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Abstract— This paper is concerned with modeling, analysis
and optimization/control of occupancy evolution in a large
building. The main concern is efficient evacuation of a building
in the event of threat or emergency. Complexity arises from
the curse of dimensionality in a large building, as well as the
uncertain and nonlinear dynamics of individuals. In this paper
we propose relaxation techniques borrowed from queueing
theory to address complexity. Then we provide tools to model
occupancy evolution during egress, obtain lower bounds on
evacuation time, and construct control solutions to instruct
occupants in order to efficiently evacuate the building. The
control solutions are based on recent generalizations of the
MaxWeight policy for decentralized routing. These results are
illustrated with the aid of simulations carried out using realistic
building models.

I. INTRODUCTION

The purpose of this paper is to introduce tools for the

modeling, analysis, and optimization/control of occupancy

evolution in a large building. There is currently great in-

terest in these questions for various applications, including

energy conservation and to aid first-responders in a burning

building.1

The focus of this paper is egress: We restrict to a transient

regime in which the occupants are exiting the building.

Although, this is a daily routine for millions of people

who egress from a building at the end of work day, we

are especially motivated by situations arising due to an

emergency, such as a fire or security threat. In such cases, the

evacuation time is a critical factor whose reduction can help

save lives by both evacuating people faster and providing

earlier access to first responders.

Evacuation will be trivial if there is no congestion. In

the simplest case in which there is a single occupant in

the building, this agent will leave the building using the

preferred/closest exit. However, congestion makes the evac-

uation problem much more interesting: If there are a large

number of agents, and a large number of possible routes and

exits, then the agent’s individual best route to the closest exit

may not be optimal for the overall evacuation problem.

Markovian models or more generally Markov Decision

Process (MDP) models have been used to model the occu-

pancy evolution in a single building floor example illustrated

in Fig. 1. This particular example was also treated in [1]

where each of 255 rectangular nodes can allow at most one
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agent. With a single agent, this leads to a Markov chain

with 255 states. If the building is initially filled to capacity,

that is the initial condition includes one agent at each node,

then this grows to 2255 possible states. The complexity

grows explosively with the introduction of control to obtain

a MDP model. Moreover, the state space becomes infinite

dimensional with the introduction of hidden Markov model

to address the distributed sensing and control requirements.

For the purposes of optimization, such models have no value

in the applications of interest here.

In this paper we adapt workload relaxation techniques

from queueing theory to formulate dynamic building models,

and to address performance bounds and optimization prob-

lems in the context of building evacuation. The proposed

model consists of two main components: 1) a family of

Markov transition matrices that capture the typical behavior

of a single agent who wishes to move towards one of the

exits, and 2) a queue at each of the building nodes that

indicates the number of agents at that node. There exist two

mechanisms to model agent interactions: 1) the maximal

service rate of queueing models is used to model local

congestion, and 2) upper bounds on node occupancy are used

to model physical constraints.

Two models are considered in this paper: a stochastic

queueing model based on the Controlled Random Walk

(CRW) model [2], and a fluid model describing the average

behavior of the stochastic model. As in queueing theory, the

fluid model is used to define workload and to obtain the

bounds on evacuation time [3]. The CRW model is used for

more fine-grained analysis, and also for simulation.

The policies introduced here are based on the h-

MaxWeight policy of [4], which is a generalization of the

MaxWeight policy of Tassiulas and Ephremides [5]. The

MaxWeight policy can be expressed as the myopic policy

for the fluid model with respect to a quadratic function

h(x) =
1

2
xT Dx (1)

in which the matrix D is positive and diagonal. Stability

theory for this and similar classes of policies has been

extended in multiple directions over the past fifteen years.

In particular, these policies are known to be approximately

optimal in heavy traffic under certain conditions on the

network (see [6]).

It is also known that a MaxWeight policy may perform

very poorly, in part because it makes use of so little in-

formation [7]. This has led to refinements such as the h-

MaxWeight policy which is shown to be stabilizing and

even approximately average-cost optimal under appropriate
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Fig. 1. Layout of Building where × corresponds to the agent, gray grid
spaces are walls, and three green grids are the exits. The selected path shows
that agent starts in the bottom-left office and moves towards the closest exit
along the best route with the largest probability.

conditions on the function h and the network [4]. The proof

of approximate optimality is based on a workload relaxation

— a similar technique is used in this paper.

The remainder of the paper is organized as follows. In

Section II we describe the queueing models and discuss

the workload analysis. In Section III we use these models

for the purposes of optimization using the h-MaxWeight

policy based on workload relaxations of various dimensions.

Section IV presents the simulation results for the building

shown in Fig. 1. Conclusions and directions for future

research are summarized in Section V.

II. STOCHASTIC AGENT MOVEMENT MODEL

Our starting point is a grid based model of the people (or

agents) movement in a large building. We consider in this

section only a highly stylized model in which all agents have

identical behavior – this is captured by the specification of a

single Markov transition matrix P that models local behavior

as well as preference for exits. The model is constructed from

two main parts:

1) The Markov transition matrix is used to model move-

ment of a single agent, ignoring congestion effects.

2) Queues at every building nodes are used to describe

the spatial distribution of the agents in the building.

The queues are cleared according to a certain capacity

constraint that serves to mimic the congestion effect

due to agents blocking each other.

In section III we will extend this model for the purpose of

control where an agent can choose from a family of Markov

transition matrices. We begin by presenting details for the

simplest model in the following:

A. Markov Transition Matrix

For the sake of exposition, we first assume that there

is only a single agent. We denote the successive locations

of the agent by {X(0),X(1), . . . ,X(t)}. Let the sequence

{1,2, . . . ,n} denote the nodes in the building that can be oc-

cupied by the agent (n = 255 for the model shown in Fig. 1).

The behavior of the agent is assumed to be Markovian: for

each i, j, and each t ≥ 0,

P(i, j) :=Prob(X(t +1) = j | X(t) = i)

= Prob(X(t +1) = j | X t
0; X(t) = i)

(2)

It is assumed that P is a sub-stochastic Markov transition

matrix. If pi = ∑ j P(i, j) < 1, then the agent leaves the build-

ing from node i with probability (1− pi). In the evacuation

applications considered in this paper the transition matrix P

is defined by perturbing the baseline best route of an agent

to the closest exit for each starting node in the building.

It is assumed that the substochastic matrix P has the

following form: For certain special nodes, called exit nodes,

we have P(e, j) = 0 for each j = 1, . . . ,n. The agent leaves

the building via one of the exit nodes. For all other nodes i

it is assumed that P(i, ·) is an honest probability measure:

An agent at node i will move according to this distribution.

Finally, it is assumed that each node is transient in the sense

that an agent eventually exits the building. This assumption

is expressed by the existence of the inverse,

[I −P]−1 =
∞

∑
k=0

Pk. (3)

In the following subsections, we construct two types of

queueing models for the building: a stochastic model that

simulates the agent movement in the building and a fluid

model that describes the average behavior of occupancy

evolution.

B. Stochastic Queueing Model

To describe the evolution of occupancy for a building with

many agents we make following conventions:

1) The agents move according to the sub-stochastic

Markov transition matrix introduced for the single

agent model.

2) Associated with each node i in the building is a queue

Qi(t) that indicates the number of agents at this node

at time t. Q(t) ∈ R
n
+ denotes the vector of n queues.

3) Each node with non-zero queue length serves at most

c agents in one time step, i.e., at most c agents exit the

node i at each time-step. We fix c = 1 in this paper.

The Markov transition matrix is used to model the preference

of a typical agent. Service rate constraints mimic the effect of

congestion due to agents blocking each other. In the presence

of congestion, the queues build up and the evacuation time

increases. The modeling framework also allows upper bound

constraints on the number of agents at a node.

To describe the evolution of Q in a recursive form we

introduce an i.i.d. process ∆ that models potential transitions.

For each t, the matrix ∆(t) has entries that are zero or one. It

is assumed that the mean of ∆(t) is equal to P. If ∆i j(t +1) =
1 this means that an agent at node i will move to node j at

time t, provided that there is an agent present at that node.

Letting Ui(t) = 1l{Qi(t) ≥ 1}, the stochastic queueing

model is defined by the recursion,

Qi(t +1) = Qi(t)+∑
k

∆ki(t +1)Uk(t)−Ui(t) (4)
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for i = 1,2, . . . ,n.

The model (4) given here is just the Controlled Random

Walk (CRW) model defined in [2] (without arrivals).

C. Fluid Model

The fluid model is motivated by considering the average

behavior of the CRW model. On denoting q̄i(t) = E[Qi(t)]
and Ūi(t) = E[Ui(t)] we obtain under the i.i.d. assumption on

∆,

q̄i(t +1) = q̄i(t)+∑
k

P(k, i)Ūk(t)−Ūi(t). (5)

Letting z̄i(t) = ∑t−1
s=0 Ūi(s) be the mean cumulative activity

process, and denoting

B :=−(I −PT ), (6)

the recursion (5) can be expressed as

q̄(t) = q̄(0)+Bz̄(t). (7)

The fluid model obeys analogous equations in continuous

time. Its state process q evolves on R
n
+ along with a cumula-

tive activity process z that also evolves on R
n
+. Following (7),

the fluid model equations are given by,

q(t) = q(0)+Bz(t). (8)

A related model is used in [8] for the purposes of occupancy

estimation.

On denoting C = I, the constituency matrix, we impose the

following constraints for this model: For each 0≤ t0 ≤ t1 < ∞,

z(t1)− z(t0) ≥ 0, C(z(t1)− z(t0)) ≤ (t1 − t0)1, (9)

where 1 and 0 are column vectors of ones and zeros,

respectively.

We can also write this as a controlled differential equation,

d
dt

q(t) = Bζ (t) (10)

in which ζ (t) is the time derivative of z(t). It is subject to

the constraints 0 ≤ ζi(t) ≤ 1 for each i and t.

D. Workload Vectors and Evacuation Time

In this section we construct workload vectors based on the

fluid model.

The minimal evacuation time T ∗ for the fluid model from

an initial condition q(0) = x can be obtained by solving the

following linear program,

T ∗(x) = min T

s.t. x+Bz = 0

Cz ≤ T1, z ≥ 0.

(11)

In this simple model the matrix B is square and invertible,

so that z =−B−1x. The existence of the inverse is due to the

assumption that every node is transient (see (3)).

Feasibility requires that CB−1x ≥−1T and B−1x ≤ 0. The

second condition is automatically satisfied for the models de-

scribed using (6). The first condition motivates the definition

of the workload matrix

Ξ = −CB−1. (12)

The rows of the workload matrix are called workload vectors,

and are denoted,

Ξ = [ξ 1 | ξ 2 | · · · | ξ n]T . (13)

The feasibility constraint CB−1x ≥−1T is equivalent to the

constraint that 〈ξ j,x〉 ≤ T for each j. This bound can be

achieved, from which it follows that the solution to the linear

program (11) is obtained as the maximum,

T ∗(x) = max
1≤ j≤n

〈ξ j,x〉. (14)

The quantity ξ j
i xi = ξ j

i qi(0) is the time that node j serves

the traffic originated from node i. T ∗(x) is determined by

the node j that needs to work the longest. This node has

a natural interpretation as the most congested node in the

building.

E. Bounds on Evacuation Time

T ∗(x) gives a lower bound on the evacuation time for

the fluid model. As the following proposition shows, it also

provides a lower bound for the CRW model (4).

Proposition 1 The following bound on the time τ to egress

(empty the building) holds for any policy applied to the CRW

model:

Ex[τ] ≥ T ∗(x). (15)

Proof: The proof relies on the dynamic programming

equation for the fluid model,

min
ζ

d
dt

T ∗(q(t)) = −1. (16)

This implies that for any time t, and any feasible control

for the fluid model,

T ∗(q(t +1)) ≥ T ∗(q(t))−1. (17)

We now turn to the CRW model. Since the function T ∗ is

convex, then by Jensen’s inequality,

E[T ∗(Q(t +1)) | Q(t) = x, U(t) = u]

≥ T ∗
(

E[Q(t +1) | Q(t) = x, U(t) = u]
)

= T ∗(x+Bu)
(18)

Returning to the fluid model, if q(t) = x, then q(t + s) =
x + (Bu)s, 0 ≤ s ≤ 1 is feasible for the fluid model. The

bound (17) then gives,

E[T ∗(Q(t +1)) | Q(t) = x, U(t) = u] ≥ T ∗(x)−1. (19)

We conclude that the process defined below is a sub-

martingale,

M(t) :=T ∗(Q(t))+ t, t = 0,1,2, . . . (20)

The submartingale property gives, for any initial condition

Q(0) = x,

Ex[M(t ∧ τ)] ≥ M(0) = T ∗(x). (21)
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It can be shown that {M(t∧τ) : t ≥ 0} is uniformly integrable

if the mean of τ is finite. Consequently, we can let t → ∞ to

obtain,

Ex[T
∗(Q(τ))+ τ] = Ex[M(τ)] ≥ M(0) = T ∗(x). (22)

The proof is completed on observing that T ∗(Q(τ)) = 0.

III. OPTIMIZATION AND CONTROL

We now extend the homogeneous fluid model introduced

in the last section to allow a wider range of decisions by the

agents in the building.

A. Control Model

Suppose that an agent has a choice of behaviors, or that

the population is heterogeneous. We model this more general

situation using a family of transition matrices {Pa : 1≤ a≤ r}
parametrized according to r routes out of the building. In

the example considered here we take r = 3. The ath matrix

captures an agent’s preference for the ath exit. P0 is used to

denote the transition matrix where an agent always prefers

the closest exit.

We maintain the linear fluid model (10) in which the

matrix B and the constituency matrix C are redefined as

follows,

B = [B1 | B2 | · · · | Br] (23)

where Ba = −(I −Pa)
T for a = 1, . . . ,r. The constraints (9)

are maintained, where the constituency matrix is redefined

as,

C = [I | I | · · · | I]. (24)

The constraint Cζ ≤ 1 reflects the assumption that an agent

can choose at most one behavior at each time step. The

control problem will involve choosing, in real-time, from one

of these matrices thereby deciding or modifying the route.

Recall that the constraints defined in (9) are used to model

the effect of agents blocking each other. The control problem

for the fluid model is to choose ζ (t) with the objective of

minimizing the total evacuation time T . The solution to this

problem is again obtained by the construction of workload

vectors.

B. Workload Vectors

Let x = q(0) denote the initial distribution of agents inside

the building. One can then pose a linear program whose

solution gives the minimal evacuation time. It has the same

form as (11), but in the more general model considered here

the matrix B is not square, so the solution must be obtained

by considering the linear program in a greater detail.

We obtain a representation of T ∗(x) in terms of workload

vectors by considering the dual of (11). Letting ξ ∈ R
n

denote the dual variable corresponding to the equality con-

straint x+Bz = 0, and ν ∈R
n the dual variable corresponding

to the inequality constraint Cz ≤ T1, the dual of (11) is

expressed,

T ∗(x) = max 〈ξ ,x〉

s.t. −BT ξ −CT ν ≤ 0

1
T

ν ≤ 1, ν ≥ 0.

(25)

Letting {ξ i,ν i} denote the extreme points of this linear

program, the minimal evacuation time can be expressed as

the finite maximum,

T ∗(x) = max 〈ξ i,x〉. (26)

Proposition 6.1.5 of [2] states that each ν i ∈ R
n
+ satisfies

〈ν i,1〉 = 1. Since this is the dual variable corresponding

to the resource constraints Cz ≤ T1, the vector ν i can be

interpreted as a probability distribution on these resources.

The complementary slackness condition holds: If z∗ is an

optimizer of (11), and i∗ a maximizer in (26), then

〈ν i∗ ,Cz∗〉 = T ∗(x)〈ν i∗ ,1〉 = T ∗(x). (27)

This and the fact that ν i∗ is a probability distribution implies

that whenever the index j satisfies ν i∗

j > 0, the corresponding

resource j must work at capacity for all t ∈ [0,T ∗). Written

in terms of the rate ζ ∗ = z∗/T ∗, this conclusion is expressed

as,

(Cζ ∗) j = 1, whenever ν i∗

j > 0. (28)

Following the terminology in the stochastic networks liter-

ature, we say that there exists resource pooling among the

resources { j : ν i∗

j > 0} [9].

In the example considered in this paper we find that typi-

cally ν i∗

j is zero for all values of j except those corresponding

to the exit nodes (see discussion surrounding Fig. 3).

The value ξ j is the sensitivity of the minimal evacuation

time with respect to queue x j. It follows that ξ i ∈ R
n
+ for

each i that is a unique maximizer of (26) for some x.

In the numerical examples considered we find that there

may be many entries of ξ i that are zero (see Fig. 3). We

say that each workload vector defines a partition of the

building graph based on the region A = {i : ξ i
j > 0} and

its complement Ac = { j : ξ i
j = 0}. The boundary between

A and Ac is analogous to a cut as defined in classical graph

theory [10]. The region in the building defined by the set A is

congested, in the sense that the evacuation time is sensitive

to the total occupancy in this region, while sensitivity to

the occupancy in Ac is zero. This intuition will be used to

guide the construction of policies that concentrate on pushing

agents from the congested region towards the exits or the

un-congested region. Congestion may vary with time, so the

policies are necessarily dynamic and based on feedback.

C. MaxWeight Evacuation

For the purposes of control we utilize a generalization of

the MaxWeight policy [5]. The methodology and the notation

here follows closely [2], [4]. Let h0 : R
n
+ → R+ denote a

convex, monotone function that vanishes only at the origin.

This is interpreted as an approximate value function for an

associated optimal control problem.

We apply a change of variables using the perturbed state

vector with entries,

x̃i = xi log(1+θ−1xi), 1 ≤ i ≤ n (29)
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where θ is a parameter that is selected to obtain the best

performance. We denote by h the perturbed function,

h(x) :=h0(x̃), x ∈ R
n
+. (30)

In one class of policies considered in the numerical results

that follow we first fix a single workload vector ξ , and set

h0 to be a quadratic,

h0(x) = 1
2

(

w2 +(c(x)− c̄(w))2
)

(31)

where w = ξ T x is the workload, c(x) = ∑i xi is the cost

function, and c̄(w) is the effective cost function obtained

from the following linear program (see [2, Chap. 6] for more

details),
c̄(w) = min c(x)

s.t. ξ T x = w, x ∈ R
n
+.

(32)

Its solution is c̄(w) = c̄0w where c̄0 = (max j ξ j)
−1.

The h-MaxWeight policy is simply the associated myopic

policy for the fluid model:

ζ (t) = argmin
ζ

d
dt

h(q(t)) = argmin
ζ

〈∇h(q(t)),Bζ 〉. (33)

We express this as the feedback law ζ (t) = φ MW(q(t)) where,

φ MW(x) := argmin
ζ

〈∇h(x),Bζ 〉, x ∈ R
n
+. (34)

The gradient of h is given by,

∇h(x) = Lθ (x)∇h0(x̃) (35)

where

Lθ (x) = diag

(

x

θ + x
+ log

(

1+
x

θ

)

)

, (36)

and

∇h0(x) = (ξ T x)ξ +((1− c̄0ξ )T x)(1− c̄0ξ ). (37)

Note that h is convex and monotone since this is assumed

for h0.

The perturbed state vector is introduced to ensure that the

h-myopic policy for the fluid model (the policy (34) in which

the minimum is not subject to integral constraints) is feasible

for the CRW model. The form of the gradient (35) implies

that ∂h(x)/∂xi = 0 whenever xi = 0. This property ensures

that there is a disincentive to work on an empty queue in the

fluid model.

D. Information Structure for the h-MaxWeight Policy

For the ith node in the building, the h-MaxWeight policy

arises as:

φ MW

i (x)∈argmax
a=1,...,r

(

n

∑
j=1

−BT
a (i, j)∇h j(x)

)

=argmax
a=1,...,r

(

∇hi(x)− ∑
Pa(i,k)>0

Pa(i,k)∇hk(x)
)

,

(38)

where ∇hi(x) = ∂h
∂xi

(x). Note that the resulting policy is not

distributed. However, the evaluation of the gradient term

∇h(x) requires knowledge of only two pieces of global

information, the values of ξ T x̃ and 1
T x̃. The evaluation of

Fig. 2. Displays the initial distribution of the agents in the whole building
where different colors indicate different number of agents contained on each
cell.

the second-term on the right hand side in (38) also requires

queue length information from the one-hop neighborhood of

node i (nodes k such that Pa(i,k) > 0 for some a). The latter

information can be obtained using local communication.

IV. SIMULATION RESULTS

A. Simulation Setup

The simulation is initialized with 1,160 agents in the

bottom offices of the building (see Fig. 2). By solving the

linear program (11), we obtained the minimal evacuation

time T ∗ = 386 for the fluid model as well as workload

vectors. These workload vectors are used to obtain the h-

MaxWeight evacuation policy.

B. Simulation Results and Discussion

1) Best route policy. With this policy there is no

feedback control and each agent tries to leave the building via

their own closest exit. The matrix P0 is used as the transition

matrix. This policy performs poorly because it does not

efficiently utilize all of the available resources (the corridors

and exits shown in Fig. 2). After a short transient of relatively

rapid decrease in the number of agents, both Exit 1 and Exit 3

become congested as do the left and bottom corridors. In

contrast, the top corridor and Exit 2 are never used. Fig. 3

(left) depicts the flow direction for the movement of agents.

The evacuation time using this policy is almost three times

the lower bound T ∗(x) = 386 obtained in Prop. 1 for the

mean evacuation time, see Fig. 4.

These results provide a motivation for the use of opti-

mization and control for the purposes of better resource

utilization.

2) h-MaxWeight policy. In Fig. 4, h-MaxWeight-1 shows

simulation results of h-MaxWight policy based on the 1st

workload vector (see (30) and (31)). The 1st workload vector

is depicted on the right hand side in Fig. 3. It defines

a partition for the building into two regions: the region

Ac = {i : ξi = 0} contains the three exit nodes while the

region A = {i : ξi > 0} contains the remaining transient nodes.

In the simulation, the h-MaxWeight policy is implemented

according to (38).
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Fig. 3. Depicts the most possible flow direction of agent movement during the whole evacuation process for Best Route Policy (left) and h-MaxWeight-1
Policy (middle). Also depicts 1st Workload Vector (right) where gray grid spaces (region A) indicate nonzero entries of the workload vector, white grid
spaces (region Ac) indicate zero entries of the workload vector.
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Fig. 4. Comparison of the evacuation times obtained using three policies for
the CRW model. Also shown is an optimal trajectory for the fluid model.
The h-MaxWeight-3 policy most closely reaches the performance of the
optimal fluid trajectory, with T = 528 (approximately).

Fig. 3 (middle) depicts the flow direction for the movement

of agents obtained using this policy. The agents starting in

the left region of the building move towards Exit 1 while

the remaining agents move towards Exit 3. This is just

like the best route policy as shown in Fig. 3 (left). The

main difference is that as the simulation progresses, the

agents begin to move towards Exit 2 as the first and third

exits become congested. Inefficiencies were also observed in

simulations: the myopic nature of the policy leads to multiple

streams of agents crossing each other at the top corridor.

Multiple workload vectors (i.e. the first three ones that

capture the dominant characteristics of this building problem)

can also be considered in h-MaxWeight policy. But the

average behavior of agent movement is very similar to the

single workload vector case (see h-MaxWeight-3 of Fig. 4).

In closing, we note that either h-MaxWeight policy pro-

vides a much better evacuation performance than obtained

with the best route policy. In fact, more than fifty percent of

evacuation time can be saved by h-MaxWeight policy than

the best route policy under this simulation setup (see Fig. 4).

V. CONCLUSIONS

We have demonstrated that workload relaxation techniques

from queueing theory can be applied to address performance

bounds and optimization problems in the context of build-

ing evacuation. Two models were considered: a stochastic

queueing model based on the Controlled Random Walk

model of [2], and a fluid model that describes the average

behavior of the stochastic model. The h-MaxWeight policy

showed considerable improvement in evacuation time over

the baseline where each agent uses their best route.

In future work, we will consider the stability of the h-

MaxWeight policy for the stochastic model. From an imple-

mentation standpoint, we will also consider consensus based

methods for distributed implementation of these policies.
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