymptotically achieve SIR

targets . This power control is of the
form

(22)

where is the unique solution to the
fixed-point equations (20).

Proof: Analogous to the proof of Theorem 6.

As in the MMSE receiver case, the ’s depend on the target
SIRs only through a scalar . Moreover, the fixed-point equa-
tions (20) are identical to the corresponding equations (11) for
the MMSE receiver, except for replacing . This im-
plies that in the case when there is a finite number of classes, if
the power-limited capacity region under the MMSE receiver is
given by
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then the user capacity region under the matched filter for the
same power constraints and outage probability is given by

for the same constant. Perhaps the synergy here relies on the
fact that the matched filter is actually an MMSE receiver, albeit
one based on less information. The fact that the effective band-
widths are larger for the matched-filter receiver is due to the lack
of knowledge about the signature sequences of the interferers,
and hence the inability to suppress them.

We remark that the effective bandwidth result in Theorem 8
was obtained earlier in [14], but for a slightly different model.
In that paper, the underlying physical layer (complex fadings
and signature sequences) were not explicitly modeled, although
in the present version of the result, such complex fadings are
needed to obtain the asymptotic independence of the interfer-
ence at each antenna. In [14], independence was taken as an as-
sumption, with a heuristic justification based on the chip asyn-
chrony that results from realistic propagation delays, but no rig-
orous justification was provided. While that approach might be
made rigorous, it is much stronger to prove the result in the
chip-synchronous case, and make use of the random phases that
arise from multipath fading; chip asynchrony can also be mod-
eled, but we do not attempt this extension in the present paper.

B. The Decorrelator Receiver

The matched-filter receiver has no knowledge of the signa-
ture sequences of the interferers, but does make use of known
statistics of the total interference levels of the interferers at each
antenna. Let us consider the other way we could lose informa-
tion at the receiver: assume the receiver knows the signature se-
quences of the interferers, but absolutely nothing about their in-
terference levels. In a system where the signature sequence of
an interferer is repeated on a symbol-by-symbol basis but the
fading is fast, it may be easier to keep track of the sequences
than the interference levels, so this is a plausible assumption
to make. As for the matched-filter receiver, we assume perfect
knowledge of the gains and transmit power of the user to be de-
modulated, to focus on the interference suppression capability
of the receiver.

In the single-antenna case, an interferer lies in a single-di-
mensional subspace in , which is known to the receiver even
when the receiver does not know the interferer’s channel gain.
The decorrelator [11] operates by projecting the received signal
onto the subspace orthogonal to all interferers. In the case of
antennas, each interferer is only known to lie in an-dimen-
sional subspace when its signature sequence is known but the
channel gains are not. For interferer, this -dimensional sub-
space is spanned by the vectors

A natural generalization of the decorrelator for user 1 is one
which projects the received signal onto the subspace orthogonal

to the vectors , , while max-
imizing the SIR of user 1. This receiver is given by the first row
of the matrix where

and we have assumed is invertible. The SIR for user 1
under the decorrelator is given by the expression

SIR (23)

Let

and consider the eigendecomposition . Let
be the diagonal matrix such that the th entry is if
and is if , and define Using [18,
Lemma B.4] we have

and

Substituting this in (23) yields

SIR

The quantity

is the SIR achieved at output of the decorrelator for user 1 at
antenna 1. Thus, the overall decorrelator can be re-interpreted
as applying a decorrelator at each antenna and then performing
a maximal-ratio combining of the individual antenna’s outputs.
The noise at the outputs is independent since it contains only the
background noise and not the interference from any other users.

Applying [1, Theorem 7.2 ] now yields that as ,

Hence, it follows that under the decorrelator, for fixed

SIR

Hence, the system under the decorrelator is now equivalent
to one with users, degrees of freedom, and received power
of each user the coherent sum of the received powers at the
individual antennas. Compared to the single-antenna setting,
we see that having more antennas provides more diversity to
the demodulated user through the pooling of received powers.
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This can be viewed as a “single-user” benefit, which exists even
when there are no interferers. On the other hand, there is no im-
provement in the multiuser interference suppression ability in
the sense that the reduction in SIR is proportional to for
any , and that no more than interferers can be nulled out.
This is because each interferer essentially occupiesdegrees of
freedom under the decorrelator. Thus, compared to the perfect
knowledge MMSE receiver, there is pooling of received powers
but no pooling of degrees of freedom for the decorrelator. Thus,
we can conclude that under the decorrelator, the effective band-
width of each user is in a system with degrees of freedom.
One can also compare the asymptotic efficiencies of the decor-
relator with that of the MMSE receiver. The former is and
the latter is .

VI. EXAMPLES

In this section, we will present a few simple examples to give
some insight into our effective bandwidth results, focusing on
the MMSE receiver (Theorem 6) and the matched filter (The-
orem 8). Both of these results boil down to solving the fixed-
point equations

(24)
where we use in the MMSE receiver case, and

in the matched-filter receiver case.

A. Capacity Gain of Macrodiversity Combining

Consider the two antenna scenario depicted in Fig. 1. Users
are in one of two possible locations, and in each location, the
magnitudes of the gains to the antennas are deterministic. For
location 1, we set , , and for location
2, we set , . Here, typically we would
assume that .

Consider first the case where an equal number of users are in
the two locations, so that there are users at each location.
Note that the limiting empirical distribution for the magni-
tudes of the channel gains is given by

Since this joint distribution is exchangeable, it follows that
, where

(25)

so that the transmit power of userwith SIR requirement is
given by

Thus, as increases up to, decreases down to zero and
the transmit power required goes to infinity. As expected,
cannot go beyond, the user capacity of the system.

Fig. 1. Two-antenna macrodiversity.

Fig. 2. Two cells without macrodiversity.

It is interesting to contrast this capacity result with the user
capacity for the two-cell scenario depicted in Fig. 2 in which
macrodiversity is not used. We do this first for the MMSE re-
ceiver, and then for the matched-filter receiver.

By symmetry, we can obtain the capacity of this system by
focusing on cell 1 and using the single cell results of [1]. For
simplicity, let us assume that all users have the same SIR target

, which implies that . We can think of the user in cell
2, as being in cell 1 but with SIR target , since this is the SIR it
will get there if it attains a target of in its own cell. Therefore,
from [1, Sec. 6], we obtain the required common received power
of all users in cell 1 (excluding the users in cell 2)

(26)

It follows that without macrodiversity, the capacity constraint is

We see that the loss in capacity is due to the interference in cell
1 created by users in cell 2, and vice versa. We note that even if

is very large, the other-cell interference effect is bounded, as
we would expect since the MMSE receiver is near–far resistant.
Nevertheless, the example shows that other-cell interference can
still substantially reduce capacity, depending on the value of.

Now let us consider the matched-filter receiver, which has
and

(27)
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In this case, the capacity without macrodiversity is given by

and the penalty term is unbounded as increases, which is
a consequence of the fact that the matched filter is not near–far
resistant.

It is interesting to note that the macrodiversity capacities in our
examples (MMSE and matched filter) are independent of. Intu-
itively,ascellsgetcloser together (increases)auserexperiences
interference from a larger number of users, but at the same time
it gets more benefit from macrodiversity combining. We observe
that these two effects cancel each other out exactly [14].

B. Nonuniform Traffic

To get a feel for nonuniform traffic, let us return to the macro-
diversity model of Fig. 1, but consider the scenario in which all
users are located in location 1. Then we have

(28)

(29)

Set . Then adding the above equations we get

which gives a quadratic equation in

If and , or and , then the positive
solution is given by

In the other cases, and , or and ,
the positive solution is given by

In all cases, the condition for a positive solution is that .
Thus, we have numerically verified the capacity constraint given
in Theorem 6, for this scenario.

Note that we can substituteback into (28) and (29) to obtain
numerical values for and . To gain some insight, let us
focus on the case in which the two antennas are far apart, i.e.,
the case of small . We set , where is a parameter that
we take small, and obtain an approximation for and
up to accuracy. We assume that . Then its
simple to derive that

as . But for any user , (14) gives us that

Thus, transmit powers increase dramatically asdecreases. The
fact that is small means that users need to transmit with
enough power to get received at antenna 2, but since this antenna
is far away, transmit powers are very large.

C. Rayleigh Fading

A simple way to extend our example to incorporate Rayleigh
fading is to specify any random variable associ-
ated with location 1 as being a pair of independent, zero-mean,
complex Gaussian random variables, the first with variance,
and the second with variance. In this model, the mean of

is a function of large-scale geographic effects, while
its fluctuations are due to multipath fading.

Let us return to our example in which the proportion of users
at each location are the same, but under the present Rayleigh
fading model. In this case, the limiting empirical distribution of
the channel gains can be described as first a random selection
of location 1 or location 2 with equal probability, followed by
a conditional selection of channel gains. If location 1 is selected
then the gains are independent Rayleigh with parametersand ,
respectively,and if location2 isselectedthegainsare independent
Rayleighwithparametersand ,respectively.Thus, the limiting
empirical distribution of the gains is exchangeable with respect
to the antennas. It follows from (24) that and are the
same, and that the common valueis as given in (25). We have,
therefore, verified for this example that the capacity constraint is
still . The transmit powers are given by

and these tend to infinity as capacity is approached.
To get a better picture of the impact of macrodiversity, we now

present anumericalstudy of macrodiversity capacity, and con-
trast it with the single-cell case (without macrodiversity com-
bining, and treating out-of-cell signals as interference), both for
the MMSE receiver and for the matched-filter receiver. As be-
fore, we do the MMSE case first, followed by the matched filter.

In the MMSE case, the interference-limited macrodiversity
capacity is users per degree of freedom of spreading,
which we note to be independent of. This is plotted as
curve “mmse-macro” in Fig. 3 for the case 10 dB. In the
single-cell case, the capacity depends on, and (26) for the
received power in either cell becomes

where the expectation is taken with respect to the fading from
location 2. The expectation in the denominator
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Fig. 3. User capacity per unit processing gain versusf , for two antennas and Rayleigh fading. SIR requirement� = 10 dB.

can be evaluated as the double integral

By evaluating this integral for different values of, and for
10 dB, we obtain the “single-cell (mmse)” curve in Fig. 3.

Note that the capacity does not decrease to zero, as the mean
other-cell interference tends to infinity, but instead approaches
a nonzero limiting value. The value of this limit can easily be
calculated numerically to be . It can also be deduced from
single-antenna results [1], by noting that for large, each user
in location 2 effectively takes up an effective bandwidth of 1
degree of freedom in cell 1. In terms of single-antenna theory
[1], cell 1 consists of users per degree of freedom each
taking an effective bandwidth of , and
users each taking an effective bandwidth of. Thus, the con-
straint on is .

In our example, we observe that the MMSE single-cell
capacity drops away very quickly from the macrodiversity
capacity as increases. The gain from macrodiversity is due
to the fact that “other-cell interference” does not exist with
this receiver, whereas other-cell interference increases in the
single-cell receiver case asincreases. In the single-cell case,
it is interesting to see if the other-cell interference effect can
be overcome by bandwidth partitioning. We note that the
single-cell MMSE receiver can achieve a capacity of exactly

users per degree of spreading (i.e., users per degree of

freedom (d.f.) per cell) if we split the bandwidth between the
cells, giving degrees of freedom to cell 1, and degrees
of freedom to cell 2. This islessefficient than full frequency
reuse, except for very large values of. Full frequency reuse
seems optimal for “sensible” values ofin our example (say,

), but we observe that bandwidth partitioning is superior
as , where the limiting value was calculated above to
be approximately users per degree of spreading. This
example, therefore, illustrates the fact that full frequency reuse
is not inherently optimal for spread-spectrum systems with
linear receivers (see [20] for more general information-theo-
retic results about this issue) but we remark that it is likely to
provide a very good solution for real systems, or for models
with more realistic fading parameters. This is especially so for
the MMSE receiver, which has the ability to null out a strong
interferer in an adjacent cell.

In the matched-filter case, the macrodiversity capacity is also
independent of , and is users per degree of spreading. This
is depicted in Fig. 3, for the case 10 dB. In the single-cell
case, the capacity depends on, and (27) for the received power
in either cell remains valid for our fading example. Using this
equation, we plot the “mf-single cell” curve in Fig. 3, again for

10 dB. Note the matched filter, no-macrodiversity capacity
goes to zero as increases, precisely because of the lack of
“near–far resistance” in the matched-filter receiver.

The present model of Rayleigh fading is still rather sim-
plistic. For example, we have assumed that the mean strengths
of all users are deterministic, and the users split into two
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groups, each with identical mean strengths to the two antennas.
A more realistic example would allow each user to have distinct
mean strengths, and a reasonable model would be to select
the mean strengths from a log-normal distribution to model
shadow fading effects. Another aspect of realistic fading in
spread-spectrum systems is that it exhibits frequency selectivity
i.e., multiple complex taps are required to model the channel
of a user. We will not attempt to extend our theory, or our
examples, to more realistic fading models in the present paper,
but note that other results in this direction have been obtained
in [18].

VII. A D ETERMINISTIC FORMULATION

In the previous sections, we have focused on an asymptotic
model where the signature sequences are randomly chosen and
the number of users and the processing gain are both large.
Moreover, the power control was allowed to be based on only
the channel gains but not the specific signature sequences. It is
usually assumed that it is not appropriate for power control in
CDMA to be functionally dependent on the signature sequences
of users. In multiuser detection, however, it is required for the
receiver to know the structure in the interference, as determined
by the signature sequences, and it may therefore be reasonable to
allow power control at the transmitter to depend on the choice of
signature sequences as well. This seems plausible, especially if
signature sequences are repeated on a symbol-by-symbol basis.

In the present section, we consider afinite-sizedsystem with
arbitrary signature sequences, and look at the capacity under
the MMSE receiver. We show that the asymptotic capacity re-
sults we derived in the preceding sections, actually hold in the fi-
nite case, provided we can control transmit powers as a function
of the given signature sequences. Our results will also provide
insight into the structure of the interference-limited capacity re-
gions in the asymptotic regime in which signature sequences are
chosen randomly.

Given a set of signature sequences channel gains
’s, and transmit powers ’s, the SIR for user 1 is given by

(5), with the matrix defined there. We assume that user
has a required SIR of .Thepower control problemis to find
transmit powers for the users in such a way that
each user attains its required SIR. We find necessary and suffi-
cient conditions for guaranteeing that the power control problem
is feasible, and in this way obtaincapacity constraintsthat de-
pend on the signature sequences and SIR requirements of the
users. However, we show that under a weak assumption on the
signature sequences, the constraints reduce to a single constraint
that only depends on the SIR requirements of the users.

The following theorem gives us the effective bandwidth char-
acterization of the capacity region of the finite system under dis-
cussion. We remark that the result, and the argument we use to
prove it, are both very similar to Theorem 6. The difference,
however, is that in Theorem 6, either the system is feasible
for all users, or it is infeasible for all users; if it is infeasible
then all users’ SIRs remain bounded away from their targets.
In the present case, it is possible to have a subset of users with
bounded transmit powers and with SIRs converging to their tar-
gets, but with the complementary set of users remaining infea-

sible, with SIRs bounded away from their targets. Thus, a subset
of users is “feasible,” whereas the remainder is “infeasible.”
This is possible precisely because the feasible users have enough
degrees of freedom to “null out” the infeasible users. This ob-
servation accounts for the reason why we have to consider con-
straints on subsets of users, and not just the whole set of users,
in the following theorem. In what follows, let SIR denote
the vector of attained SIRs when the transmit power vector is

. For a subset of users ,
let be the matrix consisting of the columns of
corresponding to users in, and be the diagonal matrix
of transmit powers of users in. First we present the following
key lemma, proven in [21].

Lemma 9: Let be the eigenvalues of the matrix
, and SIR be the SIR of user under the

MMSE receiver when only users in the subsetare present in
the system. Then

SIR

SIR
(30)

Theorem 10:The constraints

(31)

are necessary and sufficient for there to exist a positive transmit
power vector that solves the SIR equations

SIR (32)

If a solution exists then it is unique.
Proof: See Appendix-D.

Corollary 11: Assume that . Suppose that the ma-
trix has the property

every subset of columns are linearly independent. (33)

Then a necessary and sufficient condition for there to be a pos-
itive transmit power vector that solves the SIR equations in
(32) is that

(34)

Proof: If is a subset of users with then
, but . Therefore, (31)

is satisfied. If then and hence
(31) is just . The tightest of all constraints
of this form is

Under what conditions on the original signature se-
quences does have the property (33)? Let

and for any subset of users, be the
matrix the columns of which are the signature sequences

of users in (in increasing order, say).

Proposition 12: Assume . If every set of users of
size can be partitioned into disjoint subsets
each of size , such that are all full-rank,
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then property (33) is satisfied almost surely in the (random)
channel gains .

Proof: Suppose first that . Then is an by
matrix. Let be any partition of the users

into disjoint subsets each of size. By the Cauchy–Binet
formula [22, p. 22]

where the sum is over all partitions. In this representation,
is a polynomial in the channel gains. By the assumed

property of the signature sequences, there exist at least one
nonzero coefficient in this polynomial and the polynomial
is not identical to zero. Since the channel gains are circular
symmetric (hence continuous phases) and the phases are
independent, this implies that almost surely the determinant of

is nonzero and the rank property (33) holds. For the general
case when , an identical argument holds for any
subset of columns of size .

It is worth noting that if the elements of the signature se-
quences are drawn randomly and independently from the same
continuousdistribution then the assumed condition in Proposi-
tion 12 will hold with probability . Moreover, even when the
elements are discrete, say taking on valuesor , it can
be shown that the condition will hold almost surely in a large
system as ,

It is interesting to observe that the feasibility condition (34)
is similar to the interference-limited capacity constraint for
random sequences in a large system, as in Theorem 6. However,
using random sequences, the power control to achieve the same
capacity region is much simpler than for arbitrary sequences:
the transmit power of a user can be chosen as a function of only
its SIR requirement and its own channel gains. Moreover, the
effective bandwidth characterization extends to power-limited
capacity regions for random sequences, and this does not hold
for arbitrary sequences. These results are consequences of
deeper random matrix properties.

During the completion of this paper, a recent Ph.D. disserta-
tion [23] has been brought to our attention, which investigates
the issue of effective bandwidths for finite systems with CDMA
and antenna arrays. In this work, one of our necessary condi-
tions is derived, namely, the overall constraint in our equation
(31). Simulation evidence is given that this constraint seems to
describe capacity very well, and our Corollary 11 can be viewed
as a substantiation of this claim.

VIII. POWER CONTROL:
MACROSCOPICVERSUSMICROSCOPICSCALE

The proof of Theorem 10, given in Appendix-D, relies on an
iterative procedure in which a solution to (32) is shown to
exist by constructing a sequence . The basic
idea of the proof is that given a set of transmit powers , this
specifies an interference covariance matrix ,
and a corresponding set of eigenvalues . These in turn
specify a new set of transmit powers , where the transmit
power of user is chosen to satisfy user’s SIR require-
ment assuming all the other user’s transmit powers are fixed at

, . This can be thought of as a power control algo-
rithm, for potential practical implementation, and in the present
section we wish to derive an explicit expression for , the
transmit power of user 1, at step of the algorithm.

The interference covariance matrix for user 1 is given by
, which is the matrix in which the effect

of user 1 has been removed. Let be the eigenvalues
of this matrix, and let be the coordinates of the signature
sequence of user 1 in the basis of eigenvectors. Then

(35)

is an explicit representation of the power control algorithm. We
can interpret as the level of interference experienced by
user 1 in the direction of the orthogonal basis of eigenvec-
tors. Equation (35) specifies a power control algorithm, in which
powers are selected as a function of interference measurements,
and the user’s own energies, in the different directions.

In the random sequence model, the proof of Theorem 6 can
also be viewed as providing a power control algorithm to satisfy
the SIR requirements as expressed in (10). The proof explicitly
identifies a sequence for which , as ,
where is the solution to (11). But if we set

(36)

then this provides an analogous power control algorithm to (35).
The analogy with (35) is even stronger if we define a new set of
variables

(37)

after which (36) becomes

(38)

This is a power control algorithm based on the “macroscopic”
variables , as opposed to “microscopic” variables

.
The reduction in dimensions from variables to vari-

ables is a consequence of the law of large numbers embodied in
Theorem 3. This law of large numbers is very important from
a practical point of view: in a large system, implementing an
algorithm of the form (35) involves measuring a large number
of “microscopic” variables, the ’s and ’s, which are fluctu-
ating on the fast time scale of burstiness and fading. Theorem 3
states that if the underlying probability distributions are fixed,
then the limiting ’s are constants, and in a finite, but large
system, the fluctuations will be small. Moreover, Theorem 3
shows that the constants are the same for all users. A power
control algorithm such as (36) can, therefore, be implemented,
in which the number of variables to be measured and fed back to
the users is much smaller, and which change much more slowly,
as the underlying probability distributions change.

Both (35) and (36) fall into a general class of power control
algorithms studied in [24] and also surveyed in [25]. That these
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algorithms converge, when a solution exists, is due to an under-
lying monotonicity inherent to these problems [26], [24], [14],
and indeed central to the proofs in the present paper as well. In
the present paper, we have also exploited fundamental conser-
vation laws ((30) in the deterministic signature sequence model,
and (12) in the asymptotic random sequences model) in order
to show existence of solutions to these power control problems.
See [25] for further discussions on conservation laws. Other rel-
evant works on power control for multiuser CDMA receivers
and for antenna arrays include [27] and [28].

The matched-filter results in the random sequences model are
surprisingly similar to the MMSE results; all one does is re-
places by . Thus, a power control algorithm for the
matched-filter receiver is also given by

We remark that the convergence properties of this algorithm
were obtained earlier in [14]. It is also interesting to observe
that in the matched-filter case, the change of variables (37) has
a direct interpretation: is the interference level at the output
of the matched-filter receiver at antenna, and this follows from
the proof of Theorem 7. In the MMSE case, we conjecture that
the s have a similar interpretation as despread interference
levels at the antennas, where we assume the global MMSE re-
ceiver is partitioned among the antennas to get intermediate out-
puts before combining.

IX. CONCLUSION

Our main results are the limiting SIR performance and the ef-
fective bandwidth characterization of capacity for a DS-CDMA
system with random spreading, spatial diversity, and MMSE
multiuser receiver. We also provide analogous results for the
decorrelator and matched-filter receiver, of interest in their
own right, but particularly to provide a contrast with the per-
formance of the optimal MMSE receiver. The asymptotics are
for large processing gain and large number of users, but
fixed number of antennas. We consider both microdiversity,
in which the channel gains to the antenna elements are i.i.d. for
each user, and macrodiversity, in which the channel gains are
independent but not identically distributed.

In the case of microdiversity, a curious “resource pooling”
effect is observed. We have shown that one can consider
the microdiversity array as a single antenna with processing
gain , i.e., a pooling of degrees of freedom provided by
spreading and antennas. In the single-antenna system, the
equivalent amount of received power is obtained by adding up
the received power at each of the individual antenna elements
in the multiantenna system. This resource pooling result is
surprising in several ways. When one considers the pooling
of degrees of freedom, one notes that the signature sequences
are repeated at each antenna, so it is far from clear that one
has “independent” dimensions, yet this is what our result
shows. As to the pooling of received power, this may appear
to be a fairly standard result for antenna arrays, where this
effect is observed to occur for maximal ratio combining of
antenna elements, but the underlying assumption there is of

independent interference at each antenna element (see [29, Sec.
7.4]). However, in our spread-spectrum model, the interference
at each antenna isnot independent; in fact, it is precisely the
dependence of interference over chips and antennas that the
MMSE receiver exploits to gain its advantage. Therefore, it
is quite surprising to see the same additivity of power that
occurs in the independent interference case arising here as well.
Moreover, our results show that not only is the received power
pooled for the user to be demodulated, it is also pooled for the
interferers. This certainly goes beyond the standard maximal
ratio combining result.

Generalizing the results in [1], we provided an effective band-
width characterization of the user capacity region of a system
with antenna diversity. As a function of the target SIR, the ef-
fective bandwidths for each user under the MMSE, decorrelator,
and matched filter are

with the interference-limited capacity region asymptotically
given by

Thus, in a system with processing gain, and antennas, the
overall number of degrees of freedom is . Analogous re-
sults are obtained for power-limited user capacity regions where
users have transmit power constraints.

We observe that the matched filter gains capacity whenever
we increase , but it is still susceptible to thenear–farproblem;
the fact that the signature sequences of the interferers are not
used means that the receiver cannot null them out. Thus, the

degrees of freedom from spreading are not used to their full
potential. The decorrelator does not gain user capacity when we
increase , because the effective bandwidth occupied by each
user increases linearly with. Thus, the degrees of freedom
provided by the antennas are not used to their full potential.
However, it does use the degrees of freedom provided by
spreading effectively; since it knows the signature sequences of
the interferers it can null out their interference.

Somewhat surprisingly, the interference-limited capacity re-
gions do not depend on the statistics of the channel gains, and are
the same in both the macrodiversity and microdiversity models.
For the MMSE receiver, we gave an explanation of the inter-
ference-limited capacity region by means of an underlying de-
terministic conservation law governing the tradeoff between the
mean-square errors of the different users.

Our results are obtained in a synchronous CDMA model
with flat fading. Extensions to asynchronous systems with
frequency-selective fading can perhaps be obtained by com-
bining the ideas of this paper with those in [30] and [18], which
address similar questions in the asynchronous and multipath
settings, respectively, for a single-antenna CDMA system.

APPENDIX

A. Proof of Theorem 3

We need the following result, [31, Corollary 10.1.2].
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Theorem 13:Let be a random matrix with
independent entries which are zero-mean and satisfy the condi-
tion

for some uniform bound . Moreover, suppose that if we
define for each a function by

for satisfying:

and that converges uniformly to a limiting bounded function
.3 Then for each , , and

where satisfies the equation

(39)

for every The solution of (39) exists and is unique
in the class of functions , analytic on and
continuous on .

Moreover, almost surely, the empirical eigenvalue distribu-
tion of converges weakly to a limiting distribution ,
whose Stieltjes transform

is given by .

The following lemma is a modification of a corresponding
lemma of [32] and the proof proceeds along similar lines.

Lemma 14: Suppose are uncorrelated random
variables, each zero mean and variance with finite fourth
moment. Let be an by constant Hermitian matrix.
Define the vector

where . Then

If furthermore the ’s and i.i.d., then

for some constant which depends only on the fourth moment
of and the ’s. Here, is the largest eigenvalue of.

3We note that here thex-axis is identified with the rows of the matrix, and
they-axis to the columns.

Proof of Theorem 3:In the completely random model, the
SIR for user 1 is given by

SIR

where is the transmit power of user

, and . Here,
are all i.i.d. random variables with mean zero and variance.
Recall that . For simplicity, assume that
the power vectors take on only a finite set
of possible values, say and
let the limiting empirical distribution of

be equal to with probability .
With this assumption, we can identify each user with the class

its vector of received powers belongs to. The same result can
be proved for the continuous case using an approximation argu-
ment. (See [30, proof of Theorem 4.1] for a similar argument.)

Consider now the random matrix . Condi-
tional on the ’s and ’s, the entries of are independent.
Each column of is associated with a user. By reordering the
columns so that the users are in increasing order of the their
class indexes, the function defined in the statement of The-
orem 13 for can be seen to converge toalmost surely as

, , where

if and (40)

Then, for each ,

(41)

where satisfies the equation

(42)

for all . It can be seen that sinceis constant as
a function of in intervals , , is also
constant in those intervals. Let for .
Using (40), (42) is now reduced to the following system of
simultaneous equations:

where with probability
, Applying Lemma 14 and (41) now yields the

theorem, since .

B. Proof of Theorem 1

The focus of the analysis is on the quantity

SIR (43)

where the various variables are defined in Section II.
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The asymptotic behavior of the SIR is quite complicated to
analyze due to the dependence of the elements of the super sig-
nature sequences of the users. As a result, we cannot directly use
existing random matrix results as in the proof of Theorem 3. Es-
sentially, what we want to show is that the asymptotic behavior
of SIR is the same as if the super signature sequences were
generated in the completely random sequence model. There are
two main parts to the proof.

1) We show that the limiting spectrum of is the same
as that of , where is the analogous matrix in
the completely random sequence model. This is done by
bootstraping from the special case where the received
powers at all the antennas from all the users are the same,
a result already proved in [18] using techniques from free
probability theory. The more general result follows from
a combinatorial argument.

2) We show that is asymptoti-
cally

This would have followed from a simple mean and vari-
ance calculation if were generated from the completely
random sequence model (as in Lemma 14). However, the
dependence in entries of makes the proof much more
complicated. The analysis of this step is done in the main
body of the proof.

First Step:
Lemma 15: Assume that for all and . Then

the moments of the expected empirical eigenvalue distributions
of and both converge to the same limits as

and .
We now want to generalize the above result to the case of

arbitrary but bounded ’s. We need another random
matrix result.

Let be an by random matrix with independent
zero-mean entries and such that for some
and , and let be the empirical eigenvalue distribution
of . The th moment of , , is

and the summation is over all indexes with the odd
indexes ranging from to and the even indexes fromto .
Consider now the following sum of a subset of the terms:

(44)

where each summand in satisfies the further constraints that
the number of distinct odd-indexed plus the number
of distinct even-indexed equals and that there is a
one-to-one pairing of the unconjugated and conjugated terms
in the product. Hence, can also be written as

It should also be noted that there is no further repeat of terms
in each of the products, because of the first constraint. The fol-
lowing result is due to Wachter [33, Theorem 1.1.4].

Theorem 16:Almost surely the empirical distribution
converges to a limit if and only if for each ,
converges as Moreover, if the limit exists , then

Theorem 17:Assume there exists a such that
for all and . Then the moments of the expected empirical
eigenvalue distributions of and both converge
to the same limits as and . Here

.
Proof: First we condition on the ’s. Define

and let Let be the empirical eigenvalue distribution
of . We have for each

where is as defined in (44) and consists of the
remaining terms in the sum. Let and be the
corresponding term when for all in the repeated
sequence model; and be the corresponding
terms in the completely random sequence model, for general

’s; and and be the corresponding terms
in the completely random model with for all . We
observe that

1) ;

2) ;

3) ;

4)

The first statement follows from the fact that and
depend only on the variances of the individual en-

tries of and , respectively, which are identical.
The second fact follows from Theorem 16 applied to the com-
pletely random model with . The third fact follows
from Lemma 15 that the completely random and repeated se-
quence models have the same limiting moments. The fourth
statement follows from the fact that there is a one-to-one cor-
respondence of the summands in and with
nonzero expectation, each of which are positive and that the ex-
pectation of each such term in can be at most a factor
of larger than that of the corresponding term in
Analogous statement holds for and .

Now, in the completely random sequence model, the
empirical eigenvalue distribution converges almosst surely,
from Theorem 3. Therefore, by Theorem 16, for each,
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exists and is the limit of theth moment
of the expected empirical eigenvalue distribution of .
Applying facts (1) and (4) to (45) allows us to conclude that
the corresponding moments for the repeated sequence model
converge to those same limits. Moreover, this limit is the same
almost surely in the received powers ’s. An application
of the Dominated Convergence Theorem allows us to conclude
that the same conclusions holds for expectations over ’s
as well.

Second Step:We need one more lemma.
Lemma 18: Let be a deterministic complex ma-

trix with uniformly bounded spectral radius for all. Let
, where ’s are i.i.d. zero-mean unit variance

random variables with finite eighth moment, Letbe identically
distributed and independent of. Then

for some constant that does not depend on or .
Proof: The proof proceeds along the same lines as the

proof of [34, Lemma 2.7].

We can now give a proof of Theorem 1.

Proof of Theorem 1:Define

where is defined in Section II-A, and let

(45)

which is the SIR achieved by userunder the MMSE receiver.
In [21, eq. (12)], a key equation relating the ’s and the trace
of was derived

Rearranging terms and then taking expectation with respect to
the random sequences, channel gains, and transmit powers, we
get

(46)

where are the eigenvalues of . Let us in-
vestigate what happens as . Applying Lemma 15, we
have

and

(47)

as , where is the limiting expected empirical
eigenvalue distribution of . This convergence holds
since is a bounded continuous function and

converges weakly to . Let us define

We now analyze what happens asymptotically to the left-hand
side of (46). Recalling that , we first ob-
serve that

which, by Lemma 14, implies that

(48)

since the circular symmetry and independence of the’s imply
that the entries of are uncorrelated.

In the microdiversity model, the ’s are identically dis-
tributed and independent for each fixed. By permuting the
rows of , we see that the random variables

(49)
are identically distributed. So we can rewrite (48) as

(50)

as . Our goal now is to show from (46) that in
fact converges to in probability for every . To this end, let

Then, expanding about

for some in between and . Substituting into the
left-hand side of (46), we get

(51)
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As and , the first term approaches

(52)

where the random variable has the limiting empirical distri-
bution of the ’s. This follows from the almost sure conver-
gence of the empirical distribution together with an application
of the Dominated Convergence Theorem.

Consider now the second expectation in (51). From (50)

If we let

and

application of the matrix inversion lemma yields

so

Note that

and

since the total received powers are assumed to be uniformly
bounded from above by .

Substituting this into the second term of (51) yields

and

The ’s are assumed to be uniformly bounded from above so
that the terms are uniformly bounded from above for all

and . Also, . We can now conclude that

(53)

Substituting (47), (52), and (53) into (46) and taking limit as
, we get that

LHS (54)

where

LHS

Recall that

where is the limiting expected eigenvalue distribution of
. However, we have shown in Theorem 17 that the

limiting distribution is the same in the repeated sequence and
completely random sequence models. This equality allows us
to apply Theorem 13, applicable for the completely random
model, to compute . Because of the i.i.d. nature of the
fading gains in the special case of microdiversity, the system
of fixed-point equations (39) collapses to a single fixed-point
equation, to which is a unique solution

Some simple algebra translates this into

Comparing this with (54) yields

(55)

The remaining step of the proof is to show that this implies
that .

Using the matrix inversion lemma, for any

(56)

where

Now, by definition

If we now define

and

then we have, from (56)



1348 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 4, MAY 2001

Hence,

(57)

Now, we can write , where is the original -di-
mensional signature sequence of user, and

is by . And

where

We have

which is uniformly bounded for all and . Hence, we can
now apply Lemma 18 and obtain

(58)

for some constant . Similarly, one can show that
for another constant . Substituting this and inequality (58)

into (57), we get

for constant independent of . It now follows that

(59)

for all . Combining this with (55) yields

(60)

Now

and

uniformly in as well. So we have that

is greater than

and we can conclude that the left-hand side is asymptotically
lower-bounded by some constant as . This, to-
gether with (60) and an application of Dominated Convergence
Theorem yields the conclusion that

as

Hence converges to in probability, completing the
proof.

C. Proof of Theorem 7

Let us begin by defining

where the expectation is over the random fadings of the inter-
ferers. Since the interferers are independent of user 1, we can
also consider this expectation as taken conditional on user 1’s
fading levels. Then the matched filter is given by

and we can substitute this into (3) to obtain SIR. Let us consider
the numerator and denominator in (3) separately. First

(61)

and the two terms in the denominator are given by

(62)

and

(63)

where . Note that has mean zero, and
variance when we average over the random se-
quences of both user 1 and user. We consider the limiting
asymptotics of the three separate terms (61)–(63), as we take

to infinity, keeping .
By the weak convergence of the empirical distribution of the

received powers, assumed in the statement of the theorem, we
have that

is constant, almost surely, taking the value . This is still
true if we condition on the fading levels of user 1. We have also
assumed that the received powers are uniformly bounded over
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all and , so the dominated convergence theorem applies, and
we have that

We conclude that the asymptotics for (61) and (62) are

a.s. (64)

a.s. (65)

To analyze (63), we split it into two terms

(66)

and

(67)
It is clear from the weak convergence of the empirical distribu-
tions of received powers, and the convergence of the ’s,
that the term (66) converges almost surely to

Let us, therefore, focus on the term (67). It follows from the
circular symmetry of the ’s, that if we average over the
random fading levels of the interferers, and their signature se-
quences, the expectation of (67) is zero. The variance of (67) is,
therefore, the second moment, and this can be reduced via cir-
cular symmetry to

which is as . We conclude that the expression
in (67) converges to zero almost surely, for any realization of
signature sequences and fading levels of the interferers.

Putting the pieces of the denominator of (3) together, we see
that it is asymptotically given by

Applying this with (64) we obtain the convergence result stated
in the theorem.

D. Proof of Theorem 10

The issue of power control for the MMSE receiver, and (32),
have already been considered in [27], where it is shown that
if a solution for transmit powers exists, then it is unique. We,
therefore, focus in our proof on existence.

Let be an arbitrary vector of positive powers,

and , recalling that is the matrix of
“super” signature sequences, each column consisting of a stack
of repeated signature sequences, one for each antenna, and each
multiplied by the appropriate complex channel gain to that an-
tenna. Let us now consider the sufficiency condition in the the-
orem. We assume that (31) holds, and establish the existence
of a solution to the nonlinear equations (32) by direct
construction. In particular, we generate a component-wise in-
creasing sequence of transmit power vectors , such that

.
The definition of the sequence is as follows. Start

with . Clearly, for we have , where
is the vector ofachievedSIR values when . To

get , let be the minimum power required by userto
obtain (desired), under the assumption that for all

other . Since , it follows that , and
this is true for all . Moreover, since

, it follows that for all . We repeat
this power adaptation procedure for . By induction
on the above argument, we obtain that is component-wise
increasing, and

for all (68)

To obtain our solution as the limit of the , we must
first show that none of these powers tend to infinity. Let be
the diagonal matrix with diagonal entries given in .
Define and let
denote some ordering of its eigenvalues. We will show that it is
impossible for the eigenvalues to tend to infinity, and then that
this implies that the transmit powers cannot tend to infinity.

Our approach will be to normalize the powers in such
a way that they remain bounded, and then take convergent
subsequences. To this end, let be the unique subset of

such that

(69)

and

Thus, the ratios of transmit powers in remain bounded, and
the other users’ powers become relatively negligible in the limit.
It shall be useful to refer to the precise value of the limsup in
(69), a number that is at least unity; let us denote this value by
.
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To obtain our normalization constant, define

Note that the condition that at least one user’s transmit power
becomes unbounded in the limit is then equivalent to

. We focus on users in , and define the normalized
diagonal matrix of transmit powers

Let be the matrix consisting of the super-sig-
nature sequences in, and define .
From the definition of , the entries in are bounded above
and below by and , respectively, so there exists a
diagonal matrix with strictly positive diagonal entries, and a
subsequence , along which . It follows that

which is a matrix of the same rank as . The limiting
eigenvalues of are therefore given by the eigenvalues of

(70)

There are precisely elements of that are strictly
positive, and the rest are zero.

Clearly, there is a relationship between the eigenvalues of
and . The intuition is that provides all the infor-

mation about users in in the limit as , since the other
users are asymptotically negligible. To make this precise, con-
sider the fictitious channel in which users in are not present,
and users in are allocated powers as prescribed by the diag-
onal matrix . The corresponding interference covari-
ance matrix is then , with eigenvalues . For
all , precisely of these eigenvalues are positive,
and the rest are zero. The above convergent subsequence result
therefore tells us about the limiting ratios of the eigenvalues of

.
We now apply the conservation law (30) to this fictitious

channel. First, let be the vector of SIRs achieved at iter-
ation of the power adaptation. Then

Since exactly of the ’s are zero, we can instead
write

(71)

Now, in the original channel, users in have asymptotically
no effect on the users in in the limit . It follows that

But by (31) and (68), it then follows that

and hence, by (71), that

In particular, it is not possible for all the positive to be
unbounded along any subsequence . However, we ob-
served in (70) that there exists a particular subsequence
along which all the positive ’s converge, so along this subse-

quence, must remain bounded. However, the powers
are an increasing sequence, so they must be bounded along the
whole sequence . We conclude that there exists a
positive vector of transmit powers for which .
Returning to (69), we conclude that when all the constraints in
(31) hold, is, in fact, the set of all users.

The monotonicity of our sequence is, in fact, a funda-
mental feature of the whole problem (see [25]). For example, if
we have a feasible channel of users labeled then a
smaller channel with users from a subset
is also feasible, and the transmit powers that achieve feasibility
in the larger channel, , dominate the transmit powers that
achieve feasibility in the smaller channel. That is,

To see why this is the case, start with and
generate the decreasing sequence .

Necessity follows almost immediately from monotonicity
and the conservation law. Monotonicity implies that if our
system is feasible, then so is the “fictitious” system in which
users in are the only ones present. The conservation law for
the fictitious channel is

where we note that the ’s are the eigenvalues of the covariance
matrix of the fictitious channel.

The conservation law must hold when all thes are achieved.
It is, therefore, necessary that

for all .
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