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Limits in resource availability are driving a change in current societal production systems,
changing the focus from residues treatment, such as wastewater treatment, toward
resource recovery. Biotechnological processes offer an economic and versatile way to
concentrate and transform resources from waste/wastewater into valuable products,
which is a prerequisite for the technological development of a cradle-to-cradle bio-
based economy. This review identifies emerging technologies that enable resource
recovery across the wastewater treatment cycle. As such, bioenergy in the form of
biohydrogen (by photo and dark fermentation processes) and biogas (during anaerobic
digestion processes) have been classic targets, whereby, direct transformation of lipidic
biomass into biodiesel also gained attention. This concept is similar to previous biofuel
concepts, but more sustainable, as third generation biofuels and other resources can
be produced from waste biomass. The production of high value biopolymers (e.g.,
for bioplastics manufacturing) from organic acids, hydrogen, and methane is another
option for carbon recovery. The recovery of carbon and nutrients can be achieved by
organic fertilizer production, or single cell protein generation (depending on the source)
which may be utilized as feed, feed additives, next generation fertilizers, or even as
probiotics. Additionlly, chemical oxidation-reduction and bioelectrochemical systems
can recover inorganics or synthesize organic products beyond the natural microbial
metabolism. Anticipating the next generation of wastewater treatment plants driven
by biological recovery technologies, this review is focused on the generation and re-
synthesis of energetic resources and key resources to be recycled as raw materials in a
cradle-to-cradle economy concept.

Keywords: circular economy, cradle-to-cradle, resource recovery, water-energy nexus, biological processes,
wastewater treatment
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INTRODUCTION: FROM WATER
REMEDIATION TO WATER MINING:
CRADLE-TO-CRADLE IN WASTEWATER

The current societal production system, based on raw matter
extraction and industrial transformation into products, has long-
term sustainability issues (Lovins, 2008). The main reason is
the use of non-renewable inputs, such as fossil fuels, essential
agricultural nutrients such as phosphorus and rare metals used
in electronic devices production. The need to close production
cycles and enable resource sustainability is driving certain
regions, especially EU and Japan, to choose for a self-sufficient
bio-based economy. These strong drivers are pushing to change
current production systems, and the next two decades are key
in enabling a sustainable technological society. The circular
economy concept anticipates a global sustainable development if
the production system becomes auto-regenerative and the waste
generated in technical and biological cycles is converted into raw
matter. These include agricultural and industrial wastes, as well
as those derived from direct human consumption (Pearce and
Turner, 1990). This is better known as cradle-to-cradle concept,
which is substituting the current and outdated triple-R model
(recycle, reuse, and recovery) by a more efficient paradigm where
not only the waste is recycled but also is used as raw material, and
the whole process is driven by renewable energy (McDonough
and Braungart, 2010).

Wastewater treatment is a key platform to base the
technological development focused on the change of the
production system, since it is worldwide established with a
very long technological history (Van Loosdrecht and Brdjanovic,
2014). Between 50 and 100% of lost waste resources are contained
in wastewater. Therefore, major drivers, including not only
economy and environment expertises but also industrials, are
pushing to recover and regain all these substances. The EU has
invested substantial resources into bioeconomy and a specific
Research and Innovation program was created recently (the
Biobased Industries Joint Undertaking1, funded by the European
Comission under the Horizon 2020 framework). USA was one
of the most relevant drivers of the bioeconomy through the
National Bioeconomy Blueprint (House, 2012). As President
Barack Obama claimed in 2011, “The world is shifting to an
innovation economy and nobody does innovation better than
America.” These declarations clearly indicated that the USA
intends leading the progressive evolution of the global economy
toward a new cycle. As will be noted later in this review,
this evolution involves also a new generation of wastewater
treatment plants, where energy, organics, and other resources
are recovered as valuable byproducts instead of being wastefully
dissipated or destroyed. This is being driven not only by a need
for reduced cost and resource, particularly energy consumption,
but is also motivated by worldwide depletion of non-renewable
macronutrients such as easliy-accesible phosphorous, and the
need to reduce anthropogenic effects on terrestrial nitrogen cycles
(Batstone et al., 2015).

1http://bbi-europe.eu/

While many new technologies are contributing to the
challenge of resource recovery from wastewater, biological
methods offer the strongest promise to efficiently recover
valuable resources from dilute streams. Examples include
fast growing heterotrophic, chemotrophic, phototrophic, and
photosynthetic bacteria, microalgae, and terrestrial plants for
organics recovery, and the use of highly specialized metal
reducing and oxidizing organisms for metal recovery. Organisms
absorbing complex organics can be used to recover biopolymers
such as polyhydroxyalkanoates and alginates can be generated
by accumulative bacteria. This review will focus broadly on
biological methods to recover resources from domestic and
industrial wastewater and industrial wastes. The next generation
of domestic wastewater treatment plants (DWWTP) is targeting
energy neutrality and complete recovery of nutrients, particularly
N and P. There are also increasing drivers to recover valuable
products from wastes and wastewaters of different nature, such as
those from the industrial manufacturing and mining extraction.
These compounds are characterized by their high stability
and low biodegradability. Resources that are capable of being
recovered by biological technologies includes heavy, precious
or radioactive metals, and emerging pollutants like pharmacs,
enzymes, hormones, fertilizers, and bioplastics. Despite some
efforts have been dedicated to recover these valuable resources,
there is still a need for improving and consolidating the biological
options to reclaim and reuse these substances.

DOMESTIC WASTEWATER AS KEY
DEVELOPMENTAL PLATFORM FOR
NUTRIENT AND ENERGY RECOVERY

2014 was the 100 years anniversary of the activated sludge
process, and has seen commemoration of remarkable advances
in human health, standard of living, and improvements in the
environment enabled by the activated sludge process over the last
100 years (Jenkins and Wanner, 2014). Each iteration required
major investments in infrastructure, with a cycle length of
approximately 50 years, which largely aligns with the maximum
lifespan of this infrastructure. We are now entering the start
of another major cycle, driven partly by the end of life of
the current infrastructure, as well as by recognition of a need
to reduce global environmental impact and enable long term
societal sustainability (Verstraete et al., 2009; Mccarty et al.,
2011; Batstone et al., 2015). This aims at reducing the substantial
resource consumption (energy, chemicals, and transport) of
existing wastewater treatment and enabling instead recovery
of the value inherent in wastewater (Daigger, 2009). This part
outlines the reasons motivating this, platforms available to enable
resource recovery, and the practical application of resource
recovery at a small city scale.

Domestic wastewater by itself cannot completely fulfill
fertilizer requirements, as there is substantial dissipation to
both domestic animal production (not normally captured in
urban treatment systems), as well as the environment. Globally,
approximately 20% of manufactured nitrogen and phosphorous
is contained in domestic wastewater (Batstone et al., 2015;
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Matassa et al., 2015), of which the majority is potentially
recoverable due to urban concentration. The situation is more
attenuated for energy. Wastewater contains 1.3 MJ/person/day
(6.5 MJ/kL) of chemical energy (Batstone et al., 2015). This
represents 1% of the current world total energy consumption, or
4% of the world total electricity production (OECD/IEA, 2015),
and requires a process to convert it from dilute chemical energy
to a usable form. However, it represents a concentrated source of
carbon that may be better utilized directly as a resource (Matassa
et al., 2015).

Overall, domestic wastewater alone cannot fulfill elemental
or energy needs of industrialized society (as the rules of
resource dissipation would imply). However, it represents a
substantial resource, and should be fully utilized. Finally, the
domestic wastewater context has traditionally represented a
basis for technology development in waste and wastewater
treatment in general, generally due to the increased financial
resources available (compared to, for example, agri-industrial
waste recovery), and technologies developed in this area are
applicable to enable resource recovery across the industrial and
agricultural cycle.

There are a number of broad process options to enable lower
energy wastewater treatment, including high-footprint passive
systems (wetlands, lagoons), low energy mainline anaerobic (e.g.,
UASBs, Anaerobic MBR), together with alternative nitrogen
removal methods such as mainline Anammox (Wett et al., 2013).
These are discussed further in this paper. However, most focus
only on energy recovery, with dissipation of carbon, nitrogen, and
phosphorous and there are a limited number of processes that
aim for full or enhanced recovery of these resources.

Partition-Release-Recover Concept
Verstraete (Verstraete et al., 2009) proposed separation of
streams into major and minor (M&m) concentrated and dilute
streams. The default sets of technologies identified were filtration
based treatment (gravity-microfiltration-reverse osmosis), with
treatment of solids and concentrate by anaerobic digestion (AD),
and recovery of the nutrients from digestate though [for example,
electrodialytic nitrogen recovery (Mondor et al., 2008), and
phosphate precipitation]. Verstraete also identified alternatives,
including biological concentration through organisms that grow
quickly such as heterotrophic activated sludge organisms.

This was further developed, as the “partition-release-recover”
process, which uses biological agents to selectively remove
nutrients and carbon from the liquid phase (Batstone et al.,
2015). This is a combined and scalable process, able to treat
wastewater at essentially zero energy input, and recover nitrogen,
phosphorous, and potentially, value-added organics or microbial
products from the effluent. An overall scheme is shown in
Figure 1.

This concept has been further developd by (Batstone et al.,
2015), and is summarized here. The overall process has a single
entry point (wastewater), and four key discharges:

(i) Water, in which the main hydraulic load is dispersed
through reusable water, with a defined discharge limit
of nitrogen and phorphorous depending on reuse

requirements, local regulations, and technology options
chosen. This is the main discharge from the “partition”
stage. Partial nutrient removal with subsequent treatment
may also be affected in the partition stage, with
downstream treatment through low energy biological or
chemical treatment.

(ii) Biogas, which is the main sink stream for excess chemical
energy. This is the energy product from the “release”
stage. This is a relatively low value energy stream and
an ultimate better goal may be recovering organics as a
higher value product (see below).

(iii) Biosolids, mainly composed by inert organics, non-
recoverable nutrients and excess metals. This is the
byproduct from the “release” stage. It seems to be critical
to achieve almost complete AD, otherwise much of the
benefits are lost in excess sludge production. However,
biosolids can be also used as organic fertilizers if they are
fullfil the requirements (Tontti et al., 2016).

(iv) A fertilizer stream, which is the main sink for nitrogen,
phosphorous, and possibly potassium. This is the valuable
product from the “recover” stage. Again, as commodity
chemicals, these have relatively low value, and a better
ultimate goal may be generation of valuable products.

The key differentiating feature is the “partition stage,” with a
number of different agents available for use. These include:

• Heterotrophic bacteria, where both energy and electron
equivalents for growth are chemically sourced from the
wastewater (with oxygen as catabolic electron acceptor).
This is generally termed high-rate activated sludge, or
A-stage treatment, and has been applied for 20 years (Jetten
et al., 1997; Jimenez et al., 2015).
• Phototrophic anaerobic bacteria [particularly purple

phototrophic bacteria (PPB)], where the energy for growth
is sourced from light, but the electrons, carbon and
nutrients from the wastewater. This has been demonstrated
as a domestic treatment option in the laboratory (Hülsen
et al., 2014, 2016b). Technology readiness level (TRL) has
to be upgraded before real application of the technology to
achieve at least TRL 7.
• Algae and oxygenic photosynthetic bacteria, where the

energy for growth and catabolism is sourced from light,
electrons from molecular water, and nutrients and carbon
(generally as carbon-dioxide). Particularly for heterotrophic
treatment, this generally involves participation of aerobic
bacteria, which nitrify and oxidize carbon to CO2 (Cai
et al., 2013). There are some examples of full-scale
application of algae processes, though resource recovery is
still not fully addressed (e.g., EU FP7 ALL-GAS project, n◦
ENER/FP7/268208).

Particularly phototrophic is embryonic in nature and algae
is still under development, and with limited field application.
All three have fundamental restrictions; in particular, energy
input and carbon utilization efficiency for heterotrophic bacteria,
the need for soluble carbon for phototrophic anaerobes, and
light energy and footprint limitations for algae. However, all
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FIGURE 1 | Enhancing the Partition-Release-Recovery concept for organic and metals recovery from wastewater (PRR2 concept).

three enable the generation of value-added products in the
form of biomass (and other byproducts) that represent enabling
platforms for resource recovery.

Wastewater Biofactory
The other concept which is emerging is re-engineering
of conventional activated sludge, particularly by identifying
new byproducts which are far higher value than the raw
energy content of the wastewater. Activated sludge naturally
concentrates organics in a sludge stream, with partition-release-
recover aiming to maximize this. However, a parallel focus is on
enhancing conventional activated sludge (Van Loosdrecht and
Brdjanovic, 2014), with obvious applicability to other processes.

Enhanced products can be generally split into those that
feed into commodity chemical industries, which are purified
organic and other chemicals, and composite or complex materials
suitable as a bulk input to manufacturing, agriculture, or even
consumer use.

Commodity chemical include organic acids and alcohols
(including higher molecular weight organics), carbon-dioxide,
purified nutrients, and metals. These are discussed further below,
but particularly for organics, the two key routes are fermentation
and extraction of fermented product (Kleerebezem and Van
Loosdrecht, 2007), or recovery of the organics as a concentration,
and conversion to syngas for subsequent reformation (Batstone
and Virdis, 2014). Both of these are impractical at the very low
concentrations available in wastewater, and are better applied on
sludge streams.

From a value perspective, it is far better to produce
composite products. These include manipulating activated sludge

to generate polyhydroxyalkanoates (PHA) (Kleerebezem and
Van Loosdrecht, 2007), or a PHA composite, production of
long-chain microbial exo-polysaccharides, including alginates
(Sam and Dulekgurgen, 2016), particularly through the use
of aerobic granular sludge (Lin et al., 2010), and even direct
recovery of ubiquitious fibers such as cellulose in wastewater (Van
Loosdrecht and Brdjanovic, 2014). These have valuable, or even
unique properties. However, production generally utilizes only
a fraction of the resource-carbon (or nitrogen) available in the
wastewater, and hence should be part of a larger resource recovery
strategy.

RESOURCE RECOVERY FOR A
CIRCULAR ECONOMY

As noted above, there are a broad range of recovery strategies
available, with further differentiation based on product. These
feed into almost all categories of agri-industry and chemical
production, including potentially, energy economy (including
vehicle fuels), raw commodity chemicals, manufacturing and
composite industrial inputs, fertilizers, animal feeds, other
elements, and even consumer products. This section summarizes
many of the key products. A schematic representation of
common resource and energy recovery lines in a wastewater
treatment plant is shown in Figure 2.

Biofuels
The conversion of organic-rich wastewater streams into
bioenergy has a long history, especially through AD (Mccarty
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FIGURE 2 | Conceptual overview of different biological technologies applied in wastewater treatment for energy and resource recovery. Energetic
products are shown as dashed vertical patterned blocks, whereas raw materials are depicted as black blocks. Wide continuous lines are water lines, dash lines are
sludge lines, dash-dot-dot lines are gas lines and double lines represents resources production/extraction.

et al., 2011). Several technologies are under current development
to convert organic matter to bioenergy such as biohydrogen,
biodiesel, bioethanol, and microbial cell fuels; however, their
present feasibilities are far from the reached by anaerobic
systems.

Biogas
Anaerobic digestion is a commercial technology applied to
convert municipal and industrial organic wastewater streams
into renewable energy in the form of methane-rich biogas
(Batstone and Virdis, 2014). Despite energy recovery, AD
present other important advantages such as high organic matter
removal efficiency, low excess sludge production and low space
requirements (van Lier et al., 2015). Today, AD infrastructure
is used to treat a wide variety of organic wastes including
(i) sewage sludge, (ii) animal manures, (iii) food and paper
industry wastes, including slaughterhouse waste, (iv) energy
crops and harvesting residues, including microalgae, and (v)
organic fraction of municipal solid waste (MSW) (Romero-Güiza
et al., 2016). Nonetheless, digesters configuration is less diverse
since most AD plants are either continuous stirred tank reactor
or high-rate bed reactors (e.g., upflow anaerobic sludge blanket
and expanded granular sludge bed reactors) used for highly
particulate and highly soluble wastewater streams, respectively
(van Lier et al., 2015; Romero-Güiza et al., 2016). However,
the successful and quick development of anaerobic membrane
bioreactors (AnMBR) will further expand the application of AD
to a range of new substrates within a short period time (e.g.,
pharmaceutical, municipal sewage, petrochemical, and winery,

among others) (Dereli et al., 2012). AnMBR, which combines the
advantages of AD and membrane filtration, represent a sound
alternative to high-rate bed reactors for intensive AD (Smith
et al., 2012). The main advantage of AnMBR over high-rate
bed systems is the total retention of particles. Thus, AnMBR (i)
produce high quality effluents (free of solids and pathogens) and
(ii) retain special microbial communities able to degrade specific
pollutants and/or tolerate higher concentration of an inhibitor
regardless of its aggregation or sedimentation properties (Dereli
et al., 2012). The latter process advantage is key to treat heavy
polluted wastewater streams from a variety of industries.

The implementation of AnMBR as a mainline process for
domestic wastewater treatment plants appears as a promising
technology to improve the economic feasibility of these plants
(Smith et al., 2014). The main advantage of this configuration
is its capacity to recover most of the energy potential in the
wastewater rather than the fraction currently recovered by
the aerobic-anaerobic treatment, where the energy potential of
soluble organic matter is not recovered but removed by energy-
intensive aerobic processes (Mccarty et al., 2011). According to
Mccarty et al. (2011) the full anaerobic treatment of municipal
sewage by AnMBR will double the energy production of
DWWTP, and energy production will exceed the DWWTP
energy needs. However, the net energy balance done by Smith
et al. (2014) shows that the energy recovery will largely depend
on the municipal sewage strength, the membrane flux, and
the energy spent on fouling control. Nevertheless, AnMBR
feasibility is expected to increase as the technology matures
(Mccarty et al., 2011; Dereli et al., 2012; Smith et al., 2014).
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Beside the energy recovery through biogas production, AnMBR
advantages over conventional aerobic systems include lower
production of excess sludge and higher effluent quality in terms
of solids and pathogens (Dereli et al., 2012; Smith et al., 2014).
The latter is especially relevant as reclaimed wastewater reuse
(e.g., landscape and crop irrigation and domestic/industrial
consumption) becomes a common practice (Mccarty et al., 2011).
The main drawback of AnMBR for municipal sewage treatment is
that psychrophilic temperature (<20◦C) is the only economically
feasible option in temperate and cold climates (Smith et al.,
2012; Gouveia et al., 2015). The operation of AnMBR at low
temperature not only slows down the kinetics of all biological
process (organic compounds degradation and biomass growth)
but also increases the dissolved methane in the effluent as
methane is approximately 1.5 times more soluble at 15◦C
compared to 35◦C (Lettinga et al., 2001; Lin et al., 2013; Ozgun
et al., 2013). The recovery of the dissolved methane is key to reach
an energy-neutral operation for domestic wastewater but also
to reduce greenhouse gas emissions (Smith et al., 2014). Several
technologies have been developed to minimize and recover the
dissolved methane in the effluent. Giménez et al. (2012) reported
that biogas-assisted mixing avoids oversaturation and guarantees
a minimum dissolved methane concentration in the AnMBR
effluent (the average oversaturation value for AnMBR effluents is
1.5). Stripping the dissolved methane with air seems the simplest
option to reduce the methane concentration below the saturation
concentration as well as to add oxygen to the effluent stream
(Mccarty et al., 2011). The use of degassing membranes has also
been suggested (Bandara et al., 2011); nonetheless the energy
requirements can be higher than the energy recovered. Another
alternative is to use the dissolved methane as carbon source for
methanotrophs, which can be combined with other biological
process such as denitrification (Strong et al., 2015) and bioplastics
production (Strong et al., 2016).

While complete anaerobic treatment of municipal sewage has
possibly the highest potential for recovering wastewaters organic
energy content, revamping existing aerobic-anaerobic DWWTP
to anaerobic facilities could be costly and therefore it may only be
possible for new infrastructure (Mccarty et al., 2011).

Another opportunity to reduce the energy needs in DWWTP
is anaerobic co-digestion (AcoD) (Mata-Alvarez et al., 2011).
AcoD, the simultaneous AD of two or more substrates, is a proven
approach to overcome the drawbacks of single digestion, boosting
the energy production in AD plants to redirect waste away
from landfill toward reuse while utilizing existing infrastructure
(Jensen et al., 2014; Mata-Alvarez et al., 2014). AcoD is especially
useful for AD systems that are operating under capacity and
therefore able to receive onsite or external waste for combined
treatment. Although literature values are scarce, up to 30% spare
capacity has been reported for DWWTP sewage sludge digesters
(Fonoll et al., 2015). MSW and fruit and vegetable waste from
food processing industries are the most studied and applied co-
substrates in sewage sludge digesters; and several successful full-
scale AcoD experience at DWWTP have already been reported
(Mata-Alvarez et al., 2014). Zupančič et al. (2008) increased by
45 and 130% the heat and electricity energy, respectively, when
increasing the loading rate of the Velenje DWWTP sewage sludge

digesters (Slovenia, 50,000 p.e.) a 40% (COD-based) with MSW.
Similarly, Koch et al. (2016) reported that the self-generated
energy at the DWWTP Garching/Alz (Germany, 30,000 p.e.)
increased from 25% up to 78% when adding 10% food waste
(mass-based) and substituting the old combustion heat and
power units. The authors also estimated that the DWWTP
could be self-sufficient if the food dose was increased to 16%
(Koch et al., 2016). However, the feasibility of using MSW (even
sorted) as co-substrate is dependent on the implementation and
operational costs of the MSW conditioning (removal of undesired
materials and particle size reduction). In this matter, Krupp et al.
(2005) and Bolzonella et al. (2006) reported an industrial cost
of 50 and 40 € per ton for MSW co-digestion at the Wiesbaden
(Germany, 130.000 p.e.) and Treviso (Italy, 70.000 p.e.) DWWTP,
respectively. AcoD between fat, oil and greases (FOG) from the
DWWTP grit chamber and sewage sludge have also been trialed
in several DWWTP (Long et al., 2012). The use of this onsite
waste not only allows improving the performance of the digesters
but also represents saving the cost of treating the residue outside
the plant. However, FOG dosage is limited to an extra loading rate
of 1.0–1.5 kgVS m−3 d−1 due to long chain fatty acids inhibition
(Mata-Alvarez et al., 2014).

It is evident that the need to make DWWTP energy-neutral is
making AcoD an emerging practice; in fact, it is likely that most
medium to large size DWWTP will shortly practice AcoD (Arnell
et al., 2016). Despite higher biogas yields, AcoD implementation
has an impact on DWWTP performance such as supernatant
nutrient content, sludge dewaterability, biosolid quality, and
biogas composition (i.a. H2S); all of them directly impacting the
DWWTP economic balance. In this sense, Arnell et al. (2016),
who modeled AcoD using the Benchmark Simulation Model no.
2, observed that while AcoD had a positive effect on the methane
production it negatively affected the effluent water quality and
the aeration indexes as well as increased sludge production.
Therefore, co-substrate selection and dose should be carefully
evaluated since random or heuristic decisions on the co-substrate
proportion can negatively affect DWWTP performance (Mata-
Alvarez et al., 2011).

Biohydrogen
Hydrogen (H2) has emerged as a valuable energy carrier since
it does not produce CO2 during combustion, and it has a high
energy density per unit mass (Roy and Das, 2015). The dominant
technologies for H2 production use fossil fuels, consume a lot of
energy and have a high carbon footprint; these include natural gas
steam reforming (50% world’s production), oil reforming (30%),
and coal gasification (18%) (Dincer and Acar, 2015; Roy and
Das, 2015). Sustainable hydrogen production needs to rely on
environmentally friendly and cost-effective technologies (Dincer
and Acar, 2015; Kumar et al., 2015). Biological processes, both
autotrophic (e.g., biophotolysis) and heterotrophic [e.g., photo-
fermentation and dark fermentation (DF)], are among the more
environmentally benign methods for H2 production (Das and
Veziroglu, 2008; Dincer and Acar, 2015). However, DF is the only
technology that accomplishes the dual goal of waste treatment
and energy recovery as it utilizes organic waste and wastewater
as feedstock (Han and Shin, 2004; Das and Veziroglu, 2008).

Frontiers in Microbiology | www.frontiersin.org 6 January 2017 | Volume 7 | Article 2106

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-07-02106 December 30, 2016 Time: 15:37 # 7

Puyol et al. Resource Recovery from Wastewater by Biological Technologies

Dark fermentation is a process (part of the full AD process)
where anaerobic and facultative bacteria degrade carbohydrate-
rich substrates into simpler organic compounds [mainly volatile
fatty acids (VFA)] with simultaneous production of H2 (Turon
et al., 2016). DF feasibility is largely limited by its low hydrogen
yield, maximally 4 mol of H2 per mol of glucose (i.e., it
can only recover up to 33% of the biomass energy content).
Nonetheless, literature values using mixed cultures and real
waste streams (e.g., food waste, lignocellulosic feedstock, agro-
industrial waste) rarely exceed 2 mol of H2 per mol of glucose
(Ghimire et al., 2015; Zhang et al., 2016). Besides the low
H2 yields, DF commercial feasibility is also limited by several
other factors, including (i) controlling the process end product
and H2 yield, (ii) reducing the presence of H2-consumers
microorganisms such as methanogens and homoacetogens, and
(iii) using DF “biogas” as combustible in hydrogen fuel cells
(Levin and Chahine, 2010; Ghimire et al., 2015; Roy and Das,
2015). Furthermore, poorly biodegradable substrates such as
waste activated sludge and lignocellulosic residues need to be
pre-treated (e.g., ultrasonic, acid, alkaline, and thermal) to reach
acceptable H2 yields (Noike and Mizuno, 2000; Cai et al., 2004;
Levin et al., 2006; Panagiotopoulos et al., 2009).

It does not seem likely that DF will displace medium-
term AD as the main technology to convert organic-rich
waste and wastewater streams into bioenergy. However, the
capability of DF to procure an effluent rich in VFAs (mainly
acetate and butyrate) makes it very attractive to be combined
with other process for energy and chemical production as
well as to further stabilize the DF effluent. Biogenic process
that can be combined with DF comprise photofermentation
(H2 production), microbial electrolysis cells (H2 production),
AD (methane production), microalgae cultivation (add-value
products production), bioplastics (PHA production), and sulfate
reduction to H2S (metals precipitation) (Muyzer and Stams,
2008; Ghimire et al., 2015; Roy and Das, 2015; Turon et al.,
2016). Compared to undeveloped alternatives, the combination
of DF and AD in a two-phase anaerobic system represents a
plausible modification for existent AD infrastructure (Cavinato
et al., 2011; Giuliano et al., 2014). The DF followed by AD
process (also known as biohythane) produces a H2-rich biogas
which improves the thermal efficiency and power output as well
as reduces the pollutant emissions of the combustion engine
(Porpatham et al., 2007; Moreno et al., 2012). Although the
higher efficiency of the two-stage AD over the traditional one-
stage AD configuration has been largely proven (Liu et al., 2006;
Ge et al., 2010; Riau et al., 2012; Schievano et al., 2014), its
full-scale implementation only represents a small fraction of the
existing AD infrastructure for municipal waste and wastewater
treatment. For instance, in Europe, two-phase systems only
represent 7% of the AD infrastructure treating MSW (∼250
plants) (De Baere and Mattheeuws, 2015). According to De Baere
and Mattheeuws (2000, 2010), the advantages of the two-stage
systems are not enough to compensate the higher investment
cost and operation complexity. On the other hand, a multi-stage
system (two or more reactors) is the most applied configuration
in Germany for the treatment of animal manures, energy crops
and other co-substrates; however, the treatment conditions are set

to maximize the methane recovery and mitigate emissions rather
than producing H2 (Weiland, 2006; Lebuhn et al., 2014).

Biodiesel
Biodiesel is a carbon-neutral energy source to partly replace fossil
fuels, especially in the transport sector which is responsible of
23% of the world’s greenhouse gasses emissions (Muniraj et al.,
2015; Zhang et al., 2016). Although H2 and methane (after biogas
upgrading) can also be used as vehicle fuels, biodiesel represents
a smoother alternative since it can be used in existing engines
as well as distribution and supply infrastructure without major
modifications (Yusuf et al., 2011; Zhang et al., 2016). Today,
most biodiesel (>95%) is produced from the transesterification
of edible vegetable oil (e.g., canola, palm, rapessed, and soybean);
the so-called first-generation biofuels. However, due to the
associated food-versus-fuel competition for land and water the
production of biodiesel from non-edible oils (second-generation
biofuels) is gaining attention (Ashraful et al., 2014; Jin et al.,
2015).

Oleaginous microorganisms (microbes able to accumulate
more than 20% of their dry weigh as oil) including microalgae,
fungi, yeast, and bacteria, are a promising alternative to vegetable
oil since they have faster growth rates than plants (Jin et al.,
2015; Muniraj et al., 2015). Feedstock cost is one of the main
challenges to make microbial biodiesel profitable; therefore,
the combination of microbial lipids production and waste and
wastewater treatment has been carefully examined (Ashraful
et al., 2014; Jin et al., 2015; Muniraj et al., 2015). Among
them, the combination of municipal wastewater treatment and
microalgae-based biofuels by phototrophic microalgae in high
rate ponds algal has been largely investigated (Craggs et al., 2011;
Park et al., 2011; Pittman et al., 2011; Mehrabadi et al., 2015).
However, this approach is still limited by several drawbacks
linked to microalgae growth rates, lipids yield, and lipid
extraction. While lipid extraction challenges are shared among
all oleaginous microorganisms (Milledge and Heaven, 2014;
Jin et al., 2015), limitations affecting phototrophic microalgae
growth rates and lipid yield include (i) light penetration and
cells mutual shading, (ii) the supply of nutrients and CO2,
(iii) avoiding contamination by microbes and toxic compounds
from the wastewater, and (iv) achieve high lipid yields at high
growing rates rather than at under stress treatment conditions
(Scott et al., 2010; Liang, 2013; Ward et al., 2014; Mehrabadi
et al., 2015). Heterotrophic microalgae can overcome most of
the limitations linked to phototrophic microalgae cultivation
together with faster growing rates and higher lipid yield (Miao
and Wu, 2006; Lowrey et al., 2015). Nonetheless, the dual goal
of municipal sewage treatment and lipid production is currently
unfeasible (Liang, 2013). Heterotrophic microalgae have also
been successfully cultivated using several waste and wastewater
streams including molasses (cane, sorghum), crude glycerol (by-
product of biodiesel production), sugars from lignocellulosic
feedstocks, and VFA-rich effluents from DF (Liang, 2013; Turon
et al., 2016). The combination of bioH2 production and biodiesel
by heterotrophic microalgae seems an interesting approach to
achieve waste treatment and energy recovery. However, the main
challenges are tuning DF (pH, HRT, and temperature) toward a
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desired VFA distribution and concentration, as well as avoiding
bacterial contamination (Turon et al., 2016). Finally, it is worth
highlighting that fungi, yeast, and bacteria are emerging as
microbial oil producers. Although this approach is still on its
early stages their high growth rates, productivities and yields
while using a wide variety of carbon source makes them a
worth considering alternative to microalgae-base microbial lipids
(Muniraj et al., 2015; Whiffin et al., 2016; Zhang et al., 2016).

Biopolymers
Polyhydroxyalkanoates (PHA) are biologically produced
polymers with similar thermomechanical properties than
petrochemical derived plastics such as polyethylene and
polypropylene (Laycock et al., 2013). The most common
PHAs are homopolymers of 3-polyhydroxybutyrate (PHB) and
copolymers with 3-hydroxyvalerate (HV). Other PHA monomers
comprise, 3-hydroxybutyrate, 3-hydroxy-2-methylbutyrate,
3-hydroxyvalerate, and 3-hydroxy-2-methylvalerate, and
3-hydroxyhexanoate (Pisco et al., 2009). PHA is a widespread
microbial mechanism in nature to store carbon and energy within
the cells under unfavorable growth and nutrient conditions as
insoluble corpuscles in the cytoplasm. The metabolism of PHA
synthesis is encoded by phaC gene, characteristic of microbes
with PHA-storing capacity.

Although PHA production is a well-known process, its
production as a bioplastic commodity is hindered by: (i) the
use of pure cultures and sterile feedstocks, which contribute to
the high costs production, (ii) PHA yields from mixed cultures,
and (iii) extraction and purification methods (Fernandez-
Dacosta et al., 2015). However, due to the considerable interest
in the emerging bioeconomy many waste streams and low-
value feedstocks are suitable targets for bioplastic production,
including municipal wastewater and sludge, and agro-industrial
wastewaters (e.g., molasses, paper mill, oil mill, and dairy),
and spent glycerol. The use of waste streams in combination
with mixed microbial cultures have increased the feasibility and
sustainability of the biopolymers since the costs associated with
the feedstocks are decreased, and the operation and maintenance
of the process is simplified.

Currently, the most common configuration of the PHA
production process is a three-step process, where different reactor
configurations and microbes are involved. The first step is the
pre-fermentation of the waste stream, where hydrolytic and
fermentative bacteria break down complex organics to readily
biodegradable compounds, such as VFA. The second step is
the enrichment, where activated sludge is the most common
seed biomass. The previously produced VFA are used under
dynamic feeding strategies (e.g., by imposing feast/famine and
presence/absence of electron donor) to enrich the seed sludge
with microbes that possess a high PHA storing capacity. Finally,
the third step consists in the PHA accumulation in batch
systems, where the biopolymer content of the previously enriched
community is maximized (Albuquerque et al., 2013; Moralejo-
Garate et al., 2014).

In the pre-fermentation step, the complex waste streams
are fermented to obtain VFA, precursor chemicals that can be
used as easily and readably carbon source for PHA production,

increasing PHA accumulation yields. Although the direct use
of non-fermented streams is possible, complex substrates may
not be completely degraded, therefore decreasing accumulation
yields. Moreover, it has been found that complex substrates can
promote the growth of non PHA-storing biomass (Albuquerque
et al., 2011; Basset et al., 2016). Although waste pre-fermentation
can be seen as an extra step that can increase the costs it can also
generate opportunities in a circular economy concept. As shown
in (Peces et al., 2016) primary sludge can be inexpensively pre-
fermented in an open tank at 20◦C obtaining a rich stream in VFA
and increasing the methane yield of the remaining solid fraction,
improving the feasibility of the process.

The enrichment step is crucial to select microorganisms with
high PHA storing capacity and decrease the non PHA-storing
populations. The enrichment step has shown to improve storing
PHA yields from 4 to 40–64% (% PHA by dry cell) after 50 days
of enrichment via aerobic dynamic feeding (Lee et al., 2015),
where the enrichment procedure depends on the (i) cycle length,
(ii) absence and presence of carbon source in an aerobic system,
and (iii) alternating absence and presence of an electron acceptor
(aereation). Despite the widespread ability of microbes to store
PHA, some of the PHA-storing bacteria found after enrichment
belong to genera and species Amaricoccus (Lemos et al.,
2008) Azoarcus, Thauera, Paracoccus (Albuquerque et al., 2013;
Carvalho et al., 2014) Acidovorax, Zooglea sp. (Rhodocycales),
Hydrogenophaga. Rhodococcus (Morgan-Sagastume et al., 2015)
Flavisolibacter (Janarthanan et al., 2016), Lampropedia hyalina
(Villano et al., 2010b).

In the accumulation step, the enriched biomass is transferred
into batch-fed reactors, where the final yields will depend on
several factors (i) substrate type, (ii) nitrogen (ammonia)
limitation, (iii) pH, (iv) organic loading rate, and (v)
accumulation cycle length (Johnson et al., 2010; Chen et al.,
2013; Pittmann and Steinmetz, 2014). Jiang et al. (2011a)
obtained up to a 90% of PHA by dry cell content when using
activated sludge enriched in SBR with lactate as substrate, by
Plasticicumulans acidivorans a novel gammaproteobacterium,
which nearest relatives are found to the genera Methylocaldum
(Jiang et al., 2011b). However, the monomeric distribution of
PHA will directly influence the bioplastic properties, therefore
not only is desirable to have high PHA yields but also a stable and
robust biopolymer composition. The biopolymer composition is
known to be dependent of the VFA distribution of the feedstock
during the accumulation (Laycock et al., 2013), where propionate
has been correlated with the higher HV percentages (Serafim
et al., 2008); but also could be dependent on the metabolic
pathways used of the different PHA-storing biomass. Recently,
Janarthanan et al. (2016) found that the fluctuations in the
microbial population of an enriched culture using pre-fermented
whey permeate were not correlated with the final biopolymer
composition but with the ratio of acetate-to-propionate in the
substrate feed, suggesting mixed culture PHA production as a
functionally robust process. In contrast, Carvalho et al. (2014)
found that the dominant genera of enriched in PHA-storing
microrganisms was Paraccocus, the final biopolymer consisted on
a 13% of HV, while communites dominated by Tahurea/Azoarcus
the HV content was consistely higher (20%). Nevertheless, there
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is still no consensus in the literature to what extent microbial
population shifts influence in PHA final distribution.

The PHA production can be combined with other wastewater
treatment plant processes such as organic and nutrients removal.
For instance, Morgan-Sagastume et al. (2015) successfully
integrated the PHA-storing enrichment step with the treatment
of the readily biodegradable COD from influent wastewater,
with average COD removals of 70% in a pilot scale feast/famine
SBR. The enriched PHA-storing community was transferred to
the PHA accumulation reactor, where it was fed with VFA-rich
stream from waste activated sludge pre-fermentation obtaining
PHA productivities of 38% PHA by dry cell. Within the same
concept, Basset et al. (2016) presented a novel aerobic feast
and anoxic famine enrichment process with a short-cut SBR,
where nitritation/denitritation takes place with the simultaneous
selection of PHA storing biomass. The authors removed 83% of
the nitrogen and the biomass had an 11% PHA by dry cell.

The integration of different operational units within the
treatment plant allows to improve the nutrient and energy
recovery from the wastewater. A less developed alternative is the
use of methanotrophic bacteria to convert C1 compounds, as
methane, into PHA. Methanotrophs are mainly a subgroup of
gamma and alpha proteobacteria, which are present in several
natural environments oxidizing methane to carbon dioxide
in presence of oxygen (Strong et al., 2016). However, some
methanotrophic bacteria have been found to produce the poly-
3-hydroxybutyrate (PHB) homopolymer from methane under
nutrient limited condition. This ability has drawn researchers’
interest to use methane as an alternative source to produce value-
added compounds (Karthikeyan et al., 2014; Strong et al., 2016).
Up to 67% of PHB can be theoretically produced (Asenjo and
Suk, 1986). PHB yields using pure methanotrophic cultures, such
us Methylobacterium organophilum or Methylocystis sp., range
between 28 and 57% by dry cell depending on the accumulation
conditions used (i.e., nutrient limitation conditions) (Weiland,
2006; Zuniga et al., 2011). The use of mixed cultures has focused
mainly on synthetic mixtures of methanotrophs under aseptic
conditions, with PHB yields of 25% by dry cell under nitrogen
limiting conditions (Pieja et al., 2012) and 33% under potassium
limiting conditions (Helm et al., 2008). However, the integration
of PHA production from methane in a circular economy requires
further development on (i) the use of methanotrophic mixed
cultures from true natural sources, (ii) accessible enrichment
procedures, and (iii) the improvement growth yields due to
methane and oxygen mass transfer limitation. Recently, Myung
et al. (2015) has enriched a methanotrophic mixed culture for
PHA production using activated sludge as inoculum source.
The enrichment was carried out in 160 mL serum bottles using
a feed-batch strategy where the population was dominated by
Methylocystis. The enriched biomass was able to accumulate
a 39% of PHB by dry cell under nitrogen limitation. The
improvement of mass transfer limitation could be optimize
by the use of high-rate reactor configurations (i.e., pack-bed
columns, fluidised bed reactors). By way of example, Pfluger
et al. (2011) enriched a methanotrophic community from a hot
spring sediment for PHB production in a fluidized bed reactor,
resulting in high-density biofilms achieving up to 20–40% of

PHB by dry cell under nitrogen absence. Finally, an unexplored
alternative to decrease the methane mass transfer limitation could
be to integrate the effluent of AnMBR, rich in dissolved methane
using high-rate reactors, to enrich and accumulate PHA from
methanotrophs.

Single Cell Protein
Single cell protein (SCP), referring to edible microorganisms with
high protein content, has been applied on an industrial scale
since 1919 but after several breakthroughs and intensification
on mass SCP production, e.g., baker’s yeast, advances in plant
breeding and agriculture after the 1950s simply outcompeted
SCPs based on lower costs (Ugalde and Castrillo, 2002). Plant
protein was abundant and cheaply available. Today, the food
supply for an estimated 7.0 billion people is associated with
growing demand for limited resources. Protein scarcity especially
in third world countries is a major problem and the demand
and costs of conventional protein sources for human and
animal consumption are increasing, leaving more than a billion
undernourished people (FAO, 2009).

At the same time, the current conversion of fertilizer-nitrogen
into edible plant protein is subjected to inherent losses with only
30% of the nitrogen ending up in the plant due to dissipation via
run-off and volatilisation (Matassa et al., 2015). Plant breeding
is the basis of the food chain all over the world and currently
between 75 and 80% of agricultural land is used to grow
plants to feed livestock (Foley et al., 2011; Cassidy et al., 2013).
However, transforming plant protein into animal protein adds
additional conversion losses (Flachowsky and Meyer, 2015). In
total, only around 17% of the total fertilizer-nitrogen is retained
in vegetable and meat protein with the rest being dissipated
(Bodirsky et al., 2014; Matassa et al., 2015). A more efficient
use of fertilizer-nitrogen but also a more efficient recovery of
nitrogen from waste sources, e.g., via microbial resynthesis has
the potential to enable a biobased circular economy (Matassa
et al., 2015). Used nitrogen can be recovered and harvested as
microbial protein from waste streams (close to 100% recovery)
(Shi et al., 2007; Hülsen et al., 2016b) and used directly as
organic fertilizer or food for animals (Kobayashi and Tchan,
1973) as well as humans (Becker, 2007). This would at least
partly rectify the current inefficiencies whereby the revival of SCP
promises alternative proteinaceous food and fertilizer sources for
the future.

Alternative Sources for Protein Production
Single cell protein can be produced by microalgae, fungi,
and bacteria and can be used to substitute for conventional
agricultural products such as fishmeal and soy, which are major
components in feed formula for aquaculture and livestock (Van
Huis et al., 2013). Various sources of SCP were trialed as feed
additives for cattle, sheep, swine, poultry, and fish (Hintz et al.,
1966). The main advantages of microorganisms for protein
production are rapid growth, high protein content and the ability
to grow on a wide range of substrates (Tusé and Miller, 1984).
These alternatives are less dependent (or not at all) of climate,
weather, soil characteristics and available land (Moraine et al.,
1979).

Frontiers in Microbiology | www.frontiersin.org 9 January 2017 | Volume 7 | Article 2106

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-07-02106 December 30, 2016 Time: 15:37 # 10

Puyol et al. Resource Recovery from Wastewater by Biological Technologies

However, the applicability of SCP as feed additive depends on
the composition. Most microalgae can be feed directly to, e.g.,
cattle but the algal cell walls need to be digested when feed to
monogastric organisms (FAO, 2010). Although microalgae are
generally less likely to produce toxins and significant amounts
of different species are used for animal as well as human
nutrition (e.g., Spirulina, Scenedesmus, Chlorella, Dunaliella)
(Becker, 2004), the risk of contamination with toxin producing
species can only be excluded in pure cultures whereby mixed
culture, especially in open systems, have to be closely monitored.
Problems might arise from certain species of cyanobacteria which
can be part of the consortium and are known to produce toxins
(Aráoz et al., 2010).

Single cell protein from fungal biomass, specifically yeast, has
been used for a century as animal and human feed additive
(Ugalde and Castrillo, 2002). However, depending on the species,
fungal SCP might contain elevated levels of nucleic acids and
mycotoxin which have to be removed prior of application as
feed additive. Both are known to cause severe health effects in
humans as well as animals (Speijers and Speijers, 2004). The
same applies to bacterial biomass. Depending on the species, a
whole variety of endo- and exotoxins can be produced (Anupama
and Ravindra, 2000) and the nucleic acid content is generally
high (up to 16% of dry weight) which limits the daily intake to
a couple of grams per day (Hedenskog and Ebbinghaus, 1972).
PPB (Shipman et al., 1975) generally do not produce toxins and
have nucleic acids contents comparable to algal biomass and seem
suitable as feed additive (Ponsano et al., 2004). A summary of the
SCP composition of the different types is given in Table 1.

Besides the general biomass characterisation, the essential
amino acid content, required for animal and human nutrition,
plays an important role in the SCP evaluation. Table 2 shows
the essential amino acid content of the relevant SCP source in
perspective to egg albumin, a well-balanced reference source for
human nutrition. The table shows that the amino acid profiles

TABLE 1 | Composition of Single cell protein (SCP) from the different
sources in % of dry weight.

Component Microalgae Fungi Bacteria PPB

Total nitrogen
(Protein + nucleic
acids)

45–65a 35–50a 60–80a 60–65a

Fats/lipids 5–10a 2.6–13a 8–10a 0.5–9.9a

Carbohydrates 9.0 NA 10 21–26a

Bile pigment and
chlorophyll

6.0 NA NA 1.7–2.8

Nucleic acids 4.0–6.0a 3.9–9.7a 15–16a 4.3–5.9a

Mineral salts 7.0 6.6 8.6 NA

Amino acids NA 54 65 38.6b

Energy content (MJ
kdDS−1)c

10.9–16.1 7.7–14.1 14.7–18.8 13.7–18.9

Table adopted from (Anupama and Ravindra, 2000). Additional sources: (Shipman
et al., 1975; Ivarson and Morita, 1982; Blankenship et al., 1995; Ponsano et al.,
2004; Gao et al., 2007), NA- Not available, adepends on the substrate, bonly
specific amino acids, calculated based on 16.7, 16.7, and 37.7 MJ kg−1 for
carbohydrates, proteins and fats as per (Angelidaki and Sanders, 2004).

TABLE 2 | Essential amino acid composition of the different SCP sources
and egg white as reference as weight percentage of total amino acids.

Amino acids Eggc Microalgaea Fungib PPBc

Lysine 5.5–6.1 5.1–6.3 4.1–8.5 5.6–6.0

Threonine 2.9–4.3 4.0–5.9 2.2–3.4 2.9–4.3

Methionine 3.0 1.4–3.2 0.4–1.4 3.0

Cysteine 2.4b 0.38–0.65 0.9b NA

Tryptophan 1.6b 0.86–1.6 Trace NA

Isoleucine 3.1–4.3 3.4–5.8 0.5–3.8 3.1–4.3

Leucine 7.4–7.9 7.2–9.0 1.4–4.9 7.5–7.9

Valine 6.5–7.0 5.7–6.7 1.2–5.4 6.4–7.0

Phenylalanine 4.3–4.6 5.4–7.1 0.6–2.3 4.4–4.6

Sources: aBacillariophyceae, Chlorophyceae, and Cryptophyceae (Brown, 1991);
bA. niger, F. oxysporum, F. moniliforme, C. tropicalis (Christias et al., 1975); cRps.
Gelatinosa (Shipman et al., 1975).

of each SCP source compare well with egg albumin whereby
microalgae and fungi are deficient in sulfur containing amino
acids, specifically cysteine. The data of cysteine are missing for
PPBs.

Feasibility
After agricultural products outcompeted SCP, the cost of SCP
today are still higher compared to conventional products and
production costs cannot fully be covered by the product itself
(Ugalde and Castrillo, 2002). Although resource limitation is
expected to change this picture in the future, the overall SCP
production costs have to be reduced. SCP production can be
combined with liquid and/or solid waste treatment. As such, algal
ponds can effectively treat wastewater and removed constituents
are utilized for algal SCP production (Zittelli et al., 2013). The
same has been reported for PPB whereby considerable less
research has focussed on this source (Hülsen et al., 2014). In
this context, the production of fungal SCP from lignocellulose
with solid state fermentation, e.g., white rot fungi does not seems
to be profitable, mainly due to transport and fermentation costs
(FAO, 2010). However, when the raw materials are low-cost and
optimum culture conditions are achieved liquid fermentation
and SCP from fungal biomass seems feasible (Begea et al., 2012).

Single cell protein can be additionally used as probiotics.
Thousands of tons of microalgae, fungi, and bacteria are used
as mixed probiotics for aquaculture worldwide every year,
particularly in China [up to 50,000 ton per year for (Qi
et al., 2009)]. However, probiotic additions to, e.g., fish ponds
are not necessarily considered as SCP feed additives because
probiotics are added to the water (with other natural occurring
bacteria) rather than being the feed. However, the market for
probiotics is massive (globally 19,600 million USD in 2013) and
several products are commercially marketed but the production
occurs mainly batchwise due to difficulties of industrial scale up
(Martínez Cruz et al., 2012).

Wastewater Treatment and Single Cell Protein
Production
Large-scale installations are required to resynthesise protein from
wastewater constituent in reasonable amounts. For microalgae

Frontiers in Microbiology | www.frontiersin.org 10 January 2017 | Volume 7 | Article 2106

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-07-02106 December 30, 2016 Time: 15:37 # 11

Puyol et al. Resource Recovery from Wastewater by Biological Technologies

the protein resynthesis depends on the wastewater, the loads and
residence time but also the nitrogen removal efficiency which
was reported to be between 36 and 87% for open high rate
algal ponds (HRAP) (Shoener et al., 2014). Areal productivities
vary between 1.6 and 23.5 gbiomass m−2d−1(National-Research-
Council, 2012) whereby carbon is partly provided from the
wastewater but extra CO2 is added in most of the cases to drive
autotrophic algal growth (Park et al., 2011). Assuming abundant
sun energy and carbon supply, nitrogen becomes limiting for
the protein synthesis. In this perspective, the main mechanism
for nitrogen removal from HRAP is ammonium stripping (Picot
et al., 1991; El Halouani et al., 1993) and up to 50% of the nitrogen
is dissipated and around 25% are assimilated by the microalgae
(García et al., 2000). Additionally, treating non-sterile wastewater
is likely to diversify the HRAP community which be comprised
of microalgae, plankton, detritus, and terrestrial plant debris,
referred to as “Albazod” (Maazouzi et al., 2008) which is likely
to impact typical microalgal SCP composition. Since current
investment costs exceed the price for economic wastewater
treatment with microalgae in closed photo bioreactors by far
(Posten, 2009) the SCP production in open systems is limited and
losses are only slightly lower compared to agricultural losses [70%
loss, (Matassa et al., 2015)].

In this context, the anaerobic growth of PPB as SCP in a
closed photobioreactor seems promising as nitrogen removal
is non-destructive and losses were reported to be less than
10% with 90% being incorporated into biomass (Hülsen et al.,
2016b). Complete assimilation of nutrients by PPB depends on
the available organics which have to be added for domestic
wastewater but are abundant in industrial sources. Additionally,
PPB dominance in a treatment system can be up to 90% (Hülsen
et al., 2016a) which would enhance SCP composition. Other
bacteria with high nutritional potential such as Cellulomonas
sp. and Alcaligenes faecalis were applied to degrade cellulose
containing substrates by solid fermentation of, e.g., wheat straw
to enrich proteins (Han, 1975). Complete wastewater treatment

TABLE 3 | Theoretical biomass production based general elemental
composition of different sources and nitrogen content of various
wastewaters.

Wastewater Nitrogen
(mg/L)

Soybean∗

(g biomass)
Microalgae

(g biomass)∗∗

PPB
(g biomass)∗∗∗

Weak domestic 20 0.1 0.1 0.2

Medium domestic 40 0.1 0.2 0.3

Strong domestic 85 0.3 0.3 0.6

Beef cattle feedlot 63 0.2 0.2 0.5

Dairy 185 0.6 0.7 1.4

Poultry feedlot 802 2.7 3.0 6.0

Swine feedlot 895 3.0 3.4 6.7

Paper mill 11 9.0 10.2 20.3

Winery 110 0.0 0.0 0.1

Elemental compositions for; soybean meal (C:H1.8:O0.5:N0.2:P0.006)
(Osborn, 1977); microalgae (C:O0.48:H1.83:N0.1:P0.01) (Chisti, 2007); PPB
(C:H1.6:O0.4:N0.2:P0.02) (Ormerod, 1983) and ∗30% (Matassa et al., 2015), ∗∗25%
(García et al., 2000), and ∗∗∗90% conversion of supplied nitrogen (Hülsen et al.,
2015).

systems based on these organisms are not reported in literature
although Cellulomonas sp. was applied for bio-augmentation in
wastewater treatment (Chin et al., 1996).

Also fungal biomass is predominantly applied for solid
fermentation whereby wastewater treatment is limited to specific
applications such as color and heavy metal removal (Kapoor
and Viraraghavan, 1995; Pokhrel and Viraraghavan, 2004).
Literature about main line organic and nutrient removal with
focus on SCP production is limited (Pant and Adholeya, 2007).
Fungal biomass can be applied for sugar and starch containing
wastewaters although commercially available technologies would
utilize bacteria (anaerobic or aerobic). However, several solid
wastes such as corn and sorghum have been used to produce
SCP (Anupama and Ravindra, 2000). Other substrates include
cellulose and lignin but the pre-treatments to produce accessible
substrate is often prohibitive for SCP production (FAO, 2010).

Summary
The knowledge of SCP production from the last century did
not result in major industrial scale production of SCP after the
1980s due to high costs. Despite the nutritional value of SCP
from each source looks promising, microalgae are the only source
readily used as animal as well as human feed additive. Fungal
biomass used for baking is discontinued today. The increasing
resource limitations are expected to drive SCP production and
improve the economic feasibility in the future. The application
for wastewater treatment with simultaneous production of SCP in
large scale is only applied for microalgae. Wastewater treatment
with fungi is very limited whereby solid waste treatment
seems economically prohibitive. PPB seems to offer another
option, with effective wastewater treatment capacities, acceptable
nutritional value and high yields but without current full-scale
installation.

Table 3 shows the theoretical biomass production based on
nitrogen content of the wastewater assuming 30% utilization for
soybean production, 25% for microalgae and 90% yield for PPBs.
Comparing microalgae and PPB with agricultural plant growth,
e.g., soybeans shows that nitrogen fertilizer can be used most
effectively by PPBs. The overall yields for biomass production
from microalgae and PPB in terms of nitrogen are far higher
compared to plants because nitrogen is effectively assimilated.
However, due to stripping of ammonia, the nitrogen losses in
open HRAP are almost comparable to runoff and volatilisation
in agriculture.

Recovery of Metals
Contamination of water sources by metals is of big concern. The
origin of contamination is mostly related with anthropogenic
activities including mining, metallurgical operations, burning
fossil fuels, cement production, electroplating, leather tanning,
and manufacturing activities as plastics, fertilizers, anticorrosive
agents, Ni-Cd batteries, dyes, photovoltaic devices, pigments, or
pesticides, among others (Nancharaiah et al., 2016). Some of the
metals are finally disposed into DWWTP, the sources including
partially treated industrial effluents, disperse contamination
points, runoff from roads as well as soil leachates from
highly contaminated ponds and soils as uncontrolled landfills
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and mines. The metals are usually removed from DWW
and accumulated in domestic sewage sludge, where more
concentrated metals (>10 ppm) have been identified as Fe, Al,
Ti, Zn, Cu, Sn, Mn, Cr, Mo, Ag, Ni, U, and V (Westerhoff et al.,
2015), although this composition can substantially vary depends
on the geomorphology and human activities.

Beside the inherent environmental and human concern of
heavy metal contamination, there is an increasing opportunity to
regain and recovery these resources for reusing and comply with
the cradle-to-cradle concept for anthropogenic metals activities.
Metals recovery by biological technologies have been studied for
decades, but earlier studies dealt with biomining activities (use
of microorganisms for extracting metals from mining sources)
(Johnson, 2014) and heavy metals bioremediation (Mosa et al.,
2016) rather than recovery from waste sources. The circular
economy concept appeared in the mining and other metals-
related industrial activities just a short while ago (Westerhoff
et al., 2015). The accumulated experiences of biomining and
bioremediation have been dedicated to the rising heavy metals
recovery from wastewater paradigm and so many technologies
under current analysis evolved from those concepts. Table 4
shows a selected review of recent studies dealing with different
biological technologies for metals recovery from waste and
wastewater sources. Those technologies derived from biomining
activities are linked to mobilization of metals (bioleaching by
chelation, oxidation, and acidification), whereas technologies
adapted from bioremediation techniques are more associated
with immobilization of metals (bioprecipitation, bioreduction,
biosorption, and bioaccumulation). There are some detailed
reviews showing a big picture on metals recovery (Kikuchi and
Tanaka, 2012; Johnson, 2014; Nancharaiah et al., 2016) but in
this part the novelest and most impacting studies in recent dates
are analyzed based on their link with the circular economy
concept.

Heavy Metals
Mobilization
Dissolution of metals from rocks are natural processes where
low pH usually creates a favorable environment for mobilization
of metals into water bodies. The process is highly enhanced
by microbial activity and some microorganisms known as
extremophiles can in fact naturally convert a water body into
a heavily contaminated site, as in the case of some rivers
located close to Fe mining activities (Amils et al., 2011).
This process involves three steps until complete mobilization
of metals. Firstly, sulfide minerals exposed to oxygen are
chemically oxidized to sulfate and Fe2+, creating an acidic
environment. Under these conditions Fe3+ can further oxidize
sulfide minerals via thiosulfate mechanism (in the case of pyrite
−FeS2−, molybdenite −MoS2−, and tungstenite −WS2−) or
via polysulfide mechanism (chalcopyrite −CuFeS2−, sphalerite
−ZnS−, or galena −PbS−), mobilizing the metals. For
the complete oxidation of these minerals it is necessary
the chemolithotrophic sulfur-oxidizing microorganisms which
can oxidize sulfur to sulfate (Acidithiobacillus ferrooxidans,
A. thiooxidans, Leptospirillum ferrooxidans, and L. ferriphilum).
However, without the action of these acidophiles that can also
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aerobically oxidize Fe2+ to Fe3+ and so regenerating the acidic-
oxidizing environment, this process would follow much more
slowly (Sánchez-Andrea et al., 2014).

These mechanisms have been traditionally used for industrial
biomining with high level of success. Even, some minerals
(Cu and Zn) are exclusively extracted by this process. The
application of biomining to mobilize the metals contained in
waste and wastewater sources has been therefore just a matter
of time (Johnson, 2014). Recent applications of biomining have
demonstrated the successfully recovery of metals from highly
metallic industrial waste. Ni, V, and Mo were thus extracted
from decoked spent petroleum catalyst (Srichandan et al., 2014),
whereas mesophilic bioleaching has been used for extracting
high-value metals from hydrotreating catalyst (Cibati et al.,
2015). A clear opportunity to recover these kind of metals
is the increasing quantity of landfilled electronic waste (e-
waste), which commonly contains rare and precious metals as
Au, Pt, Pd, Ag, and Rh (Pant et al., 2012). Biomining have
been successfully applied to recover metals by co-processing of
sulfidic mining wastes and metal-rich post-consumer e-wastes
by biohydrometallurgy (Guezennec et al., 2015). However,
extraction and recovery of metals from heterogeneous organic
waste as domestic and industrial wastewater sludge is still a
challenge and can also impact on decontamination of biological
waste for subsequent direct use as valid and valuable resource
(e.g., organic fertilizer or organic fuel) (Hennebel et al.,
2015).

Other interesting processes for metal mobilization are
biogenic cyanide production and metal chelation mediated by
bioproducts. Cyanide is produced by oxidative descarboxylation
of aminoacids like glycine, mediated by HCM synthase, in some
species of Pseudomonas sp. and Chromobacterium viollaceum.
Cyanide can be used for bioleaching of precious metals like those
from the platinum group that are usually spent in automotive
catalysts production (Shin et al., 2015). Some organics with
chelating properties are glutamic acid, which has been previously
used for leaching of Cu from Cu-Ag ores by Bacillus sp. (Kostudis
et al., 2015), and pyroverdin production by Pseudomonas
fluorescens immobilized on porous mesostructured silica that is
capable of Fe(III) chelation (Renard et al., 2005).

Immobilization
Microorganisms are capable of creating an environment for
immobilization of dissolved metals. Typical metals-removing
microorganisms have been applied for decontamination of water
and land spills, as well as for bioremediation of heavily metallic
industrial wastewater (Mosa et al., 2016). However, recovery of
metals immobilized onto biomass is a relatively new approach
and only technologies involving recovery of dissolved metals in
mine tailings have been commercialized so far (Huisman et al.,
2006).

Biosorption processes are among the most studied non-
destructive removal mechanisms for recalcitrant compounds.
They are considered as non-biological mechanisms where the
chemical (sorbate) – biomass (sorbent) interaction is only
dependent on their mutual affinity (Vijayaraghavan and Yun,
2008). Most heavy metals can be passively adsorbed onto anionic

functional groups present in external polysaccharides (EPS) and
membrane lipids and proteins (Kikuchi and Tanaka, 2012), like
peptidoglycan, phospholipids, lipopolysaccharides, teichuronic
and teichoic acids and various proteins (Vijayaraghavan and
Yun, 2008; Din et al., 2014). The sorption potential of heavy
metals depends on pH, biomass loading, equilibrium time, initial
metal ion concentration, temperature, and the method of the
sorption process applied (Aryal and Liakopoulou-Kyriakides,
2015). Even precious metals like Au can bind onto EPS of bacteria
(Colica et al., 2012). Since it is a surface process, most of the
biovolume fraction is unoccupied and therefore heavy metals
immobilization potential is limited. However, some bacteria and
fungi are also capable of actively bioaccumulating the heavy
metals following by some kind of chemical transformation inside
the cells.

Bioaccumulation happens when bacteria make use of metals
inside the cell for some metabolic or physiological benefit.
For example, some bacteria are able to bioaccumulate Pb
as hydroxyapatite nanocrystals [Ca2.5Pb7.5(OH)2(PO4)6] highly
enhancing the phosphate and calcium bioavailability (Chen et al.,
2016). In this line, bioaccumulation of Cd and Cu by microalgae
Chlorella minutissima improves lipid production that can be
furtherly used for energetic recovery of organics as biofuels
(Yang et al., 2015). Metals accumulated within the cell can
react with phosphate (Pi) giving insoluble metallic phosphates.
These processes also happen in enhanced biological phosphorus
removal (EBPR) systems and are due to the ability of some
organisms to accumulate Pi as poly-P (phosphorus accumulating
organisms, PAOs) (You et al., 2011). While poly-P is an energetic
accumulative polymer potentially used as ATP reservoir, it may
have a role in protecting PAOs from the toxicity of heavy metals.
Bivalent and trivalent metals can interact with accumulated poly-
P decreasing the inherent toxicity of these compounds to PAOs.
These processes may be accounted for in the Fe-S-P nexus in
aerobic and anaerobic wastewater technologies, linking to the
expanded ADM1 model but in heavy metals-bearing effluents
(Flores-Alsina et al., 2016).

Metabolic reduction-oxidation processes also enhance the
immobilization of metals in aquatic environments. According to
its nature, the immobilization can be due to direct precipitation of
metals as inorganic minerals or indirect precipitation due to the
formation of anionic salts combined with biological alkalization
of the medium. Some of these processes have been indeed
included in the recent plant-wide aqueous phase chemistry
module for overall wastewater treatment developed by Flores-
Alsina et al. (2015) that accounts for Fe and Al speciation as
well as other cationic components, which solubility can be greatly
affected by the pH of the medium, the presence of anionic species
and the effect of oxidation-reduction processes (Flores-Alsina
et al., 2015).

The Fe-S-P nexus has a leading role in many
redox/bioprecipitation processes. Sulfide generation by sulfate
reducing bacteria (SRB) and Pi mobilization linked with Fe
oxidation/reduction processes can be modulated for controlled
metals immobilization. For example, biological oxidation of
Fe(II) to Fe (III) can promote the recovery of Fe but also control
the Fe concentration in bioleaching (Nurmi et al., 2009). Sulfate
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reduction and generation of sulfide can be used to selectively
precipitate bivalent metals (Chen et al., 2009; Sánchez-Andrea
et al., 2014). This process also explains why heavy metals
toxicity is dramatically reduced when sulfide is produced during
anaerobic culturing. Even during long-term metals leaching
caused by corrosion and/or dissolution processes, the biogenic
ferrous sulfide creates a protective barrier avoiding the metals
to be in contact with highly sensitive methanogens (Gonzalez-
Estrella et al., 2015, 2016). An interesting example of usage
of the iron-sulfur cycle is the renmediation and recovery of
arsenate by iron-sulfides and sulfates (Rodriguez-Freire et al.,
2014, 2016). Other precipitative processes are indirectly related
with microbial redox metabolism and are derived from biogenic
alkalinity, as in the case of microalgae, fungi, and phototrophic
bacteria technologies (Das et al., 2009; Ye et al., 2015).

Metallic Radionuclides
Radionuclides metals have unstable atomic structure with
excess nuclear energy, which emits ionizing radiation that
can affect genetic structure of most living beings, including
microorganisms that can suffers acute radiation hormesis
phenomenon (Kudryasheva and Rozhko, 2015). Even such
properties are not an impediment to have biotechnological
applications for radionuclides recovery from mineral rock or
radioactive waste and wastewater (Francis, 2012). Most of the
recovery technologies entail immobilization of the radioactive
metals and recovery after de-structuring of biological waste.

Biosorption plays a key role on biological recovery of
radionuclides. Uranium has been previously immobilized by
using organisms such as Rhodotorula glutinis (Bai et al.,
2014) and Pseudomonas putida (Choi et al., 2009) with
efficiencies higher than 70%. Similarly, a simulated metal
refinery wastewater containing high ammonium and rhodium
concentrations was treated by nitrification-denitrification for N
removal followed by Rh recovery by using different microbial
adsorbents, achieving >50% recovery efficiency (Manipura and
Burgess, 2008). Other microorganisms can actively increase
their radionuclides sorption capacity. For example, non-sterilized
active anaerobic bacteria, originally used for the treatment of
pulp and paper wastewater, accumulated considerable amounts of
plutonium, actinium and neptunium, in all the cases increasing
their bioaccumulation capacity compared to sterilized biomass,
strongly suggesting biologically mediated process (Sasaki et al.,
2001). Also, some microbes can enhance chemisorption of
radionuclides by promoting their interference with the Fe-S-P
nexus. This is the case with Citrobacter sp. that can regulate its
phosphate biochemical mechanisms to entrap Np and Pu and
co-precipitate as metallic phosphates. The transuranic elements
removal by this technology is via a hybrid of bioaccumulative and
chemisorptive mechanisms (Macaskie and Basnakova, 1998).

Redox processes can also interfere with immobilization
of radionuclides. Anionic Rh can be biologically reduced to
Rh(III) by SRB at low pH inside the cell, process mediated
by the enzyme hydrogenase. Subsequently, Rh is excreted and
precipitated outside the cell. SRB can immobilized up to 66 mg/g
of Rh using this mechanism (Ngwenya and Whiteley, 2006).
Likewise, Pu can be immobilized by the indirect actions of

microorganisms resulting in changes in Eh and its reduction from
a higher to lower oxidation state, with the precipitation of Pu,
its bioaccumulation by biomass, and bioprecipitation reactions
(Francis, 2001).

Perspectives
Generally, most of metallic effluents contain low concentrations
of metals that convert the use of traditional chemical methods
of recovery a chimera. Therefore, a step of pre-concentration
of metals is essential but abiotic pre-concentration methods
(e.g., nanofiltration, electrodialysis, or reverse osmosis) are
costly technologies, especially for high flows as is the case
with DWW and some industrial WW. Partitioning techniques
involving microorganisms in novel DWW platforms (Verstraete
et al., 2009; Batstone et al., 2015) can be combined with recent
advances of metal recovery by immobilization (partition)
followed by mobilization of metals from concentrated sludge
(release). The metals can be subsequently recovered by
chemical or even biological transformations into minerals,
with the possibility of fractionation of the precipitation
reactions by modulating the precipitant concentration as
well as the pH of the medium. This multi-stage process
would upgrade the current Partition-Release-Recover
for metals recovery from wastewater, and is described in
Figure 1.

Bioproduction in Bioelectrochemical
Systems
Balancing redox metabolism is one of the oldest challenges of
living systems on earth and one that every living cell must master
within its ecological niche. Nature has developed many different
solutions for this challenge; however, each solution operates in
tight constraints, as holding one’s breath will quickly demonstrate
to every one of us.

These constraints apply not only in the environment, but
also pose a major challenge in man-made systems, such as the
fermentation plants in industrial biotechnology or treatment
plants in environmental applications. In recent years a new
technology has been developed to address this challenge:
the bio-electrochemical systems (BES). In such a BES redox
balance can be achieved without the oxidation of substrates
or production of reduced by-products and instead electrons
are donated to or gained from solid state electrodes and
respective (a)biotic counter reactions. The BES is nowadays
studied broadly as a system that allows microbes to conduct
oxidative or reductive metabolism while using solid state
electrodes as electron donors or acceptors (Harnisch et al.,
2014; Tremblay and Zhang, 2015). The transfer of electrons
can either be facilitated through a direct contact between the
cell and the electrode or via soluble molecules that can exist
in an oxidized and reduced state, so called mediators. These
mediators diffuse through the system and donate and receive
electrons at either the electrode surface or the bacteria and
potentially could facility applications in suspension cultures.
The successful scale-up of a BES will depend on maximizing
electron transfer rates (Logan and Rabaey, 2012), but this
will require a deeper understanding of the electron transfer
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mechanisms both at the anode and the cathode (Tremblay
and Zhang, 2015) and will also require a reduction in the
observed over-potential (Zhao et al., 2006; Freguia et al.,
2008).

Microbial Fuel Cells
Bio-electrochemical systems were firstly considered as a green
technique to produce electricity from waste water, a so called
microbial fuel cell (Rabaey et al., 2004; Franks and Nevin,
2010; Janicek et al., 2014). In such systems the bacteria
oxidize organic carbon to CO2 and use the anode as electron
acceptor. BES technology experienced a dramatic development
over the past decades with ever widening applications beyond
being a power source (Rabaey and Rozendal, 2010; Logan and
Rabaey, 2012; Tremblay and Zhang, 2015). Due to technical
challenges (current densities, over-potential etc.) and due to
the low value of electricity, bio-electricity still remains a
niche application for remote deployment that lacks alternative
power sources, for instance deep sea applications (Lovley
and Nevin, 2011). In a recent development, the production
of hydrogen or hydrogen peroxide have been considered as
alternatives electricity (Foley et al., 2010) and these systems,
termed microbial electrolysis cells, can be used in conjunction
with wastewater treatment leading to recovery of phosphorous
(Cusick and Logan, 2012) and methane production (Villano et al.,
2013).

Microbial Electrosynthesis
Originally the term microbial electrosynthesis (MES) referred to
the assimilation of CO2 by microbes using a cathode as the source
of electrons, however, the term MES has constantly evolved and
now considers more broadly microbial bioconversions powered
by a BES and leading to production of organic chemicals.

On the side of the anode, electricity production dominated
the focus so far, but in a recent study it has been shown that
using a pure culture of a strict aerobe, breathing the anode
allowed the high yield production of a chemical precursor for
industrial antioxidant production (Lai et al., 2016). This is a
key development, as it highlights the advantage of using a strict
aerobe in such a system. The cells are unable to convert the
substrate to undesired fermentation products and due to the
constrained metabolism full oxidation to CO2 is low. The use
of a pure culture also has the advantage that the field is opened
up to metabolic engineering for rate enhancement of product
diversification.

On the cathode side, many more works have been published
that achieved production of chemicals. First demonstrated by the
Lovley group (Nevin et al., 2010) pure cultures of Sporomusa
ovata could produce acetate from CO2 and electricity. This
could recently be extended to a mixed culture system (Jourdin
et al., 2014), however, it is important to mention that acetate
as a commercial product would struggle to be competitive and
is now seen in this context as an interesting option for in
situ COD production at waste water treatment plants. Methane
can also be produced on a bio-cathode from CO2 (Villano
et al., 2010a) but the commercial value of this remains to be
seen.

Recovery of Nutrients and Metals
Bio-electrochemical systems technology can also be used to
recover metals and nutrients. For instance as entioned above
phosphorous can be recovered (Cusick and Logan, 2012) and
also nitrogen removal and recovery either via electrodialysis
(Thompson Brewster et al., 2016) or as ammonium bicarbonate
from source-separated urine has been investigated (Tice and Kim,
2014). In addition, the BES also offers the possibility to recover
metals fom wastewater, recently reviewed (Wang and Ren, 2014).

Future Perspectives
Apart from the mentioned challenges in maximizing the electron
transfer rates and choosing a suitable mechanism, it is not trivial
to decide which products could be made in a BES. There are
three groups of targets that could in theory be pursued (i)
the production of bulk chemicals such as biofuels, plastics or
platform chemicals or (ii) the production of high value chemicals
such as pharmaceutical precursors or hard to synthesize complex
or chiral structures including antibiotics, pesticides, or herbicides
and (iii) the production of inorganics such as metal complexes
that can serve as fertilizer or a source of valuable metals. The
problem here will be to find products with a real advantage
over traditional production systems in the first group this means
competing with the petrochemistry and highly efficient sugar
based bioprocesses. In addition, downstream processing is a
big challenge when producing chemicals or fuels from waste
streams, especially when looking into chemical feedstocks, where
the highest purity is needed. In the second group, the substrate
cost is negligible, which makes it even harder to compete on a
cost basis, but oxidative process on an anode for instance could
avoid the formation of toxic oxygen adducts as a fermentation by-
product (for instance epoxide formation in terpene production
processes).

PERSPECTIVES: BIOECONOMY AND
CIRCULAR ECONOMY

This review has focused on technologies which enable resource
recovery. The drivers are clear, and are to translate technologies
which would normally remove contaminants into a liquid or
waste concentrate stream (or reactively dissipate them) into
products that feed into the circular economy. This is not a
massive shift from current practices, but instead of focusing
the process on removal, it focuses on recovery. That is,
multiple candidate technologies that would otherwise remove
a contaminant are instead screened to those that allow the
byproducts to be reused. As stated in section “Domestic
Wastewater as Key Developmental Platform for Nutrient and
Energy Recovery,” this can be through a complete reimaging of
the treatment process, or slight modifications (for example using
activated sludge in its granular form).

The three classes of product are carbon/energy, bulk nutrients
(NPK), and metals and trace compounds. Recalcitrant high-
value organics such as pharmaceuticals, pesticides etc. are
not considered here. The main use for nutrients and metals
is either as elemental inputs to the circular economy (not
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currently economic, but ultimately inevitable), and for use
in carbon/energy products (generally economic if the carbon
product is feasible).

A detailed economic analysis was done comparing
conventional activated sludge with emerging technologies,
including high-rate activated sludge, photo-membrane
bioreactors, and mainline anaerobic treatment (Burgess
et al., 2015). This used commodity products (e.g., electricity,
nitrogen, and phosphorous). This showed that next generation
technologies (assessed as a complete wastewater treatment
platform) are generally capital cost neutral vs. existing
technologies, and likely competitive particularly at larger
scale. However, given the product value is relatively low
(mainly electricity, bulk nutrients), there is not a strongly
compelling economic driver to use next generation processes,
given its higher risk. However, another consideration in
the future is the value of carbon separate from the energy
value in the wastewater. Until now, the focus has been on
production of biofuels, particularly biomethane. This leaves
bulk nutrients to be recovered (or more often, dissipated),
and metals to be concentrated in sludge, mainly as metals
sulfide. While this has resulted in resource utilization, ultimately,
it dissipates the concentrated carbon to CO2 (albeit short-
cycle CO2). We are now seeing a shift which recognizes the
upvalued nature of carbon in wastewater, with its use in
generating byproducts such as biopolymers, liquid biofuels,
commodity chemicals, and possibly even animal feeds as
SCP. The latter even offers a vector to transfer macro and
micronutrients back into the manufacturing and agricultural
product chain. However, it is still soon to predict the

real impact of recycling these bioproducts into a global
circular bioeconomy. In most of the cases, the technology
readiness level (TRL) of the enabling technologies is still
low (below TRL5), needing dedicated economic analyses like
Life Cycle Assessment once pilot or demonstration plants are
implemented.
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